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Abstract: Our contribution deals with a class of Optimal Control Problems (OCPs) of dynamic
systems with randomly varying time delays. We study the minimax-type OCPs associated with
a family of delayed differential equations. The presented minimax dynamic optimization has a
natural interpretation as a robustness (in optimization) with respect to the possible delays in
control system under consideration. A specific structure of a delayed model makes it possible to
reduce the originally given sophisticated OCP to an equivalent convex program in an Euclidean
space. This analytic transformation implies a possibility to derive the necessary and sufficient
optimality conditions for the original OCP. Moreover, it also allows consideration of the wide
range of effective numerical procedures for the constructive treatment of the obtained convex-
like OCP. The concrete computational methodology we follow in this paper involves a gradient
projected algorithm. We give a rigorous formal analysis of the proposed solution approach and
establish the necessary numerical consistence properties of the resulting robust optimization
algorithm.

1. INTRODUCTION

Theoretical approaches to robust optimization of sophisti-
cated dynamic models and the resulting numerical schemes
constitute a challenging and important part of the modern
systems optimization methodology (5; 6; 7; 8; 15; 20; 21;
28; 31; 33; 35; 42). The minimax based optimal control (we
discuss in this paper) is one possible modelling framework
for a robust optimal systems design (17). Let also refer to
(16) for some modern robust minimax OCPs and further
analytic results. The minimax optimal control techniques
can usually be interpreted as an engineering optimization
under the ”worst case” scenarios. Evidently, the possible
”un-friendly” scenarios are extremely important for a re-
sulting safety of a dynamic system under consideration
and also for the robust software oriented development of
several types of modern engineering systems.

Our paper deals with a particular class of control systems,
namely, with the delayed models described by differential
equations. We study systems with random delays and the
related OCPs. Let us note that differential equations with
stochastically varying time delays constitute an adequate
and widely used modelling approach to the genetic regula-
tory networks (see (23)). In general control systems deter-
mined by delay differential equations describe a wide range
of real-world problems in engineering, economy, social and
bioscience (see e.g., (1; 2; 9; 11; 12; 24; 25; 26; 29; 36;
38; 39; 40; 41)). Various classes of OCPs associated with

sophisticated dynamic systems have been comprehensively
studied due to their natural engineering applications (see
(8; 11; 32) and References therein). Let us mention here
some notable applications from the mobile robot technol-
ogy, automotive and aerospace control, electrical engineer-
ing and telecommunications. We generally refer to (15)
for various examples and real-world applications of the
optimized control systems. On the other side analytic and
computational techniques for OCPs are not sufficiently
advanced to optimal control processes governed by delayed
differential equations with random delays. Let us mention
some particular results for OCPs involved specific classes
of delayed dynamic systems (12; 29). The aim of our
contribution is to develop a self-contained and relatively
simple numerical approach to the minimax type OCPs
associated with a class of linear systems with stochastic
delays. We use the convex analysis approach for this pur-
pose and propose a specific gradient-projected method for
a constructive numerical treatment of the OCP involved
closed-loop delay systems. We follow here the feedback
control methodology, give a rigorous convexity proof for
the resulting OCP and establish the numerical consistence
(numerical stability) of the proposed numerical algorithm.

The remainder of our paper is organized as follows: Section
2 contains a formal problem statement and some necessary
theoretic concepts. In this section we give a practical
motivation and interpretation of the main optimization
problem in the framework of the minimax type systems
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robustness. In Section 3 we prove our main convexity
result, namely, Theorem 1 and give a constructive char-
acterization of the obtained auxiliary problems. Section 4
deals with the gradient based solution scheme applied to
the closed-loop realisation of the delay system. We use our
main theoretic results and establish the numerical consis-
tency of the proposed algorithm (Theorem 3). The finally
obtained computational algorithm guarantees an effective
numerical treatment of the initially given sophisticated
OCP. Section 5 summarizes our paper.

2. PROBLEM FORMULATION AND ROBUSTNESS
WITH RESPECT TO DELAYS

In this paper we study the following initial-value problem
for differential equations with delays

ẋ(t) = A1x(t) +A2x(t− τ) +Bv(t) ∀t ∈ [0, tf ],

x(t) = φ(t) ∀t ∈ [−τmax, 0],
(1)

where tf ∈ R+ and A1, A2 ∈ Rn×n are given systems
matrices and τ is a random delay. More precisely we
assume that the delay τ constitutes a random value with
a given probability distribution F(τ), τ ∈ [τmin, τmax],
where τmin ≥ 0, τmax > 0. In this paper we assume
that the delay τ may only take M possible discrete values
from the set D := {τ1, τ2, ..., τM}. The corresponding
probability can be calculated as follows

P [τ = τi] = wi, i = 1, ...,M,

M∑
i=1

wi = 1.

Without loss of generality we assume

τmin = τ1 < τ2 < ... < τM = τmax.

The corresponding probability density function ρ(·) has
the generic expression

ρ(τ) =

M∑
i=1

wiδ(τ − τi),

∫ τmax

τmin

ρ(τ)dτ = 1

Here δ(·) denotes the Dirac delta. As mentioned in Section
1 delayed dynamic systems of the type (1) with the specific
discrete-valued stochastic delays constitute adequate mod-
elling framework for some protein production processes
(23). One uses the dynamic model of the type (1) for
control of a genetic regulatory network that correspond
to the automated protein production process.

Let C(−τmax, 0) be the Banach space of all continu-
ous functions y(·) from the interval [−τmax, 0] into Rn

equipped with the usual norm

||y(·)||C(−τmax,0) := max
s∈[−τmax,0]

||y(s)||Rn .

Assume that φ(·) ∈ C(−τmax, 0). We call a function x(·)
a solution (or trajectory) of (1), if x : [τmax, tf ) → Rn is
absolutely continuous and satisfies (1) for all time instants
t ∈ [−τmax, tf ), τ ∈ D.

An admissible control input v(·) in (1) is assumed to be of a
proportional feedback type. Taking into consideration the
usual delays in the ”state-controller channel” of a dynamic
system with the feedback-type control, we next consider
the delayed feedback control function

v(t) = u(x(t− τ))

such that

u(x(t− τ)) = Kx(t− τ).

Here K ∈ Rm×n is a bounded control gain matrix with
the properties

||K||Rm×n ≤ kmax ∈ R+.

By || · ||Rm×n we denote here the usual operator norm (in-
duced norm) on the Euclidean space Rm×n). Note that the
above boundeness condition expresses the natural restric-
tions of the technical resources of the usual feedback-type
controllers. The resulting closed-loop version of system (1)
has the following simple form

ẋ(t) = A1x(t) + (A2 +BK)x(t− τ)

∀t ∈ [0, tf ],

x(t) = φ(t) ∀t ∈ [−τmax, 0],

(2)

A solution of (2) associated with an admissible control gain
K is next denoted by xK(·).
We are now in a position to formulate the main OCP
problem associated with the given delayed dynamics (1):

min
K

max
τ∈D

{J(K)}

subjet to (2),

||K||Rm×n ≤ kmax.

(3)

where J(K) := ψ(xK(tf )) for a convex, continuously
differentiable function ψ(·). As we can see the main OCP
under consideration is a so called ”minimax” problem with
a Mayer-type objective functional. Since the terminal state
vector xK(tf ) depends on the concrete realizations of the
stochastic delays τ ∈ D, the maximization procedure

max
τ∈D

ψ(xK(tf )) (4)

in (3) is well defined. We next search in (3) for a minimum
(with respect to the admissible control gains) of this
realised maximum value maxτ∈D{J(K) }.
Problem (3) evidently expresses a ”worst-case” realization
(with respect to the possible delays fromD) of the minimal
value min{J(K)} of the objective functional. Since D is
a finite (discrete) set, there exists a (nonempty) Γ ⊆ D
such that maximum in (3) will be realized for a constant
τopt ∈ Γ. Here Γ is in fact a ”solution set” for the
maximization procedure in the main OCP (3).

3. CONVEXITY PROPERTY OF THE ROBUST
OPTIMAL CONTROL OF DELAY SYSTEMS

In this section we establish the useful convexity properties
of the main optimization problem (3). For an ”optimal” (in
the sense of (4)) delay τopt ∈ Γ ⊆ D we next consider the
natural approximations of the autonomous delayed system
(2). Let N∆ = τopt. Then a suitable N -order forward
differences based approximations of the closed-loop delay
system (2) are given by the following system
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By || · ||Rm×n we denote here the usual operator norm (in-
duced norm) on the Euclidean space Rm×n). Note that the
above boundeness condition expresses the natural restric-
tions of the technical resources of the usual feedback-type
controllers. The resulting closed-loop version of system (1)
has the following simple form

ẋ(t) = A1x(t) + (A2 +BK)x(t− τ)

∀t ∈ [0, tf ],

x(t) = φ(t) ∀t ∈ [−τmax, 0],

(2)

A solution of (2) associated with an admissible control gain
K is next denoted by xK(·).
We are now in a position to formulate the main OCP
problem associated with the given delayed dynamics (1):

min
K

max
τ∈D

{J(K)}

subjet to (2),

||K||Rm×n ≤ kmax.

(3)

where J(K) := ψ(xK(tf )) for a convex, continuously
differentiable function ψ(·). As we can see the main OCP
under consideration is a so called ”minimax” problem with
a Mayer-type objective functional. Since the terminal state
vector xK(tf ) depends on the concrete realizations of the
stochastic delays τ ∈ D, the maximization procedure

max
τ∈D

ψ(xK(tf )) (4)

in (3) is well defined. We next search in (3) for a minimum
(with respect to the admissible control gains) of this
realised maximum value maxτ∈D{J(K) }.
Problem (3) evidently expresses a ”worst-case” realization
(with respect to the possible delays fromD) of the minimal
value min{J(K)} of the objective functional. Since D is
a finite (discrete) set, there exists a (nonempty) Γ ⊆ D
such that maximum in (3) will be realized for a constant
τopt ∈ Γ. Here Γ is in fact a ”solution set” for the
maximization procedure in the main OCP (3).

3. CONVEXITY PROPERTY OF THE ROBUST
OPTIMAL CONTROL OF DELAY SYSTEMS

In this section we establish the useful convexity properties
of the main optimization problem (3). For an ”optimal” (in
the sense of (4)) delay τopt ∈ Γ ⊆ D we next consider the
natural approximations of the autonomous delayed system
(2). Let N∆ = τopt. Then a suitable N -order forward
differences based approximations of the closed-loop delay
system (2) are given by the following system
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d

dt




x(t)
x(t−∆)

...
x(t−N∆)


 =




A1 0 · · · χ
1
∆I − 1

∆I
. . .

. . .

0 1
∆I − 1

∆I







x(t)
x(t−∆)

...
x(t−N∆)


 .

(5)

where χ := (A2+BK). Introduce the following augmented
state

XN (t) := ((xK)T (t), (xK)T (t−∆), ... (xK)T (t−N∆))T

of dimension n(N + 1). Here xK(·) is a solution to (2) for
a fixed admissible matrix K. The initial condition for the
approximating system (5) can be written as follows

XN (0) = (φT (0), φT (−∆), ... φT (−τopt))T .

We finally get the following convex characterization of the
main OCP (3).

Theorem 1. Assume that all the technical conditions from
Section 2 are satisfied. Then the (combined) objective
functional J : Rm×n → R in (3) is convex and the OCP
(3) constitutes a convex minimization problem in Rm×n.

Proof: The rewritten system (5) has a linear structure and
it can be represented as follows:

d

dt
XN (t) = ANXN (t)

where AN denotes the full system matrix in (5). We
now introduce the uniformly continuous C0-semigroup
{TN (t)}t≥0 associated with the given generator AN . Then

XN (t) = TN (t)XN (0).

The continuity property in the strong operator topology
of the map AN , ∀N ∈ N implies the following relation

lim
N→∞

XN (t) = ((xK)T (t), (xK)T (t), ... (xK)T (t−τopt))T ,

where

xK(t) = exp (A1t)φ(0)+∫ t

0

exp (A1(t− s))(A2 +BK)xK(s− τopt)ds.
(6)

for all t ≥ 0. From (6) and taking into consideration the
fundamental Implicit Function Theorem (see e.g., (3)) we
deduce the affine structure of the mapping

xK : Rm×n → Rn, K → xK(tf )

where xK(tf ) constructively determined by (6).

The objective function ψ : Rn → R was assumed to
be convex and continuously differentiable. Recall that a

superposition of a convex functional Rn → R and an affine
function H → Rn, where H is a real Hilbert space, is
convex (see e.g., (5; 11)). We have in our case H ≡ Rm×n

and can conclude that J(·) is convex.
The inequality constraint in (3) evidently determines a
closed (convex) ball in the Euclidean space Rm×n. The
proof is completed. �

Let us note that Theorem 1 gives a useful ”convex char-
acterization” of the sophisticated (constrained and ”de-
layed”) OCP (3). Moreover, Theorem 1 implies the ex-
istence of an optimal solution Kopt to (3). We refer to
(11; 31; 32) for the general existence results for convex
minimization problems in Hilbert spaces.

Finally note that the generic quadratic objective function

ψ(x(tf )) = xT (tf )x(tf ) (7)

evidently satisfies conditions of Theorem 1. Therefore this
results generalizes the Linear Quadratic (LQ) optimal
control of the delay systems under consideration (11; 37;
38).

4. NUMERICALLY STABLE APPROACHES TO THE
ROBUST OPTIMAL CONTROL OF DELAY

SYSTEMS

In this section we propose a conceptual solution algorithm
for an effective treatment of the main OCP (3) associated
with the delay system (1). We finally prove the numerical
consistence (numerical stability) of the resulting approach.

4.1 On the Reduced Gradient of the Objective Functional

Taking into consideration the practical usability of the
first-order algorithms for convex programming we next
consider a concrete calculation scheme for the gradient
∇J(·) of the objective functional J(·) in the main problem
(3). The combined structure of J(·) implies the notation
”reduced gradient” (see e.g., (6; 7; 8; 9; 10; 11; 33;
35; 40)) Since ψ(xK(tf )) is assumed to be continuously
differentiable, we deduce

∇J(K) = ∇ψ(xK(tf ))(∇xK(tf ))
T , (8)

where ∇ψ(x) denotes the derivative of ψ(·) at a vector
x ∈ Rn and ∇xK(t) is a derivative of the state mapping
xK : Rm×n → Rn introduced in Section 3. As established
in the Proof of Theorem 1 this mapping has an affine
structure and therefore is differentiable.

The main challenge with respect to the gradient formulae
(8) is the calculation of the derivative ∇xK(tf ). With
the aim of this practical question we now consider a
general framework and introduce the real Banach and
Hilbert spaces X, Y . Let P : X × Y → X be a
known ”state” mapping. Here P (·, ·) is assumed to be
continuously differentiable. Let us note that all derivatives
considered in our contribution are Fréchet derivatives
(denoted by ∇). Assume that the abstract state equation
P (ξ, ν) = 0 can be solved with respect to ξ, i.e.,

ξ = ω(ν),

where the mapping ω : Y → X is a differentiable mapping.
We call the variable ξ state variable and ν is a parameter.
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We use the standard notation Pξ(·, ·), Pν(·, ·) for the partial
derivatives of the mapping P (·, ·). Moreover, we introduce
the corresponding adjoint operators

P ∗
ξ (·, ·), P ∗

ν (·, ·)
to the derivatives (linear operators) given above. We next
prove the following simple technical result.

Lemma 1. Assume that P (·, ·) is continuously differen-
tiable and the parametric state equation is solvable. In
addition, assume that there exists the continuous inverse
operator (P ∗

ξ )
−1(·, ·) to Pξ(·, ·). Then the reduced gradient

∇ω(·) of the mapping ω(·) can be calculated as follows

∇ω(ν) = −(Pξ)
−1(ξ, ν)Pν(ξ, ν). (9)

Proof: Differentiating the state equation we obtain

Pξ(ξ, ν)∇ω(ν) + Pν(ξ, ν) = 0.

The existence of (P ∗
ξ )

−1 implies the final formula (9). The
proof is completed. �

For the closed-loop delay system (2) we now define the
concrete spaces

X = W1,∞
n (0, tf )× C(−τmax, 0), Y = Rm×n.

and introduce the corresponding state operator

P : W1,∞
n (0, tf )× C(−τmax, 0)× Rm×n →

W1,∞
n (0, tf )× C(−τmax, 0).

The constructive definition of the state mapping P (·, ·) can
be given as follows

P (x(·),K)
∣∣∣
t
:=

[
x(t)− exp (A1t)φ(0)−

∫ t

0

exp (A1(t− s))(A2 +BK)x(s− τopt)ds
]
.

Evidently, the resulting operator equation P (x(·),K) = 0
is consistent with the abstract state equation considered in
Lemma 1. Recall that a solution x(·) of the above equation
is an element of the space W1,∞

n (0, tf )× C(−τmax, 0).

In view of Lemma 1 and the basic formulae (9) we
next have to give explicit expressions for the partial
derivative Px(·)(x(·),K) and PK(x(·),K) of the concrete
state operator P (x(·),K).

Theorem 2. Assume that the conditions of Lemma 1 are
satisfied for the concrete operator P (·, ·) associated with
the closed-loop delay system (2). Moreover, assume that
there exist an inverse

(
I −

∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)−1

to the matrix
(
I−(A2+BK)

∫ tf
0

exp (A1(t− s))ds
)
. Then

the reduced gradient ∇xK(tf ) of the mapping xK(·) at tf
can be calculated as follows

∇xK(tf ) =
(
I−∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)−1×

BIm,n

[ ∫ 0

−τopt

φ(s)ds+

∫ tf−τopt

0

x(s)ds
]

(10)

Moreover, the the gradient ∇J(·) of the objective func-
tional J(·) in the main problem (3) has the following
expression

∇J(K) = ∇ψ(xK(tf ))(∇xK(tf ))
T . (11)

Proof: Since the state operator P (·, ·) associated with the
closed-loop delay system (2) is Fréchet differentiable, there
exist the Gâteaux derivatives. Using the corresponding
differentiability concept we easy deduce

PK(x(·),K)
∣∣∣
tf

= BIm,n

∫ tf

0

x(s− τopt)ds =

BIm,n

[ ∫ 0

−τopt

φ(s)ds+

∫ tf−τopt

0

x(s)ds
]
,

(12)

where Im,n is an identity matrix in Rm×n.

In the same manner we obtain

Px(·)(x(·),K)
∣∣∣
tf

=
[
I−

∫ tf

0

exp (A1(tf − s))(A2 +BK)ds
] (13)

for the derivative Px(·)(x(·),K) calculated for t = tf . Here

I denotes an identity matrix in Rn×n.

Taking into consideration the invertibility of the matrix

(
I −

∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)

we next apply Lemma 1 to the concrete operator P (·, ·)
associated with the closed-loop delay system (2) and
finally obtain (10). The gradient formula (11) is a direct
consequence of (10) and the formulae (8) of the derivative
of a combined function. The proof in finished. �

Let us finally refer to (11; 14; 33; 35; 40; 42) for some
results related to the advanced computational techniques
for functional gradients and for the corresponding control
theoretical applications.

4.2 A Gradient Based Solution Algorithm for Robust
Optimal Control

We now use the convex structure of the main optimiza-
tion problem (3) (established in Theorem 1), the explicit
expression of the gradient for the corresponding objective
functional (see Theorem 2) and develop a gradient based
numerical scheme for (3). We also prove the numerical
consistence of the resulting algorithm. To make a step for-
ward we next discuss some related numerical aspects and
a complete conceptual solution scheme for the minimax
OCP (3).

Let K be the set of admissible gain matrices K in (3)
that satisfy the inequality ||K||Rm×n ≤ kmax. The iterative
gradient-projected scheme applied to the main OCP (3)
can now be explicitly written

K(l+1) = γlPK

[
K(l) − αl∇J(K(l))

]
+ (1− γl)K

(l), (14)

where l ∈ N. By PK we denote here the projection
operator on the convex set K ⊂ Rm×n (of admissible
gains). Moreover, {αl}, {γl} are sequences of some suitable
step sizes associated with the gradient-projected method.
Recall that several choices are possible for the step sizes
αl and γl in (9). It is well known that the mostly used
realization of (14) is the celebrated Armijo rule (Armijo
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derivatives of the mapping P (·, ·). Moreover, we introduce
the corresponding adjoint operators

P ∗
ξ (·, ·), P ∗

ν (·, ·)
to the derivatives (linear operators) given above. We next
prove the following simple technical result.

Lemma 1. Assume that P (·, ·) is continuously differen-
tiable and the parametric state equation is solvable. In
addition, assume that there exists the continuous inverse
operator (P ∗

ξ )
−1(·, ·) to Pξ(·, ·). Then the reduced gradient

∇ω(·) of the mapping ω(·) can be calculated as follows

∇ω(ν) = −(Pξ)
−1(ξ, ν)Pν(ξ, ν). (9)

Proof: Differentiating the state equation we obtain

Pξ(ξ, ν)∇ω(ν) + Pν(ξ, ν) = 0.

The existence of (P ∗
ξ )

−1 implies the final formula (9). The
proof is completed. �

For the closed-loop delay system (2) we now define the
concrete spaces

X = W1,∞
n (0, tf )× C(−τmax, 0), Y = Rm×n.

and introduce the corresponding state operator

P : W1,∞
n (0, tf )× C(−τmax, 0)× Rm×n →

W1,∞
n (0, tf )× C(−τmax, 0).

The constructive definition of the state mapping P (·, ·) can
be given as follows

P (x(·),K)
∣∣∣
t
:=

[
x(t)− exp (A1t)φ(0)−

∫ t

0

exp (A1(t− s))(A2 +BK)x(s− τopt)ds
]
.

Evidently, the resulting operator equation P (x(·),K) = 0
is consistent with the abstract state equation considered in
Lemma 1. Recall that a solution x(·) of the above equation
is an element of the space W1,∞

n (0, tf )× C(−τmax, 0).

In view of Lemma 1 and the basic formulae (9) we
next have to give explicit expressions for the partial
derivative Px(·)(x(·),K) and PK(x(·),K) of the concrete
state operator P (x(·),K).

Theorem 2. Assume that the conditions of Lemma 1 are
satisfied for the concrete operator P (·, ·) associated with
the closed-loop delay system (2). Moreover, assume that
there exist an inverse

(
I −

∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)−1

to the matrix
(
I−(A2+BK)

∫ tf
0

exp (A1(t− s))ds
)
. Then

the reduced gradient ∇xK(tf ) of the mapping xK(·) at tf
can be calculated as follows

∇xK(tf ) =
(
I−∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)−1×

BIm,n

[ ∫ 0

−τopt

φ(s)ds+

∫ tf−τopt

0

x(s)ds
]

(10)

Moreover, the the gradient ∇J(·) of the objective func-
tional J(·) in the main problem (3) has the following
expression

∇J(K) = ∇ψ(xK(tf ))(∇xK(tf ))
T . (11)

Proof: Since the state operator P (·, ·) associated with the
closed-loop delay system (2) is Fréchet differentiable, there
exist the Gâteaux derivatives. Using the corresponding
differentiability concept we easy deduce

PK(x(·),K)
∣∣∣
tf

= BIm,n

∫ tf

0

x(s− τopt)ds =

BIm,n

[ ∫ 0

−τopt

φ(s)ds+

∫ tf−τopt

0

x(s)ds
]
,

(12)

where Im,n is an identity matrix in Rm×n.

In the same manner we obtain

Px(·)(x(·),K)
∣∣∣
tf

=
[
I−

∫ tf

0

exp (A1(tf − s))(A2 +BK)ds
] (13)

for the derivative Px(·)(x(·),K) calculated for t = tf . Here

I denotes an identity matrix in Rn×n.

Taking into consideration the invertibility of the matrix

(
I −

∫ tf

0

exp (A1(t− s))(A2 +BK)ds
)

we next apply Lemma 1 to the concrete operator P (·, ·)
associated with the closed-loop delay system (2) and
finally obtain (10). The gradient formula (11) is a direct
consequence of (10) and the formulae (8) of the derivative
of a combined function. The proof in finished. �

Let us finally refer to (11; 14; 33; 35; 40; 42) for some
results related to the advanced computational techniques
for functional gradients and for the corresponding control
theoretical applications.

4.2 A Gradient Based Solution Algorithm for Robust
Optimal Control

We now use the convex structure of the main optimiza-
tion problem (3) (established in Theorem 1), the explicit
expression of the gradient for the corresponding objective
functional (see Theorem 2) and develop a gradient based
numerical scheme for (3). We also prove the numerical
consistence of the resulting algorithm. To make a step for-
ward we next discuss some related numerical aspects and
a complete conceptual solution scheme for the minimax
OCP (3).

Let K be the set of admissible gain matrices K in (3)
that satisfy the inequality ||K||Rm×n ≤ kmax. The iterative
gradient-projected scheme applied to the main OCP (3)
can now be explicitly written

K(l+1) = γlPK

[
K(l) − αl∇J(K(l))

]
+ (1− γl)K

(l), (14)

where l ∈ N. By PK we denote here the projection
operator on the convex set K ⊂ Rm×n (of admissible
gains). Moreover, {αl}, {γl} are sequences of some suitable
step sizes associated with the gradient-projected method.
Recall that several choices are possible for the step sizes
αl and γl in (9). It is well known that the mostly used
realization of (14) is the celebrated Armijo rule (Armijo
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line search) (4; 9; 42). The simplest step size selection,
namely, the constant step sizes strategy was analysed in
(22). In that case we have

γl = 1, αl = α > 0 ∀l ∈ N.
Under some general assumptions the gradient iterations
(14) generate a minimizing sequence {Kl}, l ∈ N for the
optimization problem (3) (see (31)). That means

lim
l→∞

J(K(l)) = J(Kopt), ||K||Rm×n ≤ kmax.

The existence of an optimal solution Kopt to (3) was
established in Section 3.

Many useful and mathematically exact convergence theo-
rems for iterations (9) can be found in (22; 31). A compre-
hensive discussion of the weakly and strongly convergent
realizations of the basic gradient method can be found in
(13; 14). We also refer to (7; 20; 21; 42) for some spe-
cific convergence results obtained for the gradient-based
schemes applied to hybrid and switched OCPs. We now
formulate a convergence result associated with the pro-
posed gradient-projected scheme (14).

Theorem 3. Consider the main OCP (3) and assume that
all the conditions from Section 2 are satisfied. Let

{K(l)} ⊂ K, l ∈ N
be a sequence generated by the gradient method (14) with
γ = 1. Assume that∫ tf

0

exp (A1(t− s))(A2 +BK(l))ds �= I (15)

for all l ∈ N. Then there exists a constant step sizes α > 0
such that for an admissible initial point K(0) ∈ K we
obtain

lim
l→∞

J(K(l)) = J(Kopt).

Moreover, the sequence {K(l)} converges in norm ||·||Rm×n

to an optimal solution of (3) (to an optimal gain matrix)
Kopt ∈ K.

Proof: Since OCP (3) is a convex minimization problem
in the Euclidean space Rm×n (see Theorem 1), it follows
that {K(l)} is a minimizing sequence for (3) (see (14; 31)).

From (15) it follows the invertibility of the matrix

(
I −

∫ tf

0

exp (A1(t− s))(A2 +BK(l))ds
)

for all K(l) generated by methor (14). We now consider the
explicit representation (10)-(11) of the derivative ∇J(·)
in Theorem 2 and deduce the Lipschitz continuity of the
derivative ∇J(·) on the set co{K(l)}. Let L be the corre-
sponding Lipschitz constant. From the main result of (22)
we now deduce the weak convergence of the minimizing
sequence {K(l)(·)} to Kopt where α ∈ (0, 2/L). The weak
convergence in the Euclidean space Rm×n coincides with
a strong convergence. The proof is completed. �

As we can see Theorem 3 establishes a strong convergence
of the minimizing sequence {K(l)}, l ∈ N generated by
the gradient-projected algorithm (14). Roughly speaking
the proposed solution method (14) is numerically stable in
the strong sense (in the sense of the norm convergence).
Moreover, the Proof of Theorem 3 determines the concrete
choice of the parameter α.

The complete solution procedure for the minimax OCP (3)
evidently includes determination of the ”worst case” delay
τopt ∈ Γ ⊆ D. This step in fact implies a finite search and
need to be combined with the proposed gradient-projected
scheme (14).

5. CONCLUDING REMARK

In this contribution, we have studied optimal control pro-
cesses governed by dynamic systems with random delays.
The minimax-type OCPs we consider can be interpreted in
the framework of a robust optimization with respect to the
possible delay realisations. The paper is mainly focused on
an analytic development of a constructive computational
solution procedure and on the corresponding numerical
analysis of the resulting algorithm. The convex structure of
the main OCPs associated with the delay systems makes it
possible to apply some basic techniques of the conventional
convex programming. We propose the (first order) gradient
projected algorithm for the concrete numerical treatment
of the OCP under consideration.

The theoretical solution methodology we proposed needs
a comprehensively numerical examination, namely, sim-
ulations of several robust (minimax-type) OCPs for the
differential equations with random delays.
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