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Abstract. This paper deals with a constrained LQ-type optimal controlproblem (OCP) in the
presence of fixed levels input restrictions. We consider control processes governed by linear dif-
ferential equations with a priori known control switching structure. The set of admissible inputs
reflects some important natural engineering applications and moreover, can also be interpreted
as a result of a quantization procedure applied to the original dynamic system. We propose a
novel implementable algorithm that makes it possible to calculate a (numerically consistent)
approximative solution to the constrained LQ-type OCPs under consideration. Our contribution
mainly discusses theoretic aspects of the proposed solution scheme and contains an illustrative
numerical example.
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1. Introduction

Optimal control methodology is nowadays a mature powerful approach to the prac-
tical synthesis of several types of modern switched-type and interconnected dynamic
systems (see e.g., [3], [4], [8], [14], [16], [18], [19], [20], [22], [27], [29], [30]). In
this context let us also refer to [7], [9], [10], [29], [30], [32], [34], [39], [45] for some
examples of specific optimization techniques and concrete real-world appplications.
Recently, the problem of effective numerical methods for the constrained LQ based
systems optimization has attracted a lot of attention, thusboth theoretical results and
applications were developed (see, e.g., [5], [6], [25], [22], [26], [27], [28], [31], [32],
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[34], [36], [39], [40], [45] and the references therein). Note that handling various types
of constraints in practical system design is an important issue in most, if not all, real
world applications. It is readily appreciated that the implementable dynamic systems
have a corresponding set of constraints; for example, inputs always have maximum and
minimum values and states are usually required to lie withincertain ranges. Moreover,
it is generally true that optimal levels of performance are associated with operating on,
or near, constraint boundaries (see [14], [21], [42]).Thus, a control engineer really can
not ignore constraints without incurring a performance penalty.

The aim of our contribution is to elaborate a consistent computational algorithm
for an LQ-type OCP in systems with piecewise constant control inputs. The given re-
strictive structure of the admissible control function under consideration is motivated
by some important engineering applications (see [5], [6], [12], [13], [22], [26], [25],
[27], [28], [30], [36], [40], [42]) as well as by applicationof common quantization pro-
cedures to the original dynamics (see e.g., [17], [31], [34]). Note that quadratic optimal
control of piecewise linear systems was addressed earlier in [28], [36]. The treatment
there was based on the backward solutions of Riccati differential equations, and the op-
timum had to be recomputed for each new final state. Computation of non-linear gain
using the Hamilton-Jacobi-Bellman equation and the convexoptimization techniques
has also been done in [36]. Let us also refer to a sophisticated solution techniques
for non-linear OCPs proposed in [11]. This approach is basedon a newly developed
relaxation procedure. On the other hand, the common optimization approaches to lin-
ear constrained and switched-type systems are not sufficiently advanced to LQ-type
problems for linear systems with fixed levels controls. In our paper we propose a new
numerical method that includes a specific relaxation schemein combination with the
classic projection approach. Moreover, it should be noted already at this point that
the optimization algorithm we propose can be effectively used as a part of a concrete
control design procedure for some classes of dynamic systems with switched nature.

Recall that the general switched (and hybrid) systems constitute formal framework
of systems where two types of dynamics are present, continuous and discrete event
behaviour (see, e.g., [16], [31]). Evidently, a dynamic model with fixed levels control
inputs constitutes a simple example of a switched system. Inorder to understand how
these systems can be operated efficiently, both aspects of the dynamics/controls have to
be taken into account during the system optimization phase.The non-stationary linear
systems we study in this paper include a particular family ofswitched systems with the
time-driven location transitions. We refer to [1], [4], [15], [18], [19], [20], [23], [32],
[38], [41], [43], [45] for some relevant examples and abstract concepts.

The remainder of our paper is organized as follows: Section 2contains a pro-
blem statement, the necessary preliminary facts and basic concepts. Section 3 deals
with a simple relaxation scheme of the initial constrained LQ-type OCP. We propose
a projected gradient method for the concrete numerical treatment of the OCPs under
consideration (see e.g. [4], [24], [33]). In Section 4 we discuss a specific controllability
condition for the concrete dynamic system under consideration. Section 5 is devoted to
the numerical aspects of the proposed algorithm and contains an illustrative example.
Section 6 summarizes the paper.
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2. Problem formulation and some basic facts

Consider the following linear non-stationary system with aswitched control structure

(1.1) ẋ(t) = A(t)x(t)+B(t)u(t), t ∈ [t0, t f ], x(t0) = x0,

where A(·) ∈ L∞[t0, t f ;Rn×n], B(·) ∈ L∞[t0, t f ;Rn×m]. Here L∞[t0, t f ;Rn×n] and
L∞[t0, t f ;Rn×m] are the standard Lebesgue spaces of the essentially boundedmatrix-
functions defined on a bounded time interval[t0, t f ]. Similarly to the classic LQR (the
Linear Quadratic Regulator) theory it is desired to minimize the following quadratic
cost functional associated with (1.1)

(1.2) J(u(·)) =
1
2

∫ t f

t0
(〈Q(t)x(t),x(t)〉+ 〈R(t)u(t),u(t)〉)dt+

1
2
〈Gx(t f ),x(t f )〉,

whereG∈ Rn×n and the matrix-functionsQ(·) andR(·) are assumed to be integrable.
Following the conventional LQR theory we next introduce thestandard regularity/
positivity hypothesis:G ≥ 0, Q(t) ≥ 0, R(t) ≥ δ I , δ > 0 ∀t ∈ [t0, t f ]. It is well
known that the classic LQ optimal control strategyuopt(·) does not incorporate any ad-
ditional (state or control) restrictions into the resulting design procedure. Let us recall
here the explicit formula foruopt(·) (see e.g., [21], [27])

(1.3) uopt(t) =−R−1(t)
[

BT(t)P(t)
]

xopt(t),

whereP(·) is the matrix-function, namely, the solution to the classicdifferential matrix
Riccati equation associated with the LQ problem (1.1)-(1.2). In the above-mentioned
conventional case (1.1)-(1.2) the optimization problem isformally studied in the full
spaceL2[t0, t f ;Rm] of square integrable control functions. In contrast to the classic
case, we consider system (1.1) in combination with the specific piecewise constant
admissible inputsu(·) of the following type (see Fig. 1).

Figure 1: The admissible switched-type control inputsu(·)
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Resulting from the admissibility assumption the main minimization problem for
the linear system (1.1) can be interpreted as a restricted LQoptimization problem.
For example, the control signalu(·) showed in Fig. 1 can take a value (level) within the
finite set Q = {−4,−3,−2,−1,0,1,2,3,4} during the time interval [ti−1, ti),
i = 1, . . . ,12. In addition the control signal here is only allowed to change its value
at the timest0, t1, . . . , t f being fixed between these times.

Let us now specify formally the set of admissible piecewise constant control func-
tions for system (1.1) in a general case. For each componentu(k)(·) of the feasible
control inputu(·) = [u(1)(·), . . . ,u(m)(·)]T we introduce the following finite set of feasi-

ble value levels:Qk := {q(k)j ∈ R, j = 1, . . . ,Mk}, Mk ∈ N, k= 1, . . . ,m. In general,

all the setsQk are different (contains different levels) and have variousnumbers of
elements. In addition, eachQk possesses a strict order property

q(k)1 < q(k)2 < .. . < q(k)Mk
.

We now introduce the set of switching times associated with an admissible control

functionTk := {t(k)i ∈ R+, i = 1, . . . ,Nk}, Nk ∈ N, k = 1, . . . ,m. The setsTk are
assumed to be defined for each control componentu(k)(·), k = 1, . . . ,m, whereR+

denotes a non-negative semi-axis. Let us consider an ordered sequence of time instants:

t0 < t(k)1 < .. . < t(k)Nk
. For the final time instants associated with each setTk we put

t(1)N1
= . . . = t(m)

Nm
= t f . Using the notation of the level setsQk and the fixed switching

timesTk introduced above, the set of admissible controlsS can now be easily specified
by the Cartesian product

(1.4) S := S1× . . .×Sm,

where each setSk, k= 1, ...,m is defined as follows

Sk := {v(·)
∣

∣ v(t) =
Nk

∑
i=1

I
[t(k)i−1,t

(k)
i )

(t)q(k)j i
;q(k)j i

∈Qk; j i ∈ Z[1,Mk]; t(k)i ∈ Tk}.

By Z[1,Mk] we denote here the set of all integers into the interval[1,Mk] andI[tk
i−1,t

k
i )
(t)

is the characteristic function of the interval[tk
i−1, t

k
i ). Evidently, the set of admissible

control inputsS can be qualitatively interpreted as the set of all the possible functions
u : [t0, t f ]→ Rm, such that each componentu(k)(·) of u(·) attains a constant level value

q(k)j i
∈ Qk for t ∈ [tk

i−1, t
k
i ). Moreover, the component level changes occur only at the

prescribed timestk
i ∈ Tk, i = 1, ...,Nk− 1. The clear combinatorial character of the

examined control functions associated with the initial system (1.1) can be illustrated by
a simple example.

Example 1.1 Supposeu(t) ∈ R2 andQ1 = {0,1,2}, Q2 = {0,−1}. Furthermore, the
set of switching times for each control component is assumedto be given byT1 =
{0,0.5,1}, T2 = {0,0.33,0.66,1}. Resulting from the above definitions, the setS in
(1.4) can be written asS = S1×S2, where:
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S1 = {v : [t0, t f ]→ R
∣

∣ v(t) = I[0,0.5)(t)q
(1)
j1

+ I[0.5,1)(t)q
(1)
j2
, q(1)j i

∈Q1};

S2 = {w : [t0, t f ]→ R
∣

∣ w(t) = I[0,0.33)(t)q
(2)
j1
+

I[0.33,0.66)(t)q
(2)
j2

+ I[0.66,1)(t)q
(2)
j3
,q(2)j i

∈Q2}

In that concrete case we evidently have:M1 = 3, M2 = 2, N1 = 2 andN2 = 3.
The cardinality of the control setS is given as follows:|S | = 32 ·23 = 72. In

other words, we have 72 admissible control inputs, among which we must find the one
that minimizes the quadratic performance criterion.

In general, the cardinality of the setS of admissible controlsu(·) with u(t) ∈ Rm

can be expressed as follows

(1.5) |S |=
m

∏
l=1

MNl
l .

Motivating from various engineering applications, we now can formulate the following
specific constrained LQ-type OCP

minimizeJ(u(·))

subject tou(·) ∈ S ,
(1.6)

whereJ(·) is the costs functional defined in (1.2). Note thatS constitutes a nonempty
subset of the spaceL2[t0, t f ;Rm]. However, the classically LQ-optimal control input
uopt(·) in (1.3) does not belong to the introduced specific setS . Due to the highly re-
strictive conditionu(·) ∈ S , the main optimization problem (1.6) can not be generally
solved by a direct application of the classic Pontryagin Maximum Principle. A possible
application of a suitable hybrid version of the conventional Maximum principle from
[4], [16], [23], [38], [41], [45] is also complicated by a non-standard structure of the
simple control inputs under consideration. Let us additionally note that the value of an
exponentially growing cardinality|S | in (1.5) exacerbates crucially a possible appli-
cation of some combinatorial and various state/control discretization based numerical
algorithms for OCPs (see e.g., [7], [8], [13], [24], [33], [34], [35], [38], [42], [45] and
the references therein).

The aim of this contribution is to propose a relative simple implementable compu-
tational procedure for a consistent numerical treatment ofthe constrained OCP (1.6).
We use a simple relaxation technique associated with the main OCP (1.6) in combi-
nation with a gradient based algorithm for this purpose. We first obtain an optimal
solution of a convex relaxed OCP. Next we use it in a constructive solution procedure
for the original problem (1.6).

3. The gradient-based approach to the relaxed optimal control problem

In this section we propose a constructive computational scheme for the constrained
LQ-type OCP (1.6) formulated above. The proposed approach incorporates a simply
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relaxed OCPs associated with the initial problem (1.6). Letus first recall a necessary
auxiliary result from the classic convex analysis (see [3],[33], [37]): it is a well known
fact that a composition of two convex functionals is not necessarily convex. In the
following we will need a basic result providing conditions that ensure convexity of the
composition (see e.g., [3], [37]).

Lemma 3.1 Let g1 : W →R be a convex functional determined on a convex setW ⊆ Rp

and g2 : V → W be an affine mapping defined on a convex subsetV of a realHilbert
space H. Then the composed functional g: V → R, g(·) := g1(g2(·)) is convex.

Let nowxu(·) be a solution to the initial value problem (1.1) generated byan ad-
missible controlu(·) ∈ S . Evidently, every component ofxu(·) is an affine function
(functional) ofu(·)

(3.1) x(t,u) = Φ(t, t0)x0+
∫ t

t0
Φ(t,τ)B(τ)u(τ)dτ.

HereΦ(·,τ) is the fundamental solution matrix associated with (1.1). Let us note that
set of admissible controlsS constitutes a non-convex set. This fact is due to the origi-
nally combinatorial structure ofS determined in (1.4).

Example 3.2 Under assumptions of Example 1.1 we haveS := S1×S2 and more-
over,

S1 = {(0× I[0,0.5)(t)+1× I[0.5,1)(t)); (1× I[0,0.5)(t)+0× I[0.5,1)(t));

(0× I[0,0.5)(t)+2× I[0.5,1)(t)); (2× I[0,0.5)(t)+0× I[0.5,1)(t));

(1× I[0,0.5)(t)+2× I[0.5,1)(t)); (2× I[0,0.5)(t)+1× I[0.5,1)(t)); (0); (1); (2)}

S2 = {(0× I[0,0.33)(t)+(−1)× I[0.33,0.66)(t)+(−1)× I[0.66,1)(t));

(0× I[0,0.33)(t)+(−1)× I[0.33,0.66)(t)+0× I[0.66,1)(t));

(0× I[0,0.33)(t)+0× I[0.33,0.66)(t)+(−1)× I[0.66,1)(t));

((−1)× I[0,0.33)(t)+(−1)× I[0.33,0.66)(t)+0× I[0.66,1)(t));

((−1)× I[0,0.33)(t)+0× I[0.33,0.66)(t)+0× I[0.66,1)(t));

((−1)× I[0,0.33)(t)+0× I[0.33,0.66)(t)+(−1)× I[0.66,1)(t)); (0); (−1)}

The combinatorial structure ofS is evident. Recall that a combinatorial set is a non-
convex set. The convex hull conv(S ) of the original setS has a simple expression:

conv(S ) = {(C1× I[0,0.5)(t),C2× I[0.5,1)(t))}×

{(D1× I[0,0.33)(t)+D2× I[0.33,0.66)(t)+D3× I[0.66,1)(t))}

whereC1,C2 ∈ [0,2] andD1,D2,D3 ∈ [0,−1].

Motivated from the above facts let us consider the convex hull conv(S ) associated
with S

conv(S ) := {v(·)
∣

∣ v(t) =
|S |

∑
s=1

λsus(t),
|S |

∑
s=1

λs= 1,
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whereλs ≥ 0, us(·) ∈ S , s= 1, . . . , |S |}. From the definition ofS we conclude
that the convex set conv(S ) is closed and bounded. Using (1.4), we also can give the
alternative characterization: conv(S ) = conv(S1)× . . .×conv(Sm), where conv(Sk)

is a convex hull ofSk k= 1, ...,m. Since conv(Qk)≡ [q(k)1 ,q(k)Mk
], we have

conv(Sk) := {v(·)
∣

∣ v(t) =
Nk

∑
i=1

I
[t(k)i−1,t

(k)
i )

(t)q(k)j i
; q(k)j i

∈ [q(k)1 ,q(k)Mk
]; j i ∈ Z[1,Mk]; t(k)i ∈ Tk}.

Roughly speaking conv(S ) contains all the piecewise constant functionsu(·) such that

the constant valueu(k)(t) belongs to the interval[q(k)1 ,q(k)Mk
] for all t ∈ [t(k)i−1, t

(k)
i ). Let us

note that in contrast to the initial setS , the corresponding convex hull conv(S ) is an
infinite dimensional space. Using the above convex construction, we can formulate the
following auxiliary OCP

minimizeJ(u(·))

subject tou(·) ∈ conv(S ).
(3.2)

The problem (3.2) formulated above is in fact a simple convexrelaxation of the initial
OCP (1.6). We will study this problem and use it for a constructive numerical treatment
of (1.6). Let us firstly formulate the following key propertyof the auxiliary OCP (3.2).

Theorem 3.3 The cost functional J: conv(S )→ R

J(u(·)) =
1
2

∫ t f

t0
[〈Q(t)xu(t),xu(t)〉+ 〈R(t)u(t),u(t)〉]dt+

1
2
〈Gxu(t f ),x(t f )〉

is convex and the auxiliaryOCP (3.2)constitutes a convex optimization problem in the
Hilbert spaceL2[t0, t f ;Rm].

Proof. Evidently, conv(S ) is a bounded closed and convex subset ofL2[t0, t f ;Rm].
The cost functionalJ(·) is in fact a sum of two functionals:

J(u(·)) = J1(u(·))+J2(u(·)), J1(u(·)) :=
1
2

∫ t f

t0
[〈R(t)u(t),u(t)〉]dt,

J2(u(·)) :=
1
2

∫ t f

t0
[〈Q(t)xu(t),xu(t)〉]dt+

1
2
〈Gxu(t f ),x

u(t f )〉.

The first one, namely, the functionalJ1(·) is convex (recall that its Hessian is positive
definite matrix). Moreover,J2(·) is a composition of a convex (quadratic) functional of
xu(·), wherexu(·) is an affine mapping with respect tou(·) (see (3.1)). Applying Lemma
3.1, we now easily deduce the convexity ofJ2(·). Since the sum of two convex functions
is convex, we obtain the desired convexity result forJ(·). The proof is completed.

As we can see, (3.2) is a convex relaxation of the initial OCP (1.6). The proved
convexity of OCP (3.2) makes it possible to apply the powerful numerical convex
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programming approaches to this auxiliary optimization problem. In this paper, we
use a variant of the projected gradient method for a concretenumerical treatment of
(3.2). Note that under the basic assumptions introduced in Section the following map-
ping xu(t) : L2[t0, t f ;Rm] → Rn is Fréchet differentiable for everyt ∈ [t0, t f ] (see [17,
23]). Therefore, the quadratic costs functionalJ(·) in (3.2) is also Fréchet differen-
tiable. We refer to [23, 29] for the corresponding differentiability concept. Assume
u∗(·) ∈ conv(S ) is an optimal solution of (3.2). The existence of an optimal input
u∗(·) is guaranteed in the convex problem (3.2) (see e.g., [33]). By x∗(·) we next de-
note the corresponding optimal trajectory (solution) of (1.1) generated byu∗(·). The
projected gradient method for problem (3.2) can now be expressed as follows:

(3.3) ul+1(·) = Pconv(S ) [ul (·)−αl∇J(ul(·))]

wherePconv(S ) is the operator of projection on to convex set conv(S ) and{αl} is
a sequence of step sizes. The conventional projection operator Pconv(S ) is defined as
usual:

Pconv(S )(u(·)) := Argminv(·)∈conv(S )

(

||v(·)−u(·)||L2[t0,t f ;Rm]

)

Recall that the projected gradient iterations (3.3) generate a minimizing sequence for
the convex optimization problem (3.2). Some useful mathematically exact convergence
theorems for iterations (3.3) can be found in [11], [24], [33], [37]. We also refer to [9],
[10], [19] for the related results. In the context of OCP (3.2) and method (3.3) the basic
convergence result from [33], [37] can be reformulated as follows.

Theorem 3.4 Assume that all the hypotheses fromSection are satisfied. Consider
a sequence of control functions generated by(3.3). Then there exists an admissible
initial data (u0(·),x0(·)) and a sequence of the step-sizes{αl} such that{ul (·)} is a
minimizing sequence for(3.2), i.e., lim l→∞ J(ul(·) = J(u∗(·)).

The proposed gradient-type method (3.3) provides a basis for the computational
approach to (3.2). Using an optimal solutionu∗(·) ∈ conv(S ) we next need to de-
termine a suitable approximation for a solution to the original OCP (1.1). In the next
sections we propose a constructive numerical procedure forthis purpose.

4. On the controllability condition for the linear system with a switched control
structure

The study of OCPs with piecewise constant controls also involves a question of the
general interest. Consider the initial dynamic system (1.1) determined on the given set
of admissible controlsS and reformulate the classical controllability question asso-
ciated with the specific control set of piecewise constant inputs: system (1.1) onS is
said to be controllable if for any initial statex(t0) and any final statex(t f ), there exist
an admissible functionu(·) ∈ S that transfersx(t0) to x(t f ) in finite time. It is ne-
cessary to stress, that there are some (expectable) examples of non-controllable linear
system involving the piecewise constant controls. In connection with this observation
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we formulate here a simple controllability criterion for the specific case of constant
system/control matricesA(t)≡ A, B(t)≡ B and unified switching timesNk ≡ N Tk ≡T

for all k= 1, ...,m.

Theorem 4.1 Consider the stationary variant of the linear system(1.1) for u(·) ∈ S

and assume Nk ≡ N, Tk ≡ T, k= 1, ...,m. Let

W(N) :=
N

∑
i=1

[

∫ ti

ti−1

e−AτdτBBT
∫ ti

ti−1

e−ATτdτ
]

, ti ∈ T.

and assume that

(4.1) −BT
∫ ti

ti−1

e−ATτdτW(N)−1
(

x(t0)−e−At f x(t f )
)

∈Q,

whereQ :=Q1× ...×Qm. Then system(1.1) is controllable if and only if matrix W(N)
is non-singular.

Proof. LetW(N) be non-singular. Then

x(t f ) = eAt f x(t0)+
∫ t f

t0
eA(t f−τ)Bu(τ)dτ,

or equivalently

(4.2) x(t f ) = eAt f

[

x(t0)+
N

∑
i=1

∫ ti

ti−1

e−AτdτBui

]

,

whereui ∈ Rm is a constant vector associated with the interval[ti−1, ti). The result-
ing input valueui such thatu(t) = ui for t ∈ [ti−1, ti) andx(t0), x(t f ) belongs to the
corresponding trajectory of (1.1) generated byu(·) is given by

ui =−BT
∫ ti

ti−1

e−ATτdτW(N)−1
(

x(t0)−e−At f x(t f )
)

.

From (4.1) it followsui ∈ Q. Substituting the obtained expression in (4.2), we next
obtain

x(t f ) = eAt f [x(t0)−W(N)W(N)−1(x(t0)−e−At f x(t f ))] = x(t f ).

We conclude that the given system is controllable under piecewise constant inputs.
Let now the initial system (1.1) be controllable by piecewise constant controls

from S . Assume that the symmetric matrixW(N) is not a (strictly) positive definite
matrix. This hypothesis implies the existence of a non-trivial vectorv∈ Rn such that
vTW(N)v= 0, or equivalently:

0= vT
N

∑
i=1

[

∫ ti

ti−1

e−AτdτBBT
∫ ti

ti−1

e−ATτdτ
]

v=
N

∑
i=1

||vT
∫ ti

ti−1

e−AτdτB||2.
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The last fact evidently implies the followingvT ∫ ti
ti−1

e−AτdτB= 0 ∀i = 1, . . . ,N. Since
the controllability of the system (1.1) foru(·) ∈ S is assumed, there exist a sequence
of values{ui} such that the statex(t0)≡ v can be transferred intox(t f )≡ 0. Therefore,
we deduce the next consequence

(4.3) 0= eAt f

[

v+
N

∑
i=1

(

∫ ti

ti−1

e−Aτdτ
)

Bui

]

.

Evidently, (4.3) holds if and only if

(4.4) 0= v+
N

∑
i=1

(

∫ ti

ti−1

e−Aτdτ
)

Bui
.

We now multiply (4.4) byvT

0= vTv+
N

∑
i=1

vT
(

∫ ti

ti−1

e−Aτdτ
)

Bui = vTv

and obtain the contradiction with the non-triviality hypothesisv 6= 0. Therefore,W(N)
is a positive definite symmetric matrix and the existence of the inverseW(N)−1 follows
immediately. The proof is completed.

Note that Theorem 4.1 makes it possible to establish the existence of an opti-
mal solution to the restricted OCP of the type (1.6) with additional terminal constraint
x(t f ) = xf , wherexf ∈ Rn is a prescribed final state. We refer to [21], [44] for the clas-
sic result and for the corresponding regularity conditionsin some classes of constrained
OCPs.

5. A relaxation based numerical method for the initial optimal control problem

Theorem 3.4 and the classic gradient-type iterations (3.3)provide an analytic basis for
a consistent computational approach to the initial OCP (1.6). Recall that in contrast to
the relaxed optimization problem (3.2) the original OCP (1.6) does not possesses any
convexity property. However, the simple relaxed OCP (3.2) can be effectively used for
an approximative numerical treatment of the original problem (1.6). Let us introduce
the formal Hamiltonian associated with problems (1.6) and (3.2)

H(t,x,u, p) = 〈p,A(t)x+B(t)u〉−
1
2
(〈Q(t)xt,x〉+ 〈R(t)u,u〉).

wherep∈ Rn is the adjoint variable. By ˆu(·) ∈ S we now denote an optimal solution
to the initial OCP (1.6). Using the explicit representationof the gradient∇J(ul(·)) in
OCPs with ordinary differential equations (see e.g., [3], [4], [20], [33], [38], [42]), we
can propose a conceptual computational scheme for (1.6).
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Conceptual Algorithm 1

(0) Set the initial condition for the iterative scheme u(0)(·) := Pconv(S )(u
opt(·)),

where uopt(·) is the optimal control input(1.3) from the classicLQ problem.
Calculate the corresponding trajectory x(l)(·) of (1.1)and put the iterations index
l := 0.

(1) Calculate∇J(u(l))(·) as(see [3], [4], [7], [33], [42])

∇J(u(l))(t) =−
∂H(t,x(l)(t),u(l)(t), p(t))

∂u
=−BT(t)p(t)+R(t)u(l),

where the adjoint variable p(·) is a solution to the usual boundary value problem

ṗ(t) =−
∂H(t,x(l)(t),u(l)(t), p)

∂x
=−AT(t)p(t)+Q(t)x(l)(t),

p(t f ) =−Gx(l)(t f ).

(2) Calculate the projection of u(l)(·)−α(l)∇J(u(l)(·)) on the convex(relaxed) re-
striction setconv(S ) and determinēu(l+1)(·) := Pconv(S )(ū(l)(·)).

(3) Evaluate the(l +1) iteration of the control function given by components

u(k)
(l+1)(t) =

Nk

∑
i=1

I
[t(k)i−1,t

(k)
i )

(t)q̄(k)i,n ∀k= 1, . . . ,m,

where:

q̄(k)i,l :=



















q(k)1 , ¯̄q(k)i,l < q(k)1

¯̄q(k)i,l , q(k)1 ≤ ¯̄q(k)i,l ≤ q(k)Mk

q(k)Mk
, q(k)Mk

≤ ¯̄q(k)i,l

, i = 1, . . . ,Nk.

and q(k)j ∈Qk, ∀ j = 1, . . . ,Mk, ¯̄q(k)i,l :=
1
∆i

∫ ti
ti−1

ū(k)
(l) (t)dt, ∆i := ti − ti−1.

(4) Calculate the difference|J(u(l+1)(·))−J(u(l)(·))|. If it is less than a prescribed
accuracyε > 0, then we put u∗(·)≡ u(l+1)(·) (an approximating optimal solution
to (3.2))andStop. Else, update the iteration register and go toStep (1).

(5) Using the evaluated function u∗(·) the approximating optimal control̂u(·) ∈ S

can finally be calculated by components

(5.1) û(k)(·) =
Nk

∑
i=1

I
[t(k)i−1,t

(k)
i )

(t)q̂(k)i ∀k= 1, . . . ,m.

whereq̂k
i := Argminv∈Qk |v− q̄(k)i,l+1|. Solve(1.1) with the obtained control input

û(·) ∈ S and obtain the approximating optimal trajectoryx̂(·). Stop.
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Using Theorem 3.4 and the continuity property of the objective functional one can
establish the convergence of the proposed Conceptual Algorithm 1. Note that this type
of convergence is determined as a ”convergence in functional”. To put it another way,
the control sequence{ul (·)} generated by Steps (0)-(4) of the above Algorithm is a
minimizing sequence (see Theorem 3.4). By implementation and taking into consider-
ation the continuity of the objective functional, we finallycan establish the convergence
property (”in functional”) of the resulting sequences{û(k)(·)}, k= 1, . . . ,mobtained in
Step (5) of Algorithm.

We now illustrate the effectiveness of the proposed Conceptual Algorithm 1 and
consider two simple examples.

Example 5.1 Consider the following linear system

ẋ(t) =

[

ẋ1(t)
ẋ2(t)

]

=

[

x2(t)
−x1(t)+u(t)

]

, t ∈ [0,5] , x(0) = (1,−1)T

associated with the quadratic cost functional

J(u(·)) =
1
2

∫ 5

0

(

x2
1(t)+10x2

2(t)+u2(t)
)

dt,

LetQ= {0,0.25,0.5,0.75,1,1.25,1.5, . . .,5} be the given finite set of constant control
values. AssumeNk = 10, k= 1 and the setT is not given a priory. The classic LQ op-
timal controluopt(·) can be here easily calculated. Applying the proposed Conceptual
Algorithm 1, we now compute the approximating optimal control û(·) (see Fig. 2).

Figure 2: Control inputsuopt(t) andû(t)

The associated trajectory ˆx(·) is indicated on Fig. 3. The calculated cost in pro-
blem (1.6) associated with our example was evaluated as follows: J(û(·)) = 7.5362.
Evidently, this value is higher in comparison with the optimal cost in the conventional
(non-restricted) LQ problem.
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Figure 3: First components of the optimal trajectoriesxopt
1 (t) andx̂1(t)

Example 5.2 We now consider (1.1) forn= 3

ẋ(t) =





ẋ1(t)
ẋ2(t)
ẋ3(t)



=





x2(t)
−0.875x2(t)−20x3(t)
−50x3(t)+50u(t)



 ,

x(0) = (1,0,−1)T
,

wheret ∈ [0,1]. The quadratic cost functional in problem (1.6) associatedwith our
example has been given in the following concrete form

J(u(·)) =
1
2

∫ 1

0

(

3x2
1(t)+x2

2(t)+2x2
3(t)+u2(t)

)

dt,

We next assume

Q= {−5,−4.5,−4,−3.5, . . . ,3.5,4,4.5,5}, Nk = 3, k= 1.

The setT is not given a priory. Application of the proposed numericalsolution pro-
cedure, namely, of Conceptual Algorithm 1 leads to the computational results for the
quasi-optimal control ˆu(·) and the corresponding trajectory ˆx(·)). These numerically
optimal functions are indicated on Fig. 4 and Fig. 5, respectively.

Figure 4: Control inputsuopt(t) andû(t)
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Figure 5: First components of the trajectoriesxopt
1 (t) andx̂1(t)

The calculated cost associated with the initial OCP (1.6) inthis example was eva-
luated as follows:J(û(·)) = 2.0237. As mentioned above, the calculated optimal cost
here has a higher value in comparison with the optimal cost inthe conventional LQ
problem. This fact is a simple consequence of the evident inclusionS ⊂ L2[t0, t f ;Rm]
that constitutes the admissible control set restrictions in the constrained LQ problem
under consideration.

Finally, note that implementations of the Conceptual Algorithm 1 presented in
Examples 4.1 and 4.2, was carried out, using the standard MATLAB packages and the
Authors programs.

6. Conclusion

In this contribution, we have developed a new implementablenumerical approach to
a constrained LQ-type OCP. This computational method is based on a simple convex
relaxation procedure applied to the initial problem in combination with the conventional
gradient-based numerical technique. We firstly rewrite theoriginal (non-convex) OCP
in a relaxed form and establish the convexity properties. Wenext use the obtained
convex relaxation as an auxiliary tool in a concrete solution scheme for the initial OCP.
The convex structure of the auxiliary OCP makes it possible to take into consideration
diverse powerful computational algorithms from the classic convex programming. Let
us note that various variants of the basic gradient method, namely, Armijo-type gradient
schemes can be applied to the obtained relaxed OCP (see [1], [2], [9], [10], [11], [19],
[20], [42]). In the presented paper we also discussed the general controllability question
associated with the stationary variant of the constrained linear dynamic systems under
consideration. The general controllability concept for linear systems of the type (1.1)
involves a full theoretic justification of the OCP under consideration and finally, makes
it possible to establish the applicability of the gradient method in the presented form
(see [10], [11] for details).

It is common knowledge that modern numerical algorithms mainly use specific
non-equidistant discretizations with the aim to increase the effectiveness of the resulting
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algorithm. The specific type of the control functions discussed in our contribution is
motivated by the initially given physical nature of the class of controlled processes
under consideration. Note that there are various formal models that involve a non-
equally spaced inputs grid. The necessary investigation ofthese types of models and
the corresponding engineering applications (mainly from the modern communication
science) constitutes an interesting subject of a next contribution. Our paper focuses on
equally-spaced controlled models since they are simpler toanalyse while capturing the
salient features of the newly elaborated control method we propose. Let us also note
that the presented Conceptual Algorithm 1 need to be analysed in comparison with
some powerful numerical schemes. For example, one needs to compare it with the
various implementations of the direct search (see e.g., [27], [42]).

Finally, note that the theoretical and computational approaches presented in this
paper can be applied to some alternative classes of constrained OCPs. Let us also
note that the proposed numerical algorithm can also constitute a constructive tool of
some general numerical techniques based on discretizations and linear approximations
associated with the common types of non-linear OCPs.
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