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Abstract: In this paper, a structural feedback linearization technique is proposed. This is
a quite simple and effective linear control scheme based on failure detection techniques. Our
proposed linear control approach is intended to reject the nonlinearities, which are treated as
failure signals affecting the systems dynamics. The proposed control methodology is illustrated
via the attitude control of a quadrotor in hover flying.
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NOTATION

χi
k

stands for the vector in Rk, which the i-th entry is equal to 1

and the others are equal to 0. 0k stands for the zero vector in Rk.
Ik stands for the identity matrix of size k × k, or shortly I when k
does not need to be explicited. 0k stands for the zero matrix of size
k×k. 0k,� stands for the zero matrix of size k× �. Nk stands for the

nilpotent matrix of size k×k:




0 1 0 · · · 0
· · · · ·
0 · · · · 0 1
0 · · · · · 0


 . Ck

([
a1 · · · ak

])

= Nk + χk
k

[
a1 · · · ak

]
stands for the companion matrix of size

k×k. BD {X1, . . . , Xk} stands for the block diagonal matrix, where
X1, . . . , Xk are on the diagonal and the other elements are zero.

1. INTRODUCTION

The basic idea of simplifying the form of a nonlinear sys-
tem by choosing a different state representation has been
known in the control community since the work of Isidori
(1989) and Nijmeijer and Van der Schaft (1990). However,
such a technique is similar to the choice of reference frames
or coordinate systems in mechanics. Feedback linearization
is equivalent to transforming original system models into
equivalent models having a simpler form. In engineering,
there are many applications for feedback linearization such
as in helicopters, high-performance aircrafts, industrial
robots manipulators, biomedical devices, vehicle control.

The central idea of feedback linearization is to alge-
braically transform nonlinear systems dynamics into (fully
or partly) linear ones (see for example Slotine and Li
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(1991), Isidori (1989) and Khalil (1992)), so that linear
control techniques can be applied.

Let us consider the nonlinear system:

dx/dt = f(x) + g(x)u ; y = Cox, (1.1)

where: x ∈ Rn is the state variable, y = [ y1 · · · yp ]T ∈ Rp

is the output variable, u = [ u1 · · · um ]
T ∈ Rm is the input

variable, f(x) and g(x) are analytic vector fields on Rn,
and Co ∈ Rp×n is an epic matrix, namely: ker CT

o = {0}.
We assume that p = m, and that the system has relative
degree n at any point xp ∈ Rn, the set of points where a
relative degree can be defined is an open and dense set of
the set U where the System (1.1) is defined (Isidori, 1989;
Khalil, 1992; Slotine and Li, 1991).

Let us assume that:

Hypothesis 1. The origin xo = 0 ∈ Rn is an equilibrium
point of the autonomous system (1.1), namely: f(0) = 0.

Hypothesis 2. f and g are continuously differentiable.

Hypothesis 3. Given the defined matrices,

Ao
.
= [∂f/∂x]x=0 , Bo

.
= [g]x=0 , (1.2)

(i) ker Bo = {0}, (ii) the pair (Ao, Bo) is controllable, and
(iii) the pair (Co, Ao) is observable.

Under these assumptions, it is well known that there ex-
ists a stabilizing feedback, u(t) = Fx(t), F ∈ Rm×n, such
that: Ao + BoF is a Hurwitz matrix, and 0 is an expo-
nentially stable equilibrium point of the autonomous sys-
tem dx/dt = f(x) + g(x)Fx (see for example Vidyasagar
(1993)). Thus, a common engineering practice is to control
(1.1) with standard stabilizing linear control laws. Note
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∗ CINVESTAV-IPN, DCA, México (anghel lam@hotmail.com).
∗∗ CINVESTAV-IPN, DCA, UMI 3175 CINVESTAV-CNRS, México
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Let us assume that:

Hypothesis 1. The origin xo = 0 ∈ Rn is an equilibrium
point of the autonomous system (1.1), namely: f(0) = 0.

Hypothesis 2. f and g are continuously differentiable.

Hypothesis 3. Given the defined matrices,

Ao
.
= [∂f/∂x]x=0 , Bo

.
= [g]x=0 , (1.2)

(i) ker Bo = {0}, (ii) the pair (Ao, Bo) is controllable, and
(iii) the pair (Co, Ao) is observable.

Under these assumptions, it is well known that there ex-
ists a stabilizing feedback, u(t) = Fx(t), F ∈ Rm×n, such
that: Ao + BoF is a Hurwitz matrix, and 0 is an expo-
nentially stable equilibrium point of the autonomous sys-
tem dx/dt = f(x) + g(x)Fx (see for example Vidyasagar
(1993)). Thus, a common engineering practice is to control
(1.1) with standard stabilizing linear control laws. Note
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stands for the companion matrix of size

k×k. BD {X1, . . . , Xk} stands for the block diagonal matrix, where
X1, . . . , Xk are on the diagonal and the other elements are zero.

1. INTRODUCTION

The basic idea of simplifying the form of a nonlinear sys-
tem by choosing a different state representation has been
known in the control community since the work of Isidori
(1989) and Nijmeijer and Van der Schaft (1990). However,
such a technique is similar to the choice of reference frames
or coordinate systems in mechanics. Feedback linearization
is equivalent to transforming original system models into
equivalent models having a simpler form. In engineering,
there are many applications for feedback linearization such
as in helicopters, high-performance aircrafts, industrial
robots manipulators, biomedical devices, vehicle control.

The central idea of feedback linearization is to alge-
braically transform nonlinear systems dynamics into (fully
or partly) linear ones (see for example Slotine and Li
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dx/dt = f(x) + g(x)u ; y = Cox, (1.1)
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o = {0}.
We assume that p = m, and that the system has relative
degree n at any point xp ∈ Rn, the set of points where a
relative degree can be defined is an open and dense set of
the set U where the System (1.1) is defined (Isidori, 1989;
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point of the autonomous system (1.1), namely: f(0) = 0.

Hypothesis 2. f and g are continuously differentiable.

Hypothesis 3. Given the defined matrices,

Ao
.
= [∂f/∂x]x=0 , Bo

.
= [g]x=0 , (1.2)
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Under these assumptions, it is well known that there ex-
ists a stabilizing feedback, u(t) = Fx(t), F ∈ Rm×n, such
that: Ao + BoF is a Hurwitz matrix, and 0 is an expo-
nentially stable equilibrium point of the autonomous sys-
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relative degree can be defined is an open and dense set of
the set U where the System (1.1) is defined (Isidori, 1989;
Khalil, 1992; Slotine and Li, 1991).

Let us assume that:
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Hypothesis 3. Given the defined matrices,
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(i) ker Bo = {0}, (ii) the pair (Ao, Bo) is controllable, and
(iii) the pair (Co, Ao) is observable.

Under these assumptions, it is well known that there ex-
ists a stabilizing feedback, u(t) = Fx(t), F ∈ Rm×n, such
that: Ao + BoF is a Hurwitz matrix, and 0 is an expo-
nentially stable equilibrium point of the autonomous sys-
tem dx/dt = f(x) + g(x)Fx (see for example Vidyasagar
(1993)). Thus, a common engineering practice is to control
(1.1) with standard stabilizing linear control laws. Note
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that the stability neighborhood can be small for a control
based on a Taylor approximation.

Let us briefly recall the input-output linearization tech-
nique for the case: p = m = 1.

Hypothesis 4. The relative degree and the dimension of
the state x are equal to n.

Since the system has relative degree n, exactly equal to
the dimension of state space, at some point x = xp, there
then exists a diffeomorphism Tdif , ζ(t) = Tdif (x(t)), such

that (ζ = [ ζ1 · · · ζn ]
T
):

dζ/dt = Cn

(
0T
n

)
ζ + χn

n

(
α(x) + β(x)u

)
; y(t) =

(
χ1
n

)T

ζ

Let us note that Hypothesis 4 implies that there ex-
its a known positive constant β̄ such that for all x:
0 < β̄ < β(x). Thus, if we could have a complete knowl-
edge of its parameters, then the ideal control law would
be:

u(t) = β−1(x(t)) (−α(x(t)) + [−a1 · · · −an ] ζ(t)) .

With this ideal control law, the closed loop system is
described by:

dζ/dt = Cn

(
aT

)
ζ(t) ; y(t) =

(
χ1
n

)T

ζ(t),

where: a = [−a1 −a2 −a3 · · · −an−1 −an ]
T
.

The feedback linearization problem is achieved by exact
state transformation and feedback, rather than by linear
approximations of the dynamics. This approach requires
a complete knowledge of the model, with exact deriva-
tives, and this is not always possible. There are still a
number of shortcomings and limitations associated with
the feedback linearization approach. In this paper, we
propose a linearization methodology based on the internal
structure of a linear part of the system, characterized by
the pair (Ao, Bo). For this, in Section 2, we first decompose
the linear part of (1.1) in its Brunovsky canonical form
(AB, BB) (Brunovsky, 1970). And then, in Section 3, we
propose an operator X(d/dt) depending on the structure
of the Brunovsky matrix AB, which aim is to concentrate
the non-linear part of the system in the image of the
Brunovsky input matrix BB. In Section 4, we asymptot-
ically reject the non-linear components by means of a
failure reconstructor. In Section 5, we apply our method-
ology to a quadrotor in hover flying. In Section 6, we show
simulation results. In Section 7, we conclude.

2. STRUCTURAL DECOMPOSITION

Let us assume that p = m and that Hypothesis 1–3 are
satisfied. Taking into account (1.2) in (1.1), we get:

dx/dt = Aox+ Bou+ fo(x, u) ; y = Cox, (2.3)

where: fo(x, u) = ∆f(x) + ∆g(x)u, ∆f(x) = f(x) −
Aox, and ∆g(x) = g(x) − Bo. Let us note that for a
given bound, ε0 ∈ R+, there exist a small neighborhood,
δ0 ∈ R+, around the equilibrium point, 0, such that:

‖∆f(x)‖2 ≤ ε0‖x‖22, ‖∆g(x)‖2 ≤ ε0‖x‖2, ∀ ‖x‖2 < δ0

Since the pair (Ao, Bo) is controllable there exist a state
feedback FB ∈ Rn×m, and invertible matrices TB ∈ Rn×n

and GB ∈ Rm×m, such that (Brunovsky, 1970):

dξ/dt = ABξ + BBū+ Soqo(ξ, ū) ; y = CBξ, (2.4)

where:

x = TBξ, u = FBx+GBū,
AB = T−1

B (Ao + BoFB) TB = BD {A1, . . . , Am},
BB = T−1

B BoGB = BD {B1, . . . , Bm},
CB = CoTB

.
= [ C1 · · · Cm ] ,

Soqo = T−1
B fo(x(t), u(t)), So

.
=

[
ST1 · · · STm

]T
,

Si = [ Si,1 · · · Si,� ] , i ∈ {1, . . . , m},

(2.5)

Ai = Cni

(
0T
ni

)
, Bi = χni

ni
. (2.6)

Thus, we have the following m pseudo linear state equa-
tions perturbed by the nonlinear perturbation signal qo:

dξi/dt = Aiξi + Biūi + Siqo(ξ, ū), i ∈ {1, . . . , m}, (2.7)

where: ū
.
= [ ū1 · · · ūm ]

T ∈ Rm, ξ
.
=

[
ξT1 · · · ξTm

]T ∈ Rn,

ξi ∈ Rni (i ∈ {1, . . . , m}),
∑m

i=1 ni = n, qo ∈ R�.

3. STRUCTURAL EXACT FEEDBACK
LINEARIZATION

Let us define the operator X(d/dt), as follows:

X(d/dt) =−AT
B Cn(So)Ψn(d/dt), (3.8)

Cκ(So) =
[
So AT

B So · · · (AT
B)

(κ−1) So
]
, (3.9)

Ψκ(d/dt) =
[
I I d/dt · · · I dκ−1/dtκ−1

]T
. (3.10)

Let us note that Cn(So) is the controllability matrix of the
pair (AT

B , So). We do the following assumptions:

Hypothesis 5. The subspace AT
B Im So is contained in the

unobservable subspace ∩n
i=1ker CB (AT

B)
i−1, namely:

CB AT
B Cn(So) = 0. (3.11)

Hypothesis 6. The state space description Σ(AB,BB,CB)
(2.4) has no finite invariant zeros at the origin, namely:

Im BB ∩AB ker CB = {0}. (3.12)

As we will see later, Hypothesis 5 assures the rejectibility
of the non-linear part qo, and Hypothesis 6 assures the left
invertivility of the static gain of Σss(AB, BB, CB).

We shall need the following two technical Lemmas:

Lemma 7. If (3.11) holds, then the operator X(d/dt),
defined by (3.8), satisfies:
[
NB 0
0 Im

] [
(Id/dt−AB) −So

CB 0

] [
X(d/dt)

In

]
= 0, (3.13)

where NB is the maximal annihilator of Im BB; namely:

NB BB = 0, ker

[
NB
BT

B

]
= {0}, and Im

[
NB
BT

B

]
= Rn.

Proof of Lemma 7 The maximal annihilator NB is:

NB = BD {N1, · · · , Nm}, (3.14)
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where: Ni =

[
1 0 · · · 0 0 0
· · · · · · · ·
0 0 · · · 0 1 0

]
∈ R(ni−1)×ni . Then: 1

NB(Id/dt−AB)X(d/dt) =
= NB(AB AT

B −AT
Bd/dt)Cn(So)Ψn(d/dt) ≡ NB So

(3.15)

And from (3.11), we get (3.13). �

Lemma 8. The operator X(d/dt), defined by (3.8), satis-
fies:
BT

B (−(Id/dt−AB)X(d/dt) + So)
= BT

B C(n+1)(So)Ψ(n+1)(d/dt).
(3.16)

Furthermore:

BT
B C(n+1)(So)Ψ(n+1)(d/dt) = ΣS(d/dt), (3.17)

where:

ΣS(d/dt) = [ σS1(d/dt) · · · σSm(d/dt) ]
T
,

σT
Si
(d/dt) =

[
σSi,1

(d/dt) · · · σSi�
(d/dt)

]
,

σSi,j (d/dt) = det

[
(Ini

d/dt−Ai) Si,j

−cTi 0

]
,

(3.18)

i ∈ {1, . . . , m}, j ∈ {1, . . . , �}, and the ci are vectors in
ker NiAi such that: cTi ci = 1.

Proof of Lemma 8 Equation (3.16) directly follows from
(3.8) and the fact: BT

B AB AT
B = 0. Equation (3.17) directly

follows from (3.18), (2.5) and (2.6). �

In the next Theorem, we introduce a change of variable
which aim is to map the nonlinear perturbation signal, qo,
into the image of BB.

Theorem 9. Let ζ be the state variable defined as follows:

ζ = ξ −X(d/dt)qo(ξ, ū). (3.19)

where X(d/dt) is the operator defined by (3.8). Then the
state representation (2.4) takes the following form:

dζ/dt = ABζ + BB (ū+ q∗(ξ, ū)) ; y(t) = CBζ(t), (3.20)

where: q∗(ξ, ū) = ΣS(d/dt)qo(ξ, ū).

Proof of Theorem 9 Substituting (3.19) into (2.4), we
get from Lemmas 7 and 8: NB

(
Id/dt − AB

)
ζ = 0 , CBζ =

y, and: 2

BT
B (Id/dt−AB) ζ =

BT
B (Id/dt−AB) (ξ −X(d/dt)qo(ξ, ū)) =

BT
B (Id/dt−AB) ξ +

(
ΣS (d/dt)− BT

BSo
)
qo(ξ, ū) =

= ū+ΣS (d/dt)qo(ξ, ū). �

Thus, with the help of the change of variable (3.19), we
have carried the state representation (2.4) to (3.20), which
has the particularity that the nonlinearities q∗(ξ, ū) are
contained in Im BB. Then, with the ideal state feedback:

ū∗ = Fζ − q∗(ξ, ū), (3.21)

we get an exact feedback linearization, where F ∈ Rn×m

is any stabilizing feedback of the pair (AB, BB) namely: 3

σ {(AB + BBF)} ⊂ C−. (3.22)
1 Let us note that (recall (2.6), (3.14) and (3.8)-
(3.10)): (i) NBABA

T
B = NB, (ii) (AT

B)n = 0 and (iii)

CnΨn(d/dt) =
(
I + (AT

B)d/dt+ · · ·+ (AT
B)(n−1)dn−1/dtn−1

)
So.

2 Recall (3.19) (3.16), (3.17) and (2.4), and that: BT
BBB = I.

3 Given a square matrix A, σ {A} stands for its spectrum.

4. STRUCTURAL ASYMPTOTIC FEEDBACK
LINEARIZATION

Remember that the exact feedback linearization (3.21) re-
quires a complete knowledge of the model, and particularly
the time derivatives of the nonlinear variable qo(ξ, ū). But
this approach has the advantage, over the previous classi-
cal feedback linearization, that the unknown nonlinearities
q∗(ξ, ū) belong to Im BB. So, they can be asymptotically
attenuated with the help of disturbance rejectors based on
standard state observers. For example, Bonilla et al (2016)
have proposed the following disturbance rejector based on
the Beard-Jones filter (cf. Isermann (1984); Massoumnia
(1986); Saberi et al (2000)):

dw/dt = (AB +KCB)w −Ky + BBū,

r̄ = G� (CB w − y) , ū = Fζ + r̄,
(4.23)

where K ∈ Rn̂×p is an output injection to be computed,
such that:

σ {(AB +KCB)} ⊂ C−. (4.24)

And G� is a left inverse of the static gain, −CBA
−1
BK

BB, of

the remainder generator: 4

de/dt = ABK e− BB q∗(ξ, ū) ; r = CB e, (4.25)

where: ABK

.
= (AB +KCB), e(t) = w(t) − ζ(t) and r =

CB w − y. Let us note that: 5 r̄(s) = − G� F(s)q∗(s),

where: F(s)
.
= CB (sI −ABK)

−1
BB. Then, under the as-

sumption that q∗(ξ, ū) is a bounded limited band fre-
quency signal 6 , we only need to synthesize a Hurwitz low-
pass filter F(s), with a corner frequency ωc, to achieve an
asymptotic feedback linearization, indeed:

‖ū∗(ω)− ū(ω)‖ ≤
∥∥G� F( ω)− I

∥∥ ‖q∗(ω)‖ . (4.26)

In (Bonilla et al, 2016) is shown (see their Lemma 1 and
Theorem 1):

Under the Hurwitz stability assumptions (4.24) and (3.22),
there exist k3, k4, α2 ∈ R+ such that the closed loop
system behaves as: 7∣∣∣∣y(t)− CB

∫ t

0

exp
(
ABF

(t− τ)
)
BB ur(τ) dτ

∣∣∣∣ ≤
(
k3
/
ωc

)
‖dq∗(t)/dt‖∞ + k4 e−α2t,

where: ABF

.
= (AB + BB F). Moreover, the steady state

response of y for high corner frequencies is:

yssr = lim
t→∞

ωc→∞

y(t) = CB

∞∫

0

exp (ABF(t− τ)) BB ur(τ) dτ

5. QUADROTOR

Let us consider a Quadrotor where the total mass is M ,
the moment of inertia about axis ox, oy and oz are: 8 Ixx,
4 Recall (3.12), and note that: (AB +KCB) ker CB = AB ker CB.
5 In order to clarify ideas, let us assume for a while the existence of
the Laplace transform of q∗(ξ, ū).
6 Since F is a stabilizing feedback of the pair (AB, BB), this assump-
tion is satisfied in a local neighborhood around the equilibrium point
(ξ, ū) = (0, 0).
7 ur is some reference signal added to the control law (4.23).
8 Since the Quadrotor is mechanically symmetric its products inertia
are zero.
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)
ζ = 0 , CBζ =

y, and: 2

BT
B (Id/dt−AB) ζ =

BT
B (Id/dt−AB) (ξ −X(d/dt)qo(ξ, ū)) =

BT
B (Id/dt−AB) ξ +

(
ΣS (d/dt)− BT

BSo
)
qo(ξ, ū) =

= ū+ΣS (d/dt)qo(ξ, ū). �

Thus, with the help of the change of variable (3.19), we
have carried the state representation (2.4) to (3.20), which
has the particularity that the nonlinearities q∗(ξ, ū) are
contained in Im BB. Then, with the ideal state feedback:

ū∗ = Fζ − q∗(ξ, ū), (3.21)

we get an exact feedback linearization, where F ∈ Rn×m

is any stabilizing feedback of the pair (AB, BB) namely: 3

σ {(AB + BBF)} ⊂ C−. (3.22)
1 Let us note that (recall (2.6), (3.14) and (3.8)-
(3.10)): (i) NBABA

T
B = NB, (ii) (AT

B)n = 0 and (iii)

CnΨn(d/dt) =
(
I + (AT

B)d/dt+ · · ·+ (AT
B)(n−1)dn−1/dtn−1

)
So.

2 Recall (3.19) (3.16), (3.17) and (2.4), and that: BT
BBB = I.

3 Given a square matrix A, σ {A} stands for its spectrum.

4. STRUCTURAL ASYMPTOTIC FEEDBACK
LINEARIZATION

Remember that the exact feedback linearization (3.21) re-
quires a complete knowledge of the model, and particularly
the time derivatives of the nonlinear variable qo(ξ, ū). But
this approach has the advantage, over the previous classi-
cal feedback linearization, that the unknown nonlinearities
q∗(ξ, ū) belong to Im BB. So, they can be asymptotically
attenuated with the help of disturbance rejectors based on
standard state observers. For example, Bonilla et al (2016)
have proposed the following disturbance rejector based on
the Beard-Jones filter (cf. Isermann (1984); Massoumnia
(1986); Saberi et al (2000)):

dw/dt = (AB +KCB)w −Ky + BBū,

r̄ = G� (CB w − y) , ū = Fζ + r̄,
(4.23)

where K ∈ Rn̂×p is an output injection to be computed,
such that:

σ {(AB +KCB)} ⊂ C−. (4.24)

And G� is a left inverse of the static gain, −CBA
−1
BK

BB, of

the remainder generator: 4

de/dt = ABK e− BB q∗(ξ, ū) ; r = CB e, (4.25)

where: ABK

.
= (AB +KCB), e(t) = w(t) − ζ(t) and r =

CB w − y. Let us note that: 5 r̄(s) = − G� F(s)q∗(s),

where: F(s)
.
= CB (sI −ABK)

−1
BB. Then, under the as-

sumption that q∗(ξ, ū) is a bounded limited band fre-
quency signal 6 , we only need to synthesize a Hurwitz low-
pass filter F(s), with a corner frequency ωc, to achieve an
asymptotic feedback linearization, indeed:

‖ū∗(ω)− ū(ω)‖ ≤
∥∥G� F( ω)− I

∥∥ ‖q∗(ω)‖ . (4.26)

In (Bonilla et al, 2016) is shown (see their Lemma 1 and
Theorem 1):

Under the Hurwitz stability assumptions (4.24) and (3.22),
there exist k3, k4, α2 ∈ R+ such that the closed loop
system behaves as: 7∣∣∣∣y(t)− CB

∫ t

0

exp
(
ABF

(t− τ)
)
BB ur(τ) dτ

∣∣∣∣ ≤
(
k3
/
ωc

)
‖dq∗(t)/dt‖∞ + k4 e−α2t,

where: ABF

.
= (AB + BB F). Moreover, the steady state

response of y for high corner frequencies is:

yssr = lim
t→∞

ωc→∞

y(t) = CB

∞∫

0

exp (ABF(t− τ)) BB ur(τ) dτ

5. QUADROTOR

Let us consider a Quadrotor where the total mass is M ,
the moment of inertia about axis ox, oy and oz are: 8 Ixx,
4 Recall (3.12), and note that: (AB +KCB) ker CB = AB ker CB.
5 In order to clarify ideas, let us assume for a while the existence of
the Laplace transform of q∗(ξ, ū).
6 Since F is a stabilizing feedback of the pair (AB, BB), this assump-
tion is satisfied in a local neighborhood around the equilibrium point
(ξ, ū) = (0, 0).
7 ur is some reference signal added to the control law (4.23).
8 Since the Quadrotor is mechanically symmetric its products inertia
are zero.
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Iyy and Izz, and the distance of each rotor with respect
to the centre of gravity of the quadrotor is: L (see Fig. 1).

L

L/
√

2

L/
√

2

xB

yB

(oxyz)

(oBxByBzB)

g

�

f1
f2

f3

f4

(a) (b)

Fig. 1. Schematic diagram of the quadrotor. (a) Upper
view. (b) Perspective view.

The motion is referred to a fixed orthogonal axis set
(airframe) (oxyz), where oz points vertically down along

the gravity vector [ 0 0 g ]
T
, and the origin o is located

at the desired height z̄, above the ground level. φ, θ and
ψ are the Euler angles, roll, pitch and yaw, measured
respectively over the axis oBxB , oByB and oBzB ; where
(oBxByBzB) is the body axis system, with its origin oB
fixed at the centre of gravity of the quadrotor. We denote:

η = [ φ θ ψ ]
T
. Usually, the Quadrotor is represented by

the following behavioral equations (see for example Garćıa
et al (2013) and Cook (2013)):

Translational dynamics The translational behavior is
represented by the non-linear state description:

ẍ = −θ g + qx (∆uz; η) , ÿ = φ g + qy (∆uz; η) ,

z̈ = ∆uz/M + qz (∆uz; η) ,
(5.27)

where: ẍ
.
= d2x/dt2, ÿ

.
= d2y/dt2, z̈

.
= d2z/dt2, and qx, qy

and qz are the variables describing the non-linear part
of the translational model (see the Appendix), and ∆uz

is the incremental control action: ∆uz = uz +Mg, and
uz is defined hereafter in the thrusters model.

Attitude dynamics The attitude behavior is repre-
sented by the non-linear state description:

φ̈ = uy/Ixx + qφ (η) , θ̈ = ux/Iyy + qθ (η) ,

ψ̈ = uψ/Izz + qψ (η) ,
(5.28)

where: φ̈
.
= d2φ/dt2, θ̈

.
= d2θ/dt2, ψ̈

.
= d2ψ/dt2, and

qφ, qθ and qψ are the variables describing the non-linear
part of the attitude model (see the Appendix), and uy,
ux and uψ are the incremental control actions: uy = τφ,
ux = τθ and uψ = τψ, defined hereafter.

Thrusters model The control actions, uz, τφ, τθ and τψ,
are related with the thrusters of the four rotors, f1, f2,
f3 and f4, by means of the following invertible matrix:




uz

uy

ux

uψ


 =




−1 −1 −1 −1
k� k� −k� −k�
−k� k� k� −k�
−γ γ −γ γ






f1
f2
f3
f4




where: k� = L/
√
2 and γ = kτ/kf

9 (the determinant of
this matrix is: −16 γ k2� ).

9 The thrusters and momentums generated by each rotor are: fi =
kfω

2
i and τi = kτω2

i , where ωi is the angular velocity of each rotor.
Thus: τi = (kτ/kf )fi, which implies (Powers et al, 2014): γ = kτ/kf .

5.1 State Representations

From (5.27) and (5.28), we get the following state repre-
sentations (cf. (2.3) and (2.4)):

State representation of x-dynamics :

dξx/dt = ABxξx + BBxux + Soxqox ; yx = CBxξx, (5.29)

ABx = C4

(
0T
4

)
, BBx = χ4

4
, CT

Bx = (−g/Iyy)χ1
4
,

Sox =
[
(−Iyy/g)χ2

4
(Iyy)χ4

4

]
,

(5.30)

where: ξx = T−1
Bx xx, xx = [ x dx/dt θ dθ/dt ]

T
, TBx =

BD {−g/Iyy, −g/Iyy, 1/Iyy, 1/Iyy}, qox = [ qx qθ ]
T
,

ABx = T−1
Bx Aox TBx, BBx = T−1

Bx Box, CBx = Cox TBx,

Soxqox = T−1
Bx fox and fox = (qx)χ

4
2
+ (qθ)χ

4
4
.

Let us note that (3.11) is satisfied: CBx A
T
Bx = 0.

State representation of y-dynamics :

dξy/dt = AByξy + BByuy + Soyqoy ; yy = CByξy, (5.31)

ABy = C4

(
0T
4

)
, BBy = χ4

4
, CT

Bx = (g/Ixx)χ1
4
,

Soy =
[
(Ixx/g)χ2

4
(Ixx)χ4

4

]
,

(5.32)

where: ξy = T−1
By xy, xy = [ y dy/dt φ dφ/dt ]

T
, TBy =

BD {g/Ixx, g/Ixx, 1/Ixx, 1/Ixx}, qoy = [ qy qφ ]
T
, ABy

= T−1
By Aoy TBy, BBy = T−1

By Boy, CBy = Coy TBy, Soyqoy

= T−1
By foy and foy = (qy)χ

4
2
+ (qφ)χ

4
4
.

Let us note that (3.11) is satisfied: CBy A
T
By = 0.

State representation of ψ-dynamics :

dxψ/dt = Aoψxψ + Boψuψ + foψ ; ψ = Coψxψ

Aoψ = C2

(
0T
2

)
, Boψ = (I−1

zz )χ2
2
, foψ = (qψ)χ

2
2
,

CT
oψ = χ1

2
,

(5.33)

where: xψ = [ ψ dψ/dt ]
T
.

State representation of z-dynamics :

dxz/dt = Aozxz + Boz∆uz + foz ; z = Cozxz

Aoz = C2

(
0T
2

)
, Boz = (M−1)χ2

2
, foz = (qz)χ

2
2
,

CT
oz = χ1

2
,

(5.34)

where: xz = [ z dz/dt ]
T
.

The state representations (5.33) and (5.34) are already in
the form (3.20) of Theorem 9.

5.2 Structural Decomposition

In order to get the state representation (3.20) of Theorem
9, we need the operator (cf. (3.8)-(3.10)):

Xx (d/dt) = −AT
Bx C4(Sox)Ψ4 (d/dt) =

Iyy
g




0 0
1 0
0 0

d/dt 0




Thus:
CBxXx (d/dt) ≡ 0,

Sox − (I4d/dt−ABx)Xx (d/dt) =




0 0
0 0
0 0

−
(
(Iyy/g)d2/dt2

)
Iyy


 ,

namely:

q∗,x = − (Iyy/g) d2qx/dt2 + Iyy qθ. (5.35)

In the same way:

q∗,y = (Ixx/g) d2qy/dt2 + Ixx qφ. (5.36)
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6. NUMERICAL SIMULATIONS

We have considered the following numerical values, taken
from a laboratory prototype:

M = 0.60 kg, Ixx = 0.00, 32 kgm2, Iyy = 0.00, 32 kgm2,
Izz = 0.00, 58 kgm2, L = 0.17m, g = 9.81m s−2.

The control laws are the following (cf. (4.23)):

x-dynamics :

dwx/dt = AKx
wx −Kxx+ BBxux,

ux = Fxζx + r̄x, r̄x = G
�

x

(
CBx wx − x

)
,

(6.37)

where: kx = −g I−1
yy , BBx = kxBBx, CBx = k−1

x CBx,

AKx
=

(
ABx + KxCBx

)
, G

�

x = −CBxA
−1

Kx
BBx, ζ̄x =

[
x dx/dt d2x/dt2 d3x/dt3

]T
, ζx = k−1

x ζ̄x.

y-dynamics :

dwy/dt = AKy
wy −Kyy + BByuy,

uy = Fyζy + r̄y, r̄y = G
�

y

(
CBy wy − y

)
,

(6.38)

where: ky = g I−1
xx , BBy = kyBBy, CBy = k−1

y CBy,

AKy
=

(
ABy + KyCBy

)
, G

�

y = −CByA
−1

Ky
BBy, ζ̄y =

[
y dy/dt d2y/dt2 d3y/dt3

]T
, ζy = k−1

y ζ̄y.

ψ-dynamics :

dwψ/dt = AKψ
wψ −Kψψ + BBψuψ,

uψ = Fψζψ + r̄ψ, r̄ψ = G
�

ψ

(
CBψ wψ − ψ

)
,

(6.39)

where: ABψ = Aoψ, BBψ = Boψ, CBψ = Coψ, AKψ
=(

ABψ + KψCBψ

)
, G

�

ψ = −CBψA
−1

Kψ
BBψ, ζ̄ψ = xψ =

[ ψ dψ/dt ]
T
, ζψ = k−1

ψ ζ̄ψ, kψ = I−1
zz .

z-dynamics From (5.34), we have that: r̄z = −Mqz. And
from (A.1(c)), it follows that: r̄z = M g q̄z

/
(1 + q̄z), then:

∆uz = Fzζz + r̄z, r̄z = k−1
z g q̄z

/
(1 + q̄z), (6.40)

where: ζ̄z = xz = [ z dz/dt ]
T
, ζz = k−1

z ζ̄z, kz = M−1.

The state feedbacks, Fx, Fy, Fψ and Fz, were computed to
minimize the criterions:

Ji =

∫ ∞

0

(
ζTi ζi + (1/5)u2

i

)
dt, i ∈ {x, y, ψ, z},

obtaining:

Fx = Fy = [−0.4472 −1.5814 −2.5725 −2.3119 ] ,
Fψ = Fz = [−0.4472 −1.0461 ] ,

with the following dynamics (spectrums): 10

ΛAFi
(s) = {−0.4162± 0.7387 ı, −0.7398± 0.2736 ı},

ΛAFj
(s) = {−0.5231± 0.4167 ı}, i ∈ {x, y}, j ∈ {ψ, z}.

10AFk
= (ABk +BBkFk), k = i, j.

The output injections, Kx, Ky, Kψ and Kz, were computed
for having a second and a forth order approximations of the

Gaussian filter (κ = 2, 4): H(s)H(−s) = 1
/∑κ

i=0
(−1)i

i ! s2i

(see for example Blinchikoff and Zverev (1976)), with the
spectral radii, ρK , of the

(
ABi +KiCBi

)
100 times greater

than the ones, ρF , of the (ABi + BBiFi), i ∈ {x, y, ψ},
obtaining:

Ki =
[
−430.1 −78, 122 −6.962× 106 −2.532× 108

]
,

i ∈ {x, y}, Kψ = [−146.9 −6, 325 ] .

with the following spectra:

ΛA
Ki

(s) = {−100.1± 89.9 ı, −114.9± 27.81 ı},
ΛA

Kj
(s) = {−73.47± 30.43 ı}, i ∈ {x, y}, j ∈ {ψ, z}.

Let us show some simulation results obtained in a�
MATLABR platform. We have considered that the air-
frame (oxyz) is located at height z̄ = 0.3 [m], above the
ground level, and with the initial conditions: x(0) = y(0) =
z(0) = 0 [m], dx(0)/dt = dy(0)/dt = dz(0)/dt = 0 [m s−1],
φ(0) = θ(0) = ψ(0) = α0, α0 = π/6 [rad], dφ(0)/dt =
dθ(0)/dt = dψ(0)/dt = 0 [rad s−1].

The initial conditions of the Beard-Jones filters (6.37(a)),
(6.38(a)) and (6.39(a)) were set up as (see the Appendix):

wx(0) = [ 0 0 −g tanα0(cosα0 + tanα0) 0 ]
T
,

wy(0) = [ 0 0 g tanα0(1− sinα0) 0 ]
T
,wψ(0) = [ α0 0 ]

T
.

In Fig. A.1, we show the simulation results.

7. CONCLUSION

In this paper, we have proposed a structural feedback
linearization based on failure detection techniques. We
have considered a non-linear system, represented by a non-
linear state representation (1.1), for which there exists a
structural differential operator X(d/dt), (3.8)-(3.8), which
transforms (1.1) into the state description (3.20), where
the non-linear components q∗ are contained in the image
of its constant input matrix BB. The operator X(d/dt)
depends on the way the constant matrix, So, of the
non-linear components, qo, is related with the internal
structure of the linear part, defined by the pair (Ao, Bo),
cf. (1.2).

Once arrived to (3.20), we only need to directly cancel
q∗, if it is of course known. And if this is not the case,
it can be simply asymptotically rejected with a failure
reconstructor, as for example, the one proposed in (Bonilla
et al, 2016).

One advantage of this control schema is that it enlarges
the linearity neighborhood around the equilibrium point
0. Also, the possible uncertainty’s model is absorbed by
q∗.

We have used a quadrotor example to illustrate this per-
formant alternative technique. In the simulation results,
we have obtained a good control performance until a
perturbation of π/4 rad in the Euler angles (φ, θ, ψ); here
is reported the case π/3 rad.
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)
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obtaining:

Fx = Fy = [−0.4472 −1.5814 −2.5725 −2.3119 ] ,
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Let us show some simulation results obtained in a�
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frame (oxyz) is located at height z̄ = 0.3 [m], above the
ground level, and with the initial conditions: x(0) = y(0) =
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T
,
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T
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T
.
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In this paper, we have proposed a structural feedback
linearization based on failure detection techniques. We
have considered a non-linear system, represented by a non-
linear state representation (1.1), for which there exists a
structural differential operator X(d/dt), (3.8)-(3.8), which
transforms (1.1) into the state description (3.20), where
the non-linear components q∗ are contained in the image
of its constant input matrix BB. The operator X(d/dt)
depends on the way the constant matrix, So, of the
non-linear components, qo, is related with the internal
structure of the linear part, defined by the pair (Ao, Bo),
cf. (1.2).

Once arrived to (3.20), we only need to directly cancel
q∗, if it is of course known. And if this is not the case,
it can be simply asymptotically rejected with a failure
reconstructor, as for example, the one proposed in (Bonilla
et al, 2016).

One advantage of this control schema is that it enlarges
the linearity neighborhood around the equilibrium point
0. Also, the possible uncertainty’s model is absorbed by
q∗.

We have used a quadrotor example to illustrate this per-
formant alternative technique. In the simulation results,
we have obtained a good control performance until a
perturbation of π/4 rad in the Euler angles (φ, θ, ψ); here
is reported the case π/3 rad.
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Appendix A. VARIABLES DEFINITIONS

In this Appendix, we use the abbreviated notations: (cφ, cθ, cψ) for

(cosφ, cos θ, cosψ), (sφ, sθ, sψ) for (sinφ, sin θ, sinψ) and (φ̇, θ̇, ψ̇)
for (dφ/dt, dθ/dt, dψ/dt). We also omit the explicit dependence,
(∆uz; η), from the variables definitions, qx, qy and qz.

The variables qx, qy and qz, describing the non-linear part are:

qx = θ g + (∆uz/M − g) q̄x, qy = −φg + (∆uz/M − g) q̄y,

qz = (∆uz/M − g) q̄z,
(A.1)

q̄x = cφsθcψ + sφsψ , q̄y = cφsθsψ − sφcψ , q̄z = cφcθ − 1. (A.2)

Note that: qx (∆uz; 0) = 0, qy (∆uz; 0) = 0 and qz (∆uz; 0) = 0.

The variables qφ, qθ and qψ , describing the non-linear part of the

attitude model, are defined as follows (qη =
[
qφ qθ qψ

]T
):

qη =
(
J−1 (η)− J−1(0)

)
τ − J−1 (η)C (η, η̇) η̇ (A.3)

The elements of the symmetric inertial matrix J are:

J11 = Ixx, J22 = Iyyc2φ + Izzs2φ, J23 = (Iyy − Izz) cφsφcθ,
J12 = 0, J13 = −Ixxsθ, J33 = Ixxs2θ + (Iyy − Izz) cφsφcθ

The elements of the Coriolis matrix C(η, η̇) are (∆zy = (Izz − Iyy)):

c11 = 0, c12 = −Ixxcθψ̇ −∆zy

(
cφsφθ̇ +

(
s2φ − c2φ

)
cθψ̇

)
,

c13 = ∆zycφsφc
2
θψ̇, c21 = Ixxcθψ̇ +∆zy

(
cφsφθ̇ +

(
s2φ − c2φ

)
cθψ̇

)
,

c22 = ∆zycφsφφ̇, c23 =
(
Izzc2φ + Iyys2φ − Ixx

)
cθsθψ̇,

c31 = −Ixxcθ θ̇ −∆zycφsφc
2
θψ̇, c32 = Ixxcθsθψ̇+

Iyy
((

c2φ − s2φ

)
cθ φ̇− cφsφsθ θ̇ − s2φcθsθψ̇

)
−

Izz
((

c2φ − s2φ

)
cθφ̇− cφsφsθ θ̇ + c2φcθsθψ̇

)
,

c33 = Ixxcθsθ θ̇ + Iyy
(
cφsφcθφ̇− s2φsθ θ̇

)
cθ−
Izz

(
sφc

2
θφ̇+ cφcθsθ θ̇

)
cφ

Note that: C (0, η̇) η̇ =

[
− (Ixx + Iyy − Izz) θ̇ ψ̇

(Ixx − Iyy + Izz) φ̇ ψ̇

− (Ixx − Iyy + Izz) φ̇ θ̇

]
.

From (5.27(a)) and (A.1(a)), we get: d2x(0)/dt2 = −gθ(0) + qx(0)
= (∆uz(0)/M − g) q̄x(η(0)). From (6.40) and (A.2(c)), we get
(ζz(0) = 0): ∆uz(0)/M − g = −g/(cφ(0)cθ(0)). Then: d2x(0)/dt2 =

−g
(
sθ(0)c

−1
θ(0)

cψ(0) − sφ(0)c
−1
φ(0)

c−1
θ(0)

sψ(0)

)
(see (A.2(a))). In a sim-

ilar way: d2y(0)/dt2 = −g
(
sθ(0)c

−1
θ(0)

sψ(0) − sφ(0)c
−1
φ(0)

c−1
θ(0)

cψ(0)

)
.

Since: φ̇(0) = θ̇(0) = ψ̇(0) = 0, then: d3x(0)/dt3 = d3y(0)/dt3 = 0.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. A.1. Center of mass position: (a) x [m], (b) y [m], (c)
z [m]. Quadrotor attitude: (d) θ [◦], (e) φ [◦], (f) ψ
[◦]. Control signals: (g) ux, (h) uy, (i) ∆uz, (j) uψ. q∗
estimation: (k) q̃x = q∗,x − r̄x, (l) q̃y = q∗,y − r̄y.
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