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Case-Based Decision Theory:
From the Choice of Actions
to Reasoning about Theories

Jirgen Eichberger*
Ani Guerdjikova**

In the 1990s, David Schmeidler and ltzhak Gilboa initiated the study of deci-
sion-making under uncertainty in a completely new framework, without states but
with data sets as the information on which to build choice behavior. While the
first formulations of case-based decision theory (CBDT) aimed at applications in
economic decision-making, this theory which takes data as a primitive concept
provides an alternative foundation for deriving beliefs and driving the choice of
predictions. This opened a new perspective on old questions in statistics and arti-
ficial intelligence. In this review, we summarize these developments in CBDT and
highlight the immensely innovative nature of David Schmeidler’s academic work.

LA THEORIE DE LA DECISION AU CAS PAR CAS. DU CHOIX
DES ACTIONS AU RAISONNEMENT SUR DES THEORIES

Dans les années 1990, David Schmeidler et Itzhak Gilboa ont introduit un
nouveau cadre d’analyse des décisions sous incertitude : les bases des données se
substituent aux états du monde comme concept primitif du modéle et informent le
choix du décideur. Au début, la théorie de la décision au cas par cas était orientée
principalement vers des applications économiques, mais ses méthodes se sont
avéerées également pertinentes pour I'analyse des croyances et des prédictions
statistiques. Cela a ouvert de nouvelles perspectives sur des questions classiques
en statistique et en intelligence artificielle. Dans cet article, nous passons en revue
ces développements et mettons en avant le caractere extrémement novateur des
travaux académiques de David Schmeidler.
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PREFACE

Few theoretical developments in economic theory are so closely related to the
fruitful cooperation of two researchers as case-based decision theory to David
Schmeidler and Itzhak Gilboa. David Schmeidler could already look back at a
distinguished academic career when he and his PhD student Itzhak Gilboa em-
barked on a novel approach to analyze decision-making under uncertainty. In
the 1970s, David Schmeidler’s name was associated with the study of competi-
tive equilibrium with a continuum of traders (Schmeidler [1969]) and solution
concepts in the context of cooperative game theory (Schmeidler [1972]). In the
early 1980s, this work paved the way to reconsidering the theory of decision-
making under uncertainty with beliefs represented by a subjective probability
distribution as introduced by Savage [1954] and challenged by Ellsberg [1961]
and Kahneman and Tversky [1979].

In a seminal contribution (Schmeidler [1989]), David Schmeidler provided
a new paradigm for an alternative type of preference representation, Choquet
expected utility (CEU) which spawned off a large number of related represen-
tations. Moreover, one of the most popular alternative representations, “max-
min expected utility” (MEU), was launched in cooperation with Itzhak Gilboa
(Gilboa and Schmeidler [1989]) almost simultaneously. This earlier work on
decision theory studied choice in the classical framework of a well-defined set
of states of the world where the outcomes of actions would depend on the state
which was actually realized. In the behaviorist tradition of revealed preferences
that dominates economic theory, preferences over state-contingent outcomes are
the primitive concept. Assumptions on these preferences would characterize
both valuations of outcomes and beliefs as in Savage [1954].

More sensitive than most other decision theorists to the unspecified primitive
concept of states and early on interdisciplinary aware of alternative approaches
for choices in the face of uncertainty in artificial intelligence (e.g., Pearl [1988]),
David Schmeidler and Itzhak Gilboa began to study decision-making under un-
certainty in a completely new framework, without states representing the known
“unknowns” but with data sets as the information on which to build choice be-
havior. From their previous work however, they maintained the premise of pre-
ferences as the concept on which to build representations.

While the case-based decision theory (CBDT) (Gilboa and Schmeidler [1995])
which Itzhak Gilboa and David Schmeidler initiated in the 1990s and summa-
rized in A Theory of Case-Based Decisions (Gilboa and Schmeidler [2002]) still
aimed at applications in economic decision-making, it became clear that this
theory which takes data as we find it in innumerable data bases as a primitive
concept provides an alternative foundation for deriving beliefs and driving the
choice of predictions. This opened a new perspective on old questions in sta-
tistics, Bayesianism vs. frequentists, as well as on the algorithmic use of data in
artificial intelligence.

There have been a couple of surveys on CBDT (Guerdjikova [2008a]) in its
original interpretation as a theory about choice over actions. In the light of the
more recent emphasis given to the prediction issue by Gilboa and Schmeidler
[2012], we will focus on this redirection. This seems to be appropriate for a
contribution to David Schmeidler’s 80th birthday, highlighting his immensely
innovative academic work on fundamental questions.
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INTRODUCTION

In economic theory, uncertainty about the outcomes of an action is usually
modeled as choice over state-contingent outcomes. In this perspective, uncer-
tainty concerns the particular state occurring from a well-defined and perfectly
known set of “states of the world.” Any action leads to an outcome conditional
on the realized state. It is assumed that the decision-maker can rank all actions
according to a preference order. From these preferences over acts' one can de-
duce beliefs, that is subjective predictions about the occurrence of the states of
the world relevant to the choice of an action. Savage [1954] provided a set of
axioms for a decision-maker’s preferences over actions that are equivalent to the
decision-maker choosing the action according to the expected utility criterion
with a subjective probability distribution representing beliefs. This subjective
probability distribution can be viewed as a Bayesian prior distribution over the
set of states of the world. If the situation is repeated one can update these prior
distributions in the light of data generated by observing realized states. Upda-
ting a prior distribution in the light of data seems to be the only role data plays
in traditional economics.

The question of how evidence from data affects decision-making, however,
is much broader. Even the primitives of state-contingent decision-making, the
“states” which resolve all uncertainty regarding a decision and the actions which
a decision-maker considers are likely to be informed by data from past observa-
tions. Hence, it is no exaggeration to say that data sets form the core of economic
theory. Statistics and decision theory suggest, however, different approaches
for how to deal with data. Statistics usually presumes a stochastic process and
proceeds to estimate the parameters of the process using observations from a
data set. This method assumes that data is generated by a well-known type of
stochastic process for which only the parameters are unknown.

Decision theory, in contrast, postulates properties of preference relations over
states of the world, or states ofnature. Inthisview, actionsinduce state-contingent
outcomes. Rather than learning a probability distribution over states of the world
by estimating a generating stochastic process, probabilities are derived from pre-
ferences and thus describe the subjective perception of uncertainty. In contrast
to statistical theory, decision theory thus does not restrict beliefs to be consistent
with available data. The prior is purely subjective. Consistency is required only
when beliefs are updated with incoming information.? Only in the special case
when the decision-maker is a Bayesian who learns from a prior consistent with
the “true” process both approaches will be consistent and the decision-maker will
behave as a statistician who eventually learns the true probability distribution.

Case-based decision theory departs from these approaches since it takes
data as the primitive of the theory. Real-life decision-makers are neither

1. Savage [1954] called a state-contingent outcome “act” rather than “action.” We will use both
expressions interchangeably.

2. The consistency requirements can vary depending on the specific theory. The axioms of
expected utility theory proposed by Savage [1954] imply dynamic consistency, consequentialism and
Bayesian updating. In contrast, non-additive models use a more restricted set of conditions (Epstein
and Breton [1993] and Ghirardato [2002]). Epstein and Schneider [2003], Pires [2002] and Hanany
and Klibanoff [2009] provide three distinct approaches to establishing consistency requirements and
axiomatizing updating rules for different classes of non-additive models.
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statisticians nor are they perfectly rational and consistent in their prefe-
rences. In particular, they are not a priori endowed with a state space, and
a set of actions that map states into outcomes. Moreover, real-life data are
rarely organized and structured in a way that would allow for straightforward
statistical analysis. Usually, the data collected differ in their accuracy, infor-
mativeness, availability and relevance to the decision at hand. Some observa-
tions are rare (possibly unique and ex ante unpredictable, e.g., “black swans”)
and it is not clear how to combine such rare observations with more frequent
common place observations.

CBDT proposes a method for analyzing decision-making based on data di-
rectly, in particular, for situations in which statistical methods are not appli-
cable. In the case-based decision framework, an agent makes decisions using
the relevance (similarity) of past observations from the data set. Given the evi-
dence in a data set for a problem at hand, possible past outcomes of actions are
weighted according to the similarity (relevance) of the observations in which
they occurred. The action with the best similarity-weighted performance is
chosen. CBDT provides both practical guidance, as well as an axiomatic foun-
dation which is important for empirically testing the theory and for estimating
the subjective similarity function. For unstructured data, the specification of
similarity, however, may be subjective and unrelated to the data.

More recently, CBDT has been applied to predictions based on past observa-
tions. In this context, the question of choosing the “correct” similarity function
can be meaningfully addressed and one can study learning of the “correct” simi-
larity function. From this perspective, a Bayesian can be viewed as a case-based
decision-maker who learns the correct similarity function and who holds beliefs
converging to the true probabilities of events, provided the underlying process
i1s compatible with the notion of similarity. More generally, one can study the
conditions under which knowledge of the correct similarity function will be
useful for the decision-maker.

Finally, the language of case-based decision theory allows one also to talk
about choices among theories. This meta-view can distinguish between decision-
makers relying on Bayesian, or on case-based, or on rule-based reasoning. For
example, one can show that, in the long run, Bayesian predictions carry more
weight in structured environments with low degrees of uncertainty, whereas
case-based reasoning tends to be more appropriate in complex environments.

In this survey we will proceed as follows. After introducing some leading
examples, we will present the basic framework of CBDT in the second sec-
tion. The third section will review some of the applications of CBDT to econo-
mic problems. In the fourth section we will focus on the contributions of CBDT
to the prediction problem. Lastly, in the fifth section, we will discuss CBDT as
a mode of reasoning over theories.

LEADING EXAMPLES

Before entering the more formal description of the framework, we would like
to indicate the range of applications by discussing some examples illustrating the
scope of decision problems case-based decision theory can address.
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Example 1: Job candidates

Consider a CEO who seeks to hire an administrative assistant. The available
acts are the various candidates for the job. The CEO does not know how well
each of the candidates would perform if actually hired. A candidate may turn
out to be unreliable, dishonest or incompetent. Some candidates may be very
efficient at administrative tasks, but unable to deal with customers. Others might
be perfect on the job, but unwilling to travel.

In this example, neither the possible outcomes, nor the states of the world
are naturally implied by the description of the problem. Any attempt to specify
these would require imagining every possible situation in which different charac-
teristics of the candidate might be relevant and assigning to each such situation
for each candidate an outcome.

A more realistic approach would be to ask each candidate for references, i.e.,
for records of past cases of employment when outcomes have been observed. To
determine a utility index for each candidate, the outcomes observed in past cases
are weighted by their relevance (similarity) for the decision at hand. In the basic
model presented below, outcomes and similarity will be combined in order to
determine the support a given past case (recommendation letter) provides for a
candidate.

Example 2: Medical treatment

A physician examines a patient and registers her medical characteristics (blood
pressure, temperature, age, medical history). The physician is considering a par-
ticular treatment and wishes to forecast the likelihood of its success. For infor-
mation he has a data-base of patients with characteristics, possibly different from
those of the current patient, who had been treated before. The data-base records
also the outcome (success or failure) for each case.

In this example, the possible outcomes are well-defined. The relevant state
space constructed from a large set of characteristics of a vast set of cases is,
however, very large. Given that most of these states have never been observed,
assigning probabilities to events in this state space is, in general, an impossible
task.

Therefore, the physician may prefer to use the notion of similarity among past
cases in order to predict the outcome in the current one. The predicted proba-
bility of success in the current case will be the weighted average of success of
the treatment in past cases, where weights combine the physician’s subjective
similarity perception with the frequency of cases.

Example 3: Choice between theories

Studying a sequence of data, a scientist has to choose the theory that best
explains these observations. He associates with each observed case and each
theory a numerical value, which identifies the extent to which each observation
supports the theory. Theories are then ranked according to the total support the
data provides for them.

If the value describing the support provided by a given case for a theory is
chosen to be the logarithm of the likelihood of the observation under the theory,
then this method reduces to the maximum log-likelihood criterion.

These examples show that CBDT tries to address decision situations which
are too unstructured and too complex to be addressed by the traditional theory
of decision-making under uncertainty.
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CASE-BASED DECISION THEORY

In this section, we will first present the case-based decision theory as intro-
duced in a series of papers by Gilboa and Schmeidler ([1995], [1997a], [1997b],
[2001]) and later in their book (Gilboa and Schmeidler [2002]). Then, we will
provide the system of axioms which characterizes the representation, before in-
troducing some extensions.

The General Framework

The case-based decision theory (CBDT) as suggested by Gilboa and
Schmeidler [1995] models decision situations, in which neither states of the
world, nor probabilities of outcomes can be naturally inferred from the descrip-
tion of the problem. Instead, the decision-maker (DM) is assumed to have a data
base (a memory) consisting of past cases recording outcomes observed in past
circumstances. For a given decision problem, alternatives are ranked in accor-
dance to their similarity-weighted performance as recorded in the data.

We will describe the framework following Gilboa and Schmeidler ([2002],
chap. 3).° The finite set of known cases is denoted by C. The set of known
possible alternatives is given by Y. It is assumed that Y contains at least two
alternatives. A memory M specifies for each case ¢ € C how often this case has
been observed in the data. Hence, a memory is a mapping M :C — Z;. The
order of occurrence of different cases is not recorded, reflecting the belief that
the order of cases does not matter for the evaluation of acts.* Alternatively, the
time component can be incorporated in the description of the problem. The set

M= T& :C—Z¢ W denotes the set of all hypothetical memories.
Given a decision problem p, the decision-maker has to rank the alternatives
in Y according to a preference order, which depends on the memory M, 7, /-

Since the decision problem p is exogenously given and does not change, we will
suppress the index p in the notation.

The Representation

For a given memory M, alternative y is preferred to ', y==,, v/, if and

only if
SM(e)v(re)z M (e)v(y.c), 0

ceC ceC

where for each case ¢, v A qu is the degree of support which a single observation
of case c provides for the choice of y. Intuitively, v A Fmv summarizes the decision-
maker’s subjective judgment about the desirability of the alternative y based on
a single observation of case c.

3. This framework is very similar to Gilboa and Schmeidler [2003], with the minor difference
that in the former, the set of cases is finite and the data allows for repetition of cases, whereas in the
latter, the set of cases is infinite, repetitions are not allowed, but for each case there is an infinite
number of “equivalent” cases.

4. This invariance property appears as an explicit axiom in Billot et al. [2005].
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In more specific formulations below, the degree of support can be decom-
posed into the perceived relevance of case ¢ for the choice of y and the desi-
rability of the outcome obtained in case c. An evaluation of the alternative y
is obtained by aggregating these coefficients which may be positive or nega-
tive across cases, using the number of occurrences M Aqv of each case ¢ as
weights. This representation is unique up to an affine positive transformation,
ie., forany y,c€ YxC if <A ?mv represents the decision-maker’s preferences,

then so does v(y,c)=\v(y,c)+k, forany \>0 and any (k, vnmﬁ eRC.

Axiomatization

Representations of preferences are difficult, if not impossible, to test in ex-
periments. An axiomatic characterization may reveal testable necessary and
sufficient conditions for observable behavior. Gilboa and Schmeidler ([2002],
chap. 3) provide an axiomatization for the representation 1. They assume that
preferences may depend on the information about cases in the decision-maker’s
memory or data set. Hence, a family of preference relations over alternatives

AN Y v em conditional on the information in (potentially hypothetical) memo-

ries in M is a primitive concept of the theory.

An important property of these preferences concerns the preferential response
to obtaining new information in form of an additional data set. The combina-
tion of two memories, M and M’ results in a memory M"” € M defined as the
case-wise sum of observed cases, i.e., M"(c)=M (c)+M'(c) for all c€C.
Variants of the following axioms support most axiomatizations of case-based
evaluations of alternatives.

Axiom 1 (Order). Forevery M € M, ,, is complete and transitive.

Axiom 2 (Combination). If yZ,, ', and y 2z, »', then y 2, .\ ¥

Axiom 3 A>85509m€ : y =y V', then for every M € M, there exists a
k €N suchthat y 0 v

Without Axiom 1 a real-valued representation is impossible.

Axiom 3 states that every evidence which supports »’ more than y can be
outweighed by a sufficient number of repetitions of cases which support y more
than y’. Axiom 3 is a continuity axiom which would be violated if observations
in a memory would render an alternative inferior regardless of any evidence
from observing other cases. For instance, an administrative assistant who has
been dishonest once may never be employed, regardless of how many additional
good recommendations she would present. Similarly, the observation of a single
black swan is sufficient to refute the theory “all swans are white” in favor of the
theory “swans can be of different color.”

Axiom 2 is a core axiom of case-based decision theory which makes an as-
sumption on how preferences are affected by the combination of two memories
or data sets. It states that if two separate pieces of evidence support the choice of
y more than that of y’, then so should their combination. In Example 1,ifa CEO
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would want to hire a candidate based on each of two independent recommenda-
tions from two previous employers, she would not change her mind given the
information in the combined data set. The maximal likelihood approach to the
selection of theories also satisfies Axiom 2: if data set M implies that theory y has
a higher likelihood than theory )’ and so does data set M, then the combined
data sets will also assign a higher likelihood to y than to y’. Axiom 2 is, however,
less compelling in the context of hypothesis testing where two memories might
both be too short in order to reject a given null hypothesis, but the combination
of these memories may contain a sufficient number of observations for the hy-
pothesis to be rejected. As Gilboa and Schmeidler [2002] point out, this is due
to the inherent asymmetry between the null hypothesis, which is assumed valid
until evidence to the contrary, and its rejection. Axiom 2 is also violated if si-
milarity perceptions depend on experience (see Gilboa and Schmeidler [2003]
for examples).

Axioms 1-3 are necessary but not sufficient for the existence of a repre-
sentation as in Equation 1 (see Gilboa and Schmeidler [2002]). An additional
axiom, which is not necessary, but which together with Axioms 1-3 guarantees
Equation 1 is:

AxioMm 4 (Diversity). For any four distinct alternatives, y;, y,, y; and
V4 €Y, there exists an M € M such that y, >, v, >, ¥3 =), Vs If _%_ <4,
then for any ordering of the elements of Y, there is a memory M such that >,
coincides with that ordering.

Axiom 4 rules out the case that an alternative y (weakly) dominates alternative
y' for all possible memories. It precludes, e.g., lexicographic preferences of the
following type: a CEO working with Japanese clients might feel that it is always
better to hire an assistant who speaks fluent Japanese than an assistant who does
not, regardless of their letters of recommendation. In the context of prediction,
it excludes the possibility that a forecast is always preferred to another one,
regardless of the data.

Axioms 1-4 are sufficient for the existence of the representation and imply
its uniqueness in the sense above.’

Extensions and Alternative Representations

There are several variations and extensions to the case-based decision model
presented so far. Some of them will be discussed in this subsection. The first
two extensions are useful in the context of predictions and evaluation of theories,
the last one provides additional insights in the context of consumer choice.

Excluding Identical Cases

One might argue that no two cases are exactly identical as, at the very least,
they differ in the time of their occurrence. If one holds this point of view, the

5. Furthermore, Axiom 4 imposes an additional linear independence condition on the values
<A u\unv for any four distinct acts, y;...y,. See Gilboa and Schmeidler ([2002], Theorem 3.1, 67).
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previous framework appears unsatisfactory, since it requires the decision-maker
to consider (at least hypothetically) any number of repetitions of any case. In
response to this argument, Gilboa and Schmeidler [2003] consider an infinite set
of cases, none of which can appear more than once in a data set. A data set is
defined as a finite subset of the set of cases. Even though each case is unique, the
decision-maker is assumed to be able to assign cases to equivalence classes, each
of them with an infinite number of elements. Exchanging a case in the memory
for a case in the same equivalence class leaves the decision-maker’s preferences
over alternatives unchanged. In this way, the representation in Equation 1 ob-
tains under the same set of axioms adapted to take into account the new structure
of the set of cases.

Ex Ante Preferences over Alternatives

The theory presented so far implicitly assumes that with no data all alternatives
are considered ex ante indifferent, i.e., only data determines preferences. This
assumption creates problems when the alternatives are theories ranked according
to their ability to explain the data.® Hence, Gilboa and Schmeidler [2010] adapt
the theory to allow for ex ante preferences, which are not dependent on a data
set and can be interpreted as an a priori bias with respect to certain theories. For
this adjustment, Axiom 2 has to be relaxed in the following way:

Axiom 2’ (Recombination). If M,, M,, M,; and M, €M are such
that M} +M, = M5 +M,, then there are no y,y’ €Y such that y 3, »/,

YZu, s ¥ Za, v and ¥y v,

This axiom is a generalization of Axiom 2 and ensures that learning is done
“case-by-case.” Intuitively, if two data-bases individually support the choice of
y rather than ', then choosing a subset of cases that supports ' over y must
mean that the rest of the cases provide support for y that more than compensates
for those in support of .

Together with Axioms 1, 3 and 4, this leads to the following representation:
y =y ¥, ifand only if

MUNKAQY\C\BT.:\C\VNMU\,\NAQY\Qnmvl_.%Q\V, (2)

ceC ceC

where the constants s\ﬁ u\v represent the decision-maker’s ex ante ranking over
the alternatives in Y.

Differentiating between Ultility and Similarity

In many applications related to consumer choice, it is useful to decompose
the degree of support v into two components: similarity between the action un-
der consideration and the case observed and utility of the outcomes recorded in
cases. For this purpose, one assumes that, for a given decision problem p, each
case is represented by the alternative y, € Y and the outcome 7, € R registered
incase c:c= C\:\v. The set of cases is thus, C = Y x R. The set of memories or

6. See Gilboa and Schmeidler [2012] and the discussion in the fifth section below (“Case-Based
Reasoning about Theories”).
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data sets is defined as before. The representation now takes the form: y =, ',
if and only if U, (y)>U,, (»') with

U (9)=2M (e)[u(r) =] s (3., ). (3)
ceC

Here u:R— R is a utility function over outcomes and u denotes the
decision-maker’s aspiration level, i.e., the utility of a neutral outcome, 7 with
:Aﬂv =u. If all outcomes observed in the memory are neutral, the decision-
maker is indifferent. Finally, s:Y xY — R is the similarity function defined on
alternatives. The value of the function s reflects the similarity of an alternative y
under consideration to the alternative y,. observed in case c¢. Thus, the support
of case c for the choice of y, <A V, mv is decomposed into a similarity between the
pair of alternatives MA v, RL and the utility net of the aspiration level obtained

in case c, :T\LI:.

The concept of an aspiration level can be traced back to Simon [1957]. It
formalizes the idea of satisficing behavior, 1.e., the persistent choice of an alter-
native, which meets aspirations, as opposed to alternatives that maximize uti-
lity. E.g., a CEO who has a long memory of cases of satisfactory performance
of his current administrative assistant might prefer to keep his current assistant
even after seeing excellent resumes of other candidates.

The similarity function quantifies the decision-maker’s similarity perception
between the choice of act y,. observed in the memory and the choice of act y
in the problem at hand. It captures the idea expressed by Hume [1758] that
“from causes which appear similar we expect similar effects.” For instance, a
candidate y applying for a position as an administrative assistant at a maga-
zine may present references y, from her previous occupation with a radio sta-
tion. Although the two jobs are not identical, they might be considered similar
and, hence, the case y. could be used to evaluate the candidate for the current
position y. Distinct candidates may also be considered similar.

Gilboa and Wakker [2002] axiomatize Equation 3 by adding to Axioms 1-4,
a fifth axiom which ensures that the relevance of a case depends only on the
problem and the act, but not on the observed outcome. This property will fail
if there are cases in the memory which are assigned different similarity weights
depending on the outcomes observed.

CASE-BASED CHOICE:
APPLICATIONS AND EXPERIMENTAL STUDIES

In this section we will briefly review applications of case-based decision theo-
ry to economic problems and report on some experimental studies on this topic.
Applications

The first applications of case-based decision theory were related to consumer

theory. In this context, representation 3, which distinguishes between simila-
rity of cases and utilities of outcomes, is of particular relevance. Two recurrent
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issues concern the long-run optimality of case-based decisions and the pos-
sible optimality of change-seeking behavior. These applications demonstrate
that case-based decisions are usually analyzed in a dynamic context, in which
decisions inform memory, while memory informs decisions. In this dynamic
framework, the question of “optimal limit behavior” arises naturally.

Gilboa and Schmeidler ([2002], chap. 6) study a repeated decision problem
with deterministic outcomes for each alternative. For a constant, but low aspi-
ration level, a consumer will persistently choose an alternative which satisfies
his aspirations, but does not necessarily maximize his utility. Such behavior
captures the idea of “satisficing behavior” as expressed by Simon [1957]. When
the aspiration level is sufficiently high, however, such that no alternatives gene-
rates positive net utility, Gilboa and Pazgal [2001] show that the decision-maker
will choose each alternative with a frequency inversely proportional to its (ne-
gative) utility net of the aspiration level.” Such behavior can be interpreted as
change-seeking. Combined with an inertia assumption in the model of Gilboa
and Pazgal [2001], it can explain brand-switching behavior.

Building also on the idea of change-seeking behavior, Aragones [1997] stu-
dies the process of emergence of ideologies, i.e., of parties who adopt the same
policy regardless of the state of the world. This leads to the division of society
into partisan voters, who vote for their preferred ideology, and swing voters, who
switch sides with every election.

More generally, Gilboa and Schmeidler ([2002], chap. 6) show that maximi-
zing the case-based utility function 3 sequentially allows the decision-maker to
obtain a unique optimum in terms of frequencies of choice. The properties of
the similarity function play an important role in this process. Positive (negative)
similarity between alternatives makes the choice of the more similar action less
(more) desirable than the action chosen before. If acts concern consumption
goods, positive (negative) similarity can be related to the consumption goods
being substitutes (complements) (see Gilboa and Schmeidler [1997b]). When
similarity effects are strong, consumers may be willing to forego instantaneous
utility from desirable acts which are similar to acts which were chosen in the past
and had delivered bad outcomes (Guerdjikova [2007]).

For the case when the aspiration level is adapted towards the latest experienced
outcomes, Gilboa and Schmeidler [2001] show that a case-based decision-maker
exhibits path-dependence in his reaction to prices. In particular, a consumer
who derives satisfaction from the perceived value of a good net of its price will
exhibit a lower willingness to buy this good after a single price increase than after
several small price increases resulting in the same final price.

As already argued, optimality in the sense of choices maximizing instan-
taneous utility is not a general property of case-based decision-making. Jahnke,
Chwolka and Simons [2005] analyze a production choice problem where firms
learn the optimal price, respectively quality, decision of a monopolist. They
show the sensitivity of limit behavior with respect to the specification of the
model of learning.

7. As Gilboa and Schmeidler ([2002], 133) note, a high aspiration level need not imply that
the alternatives bring disutility. E.g., a music lover, who prefers to listen to Beethoven and Mahler
alternatingly may very well derive a lot of pleasure from music and eventually maximize his utility.
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Gilboa and Schmeidler [1996] describe a process of adaptation of the as-
piration level which in the limit leads to a choice of alternatives maximizing
instantaneous utility. Such a process must 1) update the aspiration level upwards
infinitely often in increasingly larger intervals in order to prevent the decision-
maker from being suboptimally satisfied with an inferior alternative and 2) adapt
the aspiration level to the maximal observed average payoft in order to avoid per-
manent switching at an excessively high aspiration level. Guerdjikova [2008b]
extends this result to a more general class of similarity functions. Pazgal [1997]
applies the same adaptation rule in the context of strategic interaction and shows
that it selects a Pareto-optimal equilibrium in coordination games.

Several papers embed case-based decisions into a social learning
framework. Gilboa, Postlewaite and Schmeidler [2015] show that the standard
problem of utility maximization subject to abudget constraintis NP-complete. As
an alternative, they propose that a consumer might use observations of the be-
havior of other households as a guideline for choosing a consumption bun-
dle. For each available observation, the consumer would identify the closest
consumption bundle within his budget set. To arrive at a choice, the resulting
bundles would then be weighed according to the perceived similarity to each of
the households. While the resulting choice can be represented as a solution of a
constrained utility maximization problem with appropriately chosen constraints,
the notion of optimality differs from the classical one.

An important special case of social learning occurs in networks. Blonski
[1999] and Krause [2009b] model social learning in networks using different
similarity functions to capture differences in social structures. Blonski [1999]
examines in detail how the structure of the network combined with the aspira-
tion level influences the learning of the optimal alternative. He shows that for a
complete network, the limit choice depends on the aspiration level as well as on
the share of the population choosing the optimal alternative. In the case of a star-
shaped network, the choice of the central element can influence the long-run be-
havior of the population. Finally, in a model with 8-neighborhoods, the adoption
of the optimal alternative is increasing in the size of the neighborhood 9, except
when the network becomes complete and multiplicity emerges. Krause [2009b]
simulates the learning process with a random network structure. He shows that
for observations which are independently distributed across individuals, social
learning of the optimal alternative (optimal herding) occurs. However, exces-
sive herding may occur in scenarios where the information from others is useless
(see also Krause [2009a]).

Experimental Studies

Several experimental studies find support for case-based decisions. Grosskopf,
Sarin and Watson [2015] show that memory and similarity considerations play
a role in one-shot decisions of a monopolist for allocating production across
several markets, especially when feedback on actual past choices is not avai-
lable. Ossadnik, Wilmsmann and Niemann [2013] find that in a stylized en-
vironment (choice between bets on the color of balls drawn from an urn with
unknown payoffs) case-based reasoning explains behavior in 80% of the cases
compared to max-min, min-max, o-max-min or reinforcement learning. Never-
theless, in terms of payoffs, modes of reasoning other than case-based decision

294

Revue économique — vol. 71, n° 2, mars 2020, p. 283-306



Jiirgen Eichberger, Ani Guerdjikova

theory perform better. Pape and Kurtz [2013] simulate case-based choices on
data from psychological human classification learning experiments. They find
that case-based decisions explains the data better than leading models in psy-
chology. They fit the parameters of the model (similarity, memory, aspiration
level) that best explain the data.

Bleichrodt et al. [2017] provide a methodology for identifying the similarity
function from experimental data and apply it to predicting housing prices across
regions in the Netherlands. They find that the only prediction of case-based de-
cision theory that can be rejected is the Combination Axiom. This occurs when
similarity has multiple dimensions and predictions might differ depending on the
dimension chosen as dominant. The axiom cannot be rejected for simpler en-
vironments. As Bleichrodt et al. ([2017], 145) note, “such a violation is similar
to the violations of separability over disjoint events (the sure-thing principle, or
independence) found for expected utility, and is equally unsurprising.”

CASE-BASED PREDICTIONS

Similar to subjective expected utility theory which neither restricts the deci-
sion-maker’s subjective probability distribution nor provides any hint regarding
its shape, the first version of case-based decision theory treats similarity per-
ceptions as subjective without regard to whether they are in any sense adequate
or appropriate for the problem under consideration. Indeed, in the context of
individual consumption choice there is little objectivity as to what qualifies as
an “optimal” choice for a subject. The definition of rationality in Gilboa and
Schmeidler ([2002], 17-19) emphasizes the subjectivity of similarity even fur-
ther: if a decision-maker acts in a way that he considers rational and cannot
be persuaded that an alternative course of action can improve his well-being,
he should be considered rational. The example of “brand-switching” behavior
(Gilboa and Schmeidler [1997a]) highlights this point: presuming that each
alternative has its own intrinsic value and that a consumer should consistently
choose the brand with the highest value, an outside observer may deem irrational
a consumer who constantly switches brands. Yet, a consumer who has prefe-
rences for variety may prefer consuming a good for a certain number of periods
and switching brands once she gets tired of it. Over time such a strategy may
well maximize utility.

In contrast, applying case-based decision theory in the context of predictions
provides a framework where questions about the appropriateness of similarity
functions can be meaningfully addressed. If alternatives are different predic-
tions from which a decision-maker has to choose conditional on a data set, then
similarity influences the likelihood of making a good prediction.

Reinterpreting the cumulative utility in the basic case-based decision model
(Gilboa and Schmeidler [2002], chap. 3) as likelihood yields a model of in-
ductive inference (Gilboa and Schmeidler [2003]) which includes well-known
statistical procedures such as maximal likelihood as well as kernel estimation or
kernel classification as special cases. In a similar vein, Billot et al. [2005] pro-
vide a model, in which the case-based decision-maker uses similarity-weighted
frequencies of past observations in order to predict the probability distribution
over outcomes.
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In this section, we will discuss the two most prominent applications of case-
based decision theory to the problem of prediction: Gilboa, Lieberman and
Schmeidler [2006] and Billot et al. [2005].

Case-Based Predictions as Case-Based Decisions
(Gilboa, Lieberman and Schmeidler [2006])

When the decision-maker has to choose from a set of alternative predictions,
as in Example 2 (Medical treatment) where the physician had to make a diagno-
sis and choose the appropriate treatment, a case ¢ = A F:\mv consists of a vector
of observable characteristics, p., and an outcome, the correct diagnosis or pre-
diction for this case, 7,. The decision-maker (physician) can use the observable
characteristics (of the patient) in order to predict the outcome in the relevant
case p. The preference representation is composed of 1) the similarity s A D, EL
between characteristics of the case under consideration p and the cases from the
data set p., and 2) the negative of the distance between the prediction under

: . L 2
consideration y and the outcome obtained in the case 7., IT\Q - u\v ,

Uyt (v) == M (c)(r. = ») s(p.p.).

ceC

Gilboa, Lieberman and Schmeidler [2006] axiomatize this rule, using
Axioms 1-3 together with a fourth axiom called Averaging which states that
for data sets M in which only a single set of characteristics p has been observed
with different realizations of outcomes 7, a prediction y is preferred to y’ iffy is

2 eccMle)r
Mnmﬁimmv .

In the special case of this representation, where the set of outcomes consists
oftwo elements, R = ,ﬂo ; Q , and y denotes the decision-maker’s belief regarding
the probability of outcome » =1, these four axioms are equivalent to predic-
tion y being preferred to prediction y’ iff y is closer to the similarity-weighted
average in M thanis y’:

closer to the average outcome in M,

Yy yiff
Wﬁ%mvi?vﬁ \ Wﬁ%mvﬁ?vs
TS| S | @

where, for simplicity, we suppress the notation for the characteristics of the
current case: QAFV = wfw:qu.

Case-Based Probabilities over Outcomes (Billot et al. [2005])

An interesting application of case-based decision-making concerns the de-
rivation of probability distributions over outcomes from data. The represen-
tation of preferences among predictions in Equation 4 provides a link between
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information in the form of data and probabilistic beliefs. This link is further
developed by Billot et al. [2005].%

Billot et al. [2005] consider a decision-maker who wishes to predict the pro-
bability distribution over outcomes. The set of alternatives is the simplex over

a finite set of outcomes R, i.e., Y = DEL. Billot et al. [2005] assume that the
order in which data arrive is irrelevant. Hence, each data set can be represented
by a function M € M as above.

Rather than applying axioms to a preference relation over predictions, Billot
et al. [2005] directly study the mapping y: M — DEL , Which associates with
each potential memory M € M a prediction y € Y of the decision-maker. Ins-
tead of the combination axiom (Axiom 2), Billot et al. [2005] assume a Concate-
nation Axiom which requires that for any M, M’ € M, there exists an o € on 5
such that ii + i\v = oy(M)+(1— QVHCE\V. This axiom, together with the
requirement that at least three of the vectors w@& v are linearly independent,
ensures that y(M) can be written as

S s(e)# () (o)
Y= S

ceC

where s Amv is the perceived similarity between case ¢ and the current prediction,
and y°© Al denotes the probability that the decision-maker would have assigned
to outcome r if the memory consisted of the single case ¢. Setting y° AL =d,
(the Dirac measure concentrated on outcome 7), one obtains the generalization
of Equation 4 to an arbitrary finite set of outcomes as a special case.

This representation allows one to view probabilities as similarity-weighted
frequencies. In this context, rationality may be understood as the ability to make
the best possible predictions given the data. In as far as data are generated by
a process which satisfies Hume’s premise that “causes which appear similar”
generate “similar effects,” the decision-maker’s predictions will be correct in
as far as his similarity judgments are aligned with those governing the data-
generating process.

This result suggests that the case-based decision theory might fully resolve
the issue of obtaining subjective probabilities based solely on data and without
an underlying state-space. This is indeed true, when each observation in the data
is compatible with a single state. Yet, for the case when observations consist of
events, Gilboa and Schmeidler [2002] demonstrate that while predictions can be
represented by a measure, this measure need not be non-negative.

The Concatenation Axiom proposed in Billot et al. [2005] treats frequencies
independently of the number of observations on which they are based. Thus,
it does not matter for the decision-maker whether the predicted probability of
an outcome is based on a data set with 10 or with 1000 observations as long as
the frequency of cases is the same. Eichberger and Guerdjikova [2010] modify

8. Billot et al. [2005] work with a finite set of outcomes containing at least three elements,
_%_ >3. Gilboa, Lieberman and Schmeidler [2006] provide an axiomatization for _x_ =2, while

Gilboa, Lieberman and Schmeidler [2011] extend the analysis to the case of a continuously distributed
random variable.
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the Concatenation Axiom by restricting it to data sets with an equal number
of observations. With this modified Concatenation Axiom one obtains a set
of similarity-weighted frequencies as probability distributions over outcomes.
Moreover, the predicted probabilities vary with the number of observations. This
generalization of Billot et al. [2005] allows one to incorporate ambiguity into
case-based predictions and to model learning processes.

To test the presence of ambiguity in information conveyed by data, Arad and
Gayer [2012] design an experiment in which the precision of the data observed
by subjects varies. They show a dependence between the imprecision of the data
and the ambiguity aversion displayed by the subjects.

A further link between case-based decisions and non-additive probabilities is
provided by Gayer [2010], who shows that the use of similarity to form probabi-
listic judgments leads to probability-weighting functions, similar to those used
in prospect theory.

Applications of Case-Based Predictions

The case-based approach to predictions and belief formation has been used in
economic applications. Based on the theoretical work (Gilboa, Lieberman and
Schmeidler [2006], [2011]), Gayer, Gilboa and Lieberman [2007] use housing
market data in Tel Aviv to find out whether case-based reasoning by analogy to
similar cases predicts real-estate prices better than rule-based reasoning. They
find this hypothesis confirmed in the rental market for apartments but not for sales.
Lovallo, Clarke and Camerer [2012] also compare analogy-based decisions in two
empirical studies and find that case-based predictions make better forecasts.

Eichberger and Guerdjikova [2013] model decision-making under ambiguity
based on available data. Decision-makers choose according to an o-max-min re-
presentation of preferences, in which beliefs combine objective characteristics of
the data (number and frequency of observations) with subjective features of the
decision-maker (similarity assessment of observations and perceived ambiguity).

Eichberger and Guerdjikova [2012] study the process of technological adap-
tation in response to a change in climate conditions. In a model with case-based
decision-makers, some with optimistic and others with pessimistic attitudes
towards ambiguity, both optimists and pessimists are crucial for a successful
adaptation. Learning is induced by optimists, who are willing to try out new
technologies for which there is little evidence available. Thus, optimists provide
the public good of information, in contrast pessimists guarantee stability since
they choose a technology, once adopted, persistently in the long run.

For an economy with asset markets where investors have to allocate funds between
a safe and a risky asset, Eichberger and Guerdjikova [2018] study how ambiguity
and ambiguity attitudes affect asset prices when consumers form expectations based
on a data set of past observations. In an overlapping generations economy they des-
cribe limiting asset prices depending on the proportion of optimistic and pessimistic
investor types. One can show that, with long memory, the market does not select for
ambiguity neutrality. When perceived ambiguity is sufficiently small, but positive,
only pessimists survive and determine prices in the long run. In contrast, with a
short one-period memory, equilibrium prices are determined by Bayesians; yet, the
average price of the risky asset is lower than its fundamental value.
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Learning the Similarity Function and Second-Order Induction

For situations in which the data are indeed generated by an underlying simila-
rity function, Gilboa, Lieberman and Schmeidler [2006], [2011] and Lieberman
[2010] develop a method for estimating the parameters of the similarity function
from data.

Second-order induction, i.e., learning the correct similarity has also been dis-
cussed more generally in the literature. For the case of i.i.d. data containing nu-
merous observations and relatively few explanatory variables, Argenziano and
Gilboa [2019] show that the learning process converges to a unique limit. Howe-
ver, when observations are few and there are many explanatory variables, the
process has a non-unique limit and determining the correct similarity function is
computationally hard. Similarly, Aragones et al. [2005] prove that identifying
analogies in a data set is an NP-hard problem.

These findings can explain the use of counterfactuals (Tillio, Gilboa and
Samuelson [2013]), fact-free learning, as well as the role of precedent in situa-
tions involving strategic interaction (Argenziano and Gilboa [2018]).

CASE-BASED REASONING ABOUT THEORIES

So far, we showed that the case-based decision theory provides a model for
making choices and generating predictions in decision situations for which the
Savage state-space model is not well adapted. Furthermore, case-based learning
can lead to optimal decisions in the limit, either by appropriately adapting the
aspiration level or by learning the appropriate similarity function. More recently,
case-based decision-making has been applied to the problem of inductive
inference over theories.

The Need for Subjectivity

The general representation in Equation 1 allows for a reinterpretation of the
similarity function as a likelihood of a case in the light of a theory. When choo-
sing among theories y, one may take the similarity between a theory y and a
case c as a likelihood relation. Setting <A Fmv =logp Am | u\v to be the logarithm
of the probability of observation ¢ given theory y implies that the decision-maker
chooses the theory with the maximal likelihood given the data (see Gilboa and
Schmeidler [2003]). While this specification closes the gap between case-based
and statistical reasoning, it turns out that this decision rule need not lead to op-
timal choices in the limit.

In this spirit, Gilboa and Samuelson [2012] consider a decision-maker who
applies the maximum likelihood rule in order to sequentially reject theories
which do not fit the data. The remaining theories can then be used to make a
prediction. When the set of potential theories is sufficiently rich, however, the
maximum likelihood rule performs no better than chance: the decision-maker
always finds a large set of theories that match the data, and, thus, have maximal
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likelihood. Yet these theories differ in their description of the future and may
lead to wrong predictions. Thus, Gilboa and Samuelson [2012] argue for a sub-
jective ex ante ordering on the set of theories, which may serve as a tie-breaker
when several theories have maximal likelihood. In Gilboa and Schmeidler
[2010] such an ordering and a set of axioms are provided which leads to the re-
presentation 2. The coefficients s\A u\v of this representation can be interpreted
as the ex ante subjective evaluation of theory y.

Gilboa and Schmeidler [2010] suggest to interpret these coefficients as a mea-
sure of the simplicity of the theory in the spirit of Akaike’s information criterion
(Akaike [1974]), or Kolmogorov’s complexity measure (minimal length of the
program to generate the theory’s prediction, Kolmogorov [1965]), or the mini-
mal length of description® (Rissanen [1978]). Among the theories with maximal
likelihood for the observed sample, the decision-maker chooses the “simplest”
one according to the adopted criterion. Another possible interpretation is that of
a Bayesian prior,'® with weights equal to the logarithm of the initial probability
assigned to each theory.

Gilboa and Samuelson [2012] build on this idea and study the conditions
necessary for learning the best theory. They find that the purely objective data-
based criterion of maximum likelihood does not ensure optimal learning in the
long run, neither in the deterministic nor in the stochastic case. Two forces may
inhibit learning: 1) the decision-maker may be using the correct theory together
with other theories, thus, making wrong predictions on average; or 2) the decision-
maker may discard the correct theory, e.g., in a stochastic setting, the maximum
likelihood criterion will, eventually, almost surely reject the correct theory.

In a deterministic setting, introducing a subjective order ensures continued
learning when the set of theories with maximal likelihood is not a singleton. A
sufficient condition for this result requires a subjective order with finite better
sets. This condition is quite intuitive, since it will restrict the decision-maker to
choose from a finite set if there are multiple theories with maximal likelihood.
Subsequently, the decision-maker can explore this set further. If one of the
theories in this set is correct, it will continue to be of maximal likelihood and
will be chosen eventually, while the incorrect ones will be rejected. In contrast,
if none of the theories in this set are correct, an alternative theory will eventually
gain maximal likelithood and the set will be discarded in favor of another indiffe-
rence class. This process will, eventually, converge to the choice of the correct
theory (see Proposition 3.2 in Gilboa, Samuelson and Schmeidler [2015], 59).

In the stochastic setting, an interesting result obtains when preferences over
theories y are represented by the average'!

2 M(e)v(y.e)
qmﬁmgﬁmv +O§\C\Y

ceC

9. Gilboa and Schmeidler ([2010], 1766) discuss some of the problems that arise when measuring
the complexity of a theory.

10. Note however that the axiomatization does not fix the prior in a unique way (see Gilboa
and Schmeidler [2010], 1766).

11. The average is taken so as to avoid that the likelihood of a theory converges to 0 as the
number of observations increases.
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where <A u\,mv =log EAQ | u\v as before. The parameter « is the weight assigned to
the subjective preference (i.e., complexity considerations or the ex ante prior). As
a — 0, Gilboa and Samuelson [2012] show that the limit probability for the
decision-maker’s prediction being correct converges to the probability under
the correct theory.

In the special case of a Bayesian decision-maker, who starts with a prior
probability on the set of theories and uses this rule as a subjective order, either
lexicographically in the deterministic case or with a vanishing weight in the
stochastic case, optimal learning obtains.

The case-based decision theory challenges Bayesian reasoning and in particu-
lar its requirement for subjective assessment of probabilities even in the absence
of data or in disregard of available data. Interestingly, the result of Gilboa and
Samuelson [2012] shows that a certain amount of subjectivity is necessary for
successful learning.

Choosing between Different Modes of Reasoning

Gilboa and Samuelson [2012] treat the case in which theories, while making
different predictions, are all of the same type: they assign a probability to a
sequence of observations. Gilboa, Samuelson and Schmeidler [2013] relax this
condition: rather than theories, they consider conjectures, i.e., predictions that
the history at a given time will belong to a certain event. Such conjectures can
be assigned weights using a credence or belief function.'?

Conjectures can be classified into several categories. Bayesian conjectures
refer to a single state and can be verified at each history. Case-based conjectures
do not have this property: rather, they condition their prediction on observing
certain characteristics at two separate time periods, upon which the outcomes in
these two periods are predicted to be identical. Thus, case-based conjectures re-
fer to events rather than single states. Clearly, unless the specific characteristics
have indeed been observed on the relevant path, a case-based prediction cannot
be verified. Finally, rule-based conjectures relate the value of the observed cha-
racteristic at a given time ¢ to the observed value of the outcome at that same
time. They have an “if ... then”-structure. Similarly to case-based predictions,
they can be vacuous, when they only apply to certain characteristics, but not to
others. They can also encompass events.

Theories or models can now be represented as combinations of conjectures
of various types, where the weight of each conjecture is defined by the cre-
dence function. As information accumulates, some conjectures are rejected and
assigned a weight of 0, whereas the weight assigned to the unrefuted ones is
updated. Thus, the paper presents a general framework allowing to explore the
decision process of a decision-maker who employs different types of conjectures
to form beliefs.

12. A belief function, through its Mdbius inverse, specifies a probability function on a G-algebra
of events. In the special case, where only singletons are assigned a strictly positive probability, the
belief function is an additive probability (see Dempster [1967], Shafer [1967] and Jaffray [1989]).
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Bayesianism versus Case-Based Reasoning

Gilboa, Samuelson and Schmeidler [2013] then ask which type of conjectures
retain positive weights in the long run. Under the condition that for the set of
Bayesian conjectures, the ratio of credences assigned to histories of the same
length is bounded by a term that is polynomial in time, and a similar constraint
for the set of case-based conjectures, the authors show that case-based reasoning
will prevail with the credence assigned to Bayesian conjectures converging to 0.
The clue to this result lies in the fact that the number of Bayesian conjectures
increases exponentially with time, whereas the number of case-based conjec-
tures is polynomial in time. Thus, under the restriction imposed on the weights
assigned on conjectures of a given type, on almost every history, the weight
of the Bayesian conjectures consistent with this history declines exponential-
ly, whereas that of the case-based ones drops polynomially. In the limit, the
decision-maker attributes all weight to case-based predictions.

Interestingly, the same result applies even for the case of an i.i.d. process,
for which the decision-maker knows the probability distribution of the out-
come conditional on the observed characteristic and uses this distribution to
determine the relative weight of the Bayesian conjectures. As long as the
decision-maker assigns a strictly positive credence to case-based reasoning
(and the relative weights of case-based conjectures are bounded polynomially
as above), in the limit he will reason in a case-based fashion, assigning all
the weight to case-based conjectures. This result holds even if the decision-
maker’s Bayesian beliefs are correct. Moreover, the decision-maker will be
conscious of this transition towards case-based reasoning. Notably, case-
based reasoning prevails when the decision-maker faces a “large” (exponen-
tially increasing with time) number of Bayesian conjectures, among which he
cannot meaningfully discriminate. If, in contrast, the decision-maker assigns
a credence close to one to a single state and the state is indeed realized, then
Bayesian reasoning will remain dominant.

This result illustrates the difference between the notion of Bayesian conjec-
tures, which are interested in predicting the exact history and can thus be refuted
based on a finite number of observations, and the standard notion of a theory
(also used in the stochastic setting of Gilboa and Samuelson [2012]), which
concerns the limit distribution of a process and cannot be rejected with certainty
based on finite histories. "

13. In particular, although the theory that the probability of a coin landing heads is 1/2 might be
correct and the decision-maker might know this, the Bayesian conjecture for time ¢ has to be more
specific than this and explicitly state the #-period sequence of heads and tails. But the number of
such sequences consistent with a limit frequency of 1/2 increases exponentially with ¢# and only a
single one is consistent with the actually observed history. At the same time, a case-based conjecture
only requires the decision-maker to state whether the outcome at ¢ will be the same (or distinct)

(—1)-2)
2
quadratic expression in z. The assumption imposed by Gilboa, Samuelson and Schmeidler [2013]

from that at time ¢’ <¢. The number of such conjectures for time ¢ is , which is a

on the weights of different case-based conjectures imply that the weight of the correct case-based
conjecture based on the outcome at # —1 converges to 0 at a rate, which is at most polynomial. This
gives the desired result.
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Cases versus Rules

Gayer and Gilboa [2014] use a similar approach to compare rule-based and
case-based conjectures. Rules correspond to deterministic theories in the lan-
guage of Gilboa and Samuelson [2012] and thus make a prediction for every
period. Thus, for each history a theory is either “refuted” or “unrefuted.” Case-
based reasoning is modeled as in Gilboa, Samuelson and Schmeidler [2013] by
assigning a strictly positive credence to all simple case-based conjectures. When
the process is exogenous, and the true state is one, on which some theory descri-
bed by a rule is never refuted, case-based reasoning is eventually assigned O cre-
dence and the decision-maker learns the rule corresponding to the correct theory.

Defining three types of states: those on which the weight on case-based pre-
dictions is higher than that of rule-based from some time on, the reverse type, and
the type of states on which neither mode of reasoning dominates in the long run,
Gayer and Gilboa [2014] show that all three types of states are dense. Neverthe-
less, in a measure-theoretic sense,'* case-based models will accrue a weight of
1 over time. This result is based on arguments similar to those establishing the
predominance of case-based reasoning in the presence of Bayesian conjectures.

In contrast, when the decision-maker is predicting an endogenous process, in
which observations depend on the agent’s predictions, only rule-based theories
will be assigned a strictly positive mass in the limit.

CONCLUSION

The theory of case-based decision-making originated as an alternative to
the approach based on state-contingent outcomes (act) proposed by Savage
[1954]. Modeling all possible contingencies in an uncertain situation amounts
to knowing all relevant factors which might influence the outcome of an action
under uncertainty. In Savage’s theory, uncertainty is allowed to affect only the
likelihood of events which are known to be relevant. This explains the well-
known difficulties of Bayesian theory when updating on data which are incons-
istent with the states.

One of the surprising recent developments in case-based decision theory
points to its potential to deal with unforeseen contingencies. Gilboa, Minardi
and Samuelson [2017] study a model of decision-making under uncertainty
where the agent evaluates possible actions both by their case-based similarity
and a set of “scenarios” affecting outcomes. “Scenarios” are similar to states in
determining the outcomes of an action, yet they need not be mutually exclusive
nor need they completely determine outcomes. Instead, the authors appeal to
observable “eventualities” which link scenarios to the data of cases.

These new developments relate state-contingent outcomes in the spirit of
Savage [1954] with the case-based theory of Gilboa and Schmeidler [2002]. In-
deed, this new approach may help to bridge some of the inconsistencies between
objective data and subjective “scenarios’ involved in “unforeseen contingencies”

14. In general, the concepts of dense and meager sets are orthogonal to measure-theoretic
concepts (see Marinacci [1994] for an extensive discussion of the issue).
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and “undefined updates.” Moreover, these new developments may be of prac-
tical use for pattern recognition techniques in artificial intelligence and deep
learning, an application of case-based reasoning which we did not review in this
survey (see, e.g., Hillermeier [2007]).
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