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This paper addresses the problem of robust control for a class of nonlinear dynamical systems in the
continuous time domain. We deal with nonlinear models described by differential-algebraic equations
(DAEs) in the presence of bounded uncertainties. The full model of the control system under consideration
is completed by linear sampling-type outputs. The linear feedback control design proposed in this
manuscript is created by application of an extended version of the conventional invariant ellipsoid
method. Moreover, we also apply some specific Lyapunov-based descriptor techniques from the stability
theory of continuous systems. The above combination of the modified invariant ellipsoid approach and
descriptor method makes it possible to obtain the robustness of the designed control and to establish
some well-known stability properties of dynamical systems under consideration. Finally, the applicability
of the proposed method is illustrated by a computational example. A brief discussion on the main
implementation issue is also included.
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1. Introduction

In the last 30 years, the dynamical behaviour of a wide number of constrained dynamical systems in
numerous applications, such as economics, demography, mechanical systems, multibody dynamics,
electrical networks, fluid mechanics, chemical engineering, control theory and many other areas, have
been usually modelled via semi-explicit differential-algebraic equations (semi-explicit DAE) as a widely
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590 R. JUAREZ ET AL.

accepted tool (see Kunkel & Mehrmann (2006) for more applications) of simulation and whose general
form appears as

ẋ1 = ζ(x1, x2, t) ∈ R
m

0 = κ(x1, x2, t) ∈ R
n−m,

(1.1)

where (x1, x2) ∈ R
m × R

n−m. Here algebraic just means nondifferential. The main theory and
numerical analysis of linear DAE with constant coefficients (LDAE-CC) is largely covered by Kunkel
& Mehrmann (2006) and authors therein. Kunkel & Mehrmann (2006) explain that non-invertibility
at a point (x0, p0) of derivative, DpF(x, p), of above semi-explicit DAEs in implicit form, F(x, p) :=
(p1 − ζ(x1, x2), κ(x1, x2))

ᵀ, does not affect the surjectivity of DF(x0, p0) and the rank of DpF(x, p) is
constant, where p = (p1, p2) ∈ R

n. Using the concept of differentiation index, which is the minimum
number of times that all or part of F(x, p) must be differentiated with respect to t in order to determine
ẋ as a continuous function of t and x, a semi-explicit DAE has an index 1 and eventually is reduced to
an ordinary differential equation (ODE) on a manifold.

The functions ζ(t) and κ(t) belonging to the given Quasi-Lipschitz (Q-L) classes, whose exact
definition is given in the next section, is to be compatible with several widely used techniques of linear
approximation related to plant models. Similar linearization-like ideas are common in the theoretical and
numerical practice of control engineering (Khalil, 1996). This linearization-like approximation allows
us to rewrite system (1.1) into a linear control problem. Linear control problems, called descriptor
systems, use differential-algebraic systems in the form

Eẋ = Ax + Bu + f (t)

y = Cx + h(t),
(1.2)

where E, A ∈ R
n×n, B ∈ R

n×n, C ∈ R
q×n are constant matrices, f ∈ C (I,Rn), h ∈ C (I,Rq) and

both measurable functions for some interval I ∈ R+, x ∈ R
n represents the state, u ∈ R

m the input
or control, and y ∈ R

q the output of the systemand are still a very active research area. All properties
of the previous system can be determined by computing the invariants of the associated matrix pair
(E, A) under equivalence transformations. Then original and transformed problems can be treated by
purely algebraic techniques. One particular one-to-one transformation called Weierstrass canonical form
(WCF) for regular pair matrix allows us to set a one-to-one correspondence between the corresponding
solution sets. Regularity of a matrix pair is closely related to the solution behaviour of the corresponding
DAE. This means that we can consider transformed problem instead of original problem with respect
to solvability and related questions. For a general behaviour approach and its analytical treatment,
see Kunkel & Mehrmann (2006). There exists a completely algebraic characterization when system
is regular and consistent. Notice that a control problem as (1.2) is called consistent, if there exists an
input function u, for which the resulting DAE is solvable. It is called regular, if for every sufficiently
smooth input function u and inhomogeneity f , the corresponding DAE is solvable and the solution is
unique for every consistent initial value.

The main assumption of classical optimal control theory is that a user possesses complete
information on the model under consideration as well as on the environment in which this controlled
model will evolve. When we have incomplete information on a dynamic model to be controlled, the
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IMPLICIT CLASS OF CONTINUOUS DYNAMICAL SYSTEM: ROBUST APPROACH 591

main problem consists in designing an acceptable control that remains close to the optimal or desired
one (having small sensitivity with respect to every unknown (unpredictable) factor from a given set of
possibilities). In other words, the desired control should be robust with respect to unknown factors. In
presence of uncertainties in the dynamic model, the attractive ellipsoid methodology (AEM) works for
reach a suitable solution for a class of given models is to formulate a corresponding tracking control
problem, where we are interested in the best approximation to a desired trajectory. In other words, we
are interested in a zone stabilization or in the practical stability of the deviation of the trajectories of the
given system from the desired one. The robust stabilization problem considered for different classes of
nonlinear systems has been a hot topic of research over the past two decades (Poznyak et al., 2014b;
Utkin, 1992). The necessary assumptions for the tracking error dynamics for the system (1.2) are the
following: the dynamic plant (1.2) is controllable and observable; the functions ζ(t) and κ(t) may be
unknown, but they belong to the given Q-L classes Cζ and Cκ of nonlinear functions, respectively; the
unmeasured functions f (t) and h(t) are bounded; the control u(t) is designed as a feedback (static or
dynamic) of a given structure containing the set of parameters P , that is, u(t) = u(x(τ )|0�τ�t, t, P);
so that u(t) depends on all measurable data x(τ ) in the time interval [0, t]. If we have the nonzero
terms f (t) and h(t), which are unmeasurable during the control process, then obviously, the application
of the classical optimal control approach (as described above) is impossible. The situation looks
much more difficult if the functions ζ ∈ Cf and κ ∈ Cg describing the dynamic process are unknown
a priori. In the control problem, formulated as a tracking problem, the set of considered control
strategies is suggested to belong to a parameterized class of nonlinear (perhaps nonstationary) feedbacks
u(t) = u(x(τ )|0�τ�t, t, P), whose parameters P are selected in such a way that all possible trajectories
x(t) of the closed controlled systems remain bounded and closed to the origin; taking into account
that every set of bounded trajectories may be imposed within a convex bounded set, and particularly
within an ellipsoid, the AEM suggests that we select the feedback parameters P = P∗ providing a
minimal size of this ellipsoid containing all possible bounded trajectories of every dynamical system
from the considered class of dynamics containing uncertain elements. In this case, we talk about
zone convergence or practical stability (with a prescribed convex convergence zone) if the size of
the convergence zone is of a predetermined value, so that the effectiveness of such robust control
strategies is associated with the size of the corresponding attractive ellipsoid set. We study nonlinearly
affine control systems in the presence of uncertainties and are interested in a constructive and easily
implementable control strategy that guarantees, in a practical sense, some stability properties of the
closed-loop realizations. In fact, we deal with a linear-type feedback control synthesis in the context
of the above-mentioned nonlinear uncertain systems of an affine structure. The class of stabilizing
feedbacks is given by the corresponding bilinear matrix inequalities (BMIs). If they are satisfied, then
one may guarantee that all possible trajectories of the considered systems are bounded. Since bounded
dynamics may be imposed inside an ellipsoid, defined by E (P) := {z ∈ R

n|zᵀP−1z � 1}, where P is
a symmetric positive definite n × n matrix, we associate the best parameters of the feedback with the
minimal size of this ellipsoid.

Present contribution has the following structure: Section 2 is devoted to review the conventional
theoretical results about LDAE-CC and AEM. In Section 3 we present problem formulation including
the Luenberguer observer design and the optimization problem of the WCF of the initial problem.
WCF stages from the initial problem formulation are also included in this section. Section 4 deals
with practical stability analysis of transformed problem and presents the main analytical results.
In Section 5 we present a numerical implementation of associated computational algorithm that is
based on BMI solution. Section 6 summarizes the contribution. Finally, the important references are
presented.
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592 R. JUAREZ ET AL.

2. Preliminaries

The most important lemmas and definitions of the two main topics in this paper, LDAE-CC and AEM,
are presented in this section. First topic regards necessary and sufficient conditions for the DAE solution.
Second topic review allows us to identify AEM stages in order to ensure not only an admissible
control strategy, numerically obtained but also the practical stability and robustness of DAE solution
and perturbation rejection considering sample-data outputs.

2.1. LDAE-CC

According to LDAE framework in Kunkel & Mehrmann (2006), there exist some important theoretical
results readers must know before dealing with main result of this contribution. These results are included
in the following paragraphs.

The matrix pair (E, A) is called regular, where E, A ∈ R
n×n, if the so-called characteristic

polynomial p(λ) = det(λE − A) is not the zero polynomial. Then a matrix pair that is not regular is
called singular. If the pair (E, A) is regular, the WCF of (1.2) is obtained, scaling (1.2) by a nonsingular
matrix Π ∈ R

n×n and the function x according to x = Ψ x̃ with a nonsingular matrix Ψ ∈ R
n×n. This

introduced one-to-one relation, denoted by (∼), defines an equivalence relation and a correspondence
between the corresponding solution sets. This means that we can consider the transformed problem
instead of (1.2) with respect to solvability and related questions. Then we have the WCF of (1.2):

(E, A) ∼
([

I 0
0 N

]
,

[
J 0
0 I

])
. Regularity of a matrix pair is necessary and sufficient for the property

that for every sufficiently smooth inhomogeneity f (·), the DAE is solvable and the solution is unique
for every consistent initial value. Then the WCF of (1.2) is solvable with a consistent initial condition.
Moreover, every initial value problem with consistent initial condition is uniquely solvable.

In the control context, it is possible to modify system properties of (1.2) using feedbacks, in
particular, to make non-regular systems regular or to change the index of the system.

2.2. AEM

The state equation parameterized by an input parameter

ẋ = φ(x(t), u(t), t)

y = g(x(t), t),
(2.1)

where φ : Rn × R
m → R

n and g : Rn → R
p are a suitable right-hand side, and the parameter u(t)

is chosen from a control set U ⊂ R
m of admissible control functions of type u(x) such that the closed-

loop system has a well-defined solution, and have been objects of the theory of ODEs for a long time
(Lozada-Castillo et al., 2014; Poznyak et al., 2014a,b; Poznyak, 2015). We consider previous references
to review stages of AEM. The robust AEM is restricted to a specific class of the Q-L functions φ(x).
A vector function φ : Rn → R

n is said to be of the class C (A, δ1, δ2) of Q-L functions if there exists
a matrix A ∈ R

n×n and non-negative constants δ1 and δ2 such that for every x ∈ R
n, the following

inequality holds: ‖φ(x)−Ax‖2
Qφ

� δ1+δ2‖x‖2
Qx

. This implies that the growth rates of φ(x) as ‖x‖ → ∞
are not faster than linear (see Fig. 1, illustrating the single-dimensional case n = 1, a >

√
δ2 > 0),

where Qφ , Qx ∈ R
n×n, Qφ = Qᵀ

φ � 0, Qx = Qᵀ
x � 0. By ‖ · ‖Qj

, j = φ, x (where Qj is a given
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IMPLICIT CLASS OF CONTINUOUS DYNAMICAL SYSTEM: ROBUST APPROACH 593

Fig. 1. Unidimensional Q-L function.

suitable symmetric positive-definite matrix), we denote a weighted Euclidean norm. We easily obtain
an alternative description of the Q-L model as follows:

ẋ = Ax + Bu + σ(x(t), φ(x))

y = g(x(t), t),
(2.2)

where σ : Rn × R
n → R

n defined by σ(x, φ) := φ(x) − Ax. The condition of Q-L can be considered
from two points of view: as a kind of a linearization procedure applied to a known function φ(·) and as
an a priori estimate for of the perturbation associated with a given system (2.2). In this paper, we will
consider both of these as interpretations of the basic Q-L condition. Modern computational technologies
make it possible to obtain an adequate and effective numerical implementation for the stability analysis
with a concrete Lyapunov-based method. In AEM, Ω is a positive invariant for the closed-loop system
ẋ = φ(x(t)) if every solution of the Cauchy problem ẋ(t) = φ(x), t > t0 and x(t0) = x0, where x0 ∈ Ω ,
satisfies condition x(t) ∈ Ω for all t > t0. Roughly speaking, a set in the state space is said to be
positively invariant if every trajectory initiated in this set remains inside the set at all future time. Ω is
Lyapunov asymptotically attractive for the system above if every solution of the same Cauchy problem,
where x0 	∈ Ω , tends to Ω as t tends to infinity, i.e., ρ(x(t), Ω) → 0 if t → +∞. We call E an
attractive ellipsoid for the closed-loop system ẋ(t) = φ(x(t)) if it is a globally asymptotically attractive
invariant set of a system ẋ(t) = φ(x(t), u(t)). Note that the attractivity property mentioned above does
not imply, in general, the Lyapunov asymptotic stability of the invariant set under consideration. Our
aim is to generate a simple feedback-type control strategy u(x) such that E is a globally asymptotically
stable positively invariant set of minimal size (in some suitable sense) for the realization of ẋ(t) =
φ(x(t), u(t)). Lyapunov function method provide the main tools for stability and robustness analysis and
the corresponding control design for nonlinear control systems. The function V : Rn → R is said to be
proper if it is continuously differentiable in R

n, it is positive finite (V(x) > 0 for x 	= 0 and V(0) = 0)
and it is radially unbounded (‖x‖ → +∞ implies V(x) → +∞). Theorem 2.1 makes it possible to
specify constructively an attractive invariant set not only for a concrete system ẋ(t) = φ(x(t), u(t)), t �
0, with x(0) = x0 ∈ R

n, but also for the class (family) of corresponding dynamic processes that possess
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594 R. JUAREZ ET AL.

Q-L right-hand sides. The corresponding robust and/or optimal control design schemes become BMI
constraints in this case.This minimizing problem evidently includes some natural additional restrictions
for the free parameters, namely for P and for the gain matrix K from control law u = Kx, where
K ∈ R

m×n.

Theorem 2.1 (Poznyak et al., 2014b) Consider system ẋ(t) = φ(x(t), u(t)), t � 0, with x(0) = x0 ∈ R
n

and Q-L right-hand side, and let u : Rn → R
m be a continuous function. If there exists a proper function

V : Rn → R+∪{0} such that ∂V(x)
∂x (Ax+Bu(x)+w) < 0 for all x, w ∈ R

n such that ‖w‖Qf
� δ+‖x‖Qx

and V(x) > 1, then the set Ω = {x ∈ R
n : V(x) � 1} is asymptotically attractive and the invariant set of

the Q-L system with feedback control u = u(x).

It is important to note that Theorem 2.1 uses the Lie derivative of function V(·); however, in DAE
case, we will use the corresponding descriptor derivative reported in Fridman (2006).

3. Problem formulation

Consider the continuous-time dynamical system described by the following nonlinear DAE with
constant coefficients, sampling-data outputs and initial condition:

Eẋ(t) = φ(x(t)) + Bu(t) + η(t) (3.1)

y(t) = Cx(t) + ξ(t), x(0) = x0, t ∈ R
+, (3.2)

ȳ(t) =
N∑

k=1

y(tk)χ
[
tk, tk+1

)
(t) N ∈ N, (3.3)

where E ∈ R
n×n is a singular constant matrix, B ∈ R

n×m and C ∈ R
q×n are also constant. x(t) ∈

R
n and u(x) ∈ R

m denote n-dimensional descriptor variable and m-dimensional control input vector,
respectively. y ∈ R

q is the output vector and ȳ(t) = ∑N
k=1 y(tk)χ

[
tk, tk+1

)
(t) N ∈ N is the sample-data

output measurable and available, where

χ
[
tk, tk+1

)
(t) :=

{
1, if t ∈ [

tk, tk+1

)
0, otherwise

define the characteristic function.
System (3.1)–(3.3) are under the following particular hypotheses:

• φ : Rn → R
n is a continuous differentiable nonlinear function, Q-L whose derivative is simply

bounded.

• η(t), ξ(t) ∈ R
n, η ∈ C (I,Rn), ξ ∈ C (I,Rq), measurable functions for some interval I ∈ R+, are

not only unknown and deterministic perturbation terms but also bounded. That is, η(·), ξ(·) are
functions such that ||η(t)||Qη

+ ||ξ(t)||Qξ
� 1, ∀t ∈ R

+, where Qη, Qξ ∈ R
n×n, Qη = Qᵀ

η > 0,

Qξ = Qᵀ
ξ > 0.

• u(x) = Kx is the descriptor variable feedback input, where K ∈ R
m×n is a constant gain matrix.
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IMPLICIT CLASS OF CONTINUOUS DYNAMICAL SYSTEM: ROBUST APPROACH 595

Control aim is to find a gain matrix, K, with respect to the descriptor variable feedback system (3.1)–
(3.3), which guarantee practical stability of solution trajectories, x(t), for all consistent initial condition.
A general solution scheme of the solution idea for the initial valued problem, (3.1)–(3.3), is presented
below. The methodology is based on the solution of equivalence between a new semi-explicit DAE
system obtained through a particular one-to-one matrix transformation of the nonlinear control problem
(3.1)–(3.3).

(A) Transform the nonlinear EDA into a linear EDA using a linearization-like technique of AEM.

(B) Obtain the feedback system using u = Kx.

*(C) Obtain canonical form of feedback system (optional).

*(D) Identify two subproblems generated from canonical form and the corresponding solution and
necessary conditions for each one (optional).

(E) Construct the corresponding Luenberger observer system.

(F) State the optimization problem that guarantees practical stability of trajectories solution of
Luenberger system in a ellipsoid region of minimal area.

(G) Solve numerically optimization problem, in terms of Linear Matrix Inequality (LMI) condition,
generated from the main result of present contribution.

(H) Verify that the obtained control gain matrix K also guarantees practical stability of trajectories
solution of nonlinear DAE system in a ellipsoid region of minimal area.

For a regular pair matrix (E, A), the WCF of system 3.5 is the simplest form of system 3.5; however,
itdoes not constitute a necessary nor obligatory part of the solution methodology, represented by (C)
and (D) stages in Section 3, for this contribution. Here the main result of present contribution is a
new theorem, similar to Theorem 2.1, for the DAE case; however, descriptor derivative reported in
Fridman (2006) is used instead of the Lie derivative. Section 3.1 presents description of the nonlinear
DAE to semi-explicit DAE transformation (first four stages). Section 3.2 explains how the Luenberger
observer model is included in order to estimate sample-data output. In Section 3.3 the control problem is
formulated as an optimization problem. Finally Section 4 states through the main theorem of proposition
the necessary LMI conditions that ensure numerical solution of optimization problem.

3.1. DAE transformation

WCF is obtained from (3.1) performing the following algebraic calculations:

(i) Transform the nonlinear EDA into a linear EDA using a linearization-like technique of AEM.

Eẋ(t) = Ax(t) + Bu(t) + σ(x(t), η(t)), (3.4)

where σ(x(t), η(t)) := φ(x(t)) − Ax(t) + η(t) is a new perturbation term.

(ii) Obtain the feedback system using u = Kx.

Eẋ(t) = (A + BK)x(t) + σ(x(t), η(t)). (3.5)
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596 R. JUAREZ ET AL.

As we mentioned in Introduction and Section 2.1, regularity property is a regularity that is
necessary and sufficient for the property, that for every sufficiently smooth inhomogeneity
σ(x(t), η(t)), the differential-algebraic equation is solvable and the solution is unique for
every consistent initial value (see Kunkel & Mehrmann (2006), Theorem 2.7 of page 16).
However, if pair matrix (E, A) for system 3.5 is not regular, in terms of control, it is possible
to modify system properties using proportional state or proportional output feedbacks. Thus,
these feedbacks can be used to modify the system properties, in particular, to make non-regular
systems regular or to change the index of the system. Q-L condition for system 3.5 ensures
the existence of matrix A and therefore its linear form. In the numerical procedure summarized
in Section 3 together, arbitrariness property of A matrix and feedback gain matrix selection
will become an important solution strategy (see Kunkel & Mehrmann (2006), Theorem 2.56 in
page 51).

*(iii) (Optional) Obtain canonical form of feedback system. If pair matrix (E, A) is regular, perform
the variable change x = Ψ z and pre-multiply by Π , at the same time, equation (3.4).

Esż(t) = (As + BsKs)z(t) + σs(z(t), η(t)), (3.6)

where Es := ΠEΨ = diag{Iμ, Nρ}, As := ΠAΨ = diag{Jμ, Iρ}, Bs := ΠB, Ks := KΨ ,
σs(z(t),η(t)) := Πσ(z(t), η(t)) = φs(z(t)) − Asz(t) + Πη(t), φs := Πφ and ηs := Πη.
Equation (3.6) represents WCF of DAE (3.4). Note that dimensions of block matrices are μ

and ρ := n − μ, where μ, ρ ∈ N; Nρ is a nilpotent matrix with an index of nilpotency ν ∈ N.
Nρ and Jμ are given in Jordan canonical form. Dimension of all matrices and vector in equation
(3.6) remain due to appropriate dimension of transformation matrices.

*(iv) (Optional) Identify two subproblems generated from canonical form and the corresponding
solution and necessary conditions for each one. Pre-multiply by NL = diag{Iμ, Nν−1

ρ } equation
(3.6) to write semi-explicit form of the original nonlinear DAE (3.1):

ELsż(t) = (ALs + BLsKs)z(t) + σLs(z(t), η(t)), (3.7)

where ELs := NLEs = diag{Iμ, 0ρ}, ALs := NLAs = diag{Jμ, Nν−1
ρ }.

(v) Write a new Initial Value Problem (IVP) using the semi-explicit DAE form and define general
hypothesis on this.

ELsż(t) = ALsz(t) + BLsu(t) + σLs(z(t), η(t)) (3.8)

y(t) = Csz(t) + ξ(t), z(0) = z0, t ∈ R
+, (3.9)

ȳ(t) = ∑N
k=1 y(tk)χ

[
tk, tk+1

)
(t) N ∈ N (3.10)

under the hypothesis:

• σLs(·, ·) ∈ C (I,R) is an unknown deterministic and bounded perturbation function such
that ||σLs(z(t), ηLs(t))||Qσ

� ||φLs(z(t))−ALsz(t)||Qf
+||ηLs(t)||Qη

� (1+δ)+h||z(t)||Qx
,
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IMPLICIT CLASS OF CONTINUOUS DYNAMICAL SYSTEM: ROBUST APPROACH 597

where I is an interval in R
+, Qσ := diag(Qf , Qη) and Cs := CΨ ∈ R

q×n and where Qf ,
Qx ∈ R

n×n, Qf = Qᵀ
f > 0, Qx = Qᵀ

x > 0.

• u(t) = Ksz(t) is the linear descriptor variable feedback control.

Control aim now is to find a gain matrix, Ks, with respect to the descriptor variable feedback system
(3.8)–(3.10), which guarantee practical stability of solution trajectories, z(t), for all consistent initial
condition. Aforementioned assumptions are all compatible with assumptions of (3.1)–(3.3). Notice that
matrix A selection is equivalent to matrix J selection for regular pair matrix (E, A).

3.2. Luenberger observer

A state Luenberger observer will provide an estimate of the internal descriptor variable of the system
(3.8)–(3.10) when it cannot be determined by direct observation.

Remark 3.1 We want to remark the existence of controllability/observability condition for unperturbed
implicit system in the form of Misrikhanov’s observability condition in Misrikhanov & Ryabchenko
(2008) and to extend the use of the state observer to fully reconstruct the system descriptor variable from
its output measurements. According to the index concept section in Kunkel & Mehrmann (2006), present
contribution supposes that the controllability/observability condition for the original nonlinear perturbed
system (3.1)–(3.3) is equivalent to the solvability condition of the same system (listed on its correspond-
ing assumption items). In addition, solvability condition ‖σ‖Qσ

� (1 + δ) + h‖z(t)‖Qz
of the nonlinear

system (3.8)–(3.10) is an inherited property from the corresponding condition ‖η‖Qη
+ |ξ‖Qξ

� 1
of nonlinear system (3.1)–(3.3). Then to ensure that system (3.8)–(3.10) is controllable/observable,
condition ‖σ‖Qσ

� (1 + δ) + h‖z(t)‖Qz
must be held if condition ‖η‖Qη

+ |ξ‖Qξ
� 1 is held for

nonlinear system. See Theorem 4.1 proof.

Luenberguer observer will be computer implemented using the observer model of the dynamical
system (3.8)–(3.10)

ELs
˙̂z(t) = ALsẑ(t) + BLsu(t) + L(ȳ(t) − Csẑ(t)), (3.11)

where L ∈ R
n×q. The observer is called asymptotically stable if the observer error e(t) := ELsε(t)

converges to zero when t → ∞, where ε(t) := z(t) − ẑ(t). Observer error satisfies the equation

ELsε̇(t) = (ALs − LCs)ε(t) + σ(z, η) − L(Δy(t) + ξ(t)), (3.12)

which is obtained from equations (3.8), (3.9)and (3.11) and considering addition of the two effective
zero terms, LCsz(t)− LCsz(t) and y(t)− y(t). Feedback observer model is obtained using u(t) = Ksẑ(t),

ELs
˙̂z(t) = (ALs + BLsKs)ẑ(t) + LΔy(t) + LCsε(t) + Lξ(t), (3.13)

where Δy(t) := ȳ(t) − y(t). Expression (3.13) was obtained considering equation (3.9) and using the
effective zero term −Ly(t) + Ly(t) + LCsz(t) − LCsz(t) added in equation (3.11).

According to extended vector definition, w(t) := (
ẑᵀ(t), εᵀ(t)

)ᵀ ∈ R
2n, expressions (3.12) and

(3.13), which govern the observer model dynamics and estimation error dynamics, can be written in the
the matrix form

ELẇ(t) = F(Ks, L)w(t) + Gψ(t) + MΔY(t), (3.14)
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598 R. JUAREZ ET AL.

where EL, F, G, M ∈ R
2n×2n, EL := diag{ELs, ELs}, ψ(t) := (

σ
ᵀ
Ls, Ξ

ᵀ)ᵀ, Ξ := Lξ , ΔY(t) :=
(Xᵀ, Xᵀ)ᵀ, X := LΔy, F(Ks, L) :=

(
ALs + BLsKs LCs

0n ALs − LCs

)
, G :=

(
0n In
In −In

)
and M :=(

0n In
In −In

)
. 0n and In are zero and identity matrix in R

n, respectively. Matrix expression (3.14) allows

us to extend problem formulation of system (3.8)–(3.10) to the most general case of continuous-time
dynamical system described by linear semi-explicit DAE and sampling-data outputs with a descriptor
variable,

ELẇ(t) = F(Ks, L)w(t) + Gψ(t) + MΔY(t) (3.15)

y(t) = Csz(t) + ξ(t), w(0) = w0 (3.16)

ȳ(t) =
N∑

k=1

y(tk)χ
[
tk, tk+1

)
(t) N ∈ N, (3.17)

where w0 = (zᵀ0 , εᵀ0 )ᵀ and z0 = z(0), ε0 = ε(0). Transformed IVP of previous section can be
generalized into the next optimization problem using the invariant attractive ellipsoid concept and
practical stability approach.

3.3. Optimization problem formulation

Optimization problem can be formulated as follows.

Problem 3.1 Find gain matrices, Ks and L, with respect to the feedback system (3.15)–(3.17), which
guarantee practical stability of its solution trajectories, w(t), converging to the attractive ellipsoid,
defined by E (P) := {w ∈ R

2n
∣∣ wᵀPw � 1, P ∈ R

2n×2n, P > 0, Pᵀ = P}, of minimum area;
they are equivalent to solve the next optimization problem:

minimize tr[P]

subject to P > 0, P = Pᵀ, Ks ∈ Υ , L ∈ Ω ,
(3.18)

where Υ ⊂ R
m×n and Ω ⊂ R

n×q are the admissible control and observer sets that ensure invariance of
attractive ellipsoid E (P), provided that t → ∞ and all consistent initial condition w0.

Analytical characterization of sets, Υ and Ω , allow to develop a feasible and easy-to-implement
numerical algorithm that provides a computational approach in solving optimization Problem 3.1. This
characterization will be developed considering the Lyapunov-like stability analysis approach and the
use of BMI framework.

4. Practical stability

Main result of this contribution, in the form of the following theorem, allowsus to ensure practical
stability of solution trajectories of the DAE system (3.15)–(3.17), under feasible initial conditions.
Similar to Theorem 2.1, which requires the use of a Lyapunov function, the following theorem requires
the use of a storage function definition, V : R2n → R

+, valuated along solution trajectories w(t).
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IMPLICIT CLASS OF CONTINUOUS DYNAMICAL SYSTEM: ROBUST APPROACH 599

Theorem 4.1 Let α, δ > 0, β := 1 + δ > 0 and V(w) := wᵀPw, P = Pᵀ, P > 0, P ∈ R
2n×2n.

Derivative of storage function, DV(w(t)), is calculated using the so-called descriptor methodology,
developed in Fridman (2006). Then DV(w(t)) := V̇(w(t)) + 2〈[P1w + P2ẇ + P3ψ + P4ΔY], [−ELẇ +
F(Ks, L)w(t) + Gψ(t) + MΔY]〉 and P1, P2, P3, P4 ∈ R

2n×2n, where 〈·, ·〉 denotes the scalar product in
R

2n, are nonsingular constant matrices. If inequality

DV(w(t)) + αV(w(t)) − β � Wᵀ(t)Z(P, P1, P2, P3, P4, Ks, L, α)W(t)

holds, where W(t) := (wᵀ(t), ẇᵀ(t), ψᵀ(t), ΔYᵀ(t))ᵀ is a new extended descriptor variable,
Z(P, P1, P2, P3, P4, Ks, L, α) is a matrix function such that Z � 0, then it is clear that the following
inequality DV(t) � −αV(t) + β holds, and therefore limt↑∞V(t) � β

α
, where limt↑∞V(t) =

limt 0→∞ limr→0[supt∈S(t 0,r) V(t)], and S(t0, r) denotes a vicinity with centre t0 and radius r. Moreover
and finally, V(w(t)) satisfy the next condition

V(t) � β

α
+ (V(0) − β

α
) exp (−αt) ∀t � 0.

Proof. A sketch of the proof of theorem includes the so-called descriptor method (see Fridman (2006))
that allows us to estimate derivative of V(w) = wᵀPw using

DV(w(t)) = V̇(w(t)) + 2〈[P1w(t) + P2ẇ(t) + P3ψ + P4ΔY
]

,

[−ELẇ(t) + F(Ks, L)w(t) + Gψ(t) + MΔy]〉, (4.1)

where unknown matrices P1, P2, P3, P4 ∈ R
2n×2n. Let W(t) = (wᵀ(t), ẇᵀ(t), ψᵀ(t), ΔYᵀ(t))ᵀ, then

almost all terms of adjoint form defined by F (w(t)) := DV(w(t))+αV(w(t))−β. Right-hand side can
be included into a matrix function in the next form Wᵀ(t)Z̄(P, P1, P2, P3, P4, Ks, L, α)W(t), where

Z̄11 := Pᵀ
1 F + FᵀP1 + αP, Z̄12 := P − Pᵀ

1 EL + FᵀP2,

Z̄13 := Pᵀ
1 G + FᵀP3, Z̄14 := Pᵀ

1 M + FᵀP4, Z̄21 := P − Eᵀ
L P1 + Pᵀ

2 F,

Z̄22 := −Pᵀ
2 EL − Eᵀ

L P2, Z̄23 := Pᵀ
2 G − Eᵀ

L P3, Z̄24 := Pᵀ
2 M − Eᵀ

L P4,

Z̄31 := GᵀP1 + P3F, Z̄32 := GᵀP2 − P3EL, Z̄33 := P3G + GᵀP3, Z̄34 := P3M + GᵀP4,

Z̄41 := MᵀP1 + P4F, Z̄42 := MᵀP2 − P4E, Z̄43 := MᵀP3 + P4G, Z̄44 := P4M + MᵀP4.

If we add the effective zero term ψᵀ(t)Q3ψ(t) − ψᵀ(t)Q3ψ(t), it is possible to use general
hypothesis of (3.15)–(3.17) (where ‖ψ(t)‖2

Q3
= ‖σLs(η, Γ w)‖2

Qσ
+‖ξ(t)‖2

Qξ
, ‖fLs(Γ w)−ALsΓ w‖2

Qx
�

δ + h‖Γ w‖2
Qx

and ‖ηLs‖2
Qη

+ ‖ξ‖2
Qξ

� 1, with ẑ := Γ w and Γ := (In, 0n)) and to set an upper bound
for the so-called adjoint form using the global matrix function

F (w(t)) � Wᵀ(t)Z(P, P1, P2, P3, P4, Ks, L, α)W(t),

where β := 1 + δ and new matrix function Z(P, P1, P2, P3, P4, Ks, L, α) has absorbed the terms

−ψᵀ(t)Q3ψ(t)
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600 R. JUAREZ ET AL.

and

h‖Γ w(t)‖2
Qx

in Z11 := Z̄11 + hΓ ᵀQxΓ and Z33 := −Q3. In the rest of the cases, Z = Z̄. Conditions of

Z(P, P1, P2, P3, P4, Ks, L, α) � 0

guarantee that V(w(·)) satisfy all conditions in Theorem 2.1. A detailed proof of the theorem can be
found in Azhmyakov et al. (2013) and Juarez et al. (2012, 2013, 2011). �

Theorem 4.1 allows us to characterize in an easily implementable way the set Υ of optimal control
Problem 3.1 through solution of BMI condition Z(P, P1, P2, P3, P4, Ks, L, α) � 0, under a fixed scalar
parameter α. Optimal control Problem 3.1 can be rewritten in the following form.

Problem 4.2 Find gain matrices, Ks and L, with respect to the feedback system (3.15)–(3.17), which
guarantee practical stability of its solution trajectories, w(t), converging to the attractive ellipsoid,
defined by E (P) := {w ∈ R

2n
∣∣ wᵀPw � 1, P ∈ R

2n×2n, P > 0, Pᵀ = P}, of minimum area;
they are equivalent to solve the next optimization problem

minimize tr[P]

subject to P > 0, P = Pᵀ,

Z(P, P1, P2, P3, P4, Ks, L, α) < 0.

(4.2)

Once BMI is solved, the following theorem will set the equivalence relation between solutions of
transformed system (3.15)–(3.17) and system described by (3.1)–(3.3). The solution vector (Popt, Popt

1 ,
Popt

2 , Popt
3 , Popt

4 , Kopt
s , Lopt, αopt), where Ks = Ψ K, of convex Problem 4.2 under a fixed scalar parameter

α, defines a suboptimal solution due to α-values quest and is limited to a finite set of R+.

Theorem 4.3 If transformed optimization convex Problem 4.2 has a suboptimal solution (Psubopt,
Psubopt

1 , Psubopt
2 , Psubopt

3 , Psubopt
4 , Ksubopt

s , Lsubopt), in the sense of minimum trace of ellipsoid E (P) for a

fixed scalar parameter α, then 5-tuple (Psubopt, Psubopt
1 , Psubopt

2 , Psubopt
3 , Psubopt

4 , Ksubopt
s , Lsubopt, α) is also

a suboptimal solution to IVP described by (3.1)–(3.3), with Ks = Ψ K.

Proof. A detailed proof of Theorem is presented in Azhmyakov et al. (2013) and Juarez et al. (2012,
2013, 2011). �

Finally, transformed optimal Problem 4.2 sets a theoretical approach to deal with numerical
treatment of IVP described by (3.1)–(3.3), just considering computational simulation of a BMI.

5. Numerical example

Here two numerical examples are presented. The first one is an academic example that exposes basic
idea of optimization Problem 3.1 solution. The second one describes a chemical reactor where a first-
order isomerization reaction takes place and the heat generated is removed from the system through an
external cooling circuit. In both cases the well-known PENOPT toolbox from MatLab software is used
to solve BMI, which includes Yalmip toolbox and PENBMI solver.
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5.1. Academic example

Consider the optimization Problem 3.1 associated with dynamical system (3.15)–(3.17) with the
following constant values: ELs = diag{1, 1, 1, 0}, Cs = (0, 1, 0, 0),

ALs =

⎛
⎜⎜⎝

−1 1 0 0
0 −1 1 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠ , BLs

⎛
⎜⎜⎝

1 1
1 1
1 1
1 1

⎞
⎟⎟⎠ .

Previous values and full variable matrices Ks ∈ R
2×4, L ∈ R

4, are used to construct block matrices,
EL, F(Ks, L), G and M, of expression (3.14). Storage function, V(w), has a symmetric variable P ∈
R

8×8. DV(x(t)) calculation also has full variable matrices Pi ∈ R
8×8, for i = 1, 2.

Numerical solutions of optimization Problem 3.1 satisfy all conditions of Theorem 4.1. The main
condition that must be satisfied is BMI: Z � 0. Then quasi-optimal values of Ks, L and P were
used to proved practical stability of nonlinear initial system described by (3.1)–(3.3). Simulation details
are presented.

Z ∈ R
32×32 was a block matrix, where α = β = δ = h = 1 × 10−3, Qx = 1 × 10−3 ∗ I4 and

Q3 = 1 × 103 ∗ I4. MatLab, through PENOPT, solves BMI in an optimal way and found values of

Kqopt
s =

(−406.077 −519.126 −521.161 661.379
−406.082 −519.107 −521.168 661.351

)
,

Lqopt = 1 × 10−6
( −11.4312 −7.46324 −8.53132 −9.11755

)ᵀ and

eig(Pqopt) ∈ [0.99994, 33469.4712] ⊂ R+.

The above-mentioned values were used in numerical simulation of IVP described by (3.1)–(3.3), where
Π = Ψ = I4, and therefore E = ELs, B = BLs, C = Cs, f (x) = (

f1(x) f2(x) f3(x) f4(x)
)ᵀ, f1 = −x1 −

|x2|+sin (x2)+0.1x3, f2 = −0.1x1 −x2 +cos (x3), f3 = −|x1|−0.1 cos (x2)−x3, f4 = 0.1x2, initial con-
dition x0 = (100, -553.6683, 200, 100)ᵀ and η = (0.02sin(t), −0.05cos(t), −0.05cos(t), 0.03cos(t))ᵀ,

Fig. 2. (Left) (a) Descriptor variable components x(t) of nonlinear system. (Right) (b) Data-sample output y(t).
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602 R. JUAREZ ET AL.

Fig. 3. (Left) a) Phase plane of trajectory solution emerging from initial conditions, where component x2 is a fixed value. (Right)
b) Zoom around origin on phase plane and Ellipsoidal region.

Fig. 4. Block diagram of the control loop.

ξ = 0.1sin(t). The model shown in Fig. 4 is simulated in MatLab Simulink. Results reported here
include time evolution of descriptor variable components, x(t), in Fig. 2; phase portrait performed in
x1, x2 and x3 space that ellipsoid forms is also included, see Fig. 3.

5.2. Continuous stirred-tank reactor example

The relevant equations in a chemical reactor where a first-order isomerization reaction takes place and
the heat generated is removed from the system through an external cooling circuit are

C′ = −K1C + K1C0 − R

T ′ = K1(T0 − T) + K2R − K3(T − TC)

0 = −K3exp− K4
T C + R

0 = C − u.

(5.1)

Here C0 and T0 are the (assumed) known feed reactant concentration and feed temperature,
respectively. C and T are the corresponding quantities in the product. R is the reaction rate per unit
volume, TC is the temperature of the cooling medium (which can be varied) and the Ki are constants.
The more interesting case is where the last equation is a specified desired product concentration and we
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Table 1 Fixed parameters of the reactor

qr = 0.08 [m3 · min−1] Vr = 1.2 [m3]

h1 = 4.8 × 104[kJ · kmol−1] ρr = 985 [kg · m−3]

cpr = 4.05 [kJ · kg−1 · K−1] U = 43.5 [kJ · min−1m−2K−1]

Ar = 5.5[m2]

want to determine the TC (control) that will produce this C. In this case, we obtain a semi-explicit DAE
system with state variables C, T , R, TC, where K1 := qr

Vr
, K2 := h1

ρrcpr
, K3 := ArU

Vrρrcpr
, K4 := 13477 K.

Fixed parameters of reactor are shown in Table 1.
If we define x1 := C − C0, x2 := T − T0 and x3 := R, x4 := Tc − T0, system (5.1) is written into the

matrix form of equations (3.8)–(3.10): Eẋ(t) = Ax(t)+Bu(t)+σ(x(t), η(t)), where ELs = diag{1, 1, 0, 0},
Cs = (1, 0, 0, 0),

ALs =

⎛
⎜⎜⎝

−K1 0 −1 0
0 −(K1 + K3) K2 K3
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠ , BLs

⎛
⎜⎜⎝

0
0
0

−1

⎞
⎟⎟⎠

and

φLs(t) =

⎛
⎜⎜⎜⎝

0
0

−K3e
− K4

x2+T0 (C + C0)

C0

⎞
⎟⎟⎟⎠ .

The aforementioned constant parameters and the full variable matrices Ks ∈ R
2×4, L ∈ R

4, are used
to construct block matrices, EL, F(Ks, L), G and M, of expression (3.14). Storage function, V(w), has
a symmetric variable P ∈ R

8×8. DV(x(t)) calculation also has full variable matrices Pi ∈ R
8×8, for

i = 1, 2.
Numerical solutions of optimization Problem 3.1 satisfy all conditions of Theorem 4.1. The main

condition that must be satisfied is BMI: Z � 0. Then quasi-optimal values of Ks, L and P were used
to proved practical stability of nonlinear initial system described by (3.1)–(3.3). Simulation details are
presented.

Z ∈ R
32×32 was a block matrix, where α = β = δ = h = 1 × 10−3, Qx = 1 × 10−3 ∗ I4 and

Q3 = 1 × 103 ∗ I4. MatLab, through PENOPT, solves BMI in an optimal way and found values of

Kqopt
s =

(−736.842 −924.657 −819.611 569.390
−736.243 −924.701 −819.238 −569.351

)
,

Lqopt = 1 × 10−5 ( −21.3124 −15.63244 −32.31325 −33.75511
)ᵀ
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604 R. JUAREZ ET AL.

Fig. 5. (Left) a) State components of descriptor variable x(t) of nonlinear system and (Right) b) Zoom around first 6 s.

Fig. 6. Data-sample output y(t).

and eig(Pqopt) ∈ [0.99994, 35723.4218] ⊂ R+. The above-mentioned values were used in numerical
simulation of IVP described by (3.1)–(3.3). Since DAE initial condition must satisfy F(x0, ẋ0, t0) = 0,
then x0 = (100, −150, −2.84 × 10−14, 1.92 × 103)ᵀ, and

η =
[
0.001sin(t) − 0.05sin(2t) 0.003sin

( t

2

)
0.001sin(t)

]ᵀ

and ξ = 0.1sin(t). The model shown in Fig. 4 is simulated in MATLAB Simulink. Results reported here
include time evolution of descriptor variable components, x(t), in Fig. 5; time evolution of the data-
sample output y(t)(x1) in Fig. 6. Phase portrait performed in x1, x2 and x3 space that ellipsoid forms is
also included, see Fig. 7.
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Fig. 7. (Left) a) Phase plane of trajectory solution emerging from initial conditions, where component x2 is a fixed value. (Right)
b) Zoom around origin on phase plane and ellipsoidal region.

Table 2 Main features and characteristics of author contributions on DAE

Contribution System
Autonomous Design

Complexity
Physical

Implementation Processing Time

Juarez et al. (2012) Nonlinear Nonlinear DAE
None observer

Academic Example
Two-Dimensional

Sedumi-Yalmip
(Low) LMI

Juarez et al. (2011) Linear Linear DAE
None observer

Academic Example
Two-Dimensional

Sedumi-Yalmip
(Low) LMI

Juarez et al. (2013) Nonlinear Semi-explicit DAE
None observer

Academic Example
Two-Dimensional

Sedumi-Yalmip
(Medium) LMI

Azhmyakov et al. (2013) Nonlinear Implicit system
None observer

Micro DC-Motor
Three-Dimensional

Sedumi-Yalmip
(Medium) LMI

Current study Nonlinear Semi-Explicit DAE
Luenberguer observer

Academic Example
Four-Dimensional

PENOPT (Low)
BMI

6. Conclusion

This paper addressed the problem of robust control for a class of nonlinear dynamical system governed
by DAE of an affine structure in the continuous time domain under the approach AEM using the
linear feedback control u = Kx. DAEs were transformed into its WCF called semi-explicit LDAE-
CC, in the presence of bounded uncertainties. The one-to-one transformation for the regular pair matrix
(E, A) allowed us to set a one-to-one correspondence between the corresponding solution sets, so we
considered transformed problem instead of original problem with respect to solvability and practical
stability. Regularity of a matrix pair was ensured with election of matrix A. The combination of the
modified invariant ellipsoid approach and descriptor method made it possible to obtain the robustness
of the designed control and to establish some well-known stability properties of dynamical systems in
terms of a BMI. With sub-optimal solution of above BMI we constrained all possible trajectories of the
system as bounded inside an ellipsoid, E (P), of minimal size. Sub-optimal term is used here because
the α-values quest is restricted to a finite interval of R+. This ellipsoid defined the zone convergence
or practical stability of an effective robust control strategy. Finally, the applicability of the proposed
method was illustrated by a computational example. Moreover, it is noteworthy that the problems of
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robust control for linear and nonlinear DAEs have been subjects of past studies by the authors, as is
shown in Table 2. The current work is the more recent contribution of the authors in this research area.
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