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Abstract. Our paper discusses a novel computational approach to the extended
Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of
the generic MCLP and develop the necessary theoretical and numerical aspects of the
proposed Separation Method (SM). A specific structure of the originally given MCLP
makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent
separation we propose reduces essentially the complexity of the resulting computational
algorithms. This algorithm also incorporates a conventional relaxation technique and
the scalarizing method applied to an auxiliary multiobjective optimization problem.
The proposed solution methodology is next applied to Supply Chain optimization in
the presence of incomplete information. We study two illustrative examples and give a
rigorous analysis of the obtained results.
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1. Introduction

Optimization of modern technological processes and the corresponding computer
oriented methods are nowadays a usual and efficient approach to the practical de-
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velopment of several engineering applications (see e.g., [1,5-7,9,10,11,15,18,23]).
In our contribution we study an extended MCLP model with an incomplete
information and propose a relative simple approach to the effective numerical
treatment of this problem. The obtained theoretic and computational results
are next applied to the resilient Supply Chain Management System Optimiza-
tion. The requested optimal design of an optimal management operation can
be formalized as a specific MCLP [10]. In that case the information incomplete-
ness mentioned above can be adequately described by an eligibility matrix with
the fuzzy structure and the systems ”resilience” is related to this incomplete
modelling framework.

Let us recall that the conventional and extended MCLP formulations con-
stitute a family of challenging optimization problems with numerous practical
applications. It has a decisive role in the success of a Supply Chain management,
with several applications including location of industrial plants, landfills, hubs,
cross-docks, etc (see e.g., [1,3,8-10,12-15,18,20,22,24]). A well-known MCLP
and the related decision making involve the delivery of a manufactured prod-
uct to the end customer or/and to a warehouse. In a classical MCLP, one
seeks the location of a number of facilities on a network in such a way that
the covered ”population” is maximized [14,24]. MCLP was first introduced by
Church and ReVelle [14] on a network, and since then, several extensions to
the original problem have been made. A variety of numerical approaches have
been proposed to the practical treatment of distinct MCLPs. Recently several
heuristical methods are actively used in the practical treatment of the MCLP
based models. We refer to [8-10,12-15,18,20,22] for some effective heuristic and
metaheuristic algorithms and for further references. Note that heuristics and
metaheuristics have usually been employed in order to solve large size MCLPs
(see e.g., [3,13,18,20]). A recent interest to MCLPs has arisen out the uncer-
tainty of model parameters, such as demands or/and locations of demand nodes
[9,10,24]. The solution procedure (Separation Method) we propose is generally
based on an exact optimization procedure. However it also can incorporate some
heuristic procedures for solving the obtained auxiliary problems.

This paper is devoted to a further theoretic and numerical development of
a newly elaborated solution method for the MCLPs, namely, to the so called
Separation Method (see [7]). The optimization approach we follow includes an
equivalent transformation (separation) of the original MCLP and solution of two
auxiliary Knapsack-type problems (see e.g., [16] and references therein). The
proposed SM reduces the complexity of the original problem. Moreover, one
can apply various methods to the resulting auxiliary problems. In this paper
we use a usual relaxation scheme for the purpose of a concrete computation
[12,16]. We also apply the standard scalarizing of an intermediate multiobjec-
tive optimization problem we obtain. And, it should be noted already at this
point that the MCLP based optimization approach we propose can be effectively
implemented (at the prototype stage) in a concrete optimal design of a decision
or management system. Concretely, this SM involved approach is applied in
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our paper to the optimal design of a resilient Supply Chain scheme for a typical
manufactures - customers delivery. Finally note that SM we propose in fact
involves a suitable (equivalent) decomposition of an initially given MCLP. This
fact, namely, the consideration of two resulting auxiliary problems makes it also
possible to extend this method to some applied large-scale MCLP (see e.g., [3]).

The remainder of our paper is organized as follows: Section 2 contains an
abstract problem formulation and some necessary theoretical concepts and facts.
In Section 3 we develop a theoretic basis of the SM. This section also includes
a necessary characterization of the obtained auxiliary problems. Section 4 dis-
cusses the appropriate numerical schemes in the context of the the initially given
and auxiliary optimization problems. We use our main theoretic results and fi-
nally propose an implementable and well-determined algorithm for an effective
numerical treatment of the originally given MCLP. This algorithm also incor-
porates the conventional relaxation technique. Section 5 contains two computa-
tional examples of an optimal resilient Supply Chain design. These practically
oriented examples illustrate the implementability of the resulting computational
algorithms and usability of the proposed solution procedure. Section 6 summa-
rizes our contribution.

2. Problem formulation and preliminaries

We start by introducing the main optimization problem with a fuzzy structure.
The MCLP we study has the following form:

maximize J(z(y)) :=
n∑
j=1

wjzj

subject to


∑l

i=1 yi = k ∈ N, l > k,

zj ≤
∑l

i=1 aijyi,

z ∈ Bn, y ∈ Bl

(1)

Here wj ∈ R+, j = 1, ..., n are given nonnegative objective ”weights” and vari-
ables zj , j = 1, ..., n determine the ”facilities to be served”. By yi, where
i = 1, ..., l, we define the generic decision variables of the problem under con-
sideration and k ∈ N in (1) describes the total amount of the facilities to be
located. Elements aij , where

1 ≥ aij ≥ 0,
∑

i=1,...,l

aij ≥ 1,

are components of the so called ”eligibility matrix”

A :=
(
aij
)i=1,...,l

j=1,...,n

associated with the eligible sites that provide a covering of the demand points
indexed by j = 1, ..., n. The admissible values of the elements of the matrix A are



Vadim Azhmyakov, Juan Pablo Fernández-Gutiérrez, Stefan Pickl 656

”distributed” on the interval [0, 1]. Note that the second index in (1), namely,
i = 1, ..., l is related to the given ”facilities sites”. Finally, the admissible sets
Bn and Bl in the main problem (1) are defined as follows:

Bn := {0, 1}n, Bl := {0, 1}l.

Note that the objective functional J(·) from (1) has a linear structure. We use
the following vectorial notation

z := (z1, ..., zn)T , y := (y1, ..., yl)
T .

The implicit dependence

J(z(y)) = ⟨w, z⟩,
w := (w1, ..., wn)T

of the objective functional J on the vector y is given by the corresponding
(componentwise) inequalities constraints

z ≤ AT y

in (1). By ⟨·, ·⟩ we denote here the scalar product in the corresponding Euclidean
space. A vector pair (z, y) that satisfies all the constraints in (1) is next called
an admissible pair for the main problem (1). Note that the objective functional
does not depend explicitly on the problem variable y.

The abstract optimization framework (1) provides a constructive and mod-
elling approach for various practically oriented problems (see e.g., [1,9,11,13,18]).
Following [14] we next call the main optimization problem (1) a Maximal Cover-
ing Location Problem (MCLP). Let us also refer to [24] for a detailed discussion
on the applied interpretation of the MCLP (1). The main problem (1) is for-
mulated under the general (non-binary) assumption related to the elements aij
of the eligibility matrix A. This corresponds to a suitable modelling approach
under incomplete information (see e.g., [10] and references therein). Roughly
speaking every value of an admissible parameter aij in (1) has a fuzzy nature
(similar to [8]). This fuzzy MCLP under consideration provides an adequate for-
mal framework for the resilient Supply Chain Optimization (see Section 5). Let
us also observe that the ”resilience” concept is understood here as a kind of ro-
bustness of the optimization approach we develop. This robustness is considered
with respect to a possible incomplete information about the main mathemati-
cal model (robustness with respect to uncertainties in the modelling approach).
Note that the possible incompleteness of the mathematical model mentioned
above and the robustness requirement for a selected optimization approach con-
stitute the common (and adequate) attributes for a realistic Supply Chain op-
timal design.
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The mathematical characterization of (1) can evidently be given in terms of
the classic integer programming (see e., g. [11,16,19] for mathematical details).
Let us note that (1) possesses an optimal solution (an optimal pair)

(zopt, yopt) ∈ Bn ⊗ Bl,

where

zopt := (zopt1 , ..., zoptn )T ,

yopt := (yopt1 , ..., yoptl )T .

This fact is a direct consequence of the basic results from [11,16,19]. Let us
also note that the conventional problem (1) can also be easily extended to the
”multi-valued” version, where the admissible sets Bn and Bl are replaced by

B̃n := {0, 1, ..., Nn}n,
B̃l := {0, 1, ..., Nl}l,

where Nn, Nl ∈ N.
Our aim is to develop a simple and effective numerical approach to the

sophisticated MCLP (1). Facility location has a decisive role in success of Supply
Chains with applications in many production and service facilities. It has been
a focal center of interest in the last century among practitioners and scholars.
For a detailed introduction to location models, one may refer to [15,23,24].
In general the literature of covering models is too diverse to be exhaustively
studied in this paper. Although some of known publications in the literature of
MCLP are included in this paper, one may refer to valuable reviews for further
information.

3. Analytical foundations of the separation method

We next separate the originally given MCLP (1) and introduce two auxiliary
optimization problems. These formal constructions provide a necessary basis
for the future numerical development. The first optimization problem can be
formulated as follows

maximize

n∑
j=1

µj

l∑
i=1

aijyi

subject to

{∑l
i=1 yi = k, y ∈ Bl,

µj ∈ [0, 1] ∀j = 1, ..., n

(2)

The second auxiliary problem has the following specific form:

maximize J(z) :=

n∑
j=1

wjzj

subject to

{
zj ≤

∑l
i=1 aij ŷi

z ∈ Bn

(3)
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where ŷ ∈ Bl is optimal solution of problem (2). The components of ŷ are
denoted as ŷi, i = 1, ..., l. The existence of an optimal solution for (2) is a direct
consequence of the results from [11,19]. The same is also true with respect to
the auxiliary problem (3). Let

ẑ ∈ Bn, ẑ := (ẑ1, ..., ẑn)T

be an optimal solution to (3). Evidently, problem (3) coincides with the origi-
nally given MCLP (1) in a specific case of a fixed variable y = ŷ. Let us note
that in general ŷ ̸= yopt.

The first auxiliary problem, namely, problem (2) can be interpreted as a
usual linear scalarization of the following multiobjective optimization problem
(vector optimization):

maximize {
l∑

i=1

ai1yi, ...,

l∑
i=1

ainyi}

subject to

{∑l
i=1 yi = k,

y ∈ Bl

(4)

Recall that a scalarizing of a multi-objective optimization problem is an ad-
equate numerical approach, which means formulating a single-objective opti-
mization problem such that optimal solutions to the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-objective optimization
problem. We next assume that the multipliers

µj , j = 1, ..., n

in (2) are chosen by such a way that problems (2) and (4) are equivalent (see e.g.,
[2,11,19] for necessary details). In this particular case we call (2) an adequate
scalarizing of (4). We discuss shortly the adequate scalizing in Section 4.3.

It is easy to see that problems (2) and (3) have a structure of a so-called
Knapsack problem (see [16] and references therein). Various efficient numerical
algorithms are recently proposed for a generic Knapsack problem. We refer to
[16] for a comprehensive overview about the modern implementable numerical
approaches to this basic optimization problem.

The relevance and the main motivation of the auxiliary optimization prob-
lems (2) and (3) introduced can be stated by the following abstract result.

Theorem 3.1. Assume (zopt, yopt) is an optimal solution of (1) and (2) is an
adequate scalarizing of (4). Let ŷ be an optimal solutions of (2) and ẑ be an
optimal solution of the auxiliary problem (3). Then (1) and (3) possess the
same optimal values, that is

(5) J(zopt(yopt)) = J(ẑ).

Moreover, in the case problems (1), (2), and (3) possess unique solutions we
additionally have

(zopt, yopt) = (ẑ, ŷ).
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Proof. Since
l∑

i=1

ŷi = k,

and

ẑj ≤
l∑

i=1

aij ŷi,

we conclude that (ẑ, ŷ) is an admissible pair for the original MCLP (1). Taking
into account the definition of an optimal pair for problem (1), we next deduce

(6) J(ẑ(ŷ)) ≤ J(zopt(yopt)).

Let
Γ = Γz ⊗ Γy ⊂ Bn ⊗ Bl

be a solutions set (the set of all optimal solutions) for problem (1). We also
define the solutions sets

Γ(2) ⊂ Bl, Γ(3) ⊂ Bn

of problems (2) and (3), respectively. From (6) it follows that

(7) Γ(3) ⊗ Γ(2) ⊂ Γ.

Taking into account the restrictions associated with the variable y in (1) and
(2), we next obtain

(8) Γy ≡ Γ(2).

Since (2) is an adequate scalarization of the multi-objective maximization prob-
lem (4), we deduce

zj ≤ max∑l
i=1 yi=k,

y∈Bl

l∑
i=1

aijyi.

This fact implies

(9) Γz ⊂ Γ(3).

Inclusions (7), (9) and the basic equivalence (8) now imply the following crucial
equivalence

(10) Γ(3) ⊗ Γ(2) ≡ Γ.

Taking into account the same form of the objective functionals in (1) and (2.3),
we immediately obtain the basic relation (5). In a specific case of the one point
sets Γ, Γ(3) and Γ(2) the expected relation

(zopt, yopt) = (ẑ, ŷ)

is a direct consequence of (10). The proof is completed.
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Theorem 3.1 makes it possible to separate (decompose equivalently) the orig-
inal sophisticated problem (1) into two relative simple optimization problems.
It provides a theoretical basis for effective numerical approaches to the abstract
MCLPs and to possible applications.

4. Numerical analysis of the auxiliary problems

This section is dedicated to the numerical aspects related to the two optimization
problems obtained in Section 3. Our aim is to develop a resulting self-closed
algorithm for an effective numerical treatment of the original MCLP (1).

4.1 A combinatorial algorithm for the first auxiliary problem

We first observe that the auxiliary optimization problem (2) has a simple com-
binatorial structure. It can be easily solved using the following natural scheme:

ŷi = 1 if i ∈ Î;

ŷi = 0 if i ∈ {1, ..., l} \ Î
(11)

where

Î := {1 ≤ i ≤ l
∣∣ SAi ∈ max

k
{SA1 , ..., SAl

}},

SAi :=

n∑
j=1

µjaij ,

Ai := (ai1, ..., ain)T .

(12)

Here Ai is a vector of i-row of the eligibility matrix A and operator maxk de-
termines an array of k-largest numbers from the given array. Evidently, the
choice (11)-(12) determines an optimal solution of (2). Roughly speaking the
combinatorial algorithm (11)-(12) assigns the maximal value ŷi = 1 for all vec-
tors Ai which sum of components SAi belongs to the array of k-largest sums of
components of all vectors

Ai, i = 1, ..., l.

It is easy to see that for the given eligibility matrix A with the specific ele-
ments aij (determined in Section 2) the sum of components SAi constitutes a
specific norm of the given vector Ai. The total complexity of the combinatorial
algorithm (11)-(12) can be easily calculated and is equal to

O(l × log k) +O(k).

We refer to [16] for the necessary details.
Let us denote

c :=

n∑
j=1

l∑
i=1

aij ŷi.
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Then the inequality constraints in (3) imply the generic Knapsack-type con-
straint with uniform weights

n∑
j=1

zj ≤ c.

We now present a fundamental solvability result for the second auxiliary opti-
mization problem, namely, the Knapsack problem (3).

Theorem 4.1. The Knapsack problem (3) can be solved in O(nc) time and

O(n+ c)

space.

The formal proof of Theorem 4.1 can be found in [16].

4.2 A relaxation based approach and the resulting computational
scheme

The theoretic and numerical results obtained above, namely, Theorem 1 and the
combinatorial choice algorithm (11)-(12) provide a theoretic basis for a novel ex-
act solution method for the originally given MCLP (1). We now need to establish
an implementable solution procedure for the effective numerical treatment of the
second auxiliary problem (3) from the obtained decomposition (2)-(2.3). This
optimization problem, which is NP -hard, has been comprehensively studied in
the last few decades and several exact algorithms for its solution can be found in
the literature (see [16] and the references therein). Constructive algorithms for
this Knapsack problems are mainly based on two basic numerical approaches:
branch-and-bound and dynamic programming. Let us also mention here the
corresponding combined approach.

In this paper we firstly consider the well-known Lagrange relaxation scheme
in the context of the second auxiliary problem (problem (3)). ”Relaxing a prob-
lem” has various meanings in applied mathematics, depending on the areas
where it is defined, depending also on what one relaxes (a functional, the un-
derlying space, etc.). We refer to [2,4-7,12, 21] for various relaxation techniques
in the modern optimization. Introducing the Lagrange function

L(z, λ) :=
n∑
j=1

wjzj −
n∑
j=1

λj
(
zj −

l∑
i=1

aij ŷi
)

associated with the Knapsack problem (3), we obtain the following relaxed prob-
lem

maximize L(z, λ)

subject to z ∈ Bn
(13)
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The relaxed problem (13) does not contain the originally given unpleasant
inequality constraints. These constraints are now included into the objective
function L(z, λ) from (13) as a penalty term

n∑
j=1

λj
(
zj −

l∑
i=1

aij ŷi
)
.

Recall that all feasible solutions to (3) are also feasible solutions to (13). The
objective value of feasible solutions to (3) is not larger than the objective value
in (13) (see [16] for the necessary proofs). Thus, the optimal solution value to
the relaxed problem (13) is an upper bound to the original problem (3) for any
vector of nonnegative Lagrange multipliers

λ := (λ1, ..., λn)T ,

λj ≥ 0, j = 1, ..., n.

For a concrete numerical solution of the relaxed problem (13) we use here the
classic branch-and-bound method (see e.g., [11,16]). In a branch-and-bound
algorithm we are interested in achieving the tightest upper bound in (13). Hence,
we would like to choose a vector of nonnegative multipliers

λ̂L := (λ̂L1 , ..., λ̂
L
n)T ,

λ̂Lj ≥ 0, j = 1, ..., n

such that (13) is minimized. This evidently leads to the generic Lagrangian dual
problem

minimize L(z, λ)

subject to λ ≥ 0
(14)

It is well-known that the Lagrangian dual problem (14) yields the least upper
bound available from all possible Lagrangian relaxations. The problem of finding
an optimal vector of multipliers λ̂L ≥ 0 in (14) is in fact a linear programming
problem [11,19]. In a typical branch-and-bound algorithm one will often be
satisfied with a sub-optimal choice of multipliers λ ≥ 0 if only the bound can
be derived quickly. In this case sub-gradient optimization techniques can be
applied [19]. The following analytic result is an immediate consequence of our
main Theorem 1 and of the basic properties of the primal-dual system (13)-(14).

Theorem 4.2. Let (ẑL, λ̂L) be an optimal solution of the primal-dual system
(13)-(14) associated with the auxiliary problem (3). Assume that all conditions
of Theorem 1 be satisfied. Then

(15) J(zopt(yopt)) ≤ J(ẑL).

The obtained estimation (15) constitutes a tightest upper bound for the optimal
value J(zopt(yopt)).
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We are now ready to formulate a complete (conceptual) algorithm for an
effective numerical treatment of the basic MCLP (1).

Algorithm 1.

I. Given an initial MCLP (1) separate it into two auxiliary problems (2) and
(3);

II. Apply the combinatorial algorithm (11)-(12) and compute ŷ;

III. Using ŷ, construct the Lagrange function L(z, λ) and solve the primal-dual
system (13)-(14).

The numerical consistency of the proposed Algorithm 1 is an immediate
consequence of the obtained main theoretic results, namely, of Theorem 3.1 and
Theorem 4.2. Recall that the Lagrange relaxation scheme is usually applied to
the original MCLP (1) (see e.g., [12,16]). In that case the resulting (relaxed)
problem and the corresponding Lagrangian dual problem possess a higher com-
plexity in comparison with the proposed ”partial” Lagrange relaxation (13)-(14)
associated with the original MCLP (1). This is a simple consequence of the pro-
posed SM that reduces the initial problem (1) to two (more simple) auxiliary
optimization problem (2)-(3). This fact makes it possible to apply the proposed
separation methodology to the large-scale MCLPs that are important and re-
alistic mathematical models for many practically oriented (optimal) decision
making systems (see e.g., [7,9,10,14,15,18,20,22,23,24]).

4.3 A remark on the adequate scalarizing procedure

Let us now make a short remark related to the scalarizing procedure used above
(see Section 3, problems (2)-(4)).

It can be shown analytically that the values SAi in (12) depend on the
multipliers vector µ. This is a consequence of the inclusion (9). Recall that (9)
constitutes a useful relation of the SM and for the resulting optimization strategy
we propose. Since the obtained multiobjective maximation problem (5) has a
linear structure, an adequate scalarizing makes it possible to determine every
”non-dominant” points (see [11,19] for mathematical details).

On the other hand, a possible ”non-adequate” selection of µ geometrically
implies a significant ”cutting” (restriction) of the feasible region for problem
(3). This feasible region restriction can finally eliminate a true optimal solu-
tion. Recall that a scalarizing implemented in the objective function from (2)
evidently determines the resulting geometry associated with the basic problem
(3). On the other side the geometrical properties of a non-adequately scalarized
problem can violate the conceptual condition (9).
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5. Optimization of the resilient supply chain management system

This section is devoted to applications of the proposed SM to an optimal resilient
Supply Chain Management for a system of manufacturing plants - warehouses.
Note that the ”resilience” of a Supply Chain Management System is modelled
here by a fuzzy-type eligibility matrix A (see Section 2). We use here the
notation from Section 4 and denote by Ai a vector of i-row of the eligibility
matrix A (i = 1, ..., l) such that

A = (AT
1 ...AT

l )T .

Let us firstly point the common applied meaning of the variables and param-
eters from the general MCLP (1) in the context of the resilient Supply Chain
Management system. The binary variables

(z, y) ∈ Bn ⊗ Bl

constitute the main ”decision variables” of the problem under consideration.
The vector of weights w can be interpreted as a rentability of the final prod-
uct. Therefore, the maximization of the cost functional J(·) in (1) expresses
the maximization of the total profit (total income) generated by the designed
Supply Chain system. The complete ”decision resource” associated with the
decision variable (vector) y is restricted in (1) by a constant (parameter) k ∈ N.
The eligibility matrix ”A” is in fact a useful linear modelling framework that es-
tablishes the natural relation between the ”producer” decision and ”recipient”.
This relation is formally given by the corresponding elements aij of the matrix
A. Our aim now is to apply the developed SM to two practically oriented exam-
ples of the optimal Supply Chain Management design in a classic manufactures
- warehouses system.

Example 5.1. The simple Supply Chain system that include n = 8 manufac-
turing plants and l = 5 warehouses is indicated on Fig. 1.

We also assume that

aij + ai′j ≥ 1, i = 1, ...5 j = 1, ...8.

Here i′ is an index that corresponds to a resilient cover of a demand point.
The last condition means that at least two feasible facilities (warehouse) cover
a given demand point (the manufacturing plants). The corresponding eligibility
matrix A is given as follows:

AT =



0.81286 0.0 0.0 0.62968 0.0
0.25123 0.58108 0.32049 0.89444 0.79300

0.0 0.0 0.64850 0.91921 0.94740
0.54893 0.90309 0.74559 0.50869 0.99279

1.0 0.0 0.0 0.0 0.0
0.77105 0.27081 0.65883 0.60434 0.23595

0.0 0.51569 0.0 0.0 0.57810
0.64741 0.91733 0.60562 0.63874 0.71511
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Figure 1: Fuzzy eligibility model

The objective weights

wj ∈ R+, j = 1, ..., 8

indicate the service priority and are selected in this example as follows

w = (32.0, 19.0, 41.0, 26.0 37.0 49.0 50.0 11.0)T .

Note that the fifth demand point in this example has no ”resilient” character
(only one facility covers this point). We assume that the Supply Chain decision
maker is interested opens k = 2 facilities. That means

5∑
i=1

yi = 2.

Moreover, we also define the necessary row vectors (see Section 3) for the com-
binatorial algorithm (11)-(12):

SA1 = 8.06295 SA2 = 5.86033
SA3 = 5.30955 SA4 = 7.47098
SA5 = 6.99921

Application of the basic Algorithm 1 leads to the following computational re-
sults:

zopt = (1, 1, 0, 1, 1, 1, 0, 1)T ,

yopt = (1, 0, 0, 1, 0)T ,
(16)
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The corresponding (maximal) value of the objective functional is equal to

J(zopt(yopt)) = max
Problem(1)

J(z(y)) = 174.0

Let us also note that the computed scalarizing multiplier µ in the auxiliary
problem (2) for the given problem data is equal to

µ = (2.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 2.0)T .

The practical implementation of Algorithm 1 was carried out by using the stan-
dard Python package and an author-written program.

For comparison, the given MCLP problem was also solved by a direct ap-
plication of the standard CPLEX optimization package. We use the concrete
problem parameters given above and obtain the same optimal pair as in (16).
The CPLEX integer programming solver proceeds with 6 MIP simplex iter-
ations and 0 branch-and-bound nodes for in total 13 binary variables and 9
linear constraints.

Example 5.2. We now consider a formal extension of the previous example
(for a double dimension) and put n = 16, l = 10, k = 5. Let

w = (29.0, 37.0, 22.0, 42.0, 26.0, 14.0, 27.0, 30.0,

46.0, 16.0, 10.0, 36.0, 33.0, 39.0, 46.0, 49.0)T .

The eligibility matrix A is given by rows:

A1 = (0.846109459436, 0.0, 0.0, 0.582693667799, 0.964574511054, 0.798899459366, 0.0, 0.0, 1.0,

0.300320432977, 0.997688107849, 0.3335795069, 0.49602683501, 1.0, 0.0, 0.374671961499),T

A2 = (0.0, 1.0, 0.0, 0.0, 0.741552391071, 0.537788748272, 0.883796533814, 0.585368404373, 0.0,

0.860903890172, 0.958028639759, 0.0, 0.186896812387, 0.0, 0.968601622008, 0.579580096602)T ,

A3 = (0.407084305512, 0.0, 0.565187029512, 0.0, 0.420858280659, 0.361836079442, 0.472471488805,

0.0, 0.0, 0.696525107652, 0.436819747759, 0.0, 0.587300759229, 0.0, 0.347864951313, 0.0)T ,

A4 = (0.208102698902, 0.0, 0.0, 0.0, 0.0, 0.346461956794, 0.0, 0.0, 0.0, 0.768124612788,

0.413970925056, 0.0, 0.97348389961, 0.0, 0.0, 0.0)T ,

A5 = (0.0, 0.0, 0.965589029405, 0.0, 0.0, 0.893792904298, 0.0, 0.723969499937, 0.0,

0.562381237935, 0.78216104002, 0.557958082269, 0.671624833192, 0.0, 0.601221801206, 0.0)T ,

A6 = (0.0, 0.0, 0.0, 0.7732353822, 0.0, 0.930557571029, 0.0, 0.427721730484, 0.0,

0.818424694417, 0.795450242494, 0.314453291276, 0.645666417485, 0.0, 0.0, 0.0)T ,
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A7 = (0.0, 0.0, 0.0, 0.71613857057, 0.0, 0.573866657173, 0.0, 0.692538237821, 0.0,

0.296797567788, 0.306871729419, 0.334127066948, 0.0, 0.0, 0.0, 0.976783604764)T ,

A8 = (0.448086601628, 0.0, 0.888380378484, 0.576276602931, 0.939065250623, 0.0, 0.0,

0.773234003255, 0.0, 0.414398315721, 0.203669220313, 0.35600682894, 0.523619957827,

0.0, 0.0, 0.527029464076)T ,

A9 = (0.964964029806, 0.0, 0.0, 0.562565185744, 0.0, 0.0, 0.0, 0.0, 0.0, 0.773260049125,

0.468988424786, 0.0, 0.0, 0.0, 0.0, 0.794463270734)T ,

A10 = (0.0, 0.0, 0.0, 0.545222010668, 0.0, 0.0, 0.536645142919, 0.212898303253, 0.0,

0.197891148706, 0.471120100438, 0.0, 0.0, 0.0, 0.0, 0.0)T .

The basic Algorithm 1 was applied to this example. We obtain the following
optimal solution:

zopt = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

yopt = (1, 1, 1, 0, 1, 0, 0, 1, 0, 0)T .

The obtained scalarizing multiplier µ in the auxiliary problem (2) for the given
problem data is equal to

µ = (2.0, 2.0, 4.0, 4.0, 2.0, 0.0, 8.0, 2.0, 1.0, 2.0, 6.0, 1.0, 0.0,

1.0, 1.0, 1.0)T .

Finally, the calculated optimal value of the objective functional is equal to

J(zopt(yopt)) = max
Problem(1)

J(z(y)) = 502.

Let us note that the successful application of the proposed computationalalgo-
rithm to the above high-dimensional problem indicates a possible usability of
this approach in the effective solution procedures of large-scale MCLPs.

Finally let us note that the CPLEX based comparatively analysis and the
computational results obtained in Example 5.1 and Example 5.2 illustrate the
realisability and effectiveness of the Separation Method developed in our paper.

6. Conclusion

In this contribution, we proposed a conceptually new numerical approach to a
wide class of Maximal Covering Location Problems with the fuzzy-type eligi-
bility matrices. This computational algorithm is next applied to the optimal
design of a practically motivated Resilient Supply Chain Management System.
The developed computational scheme is based on a novel separation approach to
the initially given maximization problem. The SM we propose makes it possible
to reduce the original sophisticated problem to two Knapsack-type optimization
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problems. The first one constitutes a generic linear scalarization of a multi-
objective optimization problem and the second auxiliary problem is a version
of the classic Knapsack formulation. Application of the conventional Lagrange
relaxation in combination with a specific combinatorial algorithm leads to an
implementable algorithm for the given fuzzy-type Maximal Covering Location
Problem.

Theoretical and computational methodologies we present in this contribu-
tion can be applied to various generalizations of the basic MCLP. One can com-
bine the elaborated separation scheme with the conventional branch-and-bound
method, with the celebrated dynamic programming approach or/and with an
alternative exact or heuristic numerical algorithm. Let us finally note that we
discussed here only main theoretic aspects of the newly elaborated approach and
presented the corresponding conceptual solution procedure. The basic method-
ology we developed needs further comprehensively numerical examinations that
includes solutions of several MCLPs.
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