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Abstract. This paper deals with a constrained LQ-type optimal corgroblem (OCP) in the
presence of fixed levels input restrictions. We considetrobprocesses governed by linear dif-
ferential equations with a priori known control switchirtgueture. The set of admissible inputs
reflects some important natural engineering applicatiowsraoreover, can also be interpreted
as a result of a quantization procedure applied to the @igignamic system. We propose a
novel implementable algorithm that makes it possible t@wate a (numerically consistent)
approximative solution to the constrained LQ-type OCPsurdnsideration. Our contribution
mainly discusses theoretic aspects of the proposed solstiseme and contains an illustrative
numerical example.
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1. Introduction

Optimal control methodology is nowadays a mature powenfydraach to the prac-
tical synthesis of several types of modern switched-typkiaterconnected dynamic
systems (see e.qg., [3], [4], [8], [14], [16], [18], [19], [RA22], [27], [29], [30]). In
this context let us also refer to [7], [9], [10], [29], [30BZ], [34], [39], [45] for some
examples of specific optimization techniques and concreéworld appplications.
Recently, the problem of effective numerical methods fa& tonstrained LQ based
systems optimization has attracted a lot of attention, thaik theoretical results and
applications were developed (see, e.g., [5], [6], [25]][226], [27], [28], [31], [32],
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[34], [36], [39], [40], [45] and the references therein).tdhat handling various types
of constraints in practical system design is an importasuesn most, if not all, real
world applications. It is readily appreciated that the iempentable dynamic systems
have a corresponding set of constraints; for example, gguiays have maximum and
minimum values and states are usually required to lie witkemain ranges. Moreover,
it is generally true that optimal levels of performance asogiated with operating on,
or near, constraint boundaries (see [14], [21], [42]).Tlausontrol engineer really can
not ignore constraints without incurring a performancegtign

The aim of our contribution is to elaborate a consistent aaatponal algorithm
for an LQ-type OCP in systems with piecewise constant computs. The given re-
strictive structure of the admissible control function andonsideration is motivated
by some important engineering applications (see [5], [62][[13], [22], [26], [25],
[27], [28], [30], [36], [40], [42]) as well as by applicatiasf common quantization pro-
cedures to the original dynamics (see e.qg., [17], [31],)[3Mbte that quadratic optimal
control of piecewise linear systems was addressed eanli@8i, [36]. The treatment
there was based on the backward solutions of Riccati diffexleequations, and the op-
timum had to be recomputed for each new final state. Computafinon-linear gain
using the Hamilton-Jacobi-Bellman equation and the comimization techniques
has also been done in [36]. Let us also refer to a sophisticaiition techniques
for non-linear OCPs proposed in [11]. This approach is based newly developed
relaxation procedure. On the other hand, the common omiiz approaches to lin-
ear constrained and switched-type systems are not sufficiedvanced to LQ-type
problems for linear systems with fixed levels controls. In paper we propose a new
numerical method that includes a specific relaxation schiencembination with the
classic projection approach. Moreover, it should be noteshdy at this point that
the optimization algorithm we propose can be effectivelgduas a part of a concrete
control design procedure for some classes of dynamic sgsteth switched nature.

Recall that the general switched (and hybrid) systems itatesformal framework
of systems where two types of dynamics are present, conighaad discrete event
behaviour (see, e.g., [16], [31]). Evidently, a dynamic mloalith fixed levels control
inputs constitutes a simple example of a switched systerordar to understand how
these systems can be operated efficiently, both aspects dfttamics/controls have to
be taken into account during the system optimization ph&ke.non-stationary linear
systems we study in this paper include a particular familsvatched systems with the
time-driven location transitions. We refer to [1], [4], [1$18], [19], [20], [23], [32],
[38], [41], [43], [45] for some relevant examples and abdtencepts.

The remainder of our paper is organized as follows: Secti@orzains a pro-
blem statement, the necessary preliminary facts and basicepts. Section 3 deals
with a simple relaxation scheme of the initial constrain€g-type OCP. We propose
a projected gradient method for the concrete numericatntrexat of the OCPs under
consideration (see e.g. [4], [24], [33]). In Section 4 wecdss a specific controllability
condition for the concrete dynamic system under consioigraBection 5 is devoted to
the numerical aspects of the proposed algorithm and cangairillustrative example.
Section 6 summarizes the paper.
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2. Problem formulation and some basic facts
Consider the following linear non-stationary system witwatched control structure
(1.1) X(t) = A(t)x(t) +B(t)u(t), t € [to,tf], X(to) = Xo,

where A(-) € L®[to,tr; R™"], B(:) € L™[to,ts; R™™M. Here L%[to,t;; R™"] and
L*[to, tr; R™™M] are the standard Lebesgue spaces of the essentially boorates-
functions defined on a bounded time interjtglts]. Similarly to the classic LQR (the
Linear Quadratic Regulator) theory it is desired to minienike following quadratic
cost functional associated with (1.1)

1

(1.2)  J(u())=3 ; (<Q(t)X(t)7X(t)>+(R(t)u(t),u(t)>)dt+%<Gx(tf),x(tf)>,

whereG € R™" and the matrix-function®(-) andR(-) are assumed to be integrable.
Following the conventional LQR theory we next introduce #tandard regularity/
positivity hypothesis:G > 0, Q(t) >0, R(t) > dl, & > 0Vt € [to,tf]. It is well
known that the classic LQ optimal control stratag¥'(-) does not incorporate any ad-
ditional (state or control) restrictions into the resulticesign procedure. Let us recall
here the explicit formula fou®P!(.) (see e.g., [21], [27])

(1.3) uwP(t) = —R7(t) [BT (1)P(t)| P (1),

whereP(+) is the matrix-function, namely, the solution to the claskfferential matrix
Riccati equation associated with the LQ problem (1.1))(118 the above-mentioned
conventional case (1.1)-(1.2) the optimization problerforsnally studied in the full
spacel.?[to, tf; R™) of square integrable control functions. In contrast to tlessic
case, we consider system (1.1) in combination with the Sipguiecewise constant
admissible inputsi(-) of the following type (see Fig. 1).

u(t)

Figure 1: The admissible switched-type control inpu(ts
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Resulting from the admissibility assumption the main miaetion problem for
the linear system (1.1) can be interpreted as a restrictecpi@nization problem.
For example, the control signa(-) showed in Fig. 1 can take a value (level) within the
finite set Q = {—4,-3,-2,-1,0,1,2,3,4} during the time interval[ti_1,t;),

i =1,...,12. In addition the control signal here is only allowed to rufpa its value
at the timedo, t1, .. .,ts being fixed between these times.

Let us now specify formally the set of admissible piecewisestant control func-
tions for system (1.1) in a general case. For each compant) of the feasible
control inputu(-) = [u®(-),...,u™(.)]T we introduce the following finite set of feasi-
ble value levelsQX := {qgk) €R, j=1,...,MJ}, MceN, k=1,...,m Ingeneral,
all the setsQX are different (contains different levels) and have varioumbers of
elements. In addition, ead®* possesses a strict order property

qgk) < q(zk) <...< q,(v'a
We now introduce the set of switching times associated witladmissible control
function TK := {ti(k) eR,i=1...,N}, NgeN, k=1,...,m The setsT* are
assumed to be defined for each control componéfif.), k = 1,...,m, whereR..
denotes a non-negative semi-axis. Let us consider an ardetpience of time instants:
fo < tik) <...< t,E,'I?. For the final time instants associated with eachTetve put

t,E,ll) =...= t,g,r;') = t. Using the notation of the level se@ and the fixed switching

timesTX introduced above, the set of admissible conti#lsan now be easily specified
by the Cartesian product

(1.4) S =X X S,

where each se¥, k=1, ...,mis defined as follows

i = {Vv(") le o 0a%:ql e Q% ji ez, My; t e T}

By Z[1, M| we denote here the set of all integers into the inte/d¥, | andl[tk £ (t)

is the characteristic function of the intergt ;,t¥). Evidently, the set of admissible
control inputs¥’ can be qualitatively mterpreted as the set of all the pdssilmctions
[to,tf] — R™, such that each component)(-) of u(-) attains a constant level value

e Qkforte [, 1,t"). Moreover, the component level changes occur only at the
prescnbed tlme$| e TK i=1,...N¢«— 1. The clear combinatorial character of the

examined control functions associated with the initiategs(1.1) can be illustrated by
a simple example.

Example 1.1 Supposeu(t) € R? andQ! = {0,1,2}, Q? = {0,—1}. Furthermore, the
set of switching times for each control component is assutadae given byT! =
{0,0.5,1}, T? = {0,0.33,0.66,1}. Resulting from the above definitions, the sétin
(1.4) can be written as” = .%1 x .%%, where:
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A ={viltote] = R [ V(D) = ooy O, +1osyB)ay;), o € @Y
S ={W:[to,ts] = R | w(t) = l10033) (t)qgf)Jr
ll0.330.66) (t)qg? +1j0.66,1) (t)qg?, qgiz) e Q?

In that concrete case we evidently haiy: = 3, M2 = 2,N; = 2 andN, = 3.

The cardinality of the control se¥ is given as follows:|.#| = 3%-23 = 72. In
other words, we have 72 admissible control inputs, amonghwvie must find the one
that minimizes the quadratic performance criterion.

In general, the cardinality of the sef of admissible controls(-) with u(t) € R™
can be expressed as follows

1.5 y:mMN'.
(1.5) B4 |ﬂ|

Motivating from various engineering applications, we nam ¢ormulate the following
specific constrained LQ-type OCP

minimizeJ(u(-))

1.6
(1.6) subject tou(-) € .7,

whereJ(-) is the costs functional defined in (1.2). Note th¥étconstitutes a nonempty
subset of the spade?[to,t¢; R™). However, the classically LQ-optimal control input
u°Pt(.) in (1.3) does not belong to the introduced specific getDue to the highly re-
strictive conditionu(-) € ., the main optimization problem (1.6) can not be generally
solved by a direct application of the classic Pontryagin iasm Principle. A possible
application of a suitable hybrid version of the conventidilaximum principle from
[4], [16], [23], [38], [41], [45] is also complicated by a nestandard structure of the
simple control inputs under consideration. Let us add#ilymnote that the value of an
exponentially growing cardinality| in (1.5) exacerbates crucially a possible appli-
cation of some combinatorial and various state/contrairdiszation based numerical
algorithms for OCPs (see e.qg., [7], [8], [13], [24], [33]4]3[35], [38], [42], [45] and
the references therein).

The aim of this contribution is to propose a relative simpi@llementable compu-
tational procedure for a consistent numerical treatmenth@fconstrained OCP (1.6).
We use a simple relaxation technique associated with the @&P (1.6) in combi-
nation with a gradient based algorithm for this purpose. W& tbtain an optimal
solution of a convex relaxed OCP. Next we use it in a constreislution procedure
for the original problem (1.6).

3. The gradient-based approach to the relaxed optimal control problem

In this section we propose a constructive computationaémsehfor the constrained
LQ-type OCP (1.6) formulated above. The proposed appraactrporates a simply
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relaxed OCPs associated with the initial problem (1.6). usefirst recall a necessary
auxiliary result from the classic convex analysis (see[], [37]): itis a well known
fact that a composition of two convex functionals is not reseeily convex. In the
following we will need a basic result providing conditiomst ensure convexity of the
composition (see e.g., [3], [37]).

Lemma3.1 Letg': # — R be a convex functional determined on a conves&et RP
and ¢ : ¥ — # be an affine mapping defined on a convex sulssef a realHilbert
space H. Then the composed functional/g— R, g(-) := g*(g?(-)) is convex.

Let nowx"(-) be a solution to the initial value problem (1.1) generatecbyd-
missible control(-) € .. Evidently, every component of'(-) is an affine function
(functional) ofu(-)

(3.1) X(t,u) = P(t,to)Xo + /tt ®(t, 7)B(T)u(1)dT.

Here®(-, 1) is the fundamental solution matrix associated with (1.1t us note that
set of admissible control$” constitutes a non-convex set. This fact is due to the origi-
nally combinatorial structure of” determined in (1.4).

Example 3.2 Under assumptions of Example 1.1 we ha¥e= .71 x .% and more-
over,
1 ={(0x 105 (t) +1xlgs51)(t)); (1 xI005/(t)+0xIgs51)(t));
(0xIjo05)(t) +2% ljg51)(t)); (2xIj00s5)(t) +0x ljg51)(t));
(Ixljos5)(t) +2X ljo51)(1)); (2x 105 (t) +1x 151 (1)); (0); (1); (2)}
2 ={(0x 10,033 (t) + (1) x ljp.33066)(t) + (—1) x Ij0.66,1)(t));
0xlj0,0.33)(t) +(—1) x 033066 (t) + 0 X lj0e61)(t));
0xlj0,0.33)(t) +0xIjg33066)(t) + (—1) X lj0.661)(t));
(—1) x ljp,0.33)(t) + (—1) x I 0:33066)(t) + 0% lj0.661)(1));
(—1) xljg033)(t) +0x ljg.33066)(t) +0x Ijg661)(t));
((—=1) xljo,033)(t) +0x ljg330.66)(t) + (—1) x ljgee1)(t)); (0); (—1)}

The combinatorial structure of’ is evident. Recall that a combinatorial set is a non-
convex set. The convex hull cofi”) of the original set” has a simple expression:

conv(.’) = {(Cy x ljg05)(t),C2 % lj05,1) (L)) } X
{(D1x1j00.33)(t) + D2 x lj0.330.66)(t) + D3 x ljg.661)(t))}
whereC,,C; € [0,2] andD1,D»,D3 € [0, —1].

o~ o~ o~ o~

Motivated from the above facts let us consider the convebdaulv(.#) associated
with .
Ed |7

con\(.”) = {v(-) | v(t) = ;)\Sus(t), Zl)\sz 1,
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whereAs > 0, us() € &, s=1,...,|.|}. From the definition of¥ we conclude
that the convex set co’) is closed and bounded. Using (1.4), we also can give the
alternative characterization: cany’) = conv.#1) X ... x conv(-%p), where cony.#)

is a convex hull of% k= 1,...,m. Since conyQX) = [q(lk),q,(\'ﬁ], we have
conv(yk) = {v(-) | v(t)

ZI o0, (O o) € [q(lk),qﬁ'ﬂ‘i];ji e Z[1,M; t% e T4,

Roughly speaking corfy”’) contains all the piecewise constant functiofs such that

the constant valug®(t) belongs to the intervaiq(lk),q,(\',fz] forallt € [t*,,t%). Letus
note that in contrast to the initial set, the corresponding convex hull cqn¥) is an
infinite dimensional space. Using the above convex conshruove can formulate the

following auxiliary OCP

minimizeJ(u(-))

(3.2) subject tau(-) € conu(.7).

The problem (3.2) formulated above is in fact a simple comedxation of the initial
OCP (1.6). We will study this problem and use it for a congtvegmumerical treatment
of (1.6). Let us firstly formulate the following key propenythe auxiliary OCP (3.2).

Theorem 3.3 The cost functional 3conu.¥’) — R

) = 5 [ QO]+ (RO, U] d+ (@) x()

is convex and the auxiliaf@CP (3.2)constitutes a convex optimization problem in the
Hilbert spacel.’[to,ts; R™].

Proof. Evidently, cony.#) is a bounded closed and convex subset.&fo,ts; R™).
The cost functional(-) is in fact a sum of two functionals:

I(u(-)) = Ja(u()) + o (u(-), I(u()) = % t:
1 [t

R(u() =5 . (G*J(tf) X(tr)).

R(t)u(t), u(t))]dt,

(Q()x“(t),x(t))]dt+ = 5

The first one, namely, the functiondl(-) is convex (recall that its Hessian is positive
definite matrix). Moreover)y(-) is a composition of a convex (quadratic) functional of
x4(+), wherex!!(-) is an affine mapping with respectd¢ ) (see (3.1)). Applying Lemma
3.1, we now easily deduce the convexitylef-). Since the sum of two convex functions
is convex, we obtain the desired convexity result¥on. The proof is completed. =

As we can see, (3.2) is a convex relaxation of the initial OCB)( The proved
convexity of OCP (3.2) makes it possible to apply the poweniumerical convex
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programming approaches to this auxiliary optimizationigea. In this paper, we
use a variant of the projected gradient method for a conereteerical treatment of
(3.2). Note that under the basic assumptions introduceeatié the following map-
ping xY(t) : L2[to, ts;R™M — R" is Fréchet differentiable for evetyc [to,t;] (see [17,
23]). Therefore, the quadratic costs functiodé&l) in (3.2) is also Fréchet differen-
tiable. We refer to [23, 29] for the corresponding diffeiabtlity concept. Assume
u*(-) € conV.¥) is an optimal solution of (3.2). The existence of an optinmgiut
u*(-) is guaranteed in the convex problem (3.2) (see e.g., [33))x'B) we next de-
note the corresponding optimal trajectory (solution) afijlgenerated by*(-). The
projected gradient method for problem (3.2) can now be esgme as follows:

(3.3) U1(+) = Peonv.o) U (1) —anBI(ui(+))]

where Z¢qny ) IS the operator of projection on to convex set cor) and {a,} is
a sequence of step sizes. The conventional projection petg,, ) is defined as
usual:

Pcomi7)(U()) = ANy coon ) (IVC) = UC) Lz m))

Recall that the projected gradient iterations (3.3) geresiaminimizing sequence for
the convex optimization problem (3.2). Some useful mathemléy exact convergence
theorems for iterations (3.3) can be found in [11], [24],]]337]. We also refer to [9],
[10], [19] for the related results. In the context of OCP &@ad method (3.3) the basic
convergence result from [33], [37] can be reformulated #ev.

Theorem 3.4 Assume that all the hypotheses fr@action are satisfied. Consider
a sequence of control functions generated(8y8). Then there exists an admissible
initial data (u°(-),x°(+)) and a sequence of the step-siZes} such that{u(-)} is a
minimizing sequence f@8.2), i.e.,lim|_, J(u(-) = J(u*(-)).

The proposed gradient-type method (3.3) provides a basithécomputational
approach to (3.2). Using an optimal solutiaf(-) € con.’) we next need to de-
termine a suitable approximation for a solution to the ordiOCP (1.1). In the next
sections we propose a constructive numerical proceduthifopurpose.

4. On the controllability condition for the linear system with a switched control
structure

The study of OCPs with piecewise constant controls alsolvegoa question of the
general interest. Consider the initial dynamic system)(determined on the given set
of admissible controls” and reformulate the classical controllability questiosmas
ciated with the specific control set of piecewise constapais: system (1.1) ot is
said to be controllable if for any initial stat€ty) and any final stat&(t; ), there exist
an admissible functiomn(-) € . that transferx(tp) to x(t¢) in finite time. It is ne-
cessary to stress, that there are some (expectable) exaaipien-controllable linear
system involving the piecewise constant controls. In caotiae with this observation
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we formulate here a simple controllability criterion foretspecific case of constant
system/control matrice&(t) = A, B(t) = B and unified switching timels, = N Tk =T
forallk=1,....m.

Theorem 4.1 Consider the stationary variant of the linear systéhil) for u(-) € .
and assumeN=N, TK=T, k=1,...,m. Let

and assume that

i1 1
/ eATdrBBT/ eATTdr}  teT.
i—1 [t

|t i—1

(4.1) —BT /tti e A TdrW(N) L (x(to) —e‘Atfx(tf)) cqQ,

i—1

whereQ := Q! x ... x Q™. Then systerfil.1)is controllable if and only if matrix VWN)
IS non-singular.

Proof. LetW(N) be non-singular. Then
tt
x(tr) = Mix(to) + [ AUDBy(T)dr,
to

or equivalently

(4.2) X(ts) = e

X(to) + S [" e u
0 izl/ti_le drBu |,

whereu' € R™ is_ a constant vector associated with the intefyah,t;). The result-
ing input valueu' such thatu(t) = u' for t € [ti_1,t) andx(tp), X(tf) belongs to the
corresponding trajectory of (1.1) generatedufy) is given by

u=-B' /tti e A TdTW(N) L (x(to) —e*Atfx(tf)> :

i—1

From (4.1) it followsu' € Q. Substituting the obtained expression in (4.2), we next
obtain
X(tr) = € [x(to) —W(N)W(N)~*(x(to) — e A"x(tr))] = X(tr).

We conclude that the given system is controllable underepiese constant inputs.

Let now the initial system (1.1) be controllable by piecevionstant controls
from .. Assume that the symmetric math(N) is not a (strictly) positive definite
matrix. This hypothesis implies the existence of a nontivectorv € R" such that
vIW(N)v =0, or equivalently:

N ti in N i
oszz{/ eMaree’ | eATTdT}VZ > IV [ etams2
i= ti—1 ti—1 i= ti—1
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The last fact evidently implies the following fi e ATdTB =0Vi = 1,...,N. Since
the controllability of the system (1.1) far(-) € .# is assumed, there exist a sequence
of values{u'} such that the statgty) = v can be transferred intqt;) = 0. Therefore,
we deduce the next consequence

v+§l (/tit_ile—”dr) Bd] .

Evidently, (4.3) holds if and only if

N
(4.4) 0= v+_; (

We now multiply (4.4) bw"

N ti .
0=vlv+ ZlvT </ e‘ATdr) BU =v'v
i= t—1

and obtain the contradiction with the non-triviality hypesisv # 0. ThereforeW(N)
is a positive definite symmetric matrix and the existencéefinverséV(N)~! follows
immediately. The proof is completed. .

(4.3) 0= e

£ .
/ eATdr) BU.
i1

Note that Theorem 4.1 makes it possible to establish theéemde of an opti-
mal solution to the restricted OCP of the type (1.6) with #ddal terminal constraint
X(tf) = X¢, wherex; € R" is a prescribed final state. We refer to [21], [44] for the ¢las
sic result and for the corresponding regularity conditiorsome classes of constrained
OCPs.

5. A relaxation based numerical method for theinitial optimal control problem

Theorem 3.4 and the classic gradient-type iterations (8@jide an analytic basis for
a consistent computational approach to the initial OCP)(Récall that in contrast to
the relaxed optimization problem (3.2) the original OCR)oes not possesses any
convexity property. However, the simple relaxed OCP (3&2) loe effectively used for
an approximative numerical treatment of the original peoibl(1.6). Let us introduce
the formal Hamiltonian associated with problems (1.6) &ha)(

1
H (t7X7 u, p) = <p7A(t>X+ B(t)u> - é ((Q(t>Xt7X> + <R(t)u7 U>) :
wherep € R" is the adjoint variable. By(*) € . we now denote an optimal solution
to the initial OCP (1.6). Using the explicit representatajrthe gradientJ(u(+)) in
OCPs with ordinary differential equations (see e.g., [8], [20], [33], [38], [42]), we
can propose a conceptual computational scheme for (1.6).
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Conceptual Algorithm 1

(0) Set the initial condition for the iterative schemegy () = ﬁcon\(y)(uom(-)),
where @P(.) is the optimal control inpu(1.3) from the classid.Q problem.
Calculate the corresponding trajectory X-) of (1.1)and put the iterations index
| :=0.

(1) CalculateJ(ugy)(-) as(see [3], [4], [7], [33], [42])

() 1) = ~ KOO L0OPO) ey o) 1 Rty

where the adjoint variable (p) is a solution to the usual boundary value problem

IH (t, Xy (1), ugy(t), p)
ox

p(t) = —
p(tr) = —Gx)(tr).

= —AT(t)p(t) + Q(t)x()(t),

(2) Calculate the projection of {4(-) — a,EJ(ug(-)) on the conveXrelaxed re-
striction setcon\(.”’) and determinel . 1)(-) := Peony.o) (U (+))-

(3) Evaluate thgl + 1) iteration of the control function given by components

W, )= o O3 W= 1m
where:
o, & <d
Gy =1y, A <q <y i=L..N
A G, <Gy

k
. 1
and (ik) e QK Vvj=1,..., M, o=|('|‘) = —j;f'_llf(:‘))
(4) Calculate the differencel(u,.1)()) —JI(ug(+))]. If it is less than a prescribed
accuracye > 0, then we put () = u;11)(+) (@an approximating optimal solution
to (3.2))andStop Else, update the iteration register and goStep (1)

(t)dt, A =1t —tj_1.

(5) Using the evaluated functiori (1) the approximating optimal contral(-) € .7
can finally be calculated by components

(5.1) at (. le ®a% vk=1,...m
|l|

wheredf := Argmin, o |V — 5||<I|()+1\ Solve(1.1) with the obtained control input
0(-) € .« and obtain the approximating optimal trajectaky). Stop
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Using Theorem 3.4 and the continuity property of the obyectiinctional one can
establish the convergence of the proposed Conceptualigigod. Note that this type
of convergence is determined as a "convergence in fundtioha put it another way,
the control sequencéu(-)} generated by Steps (0)-(4) of the above Algorithm is a
minimizing sequence (see Theorem 3.4). By implementaimhtaking into consider-
ation the continuity of the objective functional, we finatign establish the convergence
property ("in functional”) of the resulting sequenemék)(-)}, k=1,...,mobtained in
Step (5) of Algorithm.

We now illustrate the effectiveness of the proposed Cone@tlgorithm 1 and
consider two simple examples.

Example 5.1 Consider the following linear system

X(t) = [ 28; } _ l )i2><<§)(t)+u(t) } te[0,5], x(0) = (1,—1)T

associated with the quadratic cost functional

1 /5
() = [ 040 +106(0) + (D) dt,

Let Q@ ={0,0.25,0.5,0.75,1,1.25,1.5,...,5} be the given finite set of constant control
values. Assumél, = 10, k=1 and the s€T is not given a priory. The classic LQ op-
timal controlu®P!(-) can be here easily calculated. Applying the proposed Cdnakp

Algorithm 1, we now compute the approximating optimal cohér(-) (see Fig. 2).

3 T T T T

2.5 u(t) .

! \ Sl
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Figure 2: Control inputs®P!(t) andut)

The associated trajectory-J is indicated on Fig. 3. The calculated cost in pro-
blem (1.6) associated with our example was evaluated asafsilJ(0(-)) = 7.5362.
Evidently, this value is higher in comparison with the oglmost in the conventional
(non-restricted) LQ problem.
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1
0.8 N\ 1
0.6 N i
0.4 o () -

0.2+ T e - i .
T - - S—10

O 1 1 | | 1 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Figure 3: First components of the optimal trajectovi%%(t) andx (t)

Example 5.2 We now consider (1.1) fon=3

% (t) Xo(t)
(1) = | %(t) | = | —0.875(t) — 20xs(t) |,
%3(t) —50x3(t) + 50u(t)

x(0) = (1,0, _1)T7

wheret € [0,1]. The quadratic cost functional in problem (1.6) associatét our
example has been given in the following concrete form

1 1
) =5 [ (B0 80+ 280 + (1) d,
We next assume
Q={-5,-45,-4,-35,...,354,455} Ny=3, k=1

The setT is not given a priory. Application of the proposed numerisalution pro-
cedure, namely, of Conceptual Algorithm 1 leads to the cdatmnal results for the
quasi-optimal controu(*) and the corresponding trajectoxy-)). These numerically
optimal functions are indicated on Fig. 4 and Fig. 5, respelst

3

2.5 7

0.5

_05 1 1 1 1 1 | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: Control inputs®P!(t) anduft)
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1.2 T T

0.8
0.6+ h | — i

0.4 CTmel

02 1 1 1 1 1 | | 77\
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: First components of the trajectorj«ggt(t) andx (t)

The calculated cost associated with the initial OCP (1.@hig; example was eva-
luated as followsJ(G(-)) = 2.0237. As mentioned above, the calculated optimal cost
here has a higher value in comparison with the optimal costiéenconventional LQ
problem. This fact is a simple consequence of the evidetision.” C L2[to, ts;R™]
that constitutes the admissible control set restrictionhe constrained LQ problem
under consideration.

Finally, note that implementations of the Conceptual Aidgon 1 presented in
Examples 4.1 and 4.2, was carried out, using the standardBTpackages and the
Authors programs.

6. Conclusion

In this contribution, we have developed a new implementahbl®erical approach to
a constrained LQ-type OCP. This computational method isdhas a simple convex
relaxation procedure applied to the initial problem in camation with the conventional
gradient-based numerical technique. We firstly rewriteathginal (non-convex) OCP
in a relaxed form and establish the convexity properties. néf use the obtained
convex relaxation as an auxiliary tool in a concrete sotusicheme for the initial OCP.
The convex structure of the auxiliary OCP makes it possibkake into consideration
diverse powerful computational algorithms from the claggsinvex programming. Let
us note that various variants of the basic gradient methardgty, Armijo-type gradient
schemes can be applied to the obtained relaxed OCP (se&][1P]} [10], [11], [19],
[20], [42]). In the presented paper we also discussed thergecontrollability question
associated with the stationary variant of the constraimeghl dynamic systems under
consideration. The general controllability concept foekr systems of the type (1.1)
involves a full theoretic justification of the OCP under cdesation and finally, makes
it possible to establish the applicability of the gradiergthod in the presented form
(see [10], [11] for detalils).

It is common knowledge that modern numerical algorithmsniyaiise specific
non-equidistant discretizations with the aim to increasesffectiveness of the resulting



ON THE LINEAR QUADRATIC DYNAMIC OPTIMIZATION PROBLEMS ... 233

algorithm. The specific type of the control functions disadin our contribution is
motivated by the initially given physical nature of the dasf controlled processes
under consideration. Note that there are various formalaisothat involve a non-
equally spaced inputs grid. The necessary investigatidhesfe types of models and
the corresponding engineering applications (mainly frow thodern communication
science) constitutes an interesting subject of a next ianiton. Our paper focuses on
equally-spaced controlled models since they are simplan&atyse while capturing the
salient features of the newly elaborated control method reegse. Let us also note
that the presented Conceptual Algorithm 1 need to be arthliyseomparison with
some powerful numerical schemes. For example, one needsmpare it with the
various implementations of the direct search (see e.gd}, [242)).

Finally, note that the theoretical and computational apphes presented in this
paper can be applied to some alternative classes of camesr&CPs. Let us also
note that the proposed numerical algorithm can also comsté constructive tool of
some general numerical techniques based on discretigaimhlinear approximations
associated with the common types of non-linear OCPs.
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