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Summary

Our contribution is devoted to a further theoretic development of the attrac-
tive ellipsoid method (AEM). We consider dynamic models given by nonlinear
ordinary differential equations in the presence of bounded disturbances. The
resulting robustness analysis of the closed-loop system incorporates the cel-
ebrated Clarke invariancy concept (an analytic extension of the celebrated
Lyapunov methodology). We finally obtain a new general geometric characteri-
zation of the AEM-based approach to the robust systems design. Moreover, we
also discuss the corresponding numerical aspects of the proposed theoretical
extensions of the method. The theoretic results obtained in this contribution are
finally illustrated by a practically oriented computational example.
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1 INTRODUCTION

The problem of powerful computer-oriented algorithms for the robust control of nonlinear dynamic systems has attracted
a lot of attention, thus both theoretical results and real-world applications were developed (see, eg, the work of Khalil1).
The newly elaborated attractive ellipsoid method (AEM) (see other works2-13) constitutes a useful engineering oriented
development of the theory of invariant sets and proposes a self-closed effective computational approach to the robust
control design of systems with uncertainties. Recall that a set in the state space of a system is said to be positively invariant
if any trajectory initiated in this set remains inside the set at all future time instants. The practically important problem of
existence and constructive characterization of the invariant sets for general dynamical systems is in fact a sophisticated
mathematical issue. For a specific class of systems, this complex problem is constructively solved in the framework of the
AEM. A “small-size” ellipsoidal attractive (or invariant) set is evidently a geometrically motivated region that can also be
defined as a “practical stability” region for the system under consideration. We refer to related works3,6-13 for the necessary
analytic background, some existing modifications of the AEM, and numerous applications of this methodology.

Our paper discusses a further theoretical and numerical extensions of the attractive ellipsoid (AE) techniques in the
context of nonstationary dynamics. Recall that the conventional AEM is designed for a relatively restrictive class of sta-
tionary control systems. This stationarity assumption is a significant hypothesis and evidently has a strongly restrictive
nature. Moreover, the generic version of the method is essentially limited to a subclass of models described by ordinary
differential equations (ODEs) with the so-called “quasi-Lipschitz” right-hand sides.12 The novel extension of the classic
AEM, we propose in our contribution is free from the hard quasi-Lipschitz assumptions. It can be applied to a vide class
of nonstationary control systems with (bounded) uncertainties.

A further implementation difficulty of the celebrated AE algorithm is characterized by a necessary linear matrix
inequalities (LMIs) constrained optimization step. A concrete construction procedure of an AE and the corresponding
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robust feedback controller design include an auxiliary optimization problem, namely, sophisticated LMIs (or BMIs)
constrained minimization (see other works11,12,14). This nonlinear high-dimensional constrained optimization problem
constitutes a numerically sophisticated task and usually can not be effectively solved in the real time. Note that this
LMI-based approach is a direct consequence of the Lyapunov-type analysis with a quadratic “storage” function. The
alternative approach proposed in this paper uses an abstract concept of the flow-invariant sets associated with the
ODEs-involved dynamic systems (see the works of Azhmyakov et al15 and Clarke et al16 for mathematical details). We
firstly apply this concept to a linearized (nonstationary) dynamic system. We study a geometrical characterization of an
AE for the linearized system and obtain some constructive estimations. Using a proved fundamental result about lin-
earization (see Theorem 1 from the next section), we next derive the necessary ellipsoidal estimations of the attractive
set for the originally given nonlinear control system. The resulting robust control algorithm does not include any opti-
mization step. This algorithm generates a feedback-type robust control law and guarantees a practical system stability
with respect to an a priory determined (small) ellipsoidal region. The geometrical approach we propose makes it possible
designing the resulting nonstationary closed-loop system for an adequately chosen practical stability region.

The remainder of our paper is organized as follows. Section 2 contains a problem formulation, necessary description of
the given nonlinearly-affine dynamic model, and introduces a linearized system. Furthermore, it includes a rigorous proof
of the main analytic result that characterizes the “quality” of the obtained linear approximation. Section 3 is devoted to a
geometrical description of an AE associated with the linearized system. We also discuss the resulting control design pro-
cedure for this linear dynamic model. The proposed robust control strategy is a formal consequence of the flow-invariancy
condition. In Section 4, we come back to the originally given nonlinear nonstationary dynamic system and develop an
AE-based robust control design. This feedback control strategy involves the previously obtained control design for the
linearized system introduced in Section 3. We use the flow-invariancy property of the generated AE for linearized sys-
tem and construct an AE and the robust control law for the original switched system. Section 5 discusses the numerical
aspects of the proposed extension of the basic AEM. It also includes a practically oriented computational example. The
effectiveness of the new approach proposed in this paper is illustrated by the obtained computational results. Section 6
summarizes our paper.

2 PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the following initial value problem for ODEs with a general control-affine structure:

ẋ(t) = 𝑓 (t, x(t)) + B(t)u(t) + 𝜉(t) a.e. on R+,

x(0) = x0, (1)

where x0 ∈ Rn is a fixed initial state. The given function 𝑓 ∶ R+ × Rn → Rn is assumed to be continuous on R+ and
uniformly Lipschitz continuous on an open bounded set ℛ ⊆ Rn. By

B(t) ∈ R
n×m, t ∈ R+,

we denote here a control matrix. We next assume that B(·) is a continuous matrix-function. The uncertainties 𝜉(·) are
assumed to be uniformly bounded

sup
t∈R+

‖𝜉(t)‖ ≤ M ∈ R+. (2)

By x(t) ∈ Rn and u(t) ∈ Rm, we denote here the state and the control vector, respectively. Note that general affine
control systems have become an important application focus of the modern control theory (see, eg, other works1,15,17-20

and references therein). Let us firstly consider the basic system (1) over a control set 𝒰 of essentially bounded measurable
control inputs. Note that the possible unmodeled dynamics can be included into the uncertainty term 𝜉(t) in (1).

In parallel with (1), we examine the corresponding linearized control system

�̇�(t) = 𝑓x (t, xu(t)) 𝑦(t) + B(t)v(t) + 𝜉(t) a.e. on R+,

𝑦(0) = 0, (3)

where u(·) ∈ 𝒰 and xu(·) is the absolutely continuous solution to the initial system (1) generated by an admissible u(·).
The linearized system (3) is considered for a fixed admissible control function u(·) and the corresponding trajectory xu(·).
This preselected reference control strategy constitutes in fact so-called “tracking” control. We refer to the works of Khalil1

and Rockafellar and Wets21 for some basic facts related to the linearization techniques. Let us also note that the celebrated
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Rademacher theorem guarantees the (almost everywhere) differentiability property of the function f (t, ·) (see, eg, the
work of Clarke et al16).

Let us continue by some additional technical assumptions. We next suppose that the pair (A(t),B(t)), where

A(t) ∶= 𝑓x (t, xu(t))

is controllable for every t ∈ R+. We also assume that

‖𝑓x(t, x)‖ ≤ C, (4)

for all (t, x) ∈ R+ × Rn. In this paper, we also assume that a class of locally Lipschitz (feedback) control functions w(·, ·)
such that

w (t, xu(t)) = v(t)

in (3) constitutes an admissible set of inputs. This family of functions w(·, ·) is next denoted by ℒ . For each u(·) ∈ 𝒰 and
w(·, ·) ∈ ℒ , the initial value problem (3) has a unique solution denoted by yv(·). We refer to the work of Hale and Lunel22

for the necessary existence and uniqueness results. In this paper, we restrict our consideration to an important subclass
of ℒ and consider the “proportional” control design of the following type:

w (t, 𝑦(t)) = K(t)𝑦(t), K(t) ∈ R
m×n, t ∈ R+.

Here, K(·) is a gain matrix-function. This unknown gain matrix constitutes a free parameter of the control design under
consideration and then linear closed-loop system can be written as

�̇�(t) =
(
𝑓x (t, xu(t)) + B(t)K(t)

)
𝑦(t) + 𝜉(t), a.e. on R+,

𝑦(0) = 0. (5)

Let us firstly describe the desired control design for the linearized system (5) in a qualitative manner. The trajectory yv(·)
of the closed-loop linearized system (5) with a concrete matrix-function K(·) needs to stay for t ∈ R+ in an ellipsoidal
region (with the center at the origin), ie,

ℰ ∶=
{
𝑦 ∈ R

n | 𝑦TP𝑦 ≤ 1
}
.

Here, P is a positive defined symmetrical n × n-dimensional matrix. Our main idea is to study the auxiliary linearized
system (5) and propose a constructive geometrical characterization of the corresponding minimal-size AE  . Various
linearization methods associated with the dynamic models given by ODEs have been long time recognized as a powerful
tool for stabilization of the conventional control systems (see, eg, related works1,15,18-20,23-30 and the references therein).The
geometric stability criterion for the linearized system (3) mentioned earlier is next used in the robust feedback control
design procedure for the originally given nonlinear system (1).

We now explain (qualitatively) the main advances in AEM we developed in this paper. The nonstationary character of
the dynamic systems (1) and (5) makes it impossible a direct application of the conventional LMI-based robust control
design that involves the AEM techniques (see other works3,6,7,9,12,31,32). Recall that the classic AEM was developed under the
strict assumptions of stationarity for the given dynamic system. Moreover, it also involves the restrictive “quasi-Lipschitz”
condition for the right-hand side of the initial differential equation (see the work of Poznyak et al12). However, many mod-
ern engineering control systems involve a sophisticated nonstationary systems modeling framework. These nonstationary
dynamic models with time-depending parameters are adequately modeled by time-depending systems of the type (1)
closed by a nonstationary feedback (for example, by the law w(t, x) given earlier).

We next need an exact analytic result that establishes the quality of the linear approximation (5) for system (1). We use
here the notation L∞

r for a standard Lebesgue space of measurable essentially bounded r-dimensional vector functions
defined on a time interval I ⊂ R+.

Theorem 1. Assume that the initial system (1) given on a time interval I satisfies all the aforementioned technical
assumptions. Then, there exists a function o ∶ R+ → R+ such that s−1o(s) → 0 as s ↓ 0 and‖‖‖xu+v(·) −

(
xu(·) + 𝑦v(·)

)‖‖‖L∞
n

≤ o
(‖v(·)‖L∞

m

)
,

for all u(·) ∈  and v(·) ∈ L∞
m .
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Proof. Assume u(·) ∈ L∞
m . For a function w(·, ·) ∈ , we have v(·) ∈ L∞

m . From the well-known comparison theorem
(see the work of Khalil1) with the following selected comparison functions:

z(t) ∶= xu(t) + 𝑦v(t),
𝜓(t, x) = 𝑓 (t, x) + B(t)u + v(t),

where t ∈ R+, we obtain‖‖‖xu+v(·) −
(

xu(·) + 𝑦v(·)
)‖‖‖L∞

n

≤ eC∫I

‖‖‖ẋu(t) + �̇�v(t) − 𝑓
(

t, xu(t) + 𝑦v(t)
)
− B(t) (u(t) + v(t))‖‖‖ dt

= eC∫I

‖‖‖⟨(𝑓x (t, xu(t)) ,B(t)) ,
(
𝑦v(t), v(t)

)⟩
−
[
𝑓
(

t, xu(t) + 𝑦v(t)
)
+ B(t)v(t) − 𝑓 (t, xu(t)

]‖‖‖ dt.

(6)
Here, C is a constant in (4). From the component-wise variant of the mean value theorem (see the work of Aliprantis
and Border33), we next deduce

𝑓i(t, xu(t)) + 𝑦v(t)) + B(t) (u(t) + v(t)) − (𝑓i (t, xu(t)) + B(t)u(t))
= ⟨(𝑓i)x (t, xu(t) + 𝜈i(t)),B(t)) (𝑦v(t), v(t))⟩,

for i = 1, … ,n and a suitable bounded function 𝜈(·). Assumption (4) and the Lipschitz continuity of f (t, ·) on a
bounded set  imply the existence of a (continuous) function o1 ∶ R+ → R+ such that

s−1o1(s) → 0,

as s ↓ 0 and

||⟨(𝑓x (t, xu(t)) ,B(t)
)
,
(
𝑦v(t), v(t)

)
−
[
𝑓
(

t, xu(t) + 𝑦v(t)
)
+ B(t)v(t) − 𝑓 (xu(t))

] ≤ o1

(||v(·)||L∞
m

)
,

for all t ∈ I. From (6), we finally deduce the expected estimation‖‖‖xu+v(·) −
(

xu(·) + 𝑦v(·)
)‖‖‖L∞

n

≤ o
(||v(·)||L∞

m

)
,

with o(s) ∶ = eCo1(s). The proof is finished.

Theorem 1 will next be used in a concrete robust control design procedure for the original nonlinear system (1) (see
Section 4). Let us discuss the celebrated Clarke flow-invariance concept from the work of Clarke et al.16

Definition 1. A smooth manifold S in an Euclidean space is called a flow-invariant in the sense of a given dynamic
system

ż(t) = 𝜙 (z(t)) , t ∈ R+,

z(0) = 0
(7)

if z(t) ∈ S for all t ≥ T ∈ R+.

The next abstract theorem gives a general criterion of a flow-invariant manifold.

Theorem 2. A smooth manifold S is flow-invariant for system (7) if and only if 𝜙(x) belongs to the tangent space TS of
S for all x from the given Euclidian space.

The formal proof of this basic theorem is based on an extended Lyapunov-type technique. We refer to the work of
Clarke et al16 for the additional mathematical details. Note that Theorem 2 has a very natural geometrical interpretation.

Let us also recall the general invariance concept, ie, a set  in the state space of a dynamic system is called to be
(positively) invariant if an admissible trajectory initiated in this set remains inside the set at all future time instants. Let
us denote by Ω(z(0)) a (positive) limit set of system (5) (the set of all positive limit points, see, eg, related works1,27,30,34).
We now give a related Lyapunov set stability concept (see the works of Blanchini and Miani24 and Michel et al30).

Definition 2. A compact invariant set  ⊂ Rn of the closed-loop dynamic system (5) is called asymptotically
Lyapunov stable if Ω(z(0)) ⊂  and

• for all 𝜀 > 0, there exists 𝛿1 > 0 such that the initial condition dist[z(0),] ≤ 𝛿1 implies

dist [z(t),] ≤ 𝜀,

for all t ∈ R+ (the Lyapunov stability of the set);
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• there exists 𝛿2 > 0 such that dist[z(0),] ≤ 𝛿1 implies

lim
t→∞

dist [z(t),]

(the attraction property of the set).

Here,
dist[z;] ∶= min

z̃∈ ||z − z̃||Rn

is the usual Euclidean distance between a point z ∈ Rn and . As mentioned earlier, the existence and a constructive
characterization of an invariant set for a general dynamical system (7) constitute a very sophisticated theoretic questions.
Our aim is to specify an invariant set for the closed-loop linear system (5) in the form of an ellipsoid  introduced in
Section 2. Applying the classic concept of an asymptotically stable set, namely, Definition 1.2, we now introduce the main
concept of an AE.

Definition 3. An ellipsoid  is called an AE for system (5) if it is an asymptotically stable invariant set of this system.

It is evident that an AE  for system (5) is determined by the matrices P and K(·). The chosen gain matrix-function K(·)
determines in fact the resulting dynamic behavior of the trajectory yv(t) such that the basic inequality(

𝑦v(t)
)TP𝑦(t) ≤ 1, t ∈ R+

is satisfied. From the point of view of a practical engineering robust control design, the last condition can of course be
considered in a (suitable) approximative sense. The resulting -restricted dynamic behavior of the linear system (5) closed
by the nonstationary linear feedback w(·, ·) can finally be interpreted as a practical stability of this dynamic system.

3 APPLICATION OF THE AES METHOD TO THE LINEARIZED SYSTEM

The previously discussed general facts and concepts are used in this section for a constructive geometric interpretation of
the basic AEM in the context of the linearized system (5). We first introduce an auxiliary dynamic variable 𝜃(·), 𝜃(0) = 0
and determine the smooth manifold in the (extended) Euclidian state space Rn+1

SP ∶=
{

z ∈ R
n+1 | 𝑦T(t)P𝑦(t) − 1 + 𝜃(t) = 0

}
.

Here, z ∶= ( y, 𝜃)T, and y(·) corresponds to system (5). Introduce the following additional notation:

h(z) ∶= zTPz − 1 + 𝜃.

The necessary and sufficient condition for the flow-invariance of SP can now be determined using Theorem 2, ie,⟨∇h(z), 𝜙(z)⟩ = 0,
𝜃(t) ≥ 0, ∀t ∈ R+.

(8)

By ∇h(·), we denote the gradient of the function h(·) introduced earlier. The vector field 𝜙(·) corresponds to the right-hand
side of the following system of equations:

�̇�(t) =
(
𝑓x (t, xu(t)) + B(t)K(t)

)
𝑦(t) + 𝜉(t),

�̇�(t) = −2𝑦T(t)P�̇�(t),
𝑦(0) = 0, 𝜃(0) = 0.

(9)

We now use the dynamics of system (5) and rewrite the second differential equation from (9) in the equivalent form

�̇�(t) = −2𝑦T(t)P
[(
𝑓x (t, xu(t)) + B(t)K(t)

)
𝑦(t) + 𝜉(t)

]
. (10)

Note that (9) constitutes a self-closed initial-value problem for a generic ODE. The closed-loop linear system (5) is extended
to (9) by an additional (scalar) equation with respect to 𝜃. Assuming we have a trajectory yv(·) of (5), the resulting function
𝜃(·) is next clearly determined.

The aforementioned analytic observations can now be summarized in the form of a theorem.

Theorem 3. The ellipsoidal set  is an invariant set for the closed-loop system (5) if and only if the variable 𝜃(t)
determined by the initial-value problem (9)-(10) is nonnegative for all t ∈ R+.
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Proof. The scalar product in (8) ⟨∇h(z), 𝜙(z)⟩|z= z(t) can be easily calculated, ie,⟨(2𝑦T(t)P, 1
)
,
(
�̇�(t),−2𝑦T(t)P�̇�(t)

)⟩
= 2𝑦T(t)P�̇�(t) − 2𝑦T(t)P�̇�(t)) = 0.

Evidently, the first condition from (8) is true. Therefore, (8) is reduced to the second condition, namely, to the
nonnegativity of the variable 𝜃(t) determined by system (9). The proof is completed.

The formal solution of the initial-value problem on a time interval I for the artificial variable 𝜃(·) can be written as

𝜃(t) = −∫I

[
2𝑦T(t)P

[
𝑓x (t, xu(t)) + B(t)K(t)

]
𝑦(t) + 𝑦T(t)P𝜉(t)

]
dt.

Therefore, the nonnegativity condition for 𝜃(t) required by Theorem 2 implies the next inequality, ie,

∫I

[
𝑦T(t)P

[
𝑓x (t, xu(t)) + B(t)K(t))

]
𝑦(t) + 𝑦T(t)P𝜉(t)

]
dt ≤ 0. (11)

Taking into account the robust control applications, we are naturally interested to construct an AE  of a minimal “size”
(volume). This natural requirement and the corresponding selection of the matrix P need to be adequately formalized. Let
us recall the well-established formalization procedure in the form of a specific LMI-constrained minimization problem
(see, eg, other works24,25,30). In the case of a stationary dynamic system, one can use a specific optimization problem (see
related works5,13,14,35) for a minimal-size AE design and for the calculation of the corresponding gain matrix-function K(·)

minimize tr(P−1)
subject to PT = P, P > 0, {K(t)} ∈ 𝒦t,

(12)

where t ∈ R+ and𝒦t ⊂ Rm×n is the set of admissible matrices that ensure invariance of AE  for system (5). A constructive
description of the set 𝒦t constitutes a sophisticated mathematical problem. This problem can be constructively solved in
the case of stationary dynamic systems and, moreover, under some additional hard conditions. The same observation is
also true for the originally given nonlinear system (1). Control systems discussed earlier, namely, dynamic models (1) and
(5) have a nonstationary nature. Therefore, in that case, the nature of the resulting systems make it impossible a direct
application of the celebrated LMI-based approach. Roughly speaking, one cannot give a constructive description of the
set 𝒦 of admissible gain matrices in the form of a unique LMI. The restrictions set 𝒦t in (12) evidently has a dynamic
structure and contains time-depending admissible matrices. A possible solution of the optimization problem (12) with
the time-depending restriction 𝒦t evidently involves a very massive calculation associated with every time instant.

The critical analysis of the conventional AEM implies the necessity to generalize the usual AEM and to develop a
conceptually new approach to the parameter selection of an AE (the ellipsoid matrix P). Then, same observation is also
true with respect to the resulting feedback control design, namely, to the gain matrix K(t). In this paper, we follow a
“guaranteed” approach and select (a priory) a suitable matrix P̂ that involves a relative “small” ellipsoidal invariant set 
for the closed-loop linear system (5).

Theorem 4. For a given (admissible) ellipsoid matrix P̂ with P̂ = P̂T > 0 associated with the linearized system (5), the
suitable gain matrix K(t) ∈ 𝒦t, t ∈ R+ can be found as solutions of the following LMI:

P̂
[
𝑓x (t, xu(t)) + B(t)K(t)

]
+
√

M||P̂|| × E ≤ 0, (13)

where E is a n × n-dimensional unit matrix.

Proof. The first summand in (13) evidently coincides with the matrix of the first summand in the integrand in (11).
Let us now estimate the expression yT(t)P𝜉(t) from (11). We get(

𝑦T(t)P𝜉(t)
)2 = 𝑦T(t)P𝜉(t)𝜉T(t)P𝑦 ≤ ||P̂||2𝑦T(t)𝜉(t)𝜉T(t)𝑦(t).

For the Frobenius norm ||𝜉(t)𝜉T(t)||Fr of the matrix 𝜉(t)𝜉T(t), we obtain (see assumptions of Section 2)‖‖𝜉(t)𝜉T(t)‖‖Fr = ‖𝜉(t)‖2 ≤ sup
t∈R+

‖𝜉(t)‖2 ≤ M.

Therefore, (
𝑦T(t)P𝜉(t)

)2 ≤ 𝑦T(t)
(

M||P̂||2E
)
𝑦(t)
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and the matrix condition (13) implies the integral inequality (11). Using (11) and Theorem 3, we deduce that the
obtained LMI (13) determines the admissible gain matrices K(t) ∈ 𝒦t. By definition of the set 𝒦t, the aforementioned
inclusion guarantees invariance of AE  for system (5). The proof is completed.

Finally, note that the LMI-type matrix inequality (13) provides a theoretic fundament for an effective and implementable
computational procedure. Note that Theorem 4 expresses only a sufficient condition for the inclusion K(t) ∈ 𝒦t, t ∈ R+,
and, thereby, for the invariance of the set  . Solutions to the obtained LMI (13) depend on the selected reference (tracking)
trajectory xu(·) for the given system (1).

4 FROM LINEARIZED TO THE ORIGINAL NONLINEAR SYSTEM

Results for linear systems obtained in Section 3 can now be applied to the robust control design of the originally given non-
linearly affine control system (1). Using the feedback input w(·, ·) implemented in the linearized system (5), we consider
the following simple control strategy associated with the initial dynamics (1):

u(t) ∶= uref (t) + w
(

t, 𝑦v(t)
)
,

w
(

t, 𝑦v(t)
)
= K(t)𝑦v(t),

(14)

where yv(·) is a solution to the linearized system (5) and uref(·) is a selected reference (tracking) control that corresponds
to a reference trajectory xref(·) of (1). We assume that uref(·) is an essentially bounded measurable function from  (see
Section 2). This assumption evidently guarantee the admissibility u(·) ∈  . An absolutely continuous solution of the
initial system (1) generated by uref(·) is denoted by xref(·). We next choose a “combined” control input u(·) in (14) such that
the closed-loop variant of system (1)

ẋ(t) = 𝑓 (t, x(t)) + B(t)uref (t) + B(t)K(t)𝑦v(t) + 𝜉(t),
x(0) = x0,

(15)

possesses the required robustness property. This basically means that (15) admits an AE 0, 0 ∈ 0. One can also use
here the meaningful concept of a “practical stability” as an alternative terminology. Note that the feedback-type control
design (14) depends on the state vector of system (5). Our aim is to establish the practical stability (in the AE framework)
of the original nonlinear system (1) using the robust control design developed for the linearized model (5). For a given
admissible matrix P̂, we next give a constructive estimation of the AE 0 associated with the nonlinearly affine switched
system (1). At this point, we use the abstract results from Section 2, namely, the basic Theorem 1.

Theorem 5. Consider a system (1) that satisfies all the basic assumptions from Section 2 and the corresponding
closed-loop realization (15). Assume that matrices P̂ and K(t) are determined by Theorem 4. Let the reference trajectory
xref(·) be uniformly bounded ||xref (t)|| ≤ 𝜒, t ∈ R+. Then, the AE 0 associated with the closed-loop version (15) of
system (1) admits the following estimation:

0 ∶= (||K(·)|| + 1)  + 𝜒. (16)

Proof. The fundamental Theorem 1 implies the following simple estimation:‖‖‖xu(·) −
(

xref (·) + 𝑦(·)
)‖‖‖L∞

n

≤ o
(‖K(·)𝑦(·)‖L∞

m

)
.

The last inequality leads to the next result‖‖‖xu(·) − xref (·)‖‖‖L∞
m

≤ o
(‖K(·)𝑦v(·)‖L∞

m

)
+ ‖𝑦(·)‖L∞

n
≤ (‖K(·)‖ + 1) ‖𝑦(·)‖L∞

n
.

Finally, we deduce ‖xu(·)‖ ≤ (||K(·)|| + 1) ||𝑦(·)||L∞
n
+ ‖‖‖xref (·)‖‖‖L∞

m

≤ (||K(·)|| + 1) ||𝑦(·)||L∞
n
+ 𝜒, (17)

where t ∈ R+.
Since xref(·) is assumed to be bounded and  is an invariant ellipsoid for (5), the inequality (17) implies the required

estimation (16). From (17), we also deduce the invariance property of the ellipsoidal set 0 for the closed-loop
system (15). The proof is completed.
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FIGURE 1 The geometrical relationship between  and 0 [Colour figure can be viewed at wileyonlinelibrary.com]

Theorem 5 makes it possible to characterize an invariant ellipsoidal set 0 associated with the sophisticated nonlinearly
affine system (1). We use the minimal-size invariant ellipsoid  for this purpose. Evidently, the robust control design
w(t, y) for the linearized system (5) has a simple feedback-type structure. Theorem 5 opens up the possibility to use this
simplified linear control design for robust control of the sophisticated nonlinear system (1). Note that the size of the
ellipsoid 0 depends on the size of  and, in fact, by an adequate choice of the matrix P̂. Moreover, we evidently have
 ⊂ 0. Geometrically, this situation is illustrated on Figure 1.

The blue ellipsoid corresponds to  and the red ellipsoid illustrates 0. Recall that a linearization procedure with respect
to a reference pair (uref(·), xref(·)) is adequate only on a finite (small) time interval. One has to update the corresponding
reference trajectory xref(·) after the control design on the selected small time interval is completed.

Let us finally make some observations related to an adequate choice of the (symmetric and positive definite) matrix P̂
for  . It is easy to see that the basic integral inequality (11) contains two unknown “variables”, namely, matrices P̂ and
K(·). Therefore, condition (11) can be denoted as “underdetermined”. Taking into consideration the result of Theorem 4
(a sufficient condition for the requested robust control design K(t) ∈ 𝒦t, t ∈ R+), we can choose the necessary matrix P̂
such that ||P̂|| = max

i=1,… ,n
{𝜆i} ≤ 𝜏,

where 𝜆i, i = 1, … ,n are eigenvalues of P̂ and 𝜏 is a prescribed (small) positive number. Using (13), we get the following
implementable rule (LMI) associated with a reference trajectory:

B(t)K(t) ≤ −𝑓x
(

t, xref (t)
)
− 𝜏

√
MP̂−1, (18)

where P̂−1 denotes the inverse matrix of P̂. Finally, note that a “small” AE is determined by a correspondingly chosen
“small” matrix P̂. This fact implies big components of the inverse P̂−1 on the right-hand side of (18). Consequently, the
norm of the gain matrix K(t) also achieves big values. Therefore, an adequate selection of the ellipsoid  and the associated
matrix P̂ constitutes a crucial “a priori” aspect of the proposed methodology.

5 COMPUTATIONAL ASPECTS AND NUMERICAL RESULTS

In this section, we apply the theoretical results obtained earlier and propose an implementable computational algorithm
for the robust control design of the type (14) for system (1). We consider here one academic and one practically ori-
ented numerical examples. Let us note that the combined feedback control design (14) incorporates a selected matrix P̂
as well as the (precomputed) trajectory yv(·) of the linearized system (5). This fact eliminates a main technical difficulties

http://wileyonlinelibrary.com
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of the conventional AEM, namely, a hard high-dimensional LMI constrained minimization problem (see the work
of Poznyak et al13). Secondly, the conventional AE methodology was developed under the so-called quasi-Lipschitz
conditions. In the case of an affine nonstationary system (1), these restrictive conditions can be written as follows:‖𝑓 (t, x) + B(t)u −𝒜x‖2

Q1
≤ 𝛿1 + 𝛿2||x||2Q2

, (19)

where
𝛿1, 𝛿2 > 0

and || · ||Q1 , || · ||Q2 are weighted (by some positive matrices Q1 and Q2) vector norms. Evidently, condition (19) has no
sense for the basic nonstationary system (1). The right-hand side of inequality (19) does not depend on the dynamic
variable t. Note that this absence of the “dynamics” in (19) makes it impossible to apply the conventional AEM even in
the case of systems with a simple nonstationary structure (see Example 1).

5.1 Numerical examples
Let us firstly apply the proposed robust control methodology to an academic example.

Example 1. Consider a simple two-dimensional control system of the type (1)

ẋ1(t) = x2(t) + u1(t) + 𝜉1(t)
ẋ2(t) = 𝛼(t) sin (x2(t)) + u2(t) + 𝜉2(t)
x1(0) = x2(0) = 2.

(20)

Assume that
sup
t∈R+

||𝜉(t)|| ≤ 1

and ||u(t)|| ≤ 2, where
𝜉 ∶= (𝜉1, 𝜉2)T ,

u ∶= (u1,u2)T .

Moreover, assume that 𝛼(·) is a continuously differentiable function such that

0 < 𝛼(t) ≤ 1,

for all t ∈ R+. Evidently, we have here n = m = 2,

𝑓 (t, x) ∶= (x2, 𝛼(t) sin(x2))T

and B ∶= diag(1, 1). Consider the following (admissible) reference control:

u(t) = (0, cos(t) − 𝛼(t) sin (sin(t)))T

and the corresponding reference trajectory

xu(t) = (− cos(t), sin(t))T .

The linearized system (3) can now be written with the specific system matrix

A(t) ≡ 𝑓x (t, xu(t)) =
(

0 1
0 𝛼(t) cos (sin(t))

)
.

Note that ||A(·)|| is bounded (see Section 2). We consider here the diagonal gain matrix

K(t) = diag(k1(t), k2(t))T

for the control
v(t) = w (t, 𝑦(t)) = K(t)𝑦(t)

associated with the corresponding linearized system (3). The closed-loop system (5) for (20) has the following form:(
�̇�1(t)
�̇�2(t)

)
=
(

k1(t) 1
0 k2(t) + 𝛼(t) cos (sin(t))

)(
𝑦1(t)
𝑦2(t)

)
+ 𝜉(t)

𝑦1(0) = 𝑦2(0) = 0.

(21)
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We now select a (diagonal) matrix
P̂ ∶= diag( p1, p2),
p2 > p1 > 0

associated with (21). Application of the basic Theorem 4 makes it now possible to define the corresponding robust
gain matrix K(·). One can use the main condition (13) from Theorem 4 as well as the simplified condition (18) for this
purpose. Note that ||P̂|| = p2.

The main condition (13) implies the following matrix inequality:( p1k1(t) + p2 p1

0 p2 + p2
[
k2(t) + 𝛼(t) cos (sin(t)) + 1

] ) ≤ 0. (22)

Condition (22) constitutes a “negative semidefiniteness” requirement for the resulting matrix. In that simple case,
one can use the formal definition of a negative semidefinite matrix and derive the constructive expressions for ele-
ments k1(·), k2(·) of the gain matrix K(·). Consider a nonzero vector z ∈ R2. The negative semidefiniteness concept in
combination with a suitable negative majorant implies that

( p1k1(t) + p2) z2
1 + p1z1z2 +

(
p2 + p2

[
k2(t) + 𝛼(t) cos (sin(t)) + 1

])
z2

2 ≤ −(q1z1 − q2z2)2 < 0,

where z1, z2 are components of the vector z ∈ R2 and q1, q2 are some positive constants. We now put

q1 = q2 =
√

p1∕2

and obtain the particular conditions for k1(·) and k2(·), ie,

( p1k1(t) + p2) ≤ −p1∕2,(
p2 + p2

[
k2(t) + 𝛼(t) cos (sin(t)) + 1

]) ≤ −p1∕2.

From the aforementioned inequalities, we immediately deduce

k1(t) ≤ −1∕2 − p2∕p1,

k2(t) ≤ −p1∕(2p2) − 1 − 𝛼(t) cos (sin(t))

and can finally put
k1 = −1∕2 − p2∕p1 − 𝜀,

k2(t) = −p1∕(2p2) − 1 − 𝛼(t),
(23)

where 𝜀 > 0. With the aims of a concrete calculation, we have selected here the following parameters:

𝛼(t) = 0.9 × | sin(t)| + e−6,

p1 = 0.7927, p2 = 0.8188, 𝜀 = 0.81297.

Following (14), we now are ready to define the resulting robust control design for the originally given nonlinear
system (20)

u(t) =
(

0
cos(t) − 𝛼(t) sin (sin(t))

)
+ K(t)𝑦v(t) =

(
k1𝑦

v
1(t)

cos(t) − 𝛼(t) sin (sin(t)) + k2(t)𝑦v
1(t)

)
, (24)

where k1 and k2(·) are calculated in (23) and yv(·) is a solution to the closed-loop system (21) with the gain matrix K(·)
determined by (23).

We now apply Theorem 5 and get the expected estimation (16) for the ellipsoid 0 of the originally given nonlinear
system (20). Recall that the ellipsoid  of the linearized system (21) is determined by the aforementioned matrix P̂.
Since for the aforementioned reference trajectory xu(·) of (20) we have‖xu(t)‖ ≤ 𝜒 = 1, t ∈ R+,

we obtain the following (conservative) estimation of the ellipsoid 0 for the original system (20):

0 =
(√

k2
1 + k2

2 + 1
)
 + 1,

where k1 and k2(·) are defined in (23) and  is an ellipsoid determined by matrix P̂ = diag( p1, p2).
The corresponding simulation results are shown on Figure 2 and Figure 3.
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FIGURE 2 Phase plane dynamics and attractive ellipsoids  and 0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Dynamics of the closed-loop nonlinear system [Colour figure can be viewed at wileyonlinelibrary.com]

The (external) ellipsoid 0 for the originally given nonlinear system (20) contains the auxiliary (internal) ellipsoid
 associated with the linearized system (21) (see Figure 2). The phase trajectory of the closed-loop nonlinear system
is indicated in blue (Figure 2). The dynamic evolution of the closed-loop version of the original system (20) closed by
the proposed robust feedback control (24) is illustrated on Figure 3. Let us finally note that the existence of a periodic
solution (as depicted in Figure 2) of the closed-loop version of system (20) can be easily proved.

We next apply the proposed robust control design approach (14) to an engineering motivated example.

Example 2. Consider the mathematical model of a separately excited DC motor used in the electric wire manufac-
turing (see the works of Leonhard36 and Poznyak et al12)

J(t)dx1(t)
dt

= cx2(t)x3(t) − Bx1(t) − 𝜉(t),

Lr(t)
dx2(t)

dt
= Ur(t) − Rrx2(t) − cx1(t)x3(t),

dx3(t)
dt

= Us(t) − Rsx3(t).

(25)

Here, x1 is the angular velocity of the shaft. By x2, we denote the current of the rotor circuit, Rr and Rs stand for the
corresponding resistances. The rotor and stator voltages are expressed by Ur and Us. The rotor inductance is assumed
to be time-depending and is denoted by Lr(t) and x3 describes the stator flux. The mechanical parameters J(·) and B

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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in (20) express the time-depending moment of inertia of the rotor and the viscous friction coefficient, respectively.
Finally, c represents a constant parameter that depends on the spatial architecture of the drive. We also assume that

sup
t∈R+

||𝜉(t)|| ≤ 0.1.

The control variables in (25) are the aforementioned voltages Ur and Us. Note that the increment of the moment of
inertia associated with the rotor in the electric wire (coil) production can be modeled by a suitable linear function, ie,
J(t) = g1t + J0, where g1 > 0 and J0 > 0 is the proper moment of inertia of the rotor. The temperature gradient of
the running motor causes the corresponding change (increment) of the rotor inductivity Lr(t). This augmentation can
be modeled (for a restricted time-range) as follows: Lr(t) = g2t + L0

r . In this example, we select the following model
parameters:

J0 = 0.02 (kg × m2),
g1 = 10−3 (kg × m2∕ sec),
B = 0.23 (N × m × sec).

Moreover, we also put L0
r = 10−3 (H), g2 = 10−3(H∕sec), c = 1. The set of admissible initial conditions in (20) was

chosen as follows:
x0

1 = 0, x0
2 = 1, x0

3 = 1.

The originally given nonlinearly-affine control system (25) implies the corresponding linearized model of the type (3)

�̇�1 = − B
J(t)

𝑦1 +
cxref

3 (t)
J(t)

𝑦2 +
cxref

2 (t)
J(t)

𝑦3 − 𝜉(t),

�̇�2 = −
cxref

3 (t)
Lr(t)

𝑦1 −
R

Lr(t)
𝑦2 −

cxref
1 (t)

Lr(t)
𝑦3 +

1
Lr(t)

v1(t),

�̇�3 = −Rs𝑦3 + v2(t),

(26)

where 𝑦 ∶= (𝑦1, 𝑦2, 𝑦3)T is a state vector of the linearized model and 𝜉(t) = 1
J(t)
𝜉(t). The linear state space model (26)

is characterized by the following matrices:

A(t) =

⎡⎢⎢⎢⎢⎢⎣

− B
J(t)

cxref
3

J(t)
cxref

2
J(t)

− cxref
3

Lr(t)
− Rr

Lr(t)
− cxref

1
Lr(t)

0 0 −Rs

⎤⎥⎥⎥⎥⎥⎦
, B(t) =

⎡⎢⎢⎢⎢⎣
0 0

1
Lr(t)

0

0 1

⎤⎥⎥⎥⎥⎦
.

Let us consider the following reference control (taking for simplicity Rs = 1,Rr = 1):

Us(t) = Rsx3(t) = 1,
Ur(t) = Rrx2(t) + cx1(t)x3(t) = 2 − e−t.

The corresponding reference trajectory can be easily evaluated

x1 = 1 − e−t, x2 = 1, x3 = 1.

The obtained simulation results are now shown on Figure 4 and Figure 5. The ellipsoid 0 for the originally given
nonlinear system (25) is presented in red (Figure 4).

The auxiliary ellipsoid  associated with the linearized system (26) is indicated in blue. We also depict components
of the trajectory of (25) closed by the control of the type (14) (see Figure 5).

The numerical results obtained in Examples 1 and 2 illustrate the effectiveness and implementability of the robust
control methodology we developed.

5.2 On a robust control approach to a class of general linear systems
As one can conclude from Section 4, the robust control design for the originally given uncertain dynamic system (1)
involves a (more simple) robust control strategy for the linearized system (5) of the type w(t, yv(t)) = K(t)yv(t). At the same
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FIGURE 4 Phase plane dynamics and attractive ellipsoids  and 0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Dynamics of the closed-loop nonlinear system [Colour figure can be viewed at wileyonlinelibrary.com]

time, the main theoretical result we obtained, namely, Theorem 5, does not depend on a specific design method for the
gain matrix K(·). In this section, we propose an effective method for the evaluation of this necessary “robust” gain matrix
K(·) for (5). Recall that the aforementioned gain matrix is next used in the control design procedure for the originally
given nonlinear system.

Consider a general case of a linear system (5) with

A(t) ∈ co{A1,A2, … ,AN}, B(t) ∈ co{B1,B2, … ,BN}. (27)

Evidently,

A(t) =
N∑

i=1
𝜆i(t)Ai, B(t) =

N∑
i=1
𝜆i(t)Bi,

where 𝜆i(t) > 0, t ∈ R+ and
∑N

i=1 𝜆i(t) = 1. Taking into consideration the aforementioned framework, it is possible to
propose a gain matrix K(·) (generated by a combination of some convex functions) such that the solution of the resulting

http://wileyonlinelibrary.com
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closed-loop system converges to a minimal size set generated by the convex hull of some ellipsoids. We refer to the work
of Hu and Lin37 for technical details. We now extend the main result from the aforementioned work37 to the time-varying
case determined earlier.

Theorem 6. Assume there exist a positive scalar 𝛼, some positive definite symmetric matrices Pi ∈ Rn×n, matrices Yi ∈
Rm×n, and positive semidefinite continuous functions 𝛾 i(t), for j = 1, … ,N with

N∑
𝑗=1
𝛾𝑗(t) = 1, �̄�D ∶= sup

{|�̇�𝑗(t)| ∶ t ≥ 0, 𝑗 = 1, … ,N
}
.

Consider (5), where the system and control matrices are determined by (27) such that
N∑

i=1
𝜆i(t)

( N∑
𝑗=1
𝛾𝑗(t)

(
AiP−1

𝑗 + P−1
𝑗 AT

i + BiY𝑗 + Y T
𝑗 BT

i + 𝛼P−1
𝑗

)
+ M

)
< 0, (28)

and

M = �̄�D

N∑
𝑗=1

P−1
𝑗 + 𝛼−1MIn×n.

Then, the following set
 (Q(t)) ∶=

{
x(t) ∈ R

n ∶ xT(t)Q(t)x(t) ≤ 1, ∀t ≥ 0, 𝛾 ∈ Γ
}
,

Q(t) ∶=
(∑N

i=𝑗 𝛾𝑗(t)P−1
𝑗

)−1
is an invariant set for (5) with the control input u(t) = K(t)x(t), where

K(t) ∶=

( N∑
𝑗=1
𝛾𝑗(t)Yi

)( N∑
𝑗=1
𝛾𝑗(t)P−1

𝑗

)−1

.

Proof. Introduce V(x) = xT(t)Q(t)x(t) as the Lyapunov candidate. Calculating the corresponding time derivative, we
obtain

V̇(x) = 2xT(t)Q(t) (A(t) + B(t)K(t)) x(t) + 2xT(t)Q(t)𝜉(t) + 2xT(t)Q̇(t)x(t). (29)

We now add and subtract the terms 𝛼

M
𝜉T(t)𝜉(t) and 𝛼xT(t)Q(t)x(t) and introduce the extended vector 𝜂(t) =

[ xT(t), 𝜉T(t) ]T . Equation (29) can now be expressed as follows:

V̇(x) = 𝜂T(t)Ω(t)𝜂(t) + 𝛼

M
𝜉T(t)𝜉(t) − 𝛼xT(t)Q(t)x(t),

with

Ω(t) =
⎡⎢⎢⎣

Q(t)A(t) + AT(t)Q(t) + Q(t)B(t)K(t)+
KT(t)BT(t)Q(t) + 𝛼Q(t) + Q̇(t) Q(t)

Q(t) − 𝛼

M
In×n

⎤⎥⎥⎦ ,
and

P(t) = Q−1(t), Y (t) = K(t)Q−1(t).

Note that
Q̇(t) = −Q(t)Ṗ(t)Q(t),

and pre and post multiplying Ω(t) by diag
[

P(t), In×n
]

involves the following expression:

Ω(t) =
⎡⎢⎢⎣

A(t)P(t) + P(t)AT(t) + B(t)Y (t)+
Y T(t)BT(t) + 𝛼P(t) − Ṗ(t) In×n

In×n − 𝛼

M
In×n

⎤⎥⎥⎦ .
We now evaluate an upper bound for −Ṗ(t), ie,

−Ṗ(t) = −
N∑
𝑗=1
�̇�(t)P−1

𝑗 ≤ 𝛾D

N∑
𝑗=1

P−1
𝑗 .
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Using this estimation, we next obtain the upper bound for the derivative of V(x), ie,

V̇(x) ≤ xT(t)Ω0(t)x(t) + 𝛼
(
1 − xT(t)Q(t)x(t)

)
, (30)

Ω0(t) =
⎡⎢⎢⎣

A(t)P(t) + P(t)AT(t) + B(t)Y (t)+
Y T(t)BT(t) + 𝛼P(t) + �̄�D

∑N
𝑗=1P−1

𝑗

In×n

In×n − 𝛼

M
In×n

⎤⎥⎥⎦ .
Applying the celebrated Schur complement, we obtain inequality (28).

From (28) and taking into consideration conditions Ω0 < 0 and

V̇(x) ≤ 𝛼
(
1 − xT(t)Q(t)x(t)

)
,

we obtain V̇(x) < 0 for xT(t)Q(t)x(t) > 1. The proof is completed.

Let us finally illustrate the robust design of the gain matrix K(·) proposed in Theorem 6 and consider a simple example.

Example 3. Consider (5) with the system and control matrices A(t), B(t) in (27) determined by

A1 =
[
−4 4
−5 0

]
, A2 =

[
−6 6
−6 4

]
,

B1 =
[

0.1
−0.5

]
, B2 =

[
0.5
−0.8

]
.

The generic functions 𝜆(·) is selected as follows:

𝜆1(t) = 0.5 + 0.5 sin(10t), 𝜆2(t) = 0.5 − 0.5 sin(10t).

We next apply Theorem 6 and obtain the following matrices:

P−1
1 =

[
0.4841 0.2386
0.2386 1.4052

]
, P−1

2 =
[

0.7504 0.0380
0.0380 1.2247

]
Y1 =

[
4.2658 −1.3673

]
, Y2 =

[
7.5237 6.4755

]
.

Figure 6 shows the dynamic system solutions for the initial condition x(0) = [ 4, −4 ]T as well as the ellipsoids repre-
sented by the matrices P−1

1 (red) and P−1
2 (in yellow). The corresponding time-dependent evolution of the trajectory is

presented on Figure 7.

The presented Example 3 also shows that the control design methodology we propose easily interacts with the classic
Lyapunov-based techniques.

Let us now make some general observation related to the computational aspects of the proposed robust control design.
With the exception of some easy cases, one always has to consider a suitable time discretization (a time grid) for a

FIGURE 6 Phase plane dynamics and attractive ellipsoids for P−1
1 and P−1

2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Dynamics of the closed-loop nonlinear system [Colour figure can be viewed at wileyonlinelibrary.com]

consistent numerical treatment of the nonstationary continuous time dynamics. Similar to many well-established robust
control design methods for the nonstationary systems, the proposed control strategy (based on the main LMI (13)) implies
a relative big computational effort. However, from the computational point of view, the control approach proposed in this
paper has the following decisive advantages.

• The dimension of the main LMI (13) is equal to (n × n), where n is the dimension of the initially given control system
(1). Recall that, even in the case of a stationary system, many LMI-based robust control design strategies use LMIs of an
increased dimension (Mn) × (Mn), where M ∈ N (see, eg, the work of Poznyak et al13 and the references therein). This
fact makes it very difficult a practical application of the conventional LMI-based methods (with the high-dimensional
LMIs) to the nonstationary control systems studied in our paper.

• The method proposed in this paper is an a priori control design approach. One can proceed with all the necessary
calculations before the functioning of the designed system.

• Under some weak assumptions (see Section 4), the basic LMI (13) can be reduced to the simplified LMI (18).

Finally, note that the implementation of the extended AE-based computational techniques proposed in this paper was
carried out, using the standard MATLAB packages.

6 CONCLUDING REMARKS

Our paper generalizes the conventional AEM-based robust control design for a wide class of control-affine systems. We
have studied here an important class of nonstationary dynamic models with an affine structure and proposed a con-
structive approach to the AEM-involved robust stability methodology for nonstationary dynamic systems. The proposed
practical stabilization method includes two main steps. We firstly study an associated piecewise-linear (linearized) control
system, apply the conventional AEM, and design the corresponding ellipsoidal invariant set. The generic feedback type
control strategy obtained for the aforementioned linearized system is next directly used in the control design procedure
for the original switched system. The two-steps approach we developed makes it possible to obtain an a priori construc-
tive estimation of the ellipsoidal invariant set for the originally given nonlinear dynamic systems using the LMI-based
control strategy for the linearized systems.

Let us note that various approaches to the robust control design of the nonstationary dynamic systems have been estab-
lished (see other works13,24,38 for a comprehensive overview). We shortly discuss here some of these classic robust control
ideas in comparison with the advanced AEM we developed.

It is common knowledge that the classic and extended Lyapunov stability approaches constitute a generic theoreti-
cal basis for the robust control of various dynamic systems.1,27,38,39 However, the conceptual limitations of the methods
involving the Lyapunov functions are also well known and does not exist a general method for the Lyapunov function
design for a nonstationary closed-loop realization of system (1). Let us also refer to the celebrated (relatively sophisticated)

http://wileyonlinelibrary.com
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Lyapunov-Krasovskii functional method in that connection.40 In contrast to the general Lyapunov-based approach, the
extended AEM we propose involves, in fact, some relative simple LMIs, namely, inequalities (13) and (18). A solution of
these LMIs guarantees robustness for a trajectory of the corresponding closed-loop system. Robust control design using
H-infinity theory constitutes one of the most traditional robust control approaches (see, eg, the works of Li et al41 and
Kwakernaak42). On the other hand, the H-infinity methodology is developed under the restrictive assumption of the
decreasing (over time) uncertainties. Evidently, this is not the case in many real-world engineering systems. The advanced
AEM robust control scheme for system (1) does not involve any similar restrictive uncertainty characterization.

The robust control design based on the LQ type optimal control was proposed in the work of Otsuki and Yoshida.43 How-
ever, it is evident that the LQ optimal control techniques for robust control are restricted to very specific (linear) classes
of dynamic systems and do not include general control-affine systems (1). We also refer to the work of Lin44 for opti-
mal control techniques in robust control. Recently, many LMI-based techniques are proposed for a robust control design
of the nonstationary systems. Let us refer to the works of Boyd et al25 and Daher and Stoustrup45 for a comprehensive
overview on this subject. However, as mentioned in Section 5, applications of the LMI-based control design techniques to
the nonstationary systems involve numerical solutions of the high-dimensional LMI constrained optimization problems
at every step of a time grid. Therefore, the control approach presented in this paper (the n-dimensional LMIs (13) and
(18)) constitutes a favorable and numerically tractable solution procedure.

Recall that the control design approaches based on the traditional sliding mode control technologies and on the
high-order extensions are nowadays a mature methodology for the constructive synthesis of several types of robust con-
trollers for the control-affine systems (1) (see the work of Shtessel et al46). However, the sliding mode control strategy can
formally be implemented assuming a hard system dimensionality restriction (see, eg, the work of Shtessel et al46). More-
over, the control techniques based on the sliding mode methodology usually imply a high frequency system chattering.
This fact makes it impossible any application of the conventional and high-order sliding mode control strategies to a broad
class of dynamic models, for example, to some sensitive mechanical systems. Generalization of the AEM approach pro-
posed in this paper is free from this negative ancillary effect and, moreover, it can be applied to a vide class of control-affine
dynamic systems (without any dimensionality restriction).

The presented extension of the classic AEM in combination with the generic linearization technique constitutes a novel
analytic foundation for novel computational approaches in the robust control design of control-affine systems. We are
convinced that the proposed “overestimations” of AEs associated with the closed-loop system can be applied to various
alternative typos of “nonstandard” control processes. We expect that the proposed approach can guarantee an adequate
robust control design for implicit systems (see the work of Azhmyakov et al5), to dynamic models with piecewise con-
stant control inputs (see the works of Azhmyakov et al15,35), to systems evolving with state suprema (see, eg, the work of
Azhmyakov et al17), and to the various types of hybrid and switched control systems.23,47-50
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