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This paper presents a direct method based on Legendre–Radau pseudospectral method for efficient and accurate solu-
tion of a class of singular optimal control problems. In this scheme, based on a priori knowledge of control, the problem
is transformed to a multidomain formulation, in which the switching points appear as unknown parameters. Then, by uti-
lizing Legendre-Radau pseudospectral method, a nonlinear programming problem is derived which can be solved by the
well-developed parameter optimization algorithms. The main advantages of the present method are its superior accuracy
and ability to capture the switching times. Accuracy and performance of the proposed method are examined by means of
some numerical experiments. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: pseudospectral method; singular optimal control problem; feedback rule; switching points; numerical solution;
Legendre–Gauss–Radau

1. Introduction

A classical and challenging subject in optimal control field is singular optimal control problems. In these problems, the Pontryagin’s
maximum principle fails to directly determine the optimal control over the at least one interval. Singular optimal control problems
arise in some well-known application areas, such as aerospace engineering. The sounding rocket problem proposed by Goddard [1],
the analysis of wind shear during landing [2] and other optimal flight [3–5] all involve formulations with singular arcs.

Singular optimal control problems are, in general, not amenable to an analytical solution and must resort to numerical techniques. It
seems that the classical direct and indirect numerical methods are suitable for solving singular optimal control problems. However, the
accuracy of direct methods for the singular optimal control problems, especially in singular arcs, is not satisfactory; moreover, structure
of the optimal control may not be detected adequately. On the other hand, for applying indirect methods, such as multiple shooting,
a priori knowledge on the control structure is required.

Because of the mentioned difficulties, the simulation and numerical approximation of singular optimal control problems have
received considerable attention. For instance, gradient technique [6], modified gradient technique [7], quasi Newton algorithm [8],
quasi-linearization technique [9], indirect multiple shooting method [10, 11], direct shooting method [12], iterative dynamic program-
ming method [13], and a lineup competition algorithm [14] can be referred to. In most of the mentioned papers, the control structure
is assumed a priori. On the other hand, several authors have attempted to detect the structure of optimal control, for instance, the
epsilon smoothing method [15], indirect shooting with epsilon smoothing [16], and other relevant methods [17–19]. As another family
of methods for solving singular optimal control problems, we can refer to some two-phase methods, which are developed to reduce
the drawbacks of the mentioned methods [20–23].

In this article, we consider the numerical solution of singular optimal control problems by a modified Legendre–Radau (LR) pseu-
dospectral method [24]. To the best of the authors’s knowledge, pseudospectral methods are employed widely for solving general
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optimal control problems but have not been improved or modified for the adaptive solution of singular optimal control problems. Sim-
ilar to [10–12], only the problems were considered, in which control can be expressed as a function of the state variable. That is, the
control has a feedback representation. Many practical singular problems belong to this family of singular optimal control problems. On
the other hand, for developing a solver for general singular optimal control problems, we may need to solve a sequence of problems in
the considered family. So an efficient and accurate method is essential for solving this family of singular problems.

In recent years, pseudospectral methods have been extensively used for the numerical solution of engineering problems [25–27]
and optimal control problems [24, 28, 29]. In the pseudospectral method, the state and control variables are approximated by inter-
polating polynomials with specific collocation points such as Legendre–Gauss–Lobatto, Legendre–Gauss, and LR points [24]. Then, by
collocating the state equations and path constraints and by utilizing differentiation matrix, the problem is transcribed to a nonlinear
programming problem (NLP), which can be solved by a well-developed parameter optimization algorithm. The three most common
types of pseudospectral method are Legendre–Gauss–Lobatto pseudospectral [30, 31], Legendre–Gauss pseudospectral [32], and LR
pseudospectral [24, 33, 34] methods.

It is well known that pseudospectral methods, especially LR pseudospectral method, provide accurate approximations that converge
exponentially for problems with smooth solution [30]. In contrast, in the case of the singular optimal control problems, due to non-
smoothness of control and state functions, using the pseudospectral methods can cause several issues, and high-order accuracy of
the method is deteriorated. Furthermore, switching points in control cannot be captured by these methods, and adding more nodes,
for overcoming these difficulties, could lead to inefficiencies and ill-conditioning of the resulted NLP. In this paper, to overcome all
the mentioned numerical difficulties, a modified LR pseudospectral scheme is presented, which has two major differences from the
traditional pseudospectral methods. First, instead of approximating the states by a polynomial in the whole computational domain,
based on a priori knowledge of the structure of control, a piecewise smooth function and a piecewise continuous polynomial function
are searched for state and control functions, respectively. Second, in the singular interval(s) by using feedback law, the control function
is expressed by state functions.

The paper is organized as follows. In Section 2, formulation of singular optimal control problems and some necessary definitions are
reviewed. Section 3 provides some background necessary for understanding the LR pseudospectral methods. In Section 4, a modified
LR pseudospectral method is constructed and developed for solving the considered singular optimal control problems. The proposed
methods are applied to two examples in Section 5. Finally, a conclusion is given in Section 6.

2. Problem statement and some preliminaries

Consider the following optimal control problems, in which the single control function is appeared linearly in dynamic system and the
cost functional is of Mayer type

minJ .x, u, tf / D g.x.t0/, x.tf /, tf /, (1)

Px D f.x.t/, u.t/, t/ D f1.x.t/, t/C f2.x.t/, t/u.t/, (2)

 .x.t0/, x.tf /, tf / D 0, (3)

u 2 U :D
˚

u j u.�/ 2 Œumin, umax� is piecewise constant function
�

. (4)

Here, the state variable x.t/ D Œx1.t/, � � � , xp.t/�T 2 Rp is a continuous vector function in Œt0, tf �, where tf may be free or fixed. The
functions g, f1, f2, and are sufficiently continuously differentiable in all arguments and defined by the following mappings:

g : R2pC1 ! R,

f1, f2 : RpC1 ! Rp,

 : R2pC1 ! Rr , 0 � r � 2p.

The Hamiltonian function for the aforementioned problem is defined by

H .x, u,�, t/ :D �T f1.x, t/C �T f2.x, t/u, (5)

where �.t/ 2 Rp is the so-called adjoin or co-state vector function.
According to the Pontryagin’s minimum principle [35], the solution of the problem (1)–(4) requires minimization of the Hamiltonian

function (5) with respect to u 2 U along the entire trajectories, which satisfy (2) and (3) and the following conditions:

P��.t/ D �Hx.x
�.t/, u�.t/,��, t/, (6)

��.t0/ D �lx0.x
�.t0/, u�.tf /, t�f ,�/, (7)

��.tf / D lxf .x
�.t0/, u�.tf /, t�f ,�/, (8)

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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H .tf /C ltf .x
�.t0/, u�.tf /, t�f ,�/ D 0, if tf is free, (9)

where

l.x0, xf , tf ,�/ :D g.x0, xf , tf /C �
T .x0, xf , tf /. (10)

In the considered problem, u appears linearly in the dynamic equations. So the Hamiltonian is linear in the control u, too. The factor u
in the Hamiltonian is called the switching function and denoted by

�.x,�, t/ :D �T f2.x, t/. (11)

As a result of the Pontryagin’s minimum principle, if in the time interval Œt1, t2� 2 Œt0, tf �, the switching function �.t/ be positive
(negative), then u.t/ takes the smallest (largest) admissible control value umin (umax). So if the switching function in the time interval
Œt1, t2� 2 Œt0, tf � has isolated finite zeros, then the optimal control u�.t/ fulfills

u�.t/ 2 fumin, umaxg, 8t 2 Œt1, t2�. (12)

In this case, the optimal control is called bang-bang in the interval Œt1, t2�. If, however, there is a time interval Œt1, t2� 2 Œt0, tf � in which
the switching function �.t/ vanishes, then the Pontryagin’s minimum principle provides no information about how to select u�.t/.
In this case, it is said that the problem is singular and the interval Œt1, t2� is called a singular interval. The control over a singular inter-
val is referred to a singular arc. An optimal control problem, whose optimal control involves a singular arc is called singular optimal
control problem.

In summary, minimization of the Hamiltonian function leads to the following control law [35, 36]:

u�.t/ D

8<
:

umin, if �.t/ > 0,
umax, if �.t/ < 0,
usin, if �.t/ D 0.

(13)

Accordingly, in general, singular optimal control contains both bang-bang and singular sub-arcs. Each point that is a transition between
one bang-bang arc and another bang-bang or singular arc is called switching point.

2.1. Order of the singular optimal control problems

Note that d
dt�.x,�, t/ is explicitly a function of x, �, Px, P�, and t. By substituting Px and P� from (2) and (6), d

dt�.x,�, t/ can be expressed

as a function of x, �, and t. It is easy to show that the control u does not appear in d
dt� [37]. By repeating this manner, dj

dtj �.x,�, t/ can

be expressed as a function of x, �, t, and maybe u. Furthermore, if u appears in dj

dtj � , then it appears linearly [37]. It is possible that the

control u does not appear in dj

dtj � for any j. However, if w be the first integer number that u appears in dw

dtw � , then w is always even [38].
In the former case, the order of singular optimal control problem is defined to be infinite, and in the latter case, the integer number
� D w

2 is called order of singular problem.

Definition 2.1 (Order of singular problem [39])
The integer number � is called the order of singular problem when 2� is the lowest order derivative of switching function � such that
u appears explicitly. In other words,

d2�

dt2�
�.x,�, t/ � e.x,�, t/C d.x,�, t/u, d ¤ 0. (14)

If u never appears explicitly in the differentiation process, then the optimal control problem is called an infinite-order singular problem.

Let the problem (1)–(4) be a singular problem of order � and Œt1, t2� be the singular interval. So the control u appears explicitly in the
2�th derivative of the switching function � with respect to t, as Eq. (14). Therefore, by noting that � D 0 for t 2 Œt1, t2�, we conclude

d2�

dt2�
�.x,�, t/ D 0 D e.x,�, t/C d.x,�, t/u, d ¤ 0. (15)

Now, by solving Eq. (15) for u, we obtain

u D u.x,�, t/ D �
d.x,�, t/

e.x,�, t/
, t 2 Œt1, t2�.

In other words, if the singularity order of problem be finite, then by successive differentiation of the switching function, the control
function u can be expressed as a function of x, �, and t.

In some cases, the right-hand side of Eq. (15) does not depend on �, or � can be eliminated because of

dj

dtj
�.x,�, t/ � 0, j D 0, : : : , 2� � 1. (16)

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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In these cases, in the singular interval Œt1, t2�, the control u can be obtained in the following feedback form:

u.t/ D Ou.t; x.t//, 8t 2 Œt1, t2�. (17)

2.2. Assumption on the problem

Similar to [10–12], we consider a family of optimal control problems, which is stated with the following assumptions.

Assumption 2.2
It is supposed that, ‘chattering phenomenon’ [40] does not occur; that is, we consider problems with a finite number of singular arcs
and switching points.

Assumption 2.3
We assume that the singularity order of problem be finite and, in the singular arcs, the control function can be obtained in the feedback
form (17).

Assumption 2.4
Assume that the structure of the optimal control problem is known; that is, the number of the switching points is known, and in each arc,
it is known that u.t/ is either singular or nonsingular. Moreover, in nonsingular arcs, it is known that u.t/ takes its maximum value umax

or minimum value umin. Therefore, the unknowns are the positions of the switching points, singular control arcs, and state functions.

3. Background of Legendre–Gauss–Radau pseudospectral method

In the pseudospectral method [41], the unknown solution is expanded as global polynomial interpolants based on some suit-
able points. Also, the derivatives are approximated by discrete derivative operator (the differentiation matrix). So the concepts of
interpolation and differentiation matrices are useful for understanding the pseudospectral method.

3.1. Approximation by polynomial interpolation

A function g defined on Œ�1, 1�may be approximated by Lagrange polynomials as

g.�/ '
nX

iD0

g.�i/`i.�/, (18)

where �i , i D 0, � � � , n are distinct points in Œ�1, 1�, which are called collocation points, and `i.�/, i D 0, : : : , n are the Lagrange
polynomials corresponding to the considered collocation points, which are expressed as

`i.�/ D

nY
jD0,j¤i

� � �j

�i � �j
, i D 0, � � � , n,

with the Kronecker property

`i.�j/ D ıij D

�
0, if i ¤ j,
1, if i D j.

(19)

It is a well-established fact that a proper choice of collocation points is crucial in terms of accuracy and computational stability of the
approximation (18). As a typically good choice of such collocation points, we can refer to the well-known Gauss, Gauss–Lobatto, and
Gauss–Radau points [42], which lie on Œ�1, 1� and are clustered near the endpoints.

In Legendre–Gauss–Radau (LGR) pseudospectral method for optimal control problems [24], the first n nodes are LGR nodes, and the
last node is selected as �n D C1. It is noted that LGR nodes are the roots of Pn�1.�/C Pn.�/, where Pn.�/ is the well-known Legendre
polynomial of degree n. No explicit formula of the LGR nodes is known. However, these points can be determined by accurate and
stable numerical methods [43].

To develop matrix-oriented methods, we express Eq. (18) in the following matrix from

g.�/ ' Œ�.�/�T g,

where g D Œg.�0/, � � � , g.�n/�
T and �.�/ is a .nC 1/-dimensional vector function as

�.�/ D Œ`0.�/, � � � , `n.�/�
T .

3.2. Differentiation matrix

In pseudospectral methods, it is crucial to express the derivative Pg.�/ in terms of g.�/ at the collocation points �i , which can be carried
out using the so-called differentiation matrices.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Let g be a function with a sufficient degree of smoothness and approximated as (18). The first derivative of g can be approximated by

Pg.�/ '
nX

iD0

g.�i/ P̀i.�/.

By noting that P̀i.�/ is a polynomial of degree n, we can write

P̀
i.�/ D

nX
jD0

P̀
i.�j/`j.�/.

Using the aforementioned two equations, we obtain

Pg.�/ '
nX

iD0

nX
jD0

P̀
i.�j/g.�i/`j.�/,

so the value of Pg.�/ in � D �j can be approximated as

Pg.�j/ '

nX
iD0

dijg.�i/,

where

dij D P̀i.�j/, i, j D 0, � � � , n, (20)

is the .i, j/th component of a matrix D, which is called differentiation matrix [41]. According to (20), the entries of differentiation matrix
D are computed by taking the analytical derivative of `i.�/ and evaluating it at collocation points �j for i, j D 0, � � � , n. However, more
computationally practical methods for deriving these entries, in an accurate and stable manner, can be found in [44–46].

4. Presented method for solving singular optimal control problems

Based on Assumption 2.2, it is assumed that the problem (1)–(4) has a solution with s � 1 switching point(s) denoted by ti , i D 1, : : : , s
such that

t0 < t1 < � � � < ts < tf . (21)

So if we set tsC1 D tf , then the time interval Œt0, tf � is divided into the following sC 1 subintervals:

Œt0, t1�, Œt1, t2�, : : : , Œts, tsC1�, (22)

where[s
kD0Œtk , tkC1� D Œt0, tf � and\s

kD0Œtk , tkC1/ D ;.

For k D 0, : : : , s, let the restriction of x.t/ and u.t/ in the kth subinterval Œtk , tkC1� be denoted by xŒk�.t/ D
h

xŒk�1 .t/, � � � , xŒk�p .t/
iT

and

uŒk�.t/, respectively. So the control and state functions can be expressed as

u.t/ D

8̂̂̂
<
ˆ̂̂:

uŒ0�.t/, t 2 Œt0, t1/,
uŒ1�.t/, t 2 Œt1, t2/,

...
uŒs�.t/, t 2 Œts, tsC1�,

, x.t/ D

8̂̂̂
<
ˆ̂̂:

xŒ0�.t/, t 2 Œt0, t1/,
xŒ1�.t/, t 2 Œt1, t2/,

...
xŒs�.t/, t 2 Œts, tsC1�.

Then, the problem (1)–(4) is reformulated as the following multidomain minimization problem:

min J D g.xŒ0�.t0/, xŒs�.tf /, tf /, (23)

PxŒk�.t/ D f.xŒk�.t/, uŒk�.t/, t/, t 2 Œtk , tkC1/, k D 0, : : : , s, (24)

umin � uŒk�.t/ � umax, t 2 Œtk , tkC1/, k D 0, : : : , s, (25)

 .xŒ0�.t0/, xŒs�.tf /, tf / D 0, (26)

xŒk�.tkC1/ D xŒkC1�.tkC1/, k D 0, : : : , s � 1. (27)

Note that Eq. (27) is considered to guarantee the continuity of state functions in the switching points.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016



Z. FOROOZANDEH ET AL.

Based on Assumption 2.4, if Œtk , tkC1� be a nonsingular interval, then the control arc uŒk�.t/ is known and is equal to umin or umax. Oth-
erwise, if the interval Œtk , tkC1� be singular, then the control arc uŒk�.t/ is unknown but can be expressed by xŒk�.t/ and t, as mentioned in
(17). In other words, the control arcs uŒk�.t/, k D 0, : : : , s, can be obtained based on umin, umax, or xŒk�.t/. Accordingly, in the kth interval
Œtk , tkC1�, we can denote the control function u, by OuŒk�.t; xŒk�/, where the function OuŒk�.�; �/ is a known function. By this consideration,
the problem (23)–(27) can be written as

min J D g.xŒ0�.t0/, xŒs�.tf /, tf /, (28)

PxŒk�.t/ D f.xŒk�.t/, OuŒk�.t; xŒk�/, t 2 Œtk , tkC1/, k D 0, : : : , s, (29)

umin � OuŒk�.t; xŒk�/ � umax, if Œtk , tkC1/ be a sigular arc, (30)

 .xŒ0�.t0/, xŒs�.tf /, tf / D 0, (31)

xŒk�.tkC1/ D xŒkC1�.tkC1/, k D 0, : : : , s � 1. (32)

It is noted that, in the problem just shown, functions OuŒk�.�; �/, k D 0, : : : , s, are known functions. So the unknowns are functions
xŒk�.t/, k D 0, � � � , s, and maybe the final time tf .

Now, to utilize Radau pseudospectral method, the time domain Œtk�1, tk�, k D 0, : : : , s, is mapped to Œ�1, 1� via the following affine
transformations:

t D
tkC1 � tk

2
� C

tkC1 C tk

2
, k D 0, : : : , s. (33)

So by using the mapping (33) and by noting that dt
d� D

tkC1�tk

2 , the optimal control problem given in (23)–(27) is converted to the
following minimization problem in the time domain Œ�1, 1�:

min J :D g.xŒ0�.�1/, xŒs�.1/, tf /, (34)

PxŒk�.�/ D
tkC1 � tk

2
f.xŒk�.�/, OuŒk�.� ; xŒk�/, �/,

� 2 Œ�1, 1�, k D 0, : : : , s,
(35)

umin � OuŒk�.� ; xŒk�/ � umax, if Œtk , tkC1/ be a singular arc, (36)

 .xŒ0�.�1/, xŒs�.1/, tf / D 0, (37)

xŒk�.1/ D xŒkC1�.�1/, k D 0, : : : , s � 1. (38)

It is noted that, by applying this transformation, the symbols of variables will change and new symbols should be used for them. For
simplicity, however, we will retain the symbols already used.
Now, considering (18) for l D 1, : : : , p, the lth component of state xŒk�.t/ is approximated by Lagrange polynomials as

xŒk�l .�/ '

nX
iD0

xŒk�l .�i/`i.�/, k D 0, : : : , s. (39)

So the vector function xŒk�.t/ is approximated as

xŒk�.�/ '
nX

iD0

˛k
i `i.�/, k D 0, : : : , s, (40)

where for k D 0, : : : , s, i D 0, : : : , n, the coefficients ˛k
i are unknown p-vector and

˛k
i D xŒk�.�i/ D

h
xŒk�1 .�i/, � � � , xŒk�p .�i/

iT
.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2016
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Using (40), we have

PxŒk�.�/ '
nX

iD0

˛k
i
P̀

i.�/, k D 0, : : : , s. (41)

By substituting approximations (40) and (41) in the dynamics equations (35) and then by collocating it in LGR points �j , j D 0, : : : , n�1,
we acquire

nX
iD0

˛k
i
P̀

i.�j/ �
tkC1 � tk

2
f

 
nX

iD0

˛k
i `i.�j/, Ou

Œk�

 
�j ;

nX
iD0

˛k
i `i.�j/

!
, �j

!
D 0, k D 0, : : : , s, j D 0, : : : , n � 1.

It is worthwhile to note that, although �n D C1 is used beside the LGR points to approximate xŒk�.�/, but this point is not used for
collocation.

Now, by using Eq. (20) and Kronecker property (19), the aforementioned equation is reduced to the following algebraic equations:

nX
iD0

dij˛
k
i �

tkC1 � tk

2
f
�
˛k

j , OuŒk�
�
�j ;˛

k
j

�
, �j

�
D 0, k D 0, : : : , s, j D 0, : : : , n � 1. (42)

By noting that, for k D 0, : : : , s, xŒk�.�1/ D ˛
Œk�
0 and xŒk�.1/ D ˛

Œk�
n , finally, the optimal control problem (34)–(38) is converted to the

following finite-dimensional NLP corresponding to the Radau pseudospectral method:

min J :D g
�
˛0

1,˛s
nC1, tf

�
, (43)

nX
iD0

dij˛
k
i �

tkC1 � tk

2
f
�
˛k

j , OuŒk�
�
�j ;˛

k
j

�
, �j

�
D 0, k D 0, : : : , s, j D 0, : : : , n � 1, (44)

umin � OuŒk�
�
�j ;˛

k
j

�
� umax, (45)

'
�
˛0

0,˛s
n, tf

�
D 0, (46)

˛k
n D ˛

kC1
0 , k D 0, : : : , s � 1. (47)

Here, decision variables of the aforementioned NLP problem are ˛k
i , tk , and maybe tf , where i D 0, : : : , n, k D 0, : : : , s.

5. Illustrative examples

In this section, we implemented the proposed method in Section 3 with MATLAB on a personal computer for two examples. The final
NLP (43)–(47) is solved by MATLAB function fminco,, and we set this solver to use sequential quadratic programming algorithm. For
adjusting the accuracy of the obtained solution, the termination tolerance on the objective function value, tolerance on the constraint
violation, and termination tolerance on decision variables are set to TolFunD 1e � 12, TolConD 1e � 14, and TolXD 1e � 10,
respectively.

5.1. Example 1 (Van der Pol oscillator problem)

Consider the following Van der Pol oscillator problem with fixed final time tf D 4:

min x3.tf /,
Px1 D x2,
Px2 D �x1 C x2

�
1 � x2

1

�
C u,

Px3 D
1
2

�
x2

1 C x2
2

�
,

x1.0/ D 0, x2.0/ D 1, x3.0/ D 0,

�1 � u.t/ � 1, 8t 2 Œ0, tf �.

According to [12], it is found that this problem is a singular optimal control problem and the singular optimal control is composed of
three arcs as

u.t/ D

8<
:
�1, if 0 � t � t1,
C1, if t1 � t � t2,
using.x.t//, if t2 � t � tf D 4.
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Table I. van der Pol oscillator problem: the obtained values of switching
times and performance index for various values n.

n t1 t2 J

4 1.36563582151 2.45036140595 0.759602956999
6 1.36673389486 2.46079265972 0.757628002959
8 1.36674001110 2.46087414442 0.757617964172
10 1.36674004533 2.46087450899 0.757617928785
15 1.36674003055 2.46087448102 0.757617928659
20 1.36674003414 2.46087448419 0.757617928659

The Hamiltonian of the optimal control problem is

H .x, u,�, t/ D �1x2 C �2

�
�x1 C x2

�
1 � x2

1

�
C u

�
C 1

2�3

�
x2

1 C x2
2

�
.

Applying Pontryagins maximum principle leads to the following adjoint equations:

P�1 D �x1 C �2.1C 2x1x2/, (48)

P�2 D �x2 � �1 � �2

�
1 � x2

1

�
, (49)

P�3 D 0. (50)

The factor u in the Hamiltonian is �2.t/, so the switching function is given by �.x,�, t/ D �2.t/. Therefore, d
dt�.x,�, t/ D P�2.t/, and by

using (49), we have
d

dt
�.x,�, t/ D P�2.t/ D ��1.t/ � x2.t/�3.t/.

It can be seen that u does not appear in d
dt� , so we continue with d2

dt2 � . Similarly, using Eqs (48) and (50) leads to

d2

dt2
�.x,�, t/ D 2x1.t/ � x2.t/

�
1 � x2

1.t/
�
� u.t/.

The control u appears in the second derivative of � ; therefore, the order of the problem is � D 1. Moreover, by extracting u from
d2

dt2 � D 0, the control function on the singular interval Œt2, tf � is obtained as

u D using.x/ D 2x1 � x2

�
1 � x2

1

�
.

By applying the technique described in the preceding section, the state and control functions can be obtained. Moreover, the switching
times are obtained, too. The computational results for t1, t2, and performance index are reported in Table I. It is seen that, by the present
method, the switching times are provided accurately. Also, in Figure 1, the state and control functions obtained by the aforementioned
method with n D 20 are plotted.

5.2. Example 2 (Goddard problem)

In this example, we consider Goddard problem, a benchmark for singular optimal control problems, which was introduced by Bryson
and Ho [47]. The Goddard problem is to maximize the final altitude of a vertically ascending rocket under the influence of atmospheric
drag and the gravitational field. The final time is free, and the state variables are altitude h, speed v, and mass m of the rocket during
the flight, that is, x D .h, v, m/. The control u is the trust curve of the rocket.

max h.tf /,

Ph D v,

Pv D
1

m
.cu � D.v, h// � g.h/,

Pm D �u,

h.0/ D 0, v.0/ D 0, m.0/ D m0, m.tf / D mf ,

0 � u.t/ � umax, 8t 2 Œ0, tf �,

where the drag function D.v, h/ and gravity function g.h/ are defined as
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Figure 1. van der Pol oscillator problem: states and control histories obtained by the presented method with n D 20.

Table II. Goddard problem: the obtained values of switching times, final time,
and performance index for various values n.

n t1 t2 tf J

4 3.89629843 48.85670263 201.25447 152130.409
6 4.06034572 46.71383731 205.22985 156498.763
8 4.11259805 46.06282708 206.44124 157254.022
10 4.12008101 45.97098992 206.66684 157339.818
15 4.12090929 45.96082620 206.69136 157347.343
20 4.12091092 45.96082750 206.69304 157347.357
25 4.12091090 45.96082751 206.69302 157347.357

D.v, h/ D ˛v2exp.�ˇh/, g.h/ D g0.

The problem data are taken from [10] as

˛ D 0.01227, ˇ D 0.000145, g0 D 9.81, c D 2060,

m0 D 214.839, mf D 67.9833, max D 9.52551.

According to [10–12], it is known that the control function is singular with the following structure:

u.t/ D

8̂<
:̂

umax, if 0 � t � t1,

using.x.t//, if t1 � t � t2,

0, if t2 � t � tf .

Following [11, 12], we show that the problem order is equal to � D 1 and the singular control on the second interval Œt1, t2� is
obtained as

using.h, v, m/ D D
c Cm .c�v/DhC.DvCcDvv/gCc.mgh�Dvhv/

DC2cDvCc2Dvv
.

After applying the present method with various values of n, the resulted switching times and the objective function for this problem
are summarized in Table II. Also, for a better vision, the state and control functions are plotted in Figure 2 with n D 20.
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Figure 2. Goddard problem: states and control histories obtained by the presented method with n D 12.

6. Conclusion

In the present work, a modified LR pseudospectral procedure has been developed for obtaining the optimal solution of a family of sin-
gular optimal control problems. The main idea is to use an LR pseudospectral approach, in which the control function is considered as
feedback form and the state variable is approximated by a piecewise continuous polynomial. The computational technique is illustrated
on two benchmark problems. The results show that the present method obtains accurate solution and can capture switching points
very accurately. We believe that the proposed approach can be extended to solve a broad class of singular optimal control problems.
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