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SUMMARY

This paper is devoted to general optimal control problems (OCPs) associated with a family of nonlin-
ear continuous-time switched systems in the presence of some specific control constraints. The stepwise
(fixed-level type) control restrictions we consider constitute a common class of admissible controls in many
real-world engineering systems. Moreover, these control restrictions can also be interpreted as a result of a
quantization procedure appglied to the inputs of a conventional dynamic system. We study control systems
with a priori given time-driven switching mechanism in the presence of a quadratic cost functional. Our
aim is to develop a practically implementable control algorithm that makes it possible to calculate approx-
imating solutions for the class of OCPs under consideration. The paper presents a newly elaborated linear
quadratic-type optimal control scheme and also contains illustrative numerical examples. Copyright © 2015
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Optimization of sophisticated constrained dynamic models is, nowadays, a mature and relative sim-
ple design methodology for the practical development of several types of modern controllers (see,
e.g., [1–19]). It is readily appreciated that the real-world control systems have a corresponding
set of constraints; for example, inputs always have maximum and minimum values, and states are
usually required to lie within certain ranges. Of course, one could proceed by ignoring these con-
straints and hope that no serious consequences result from this approach. This simple procedure
may be sufficient at times. On the other hand, it is generally true that optimal levels of a suitable
performance are associated with operating on, or near, constraint boundaries (see [9, 20–27] and
the references therein). Thus, a control engineer really cannot ignore constraints without incurring a
performance penalty.

Recently, the problem of effective numerical methods for constrained systems optimization has
attracted a lot of attention, thus both theoretical results and applications were developed (see, e.g.,
[3, 4, 6, 8, 14, 19, 21, 27–30]). The handling constraints in practical systems design is an important
issue in most, if not all, real world applications. The main aim of our contribution is to elaborate
a consistent computational algorithm for a general optimal control problem (OCP) in the presence
of piecewise constant control inputs. We study a class of OCPs with quadratic costs functionals.
The given structure of the admissible control function under consideration is mainly motivated by
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some important practical control applications (see [8, 21, 30–32]) as well as by the wide applicable
modern quantization procedure associated with the original system dynamics (see, e.g., [33–35]).
Note that some classes of optimal control with piecewise constraints was studied earlier. We refer to
[7, 36] for the interesting self-closed results on the piecewise linear dynamics. The formal treatment
there was based on the backward solutions of the Riccati differential equations, and the optimum
had to be recomputed for each new final state. Computation of nonlinear gains using the Hamilton–
Jacobi–Bellman equation and the convex optimization techniques has also been performed in [36].
On the other hand, the aforementioned optimization approaches to the linear constrained systems are
not sufficiently advanced to the general types of OCPs governed by nonlinear switched systems. In
our paper, we propose a new analytic and numerical methods based on a combination of the classic
convex relaxation scheme and the first-order projection approach. And, it should be noted already
at this point that a computational algorithm we propose can be effectively used in a concrete control
synthesis phase associated with a practical engineering design of a switched dynamic system.

Recall that the general switched systems constitute a class of models where two types of dynamics
are present, continuous and discrete event dynamic behavior (see, e.g., [2, 37, 38]). In order to
understand how these systems can be operated efficiently, both aspects of the actual dynamics have
to be considered and taken into account during the optimal control design procedure. The nonlinear
systems we study can be interpreted as a particular family of the general switched systems with the
time-driven location transitions. We refer to [5, 19, 37–39] for the basic concepts and some technical
details of the generic switched systems theory.

The remainder of our paper is organized as follows: Section 2 contains the problem statement
and some preliminary theoretic facts. Section 3 deals with some specific relaxation schemes for
the initial OCP. Moreover, we also apply a projected gradient method for the concrete numerical
treatment of the relaxed and initial OCPs. In Section 4, we study the specific implementability
conditions associated with the gradient-based algorithm we propose. Section 5 is devoted to the
computational aspects of the proposed numerical scheme and also contains some computational
examples. Section 5 summarizes our paper.

2. PROBLEM FORMULATION AND SOME PRELIMINARY FACTS

Consider the following nonlinear system with a switched control structure

Px.t/ D f .t; x.t/; u.t//; t 2 Œt0; tf �;

x.t0/ D x0;
(1)

where f .�; �; u/ is a Caratheodory function (see [25, 40] for theoretic details), that is, a function
measurable in t and continuous in x. We next assume that f .t; x; �/ is a continuously differentiable
function. Let us specify the set of admissible control inputs of switched nature. In this paper, we
study the piecewise-constant control functions associated with the dynamic system (1). For each
component uk.�/ of a feasible control input u.�/ D Œu1.�/; : : : ; um.�/�

T , we introduce a finite set of
bounded values that represent admissible fixed-levels controls mentioned earlier:

Q.k/ WD
°
q
.k/
j 2 R; j D 1; : : : ;Mk

±
; Mk 2 N; k D 1; : : : ; m:

In general, all the given sets Q.k/ are different (contain different levels) and have various numbers
of elements. We assume that each Q.k/ possesses the following strict order property

q
.k/
1 < q

.k/
2 < : : : < q

.k/
Mk
:

Let us now introduce the set of switching times associated with an admissible control function

T .k/ WD
°
t
.k/
i 2 RC; i D 0; : : : ; Nk

±
; Nk 2 N; k D 1; : : : ; m:

All the introduced sets T .k/ are determined for the corresponding control components uk.�/, k D
1; : : : ; m, where RC denotes a non-negative real semi-axis. Let t .k/0 < t

.k/
1 < : : : < t

.k/
Nk

. For each
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Figure 1. The admissible switched-type control inputs u.�/.

T .k/, we determine t .1/N1 D : : : D t
.m/
Nm
D tf . Using the feasible control level sets Q.k/ defined

earlier and the switching times T .k/, the set of admissible control functions S can now be specified
as the Cartesian product

S D S1 � : : : �Sm; (2)

where Sk ; k D 1; : : : ; m is defined as follows:

Sk WD

8<
:v W Œt0; tf �! Rjv.t/ D

NkX
iD1

I
Œt
.k/

i�1
;t
.k/

i
/
.t/q

.k/
ji

9=
; ; q.k/ji 2 Q.k/; ji 2 ZŒ1;Mk�; t

.k/
i 2 T .k/:

By ZŒ1;Mk�, we denote here the set of all integers from the interval Œ1;Mk� and I
Œt
.k/

i�1
;t
.k/

i
/
.t/ is

a characteristic function of the interval Œt .k/i�1; t
.k/
i /. Evidently, the set of admissible control inputs

S can be qualitatively interpreted as the set of all functions u W Œt0; tf � ! Rm, such that each
component uk.�/ of u.�/ attains a constant level value q.k/ji 2 Q.k/ for t 2 Œt .k/i�1; t

.k/
i /. Moreover, the

level changes of the control components occur only at the prescribed time instants t .k/i 2 T .k/; i D
1; : : : ; Nk .

Recall that the general existence/uniqueness theory for nonlinear ordinary differential equations
implies that for every u.�/ 2 S � L2Œt0; tf IR

m�, the initial value problem (1) has a unique abso-
lutely continuous solution x.�/. Here, L2¹Œt0; tf �IRmº denotes the Lebesgue space of all square
integrable functions u W Œt0; tf � ! Rm. We refer to [22, 25, 26, 40] for necessary existence and
uniqueness results.

Similarly to the classic LQ (linear quadratic) optimization theory, we now introduce a quadratic
cost functional associated with the dynamic system (1)

J.u.�// D
1

2

Z tf

t0

.hQ.t/x.t/; x.t/i C hR.t/u.t/; u.t/i/ dt C
1

2
hGx.tf /; x.tf /i;

where G 2 Rn�n is a symmetric positive defined matrix and Q.�/; R.�/ are integrable matrix-
functions that satisfy standard symmetry and positivity hypothesis Q.t/ > 0; R.t/ > ıI; ı > 0

for all t 2 Œt0; tf �. Recall that in the case of a linear variant of system (1) and in the absence of
the (fixed-levels) control restrictions, we obtain the standard LQ-type OCP. In this special case, the
optimization problem is formally stated in the full space L2Œt0; tf IRm� of square integrable control
functions. In contrast to the classic case, we consider system (1) in combination with the given
specific piecewise-constant control inputs u.�/ (Figure 1).

The control signal u.�/ here can only take some prescribed fixed-level values within a finite
feasibility set Q (here, we have Q D ¹�2;�1; 0; 1; 2; 3º) during the time interval Œti�1; ti /; i D
1; : : : ; 10. Moreover, a change of the constant control values can only occur at the specific time
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instants t0; t1; : : : ; tf . The evident combinatorial character of the considered OCP associated with
the continuous-time system (1) can be illustrated by the following simple example.

Example 1
Suppose u.t/ 2 R2 and Q.1/ D ¹0; 1; 2º; Q.2/ D ¹0;�1º. Furthermore, the set of switching times
for each control component is given as follows

T .1/ D ¹0; 0:5; 1º; T .2/ D ¹0; 0:33; 0:66; 1º:

Resulting from the above formal definitions, the set S in (2) has the natural representation S D
S1 �S2, where

S1 D
°
v W Œ0; 1�! Rjv.t/ D IŒ0;0:5/.t/q

.1/
j1
C IŒ0:5;1/.t/q

.1/
j2
; q

.1/
ji
2 Q1

±
;

S2 D
°
w W Œ0; 1�! Rjw.t/ D IŒ0;0:33/.t/q

.2/
j1
C IŒ0:33;0:66/.t/q

.2/
j2
C IŒ0:66;1/.t/q

.2/
j3
; q

.2/
ji
2 Q2

±
:

We evidently haveM1 D 3; M2 D 2; N1 D 2; N2 D 3. The cardinality of the control set S in our
example can be calculated as follows: jS j D 32 � 23 D 72. In other words, we have here 72 feasible
control values.

Note that in general, the cardinality of the set of admissible controls S can be expressed
as follows:

jS j D

mY
kD1

M
Nk
k

Evidently, jS j grows exponentially if Nk increases. Motivated from various engineering appli-
cations, we now can formulate the following constrained OCP associated with the dynamic
system (1)

minimize J.u.�//

subject to .1/; u.�/ 2 S ;
(3)

where J.�/ is the quadratic cost functional introduced earlier. Note that S constitutes a non-empty
subset of the real Hilbert space L2Œt0; tf IR

m�. Because of the highly restrictive nonlinear control
constraint u.�/ 2 S , the obtained optimization problem (3) can not be solved by a direct application
of the classic Pontryagin Maximun Principle. Recall that the conventional versions of the celebrated
Maximum Principle make it possible to specify an optimal solution in a full (non-restricted) space
L2Œt0; tf IR

m� of square integrable control functions. Otherwise, a possible computational treatment
of the specific variants of the Maximum Principle for the restricted OCPs constitutes a numerically
sophisticated task (see, e.g., [9, 20, 22]). Motivated from that fact, our main contribution is with a
development of a relative simple and consistent computational procedure for the generic OCP (3).
We use a novel relaxation technique in combination with a variant of the gradient-type algorithm
for this purpose. We first obtain an optimal solution of the weakly relaxed OCP. Next, we use it in a
concrete constructive numerical solution procedure for the original problem (3).

3. THE GRADIENT-BASED COMPUTATIONAL APPROACH TO RELAXED OPTIMAL
CONTROL PROBLEMS

In this section, we propose a constructive computational scheme for the OCP (3) formulated earlier.
The method we consider incorporates a simple relaxed OCPs associated with the initial problem.
‘Relaxing a problem’ has various meanings in mathematics, depending on the areas where it is
defined, depending also on what one relaxes (a functional, the underlying space, etc.). In the context
of an OCP of the type (3), when dealing with the minimization of J.u.�//, the most general way
of looking at relaxation is to consider the lower-semicontinuous hull of J.u.�// determined on a
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convexification of the set of admissible controls in (3). We refer to [41–47] for some modern
relaxation procedures in optimal control.

First, let us note that under basic assumptions from Section 2, the following control-state mapping

xu.t/ W L2¹Œt0; tf �IR
mº ! Rn

is Fréchet differentiable for every t 2 Œt0; tf �. Therefore, the quadratic cost functional J.�/ in (3) is
also Fréchet differentiable. We refer to [20, 22, 24, 48] for the classic differentiability concepts. The
original set S of admissible controls in (3) is a non-convex set. This is an immediate consequence
of the combinatorial structure of S given by (2). Motivated from this fact, we next consider the
following polytope

conv.S / WD

8<
:v.�/jv.t/ D

jS jX
sD1

�sus.t/;

jS jX
sD1

�s D 1; �s > 0; us.�/ 2 S ; s D 1; : : : ; jS j

9=
; :

From the definition of S , we conclude that the convex set conv.S / is closed and bounded. We can
also give an easy alternative characterization of conv.S /:

conv.S / D conv.S1/ � : : : � conv.Sm/;

where conv.Sk/ is a convex hull of the partial set Sk; k D 1; : : : ; m. Because conv.Qk/ �h
q
.k/
1 ; q

.k/
Mk

i
, we obtain

conv.Sk/ WD

8<
:v.�/jv.t/D

NkX
iD1

Ih
t
.k/

i�1
;t
.k/

i

�.t/q.k/ji ; q.k/ji 2
h
q
.k/
1 ; q

.k/
Mk

i
; ji 2 ZŒ1;Mk�; t

.k/
i 2 T .k/

9=
; :

Roughly speaking, conv.S / contains all the piecewise constant functions u.�/ such that the corre-
sponding constant value uk.t/ belongs to the interval

h
q
.k/
1 ; q

.k/
Mk

i
for all t 2

h
t
.k/
i�1; t

.k/
i

�
. Let us

note that in contrast to the initially considered control set S , the convex hull conv.S / introduced
earlier is an infinite dimensional space.

Let us consider the construction of the closed convex hull co¹J.u.�//º of the objective J.u.�//.
We refer to [49] for the exact concept of co¹J.u.�//º. Note that biconjugate J ��.u.�// of J.u.�//
(determined on L2¹Œt0; tf �IR

mº) is equal to co¹J.u.�//º (see [49] for the formal proof). For a given
objective functional J.�/; getting its closed convex hull is a complicated, but at the same time fas-
cinating, operation. Note that the objective functional J.u.�// in (3) is a composite functional. This
fact can be easily stated taking into account the mapping xu.t/ considered at the beginning of
this section. This situation (a composite cost functional) is a typical attribute of the general opti-
mal control processes governed by ordinary differential equations. The numerical determination
of co¹J.u.�//º is not discussed in our paper. Let us note that a novel computational method for
a practical constructive characterization of co¹J.u.�//º is proposed in [44, 46, 47]. This approach
constitutes a specific generalization of the celebrated McCormic relaxation scheme in the case of a
composite functional associated with an OCP. The closed convexification of such a functional can
be realized by solving an ‘auxiliary control system’ (see [46] for details).

Using the aforementioned convex constructions of the objective functional and of the convexified
set of admissible control functions, we are now ready to formulate the (auxiliary) relaxed OCP:

minimize co¹J.u.�//º

subject to u.�/ 2 conv.S /
(4)

The problem (4) is in fact a simple relaxation of the initial OCP (3). The optimization procedure
in (4) is determined over a convex set of admissible control inputs conv.S /. We will study this
problem and consider it for a constructive numerical treatment of the initial problem (3). Note that
OCP (4) constitutes a convex minimization problem in a real Hilbert space. We refer to [1, 5, 27]

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1035–1055
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for the general theory of convex OCPs with ordinary differential equations. The approximability
property of the fully relaxed OCP (4) can be expressed as follows ([49]):

inf
u.�/2L2¹Œt0;tf �IRmº

J.u.�// D inf
u.�/2L2¹Œt0;tf �IRmº

co¹J.u.�//:

This is simply a consequence of the following simple facts:

inf
u.�/2L2¹Œt0;tf �IRmº

J.u.�// D �J �.0/;

J �.u.�// D Nco¹J.u.�//º;

where J �.u.�// is a conjugate of J.u.�//. Let us now introduce the auxiliary variable xnC1 and the
extended state vector Qx WD .xT ; xnC1/T such that

PxnC1.t/ D
1

2
.hQ.t/x.t/; x.t/i C hR.t/u.t/; u.t/i/; t 2 Œt0; tf �;

xnC1.t0/ WD 0:

The given OCPs (4) can now be equivalently rewritten using the modified terminal costs functional

J.u.�// D �. Qx.tf // WD xnC1.tf /C
1

2
hGx.tf /; x.tf /i: (5)

The formal Hamiltonian associated with (4) for the given dynamic system (1) extended by the
aforementioned additional differential equation has the following form:

H.t; x; u; p; pnC1/ D hp; f .t; x; u/i C
1

2
pnC1 .hQ.t/x; xi C hR.t/u; ui/ ; (6)

where p 2 Rn; pnC1 2 R are adjoint variables. Assume that pnC1 ¤ 0. We next use the following
notation Qp WD .pT ; pnC1/

T . Note that the Hamiltonian introduced earlier does not depend on the
auxiliary state variable xnC1.

Assume that u�.�/ 2 conv.S / � L2¹Œt0; tf �IR
mº is an optimal solution of (4). By x�.�/, we

denote the corresponding optimal trajectory (solution) of (1) generated by u�.�/. Because J.u.�// is
a continuously Fréchet differentiable functional, the closed convex hull co¹J.u.�//º is also Fréchet
differentiable (see [49, 50] for the formal proof). The convex structure of (4) makes it possible to
apply powerful numerical approaches from convex programming [24, 49]. In this paper, we use
a variant of the projected gradient method in combination with the celebrated multiple shooting
method (see, e.g., [15, 17]) for the concrete numerical treatment of (4). The projected gradient
method for (4) can now be expressed as follows:

u.lC1/.�/ D �lPconv.S /

�
u.l/.�/ � ˛lrco¹J.u.l/.�//º

�
C .1 � �l/u.l/.�/; l 2 N; (7)

where Pconv.S / is the operator of projection on the convex set conv.S /; ¹˛lº and ¹�lº are sequences
of some suitable step sizes associated with the method. By r, we denote here the Fréchet derivative
of the convexified functional Nco¹J.u.l/.�//º. The generic projection operator Pconv.S / is defined
as follows:

Pconv.S /Œu.�/� WD Arg min
v.�/2conv.S /

�
k v.�/ � u.�/ kL2¹Œt0;tf �IRmº

�
:

Note that the projection here is determined in the real Hilbert space L2¹Œt0; tf �IR
mº.

Several choices are possible for the step sizes ˛l and �l . Let us describe briefly the main strategies
of the step sizes selection.

� The constant step size: �l D 1 and ˛l D ˛ > 0 for all l 2 N.
� Armijo line search along the boundary of conv.S /: �l D 1, for all l 2 N and ˛l is

determined by

˛l WD N̨�
�.l/

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1035–1055
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for some N̨ > 0; �; ı 2 .0; 1/, where

�.l/ WD min¹� 2 Njco¹J.Pconv.S /

�
u.l;s/.�/

�
/º � co¹J.u.l/.�//º�

ıhrco¹J.u.l/.�//º; u.l/.�/ �Pconv.S /Œu.l;s/.�/�iº

and

u.l;s/.�/ WD u.l/.�/ � N̨�
�rco¹J.u.l/.�//º:

� Armijo line search along the feasible direction: ¹˛lº � Œ N̨ ; Ǫ � for some N̨ < Ǫ < 1 and �l is
deftermined by the following Armijo rule �l WD ��.l/, for some �; ı 2 .0; 1/, where

�.l/ WD min¹� 2 Njco¹J.u.l;s/.�//º 6 co¹J.u.l/.�//º
� ��ıhrco¹J.u.l/.�//º; u.l/.�/ �Pconv.S /Œwl.�/�iº

and u.l;s/.�/ WD ��Pconv.S /Œwl.�/�C .1 � �
�/u.l/.�/.

� Exogenous step size before projecting: �l D 1 for all l 2 N and ˛l given by

˛l WD
ıl

jjrco¹J.u.l/.�//ºjjL2¹Œt0;tf �IRmº
;

1X
lD0

ıl D1;

1X
lD0

ı2l <1:

Recall that under some non-restrictive assumptions, the projected gradient iterations (7) generates
a minimizing sequence for the relaxed optimization problem (4). Many useful and mathematically
exact convergence theorems for the gradient-iterations (7) can be found in [14, 24, 51]. A compre-
hensive discussion of the weakly and strongly convergent variants of the basic gradient method can
be found in [48, 52]. We also refer to [3–5, 16, 27, 28, 53] for some specific convergence results
obtained for the gradient-based schemes applied to hybrid and switched OCPs.

First strategy presented earlier was analyzed in [51], and its weak convergence was proved under
Lipschitz continuity of rco¹J.�/º. The main difficulty here is the necessity of taking ˛ 2 .0; 2=L/,
where L is the Lipschitz constant for rco¹J.�/º (see also [48]).

Note that the second gradient-based strategy requires one projection onto conv.S / for each step
of the inner loop resulting from the Armijo line search. Therefore, many projections might be per-
formed for each iteration l , making second strategy inefficient when the projection onto the set
conv.S / cannot be computed explicitly. On the other hand, third strategy demands only one projec-
tion for each outer step, that is, for each iteration l . Second and third optimization strategies from the
variants presented earlier are the constrained versions of the line search proposed in [54] for solving
unconstrained optimization problems. Under existence of minimizers and some convexity assump-
tions for the minimization problem under consideration, it is possible to prove, for the second and
third strategies, convergence of the whole sequence to a solution in finite dimensional spaces ([55]).

Last strategy from the approaches presented earlier, as its counterpart in the unconstrained case,
fails to be a descent method. Furthermore, it is easy to show that this approach implies

jju.lC1/.�/ � u.l/.�/jj 6 ıl

for all l , with ıl given earlier. This reveals that convergence of the sequence of points generated
by this exogenous approach can be very slow (stepsizes are small). Note that the second and third
strategies allow for occasionally long step sizes because both strategies employ all information
available at each l-iteration. Moreover, the last strategy does not take into account the values of the
objective functional for determining the ‘best’ step sizes. These characteristics, in general, entail
poor computational performance. The basic convergence results for the obtained approximating
sequence ¹u.l/.�/º can be stated as follows.

Theorem 1
Assume that all hypotheses from Section 2 are satisfied and pnC1 ¤ 0. Consider a sequence ¹u.l/.�/º
generated by method (7) with a constant step size ˛. Then, for an admissible initial point u.0/.�/ 2
conv.S /; the resulting sequence

®
u.l/.�/

¯
is a minimizing sequence for (4), that is,

Copyright © 2015 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2016; 37:1035–1055
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lim
l!1

co¹J.u.l/.�//º D co¹J.u
�.�//º:

Additionally, assume that @f .t; x; u/=@u is Lipschitz continuous with respect to .x; u/:����@f .t; x1; u1/@u
�
@f .t; x2; u2/

@u

���� 6 Lxjjx1 � x2jj C Lujju1 � u2jj;
and ˛ 2 .0; 2=L/, where

L WD .Lxl C Lu/C �; l WD max
t2Œt0;tf �

¹lt .t/º; � WD max
t2Œt0;tf �

¹�Rmax.t/º;

and �Rmax.t/ is the maximal eigenvalue of the matrix R.t/. Here, lt .t/ are Lipschitz constants of the
control-state mapping xu.t/, for t 2 Œt0; tf �. Then ¹u.l/.�/º converges L2¹Œt0; tf �IRmº – weakly to
a solution u�.�/ of (4).

Proof
As mentioned earlier, the convexified cost functional J.�/ in (4) is Frechet differentiable. The prop-
erty of ¹u.l/.�/º to be a minimizing sequence for (4) is an immediate consequence of [24, 48].
Following [1, 2, 5, 27, 56], the reduced gradientrco¹J.�/º of the modified costs functional co¹J.�/º
at u.�/ 2 conv.S / can be computed from the following Hamilton-type boundary value problem

rco¹J.u.�//º.t/ D �
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@u

D �

�
@f .t; x.t/; u.t//

@u

�T
p.t/ �R.t/u.t/pnC1.t/;

d Qp.t/

dt
D �

@H.t; x.t/; u.t/; p.t/; pnC1.t//

@ Qx

D �

 �
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@x

�T
; 0

!T
;

Qp.tf / D
@.co¹�. Qx.tf ///º

@ Qx
D
�
�
	
co¹Gx.tf /º


T
;�1

�T
;

d Qx.t/

dt
D
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@ Qp
;

Qx.t0/ D
	
xT0 ; 0


T
;

(8)

where x.�/ and Qp.�/ are state and adjoint variables associated with an admissible control function
u.�/ 2 conv.S /. The differentiability of xu.t/ implies the Lipschitz continuity of this control-
state mapping on the bounded convex set conv.S /. Because @f .t; x; u/=@u is also assumed to be
Lipschitz continuous and the composition of two Lipschitz continuous mappings possesses the same
property, we next can establish the Lipschitz continuity of the derivativer NcoJ.u.�//.t/ uniformly in
t 2 Œt0; tf �. From (8), we easily deduce pnC1.t/ � �1 for all t 2 Œt0; tf �. Using the explicit expres-
sion for the gradient, namely, the first relation in (8), the Lipschitz constant for r Nco¹J.u.�//º.t/ can
be computed as follows:

L D .Lxl C Lu/C �:

The weak convergence to u�.�/ of the sequence ¹ul.�/º generated by (7) with a constant step size
˛ 2 .0; 2=L/ follows now from the main result [51]. The proof is completed. �

The proposed gradient-type method (7) provides a well-defined numerical basis for the compu-
tational treatment of (4). The concrete calculation of the functional gradient is comprehensively
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discussed in the next section. We use the classic version of the multiple shooting method (see, e.g.,
[15, 17]) and apply it for solving the boundary value problem in (8). Using the obtained optimal
solution u�.�/ 2 conv.S / of the auxiliary convex OCP (4), we can determine a suitable numerical
treatment of the original OCP (3).

From the computational point of view, the fully (globally) convexified OCP (4) is related with
a mathematically sophisticated procedure, namely, with the calculation of a convex envelope of a
composite functional in Hilbert space. Motivating from this fact, we now consider an alternative
relaxation approach for the original optimal control problem (3). This new idea is related to the
‘local convexification’ procedure and to the infimal (prox) convolution

J�.u.�//C
�

2
jju.�/jj2L2¹Œt0;tf �IRmº

determined for the original objective functional J.u.�//. We adapt here the general abstract concepts
from [42, 57] to our concrete OCP (3) studied in the real Hilbert space L2¹Œt0; tf �IR

mº.

Definition 1
We say that J.u.�// is locally para-convex around u.�/ 2 L2¹Œt0; tf �IR

mº if the infimal convolution
J�.u.�// is convex and continuous on a ı-ball Bı.u.�// around u.�/ for some ı > 0 and � > 0.

Note that the infimal convolution J�.u.�// from Definition 1 is a locally convex functional at
u.�/ 2 L2¹Œt0; tf �IR

mº.

Definition 2
We say that J.u.�// is is prox-regular at Ou.�/ 2 L2¹Œt0; tf �IR

mº if there exist � > 0 and r > 0

such that

J.u1.�// > J.u2.�//C hrJ. Ou.�//; u1.�/ � u2.�/iL2¹Œt0;tf �IRmº �
r

2
jju1.�/ � u2.�/jj

2
L2¹Œt0;tf �IRmº

for all u1.�/ from a �-ball B�. Ou.�// around Ou.�/ whenever u2.�/ 2 B�. Ou.�// and

jJ.u1.�// � J. Ou.�//j < �:

In the case of problem (3) with the quadratic cost J.u.�//, we evidently have

J�.u.�// D
1

2

Z tf

t0

.hQ.t/x.t/; x.t/i C h.R.t/C �I/u.t/; u.t/i/ dt C
1

2
hGx.tf /; x.tf /i;

where I is a unit matrix. Consider now the following infimal convolution-based OCP

minimize J�.u.�//

subject to u.�/ 2 conv.S /
(9)

and assume that it possesses an optimal solution uopt
�
.�/. The corresponding optimal trajectory is

denoted by xopt
�
.�/. Similar to the fully relaxed case, we next introduce the auxiliary variable xnC1

as follows

PxnC1.t/ D
1

2
.hQ.t/x.t/; x.t/i C h.R.t/C �I/u.t/; u.t/i/; t 2 Œt0; tf �;

xnC1.t0/ WD 0:

The infimal convolution-based OCPs (9) is now equipped with the objective functional of type (5).
The corresponding Hamiltonian can be written as follows:

H.t; x; u; p; pnC1/ D hp; f .t; x; u/i C
1

2
pnC1 .hQ.t/x; xi C h.R.t/C �I/u; ui/ :

Assume pnC1 ¤ 0. Evidently, (9) constitutes a partial relaxation (convexification) of the initial OCP
(3). Note that in the case � D 0, the auxiliary OCP (9) represents a relaxed variant of the initial OCP
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(3) with an original objective J.u.�// and with the convexified control set. The optimal pair for this
specific problem is denoted by .uopt0 .�/; x

opt
0 .�//.

Recall that under some week assumptions, the prox-regularity of a functional in a Hilbert space
implies para-convexity of the corresponding infimal convolution ([57]). Using this fact, we finally
can prove a local convergence result for the sequence ¹ul.�/º generated by the basic gradient method

u.lC1/.�/ D �lPconv.S /

�
u.l/.�/ � ˛lrJ�.u.l/.�//

�
C .1 � �l/u.l/.�/; l 2 N: (10)

Note that (10) is applied to the infimal convolution-based OCP (9).

Theorem 1
Assume that all hypotheses from Section 2 are satisfied, pnC1 ¤ 0 and uopt0 .�/ 2 int¹conv.S /º.
Consider a sequence ¹u.l/.�/º generated by method (10) with a constant step size ˛. Then there
exists an initial point u.0/.�/ 2 conv.S / such that

lim
�!0

lim
l!1

J�.u.l/.�// D min
conv.S /

J.u.�// D J.u
opt
0 .�//: (11)

Proof
Consider a �-ball B�.uopt0 .�// around the optimal control function uopt0 .�/ and let us estimate the
difference J.u2.�// � J.u1.�// for some u1.�/; u2.�/ 2 B�.uopt0 .�//. First, note that the gradient
rJ.u.�//.�/ in problem (9) with a � 	 0 can be calculated similar to (8)

rJ�.u.�//.t/ D �
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@u
D �

@f .t; x.t/; u.t//

@u

T

p.t/�

.R.t/C �I/u.t/pnC1.t/;

d Qp.t/

dt
D �

@H.t; x.t/; u.t/; p.t/; pnC1.t//

@ Qx
D �

 �
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@x

�T
; 0

!T
;

Qp.tf / D �
@.�. Qx.tf ///

@ Qx
D
�
�
	
Gx.tf /


T
;�1

�T
;

d Qx.t/

dt
D
@H.t; x.t/; u.t/; p.t/; pnC1.t//

@ Qp
;

Qx.t0/ D
	
xT0 ; 0


T
:

(12)
Applying the weak version of the Pontryagin Maximum Principle to OCP (9) for

� D 0; u
opt
0 .�/ 2 int¹conv.S /º;

we next obtain

@H
	
t; x

opt
0 .t/; u

opt
0 .t/; p.t/; pnC1.t/



@u

D 0

([22]). Therefore, ˝
rJ

	
u
opt
0 .�/



; u1.�/ � u2.�/

˛
L2¹Œt0;tf �IRmº

D 0 (13)

for all admissible u1.�/; u2.�/. From the Lipschitz continuity of the control-state mapping xu.�/
and also taking into account the boundedness of the control set conv.S /, we easily deduce the
following inequality

J.u2.�// � J.u1.�// <
r

2
jju1.�/ � u2.�/jj

2
L2¹Œt0;tf �IRmº

: (14)
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here, r > 0 is a suitable constant. The combination of (13) and (14) implies the prox-regularity
property of the functional J.u.�// at uopt0 .�/ (Definition 2). Because J.u.�// is continuous, the prox-
regularity property implies the para-convexity of the infimal convolution J�.u.�// of J.u.�// in a
neighborhood of the optimal solution uopt0 .�/. Using the convergence results for the gradient method
in the case of a locally convex function determined on a convex set ([24, 48]), we conclude that

lim
l!1

J�.u.l/.�// D J�.u
opt

�
.�//: (15)

Using the continuity property of the infimal convolution J�.u.�// and (15), we obtain (11). The
proof is completed. �

As one can see, Theorem 2 establishes the well approximating property of the infimal-based OCP
(9) for the ‘weakly relaxed’ variant of (9) with � D 0. We next use this weak relaxation for a
constructive numerical treatment of the initial OCP (3).

4. REGULARITY CONDITIONS AND REALIZABILITY OF THE
GRADIENT - BASED ALGORITHM

The implementability issue of the proposed gradient-based methods (7) and (10) strongly depends
on the constructive expression for the functional gradients determined as solutions of the boundary
value problems (8) and (12), respectively. On the other side the existence of the nontrivial (absolutely
continuous) adjoint variables

	
pT .�/; pnC1


T
2 RnC1 n ¹0º

in (8) and in (12) that satisfy the corresponding boundary value problems is closely related to the so
called regularity (Lagrange regularity) conditions in optimal control (see, e.g., [9, 22, 58, 59]). When
solving conventional optimal control problems based on some necessary conditions for optimality,
one is often faced with two possible technical difficulties: the irregularity of the Lagrange multipliers
associated with the given constraints (see, e.g., [22, 60]) and the degeneracy phenomenon (see, e.g.,
[58, 59]). Various supplementary conditions, namely, constraint qualifications, have been proposed
under which it is possible to assert that the Lagrange multiplier rule holds in a ‘usual’ constructive
form ([42]). Examples of the regularity conditions are the well known: the Slater regularity condition
for classic convex programming and the Mangasarian–Fromovitz regularity conditions for general
nonlinear optimization problems. Let us also note here the celebrated Kurcyusz–Robinson–Zowe
regularity conditions for some classes of abstract optimal control problems ([60, 61]). We also refer
to [16, 22, 56, 58, 60] for some additional facts and mathematical details. Note that some regularity
conditions for OCPs can be formulated as controllability conditions for the linearized system [60].

This section is devoted to the specific regularity conditions for the auxiliary infimal-based OCP
(9) that guarantee existence of the nontrivial Lagrange multipliers for these optimization problems
(Lagrange regularity). We restrict our consideration to the case of a stationary control system in
(1) and correspondingly assume f .t; x; u/ D f .x; u/. The Lagrange regularity determines the
consistence of the main boundary value problems in (8) and finally implies the realizability of the
proposed gradient-based methods in the concrete constructive form (10) – (12).

In parallel to the initially given nonlinear dynamic model in (1), we next introduce the con-
ventional linearized system. The linearization is considered over an optimal pair .uopt

�
.�/; x

opt

�
.�//

associated with the infimal-based OCP (9)

Py.t/ D
@f .x

opt

�
.t/; u

opt

�
.t//

@x
y.t/C

@f .x
opt

�
.t/; u

opt

�
.t//

@u
v.t/;

y.t0/ D 0;

(16)

where v.t/ 2 Rm is a control input for (16).
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Theorem 2
Assume that all hypotheses from Section 2 are satisfied, and moreover, the linearized system (16) is
controllable. Then the infimal-based OCP (9) is Lagrange regular.

Proof
Let us introduce the following system operator

F W L2
®
Œt0; tf �IR

m
¯
�W 1;1

®
Œt0; tf �IR

n
¯
!W 1;1

n

®
Œt0; tf �IR

n
¯
;

F .u.�/; x.�// WD x.�/ � x0 �

Z �
t0

f .x.t/; u.t//;

where W 1;1¹Œt0; tf �IR
nº denotes a Sobolev space of all absolutely continuous functions with

essentially bounded derivatives. Under the basic assumptions of Section 2, the system operator is
Fréchet differentiable ([22]). From the main result of [61], it follows that the optimization prob-
lem (9) is Lagrange regular, if the Fréchet derivative DF.uopt

�
.�/; x

opt

�
.�// of the system mapping

F.u.�/; x.�// at .uopt
�
.�/; x

opt

�
.�// is surjective.

Let ´.�/ 2W 1;1¹Œt0; tf �IR
nº be an arbitrary function. The integral equation

y.t/ D

Z t

t0

@f
	
x
opt

�
.t/; u

opt

�
.t/



@x
y.t/dt C ´.t/; t 2 Œt0; tf �

is a linear Volterra equation of the second kind. This equation has a solution y.�/ WD 	.�/ from
W 1;1¹Œt0; tf �IR

nº [62]. We now put this specific function y.�/ into the linearized system (16). The
controllability assumption implies the existence of a pair

. Qv.�/; Qy.�// 2 L2¹Œt0; tf �IR
mº �W 1;1¹Œt0; tf �IR

nº

that satisfies the initial value problem (16). Therefore,

DF
	
u
opt

�
.�/; x

opt

�
.�/


Œ. Qy.�/C 	.�/; Qv.�//� D Qy.�/C 	.�/�Z �

t0

"
@f
	
x
opt

�
.t/; u

opt

�
.t/



@x
. Qy.t/C 	.�//C

@f
	
x
opt

�
.t/; u

opt

�
.t/



@u
Qv.t/

#
dt D Qy.�/C ´.�/

�

Z �
t0

"
@f
	
x
opt

�
.t/; u

opt

�
.t/



@x
Qy.t/C

@f
	
x
opt

�
.t/; u

opt

�
.t/



@u
Qv.t/

#
dt D ´.�/:

(17)

The final relation (17) characterizes the surjectivity property of DF.uopt
�
.�/; x

opt

�
.�// that implies

the Lagrange regularity of (9). The proof is completed. �

Evidently, the controllability property of system (16) considered on the originally given control
space S implies the assumption of the basic Theorem 3 for v.t/ 2 Rm. Let us now present a simple
controllability conditions for the linearized system (16) determined on the originally given control
space, namely, on the space of the fixed-levels controls v.�/ 2 S . We restrict here our consideration
to a specific stationary case A WD @f .x

opt

�
.t/; u

opt

�
.t//=@x and B WD @f .x

opt

�
.t/; u

opt

�
.t//=@u for

u.�/ 2 S .

Theorem 3
Consider the linearized system (16) for v.�/ 2 S and Nk � N; T k � T ; k D 1; :::; m.
Assume that

� BT
Z �
ti�1

e�A
T �d
W.N/�1

	
y.t0/ � e

�Atf y.tf /


2 S : (18)
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Then, system (16) is controllable if and only if the following matrix

W.N/ WD

NX
iD1

�Z ti

ti�1

e�A�d
BBT
Z ti

ti�1

e�A
T �d


�
; ti 2 T :

is nonsingular.

Proof
Let W.N/ be nonsingular. Then

y.tf / D e
Atf y.t0/C

Z tf

t0

eA.tf ��/Bv.
/d
;

or equivalently

y.tf / D e
Atf

"
y.t0/C

NX
iD1

Z ti

ti�1

e�A�d
Bvi

#
; (19)

where vi 2 Rm is a constant vector associated with the interval Œti�1; ti /. The resulting input value
vi such that v.t/ D vi for t 2 Œti�1; ti / and y.t0/, y.tf / belongs to the corresponding trajectory of
(16) generated by v.�/ is given by

vi D �BT
Z ti

ti�1

e�A
T �d
W.N/�1

	
y.t0/ � e

�Atf y.tf /


2 S :

Substituting the last expression in (19), we next obtain

y.tf / D e
Atf Œy.t0/ �W.N/W.N/

�1.y.t0/ � e
�Atf y.tf //� D y.tf /:

We finally conclude that the given system is controllable under piecewise constant inputs.
Let the initial system (16) be controllable by piecewise constant controls v.�/ from S . Assume

that the symmetric matrix W.N/ is not a (strictly) positive definite matrix. This hypothesis implies
the existence of a nontrivial vector w 2 Rn such that wTW.N/w D 0, or equivalently

0 D wT
NX
iD1

�Z ti

ti�1

e�A�d
BBT
Z ti

ti�1

e�A
T �d


�
w D

NX
iD1

jjwT
Z ti

ti�1

e�A�d
Bjj2:

The last fact implies the following

wT
Z ti

ti�1

e�A�d
B D 0 8i D 1; : : : ; N:

Because the controllability of the system (16) for v.�/ 2 S is assumed, there exist a sequence
of values ¹viº such that the state y.t0/ � w can be transferred into y.tf / � 0. Therefore, we
next deduce

0 D eAtf

"
w C

NX
iD1

�Z ti

ti�1

e�A�d


�
Bvi

#
: (20)

Evidently, (20) holds if and only if

0 D w C

NX
iD1

�Z ti

ti�1

e�A�d


�
Bvi : (21)
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We now multiply (21) by wT and obtain the contradiction with the non-triviality hypothesis w ¤ 0:

0 D wTw C

NX
iD1

wT
�Z ti

ti�1

e�A�d


�
Bvi D wTw

Therefore, W.N/ is a positive definite symmetric matrix, and the existence of the inverse W.N/�1

follows immediately. The proof is completed. �

Using Theorem 2 and Theorem 3, we now can easily obtain the following specific implementabil-
ity result associated with the proposed gradient-based algorithm (10) – (12).

Corollary 1
Assume that all hypotheses from Section 2 and condition (18) are satisfied, and moreover, the matrix
W.N/ associated with the linearized system (16) of the stationary original system (1) with Nk �
N; T k � T ; k D 1; :::; m is nonsingular. Then the auxiliary infimal-based OCP (9) is Lagrange
regular, and the projected gradient method for (9) can be implemented in the constructive form
(10) – (12).

Note that controllability conditions for a linearized system (16) equipped with controls v.�/ 2 S
evidently imply the controllability property of the same system considered for v.�/ 2 conv.S /.
This fact is a simple consequence of the inclusion S � conv.S /. Therefore, the realizability
conditions for the gradient-based algorithm (10) – (12) proposed for the auxiliary OCP (9) with
u.�/ 2 conv.S / can be formulated using the controllability conditions for the original dynamic
system (1) determined on the initially given fixed-level control set S .

5. NUMERICAL TREATMENT OF THE INITIAL OPTIMAL CONTROL PROBLEM

Theorem 1 and the classic gradient-based iterations (10) provide an theoretic basis for a relative sim-
ple computational approach to the initial OCP (3). Recall that in contrast to the relaxed optimization
problem (4), the original OCP (3) does not possesses the desired convexity property. The obtained
Theorem 1 provides a consistent approximation concept for the solution of the weakly relaxed OCP
(9) (for � D 0).

Using Theorem 1, the explicit representation (12) of the gradient rJ.�/ and the additional projec-
tion techniques, we can propose an implementable computational scheme for the concrete numerical
treatment of the initial problem (3). By Ou.�/, we next denote an approximative solution to the original
OCP (3), and Ox.�/ denotes the corresponding quasi-optimal trajectory in (3).

Conceptual Algorithm 1

1. Select a sufficiently small � > 0 and a constant step size ˛ > 0. Set an admissible initial
condition u.0/.�/ 2 conv.S /. Calculate the corresponding trajectory Qxl.�/ generated by the
extended control system and put l WD 0.

2. Calculate rJ�.u.l/.�//.�/ from the boundary value poroblem (12).
3. Using rJ�.u.l/.�//.�/ and (10), calculate u.lC1/.�/.
4. Evaluate the .l C 1/-iteration v.lC1/ for the optimal control function in problem (9)

v
.k/

.lC1/
.t/ D

NkX
iD1

Ih
t
.k/

i�1
;t
.k/

i

�.t/ Nq.k/i;n 8k D 1; : : : ; m

where

Nq
.k/

i;l
D

8̂̂<
ˆ̂:
q
.k/
1 ; NNq

.k/

i;l
< q

.k/
1

NNq
.k/

i;l
; q

.k/
1 6 NNq

.k/

i;l
6 q.k/Mk

q
.k/
Mk
; q

.k/
Mk
6 NNq.k/

i;l

Here, i D 1; : : : ; Nk ,
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q
.k/
j 2 Qk; 8j D 1; : : : ;Mk

and

NNq
.k/

i;l
WD

1

�i

Z ti

ti�1

v
.k/

.l/
.t/dt; �i WD ti � ti�1:

1. Calculate

� WD jJ�.v.lC1/.�// � J�.v.l/.�//j:

If � � " for a prescribed accuracy " > 0, then put

uopt .�/ � v.lC1/.�/

(an approximative optimal solution to (9)). STOP.
2. Else, update the iteration register l WD l C 1 and go to Step (2).
3. Using the evaluated function uopt .�/, the approximative optimal control for (3) Ou.�/ 2 S is

finally calculated by components

Ou.k/.�/ D

NkX
iD1

Ih
t
.k/

i�1
;t
.k/

i

�.t/ Oq.k/i 8k D 1; : : : ; m

where

Oqki WD Arg min
v2Qk

ˇ̌̌
v � Nq

.k/

i;lC1

ˇ̌̌
:

Close system (1) by the obtained quasi-optimal control input Ou.�/ and calculate the correspond-
ing approximative optimal trajectory Ox.�/. STOP.

The proposed method (10) and the presented Conceptual Algorithm I constitute a consistent
(convergent) solution procedure for a numerical treatment of the open-loop system optimization
problem. In this paper, we do not consider an optimal feedback control setting. Because of the
highly restrictive nonlinear control constraint u.�/ 2 S , the initial optimization problem (3) cannot
be solved by a direct application of the Pontryagin Maximun Principle as well as by a numerical
method based on the Bellman optimality condition (for example, adaptive dynamic programming
approach [63, 64] or fuzzy optimal control methodology [65, 66]). Let us recall that the conven-
tional and advanced versions of the celebrated Maximum Principle and of the Bellman optimality
approach make it possible to specify an optimal solution that belongs to the full (non-restricted)
control functions space. Motivated from that fact, our main contribution is with a development of a
relative simple and at the same time a convergent computational procedure for the generic OCP (3).
We use a novel weakly relaxed technique in combination with an implementable gradient-type
algorithm for this purpose. The obtained optimal solution of the weakly relaxed OCP provides a
conceptual numerical base for a concrete computational solution procedure for the original prob-
lem (3). Moreover, the proposed method involves the existence of an optimal solution to the weakly
relaxed OCP under consideration. Note that we do not use here any numerical scheme that involves
a specific optimality condition for classic OCPs, namely, the Hamilton–Jacobi–Bellman approach
or Pontryagin Maximum Principle. Furthermore, in contrast to the greedy heuristic dynamic pro-
gramming solution method (see, e.g., [63]), we study the generally nonlinear (non-affine) dynamic
system. This fact makes it difficult to determine so-called ‘expected control’ that constitutes a
necessary formal step of the greedy heuristic dynamic programming approach.

The computational scheme presented earlier consists of two main subroutines. The first one con-
stitutes a numeric tool for solving the boundary value problem (12) (Step 2). We use here the
well-known multiple shooting method for this purpose (see [15] for details). We next apply the cel-
ebrated Armijo’s algorithm in the second main subroutine (the gradient method (10)). The proposed
algorithm finally returns a quasi-optimal control input uopt .�/ 2 conv.S / in the context of the
infimal-based (relaxed) problem (9).
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Figure 2. Quasioptimal control input Ou.t/.

We now study two computational examples in order to illustrate the numerical effectiveness of
the computational approach I proposed in this section.

Example 2
Consider the following model of a continuous stirred-tank chemical reactor described in [23]

Px1.t/ D �2Œx1.t/C 0:25�C Œx2.t/C 0:5� exp

�
25x1.t/

x1.t/C 2

�
� Œx1.t/C 0:25�u.t/

Px2.t/ D 0:5 � x2 � Œx2.t/C 0:5� exp

�
25x1.t/

x1.t/C 2

�

x.0/ D
�
0:05 0

�T
; t0 D 0; tf D 0:78:

The control variable u.t/ represents a flow-rate in the cooling fluid. The state variable x1.t/
describes the deviation from steady-state temperature, and x2.t/ characterizes the deviation from
the steady-state concentration. The cost functional is given by

J.u.�// D
1

2

Z 0:78

0

	
x21.t/C x

2
2.t/C 0:1u

2.t/


dt:

The ‘qualitative’ optimal control requirement here can be described as follows: to maintain the
temperature and concentration close to some prescribed steady-state values and to guarantee the
minimal system / controller energy use. We next put

Q D ¹0; 0:05; 0:1; 0:15; 0:2; : : : ; 1:95; 2º

Applying Conceptual Algorithm I, we can compute Ou.�/ 2 S . The corresponding numerical results
are presented on Figure 2.

The control uopt .�/ 2 conv.S / for (9) is indicated here by the dashed line. The solid line rep-
resents the approximate solution (quasi-optimal control) Ou.�/ of the original OCP (3). The first
component of the corresponding quasi-optimal trajectories Ox1.t/ is shown on Figure 3.

The dashed line represents the trajectory xopt generated by uopt .�/, and the solid line corresponds
to the trajectory Ox.�/ of (1) generated by Ou.�/. The (graphical) representation of the calculated value
of J.u.�// as a function of the number of iterations is given on Figure 4.

The calculated value of the optimal cost in OCP (3) is equal to 0.028 and was obtained after 33
iterations of the proposed algorithm.
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Figure 3. Trajectory component Ox1.t/.

Figure 4. Performance measure evaluation.

Example 3
We now consider the dynamic model of a unicycle robot discussed in [67]

Px1.t/ D u1.t/ cos.x3.t//

Px2.t/ D u1.t/ sin.x3.t//

Px3.t/ D u2.t/;

x.0/ D
�
15 15 180 deg

�T
;

t0 D 0; tf D 1

The control variable u1.t/ represents a linear velocity of the vehicle, while the control input u2.t/
determines its orientation. The state variables

.x1.t/; x2.t//

denote the coordinates of the robot on the plane, and the additional variable x3.t/ indicates the
corresponding orientation. The objective functional associated with the dynamic model under
consideration is given as follows:

J.u.�// D
1

2

Z 1

0

	
x21.t/C x

2
2.t/C x

3
2.t/



dt:

Let us put

Q D ¹�50;�49;�48; : : : ; 48; 49; 50º:

The numerical results obtained by application of of the basic Conceptual Algorithm I are presented
on Figure 5. The control inputs uopt1 .�/ and uopt2 .�/ in the relaxed OCP (9) are indicated here by the
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Figure 5. Quasioptimal control inputs Ou1.t/ and Ou2.t/.

Figure 6. Trajectories components Ox1.t/ and Ox2.t/.

Figure 7. Performance measure evaluation.

dashed lines. The solid lines represent the obtained functions . Ou1.�/; Ou2.�// (the quasi-optimal con-
trols in the original OCP (3)). The resulting trajectories are shown on Figure 6. The dashed lines
corresponds to the trajectory generated by uopt .�/, and the solid lines indicates trajectory gener-
ated by Ou.�/. The calculated values of the objective functional J. Ou.�// in OCP (3) are presented on
Figure 7. The calculated controls are obtained after 68 iterations of the numerical algorithm. The
calculated optimal cost for the initial OCP (3) is equal to 85.17.

Finally, note that implementations of the numerical algorithm described earlier was carried out
using the standard MATLAB packages and the Authors programs.
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6. CONCLUDING REMARKS

In this contribution, we propose a new consistent numerical approach to a class of optimal control
processes governed by nonlinear ordinary differential equations. The switched dynamic structure
under consideration is a consequence of the piecewise-constant nature of the admissible controls.
Note that many real-world applications from various engineering disciplines can be studied in
the modeling framework that incorporates fixed-level control inputs. The corresponding dynamic
models represent an extremely wide range of systems of practical interest (see, e.g., [2, 8, 10,
11, 21, 30–32]) and are accepted as realistic abstractions in industrial electronics, power systems
engineering, aircrafts control engineering, and communication theory. Let us also emphasize the
aerospace control applications of the mathematical models that include fixed-level control inputs ([8,
31, 32]). In fact, many modern application domains involve complex systems with switched-type
control design in which sub-systems interconnections, mode-transitions, and heterogeneous com-
putational devices are presented. Moreover, the given structure of the admissible control functions
is also strongly motivated by the widely used quantization procedure associated with the originally
continuous system dynamics (see, e.g., [33–35]).

The main result of our contribution constitutes an analytic basis for a new consistent computa-
tional algorithm for OCPs associated with the general nonlinear dynamic systems in the presence
of piecewise-constant controls. The computational scheme developed in this paper uses a novel
relaxation procedure for the initial problem in combination with the first-order gradient techniques.
The specific locally convex structure of the obtained relaxed problem makes it possible to take into
consideration diverse algorithms from the classic nonlinear programming.

Finally, note that the theoretical and computational approaches presented in this paper can
be applied to alternative classes of constrained nonlinear OCPs with switched control structure.
The proposed numerical algorithm can also be a constructive consistent part (subroutine) of var-
ious numerical methods based on the common a priori discrete approximations of the initially
given OCPs.
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