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Abstract: This paper deals with the Maximal Covering Location Problem (MCLP) for Supply
Chain optimization in the presence of incomplete information. A specific linear-integer structure
of a generic mathematical model for Resilient Supply Chain Management System (RSCMS)
makes it possible to reduce the originally given MCLP to two auxiliary optimization Knapsack-
type problems. The equivalent transformation (separation) we propose provides a useful tool for
an effective numerical treatment of the original MCLP and reduces the complexity of algorithms.
The computational methodology we follow involves a specific Lagrange relaxation procedure. We
give a rigorous formal analysis of the resulting algorithm and apply it to a practically oriented

example of an optimal RSCMS design.
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1. INTRODUCTION

Constructive optimization of complex technological pro-
cesses and the corresponding computer oriented methods
and software are nowadays a usual and efficient method-
ology for the practical development of several real-world
Management Systems (see e.g., [1,5-7,9,10,11,15,18,23,24]).
Our paper studies mathematical aspects of a particular
RSCMS model that involves incomplete information. The
requested optimal design of a RSCMS can be formal-
ized as a specific "disturbed” MCLP [10]. Recall that
the celebrated Maximal Covering Location Problem is a
challenging optimization problem with numerous appli-
cations in practice. It has a decisive role in the success
of supply chains, with applications including location of
industrial plants, landfills, hubs, cross-docks, etc (see e.g.,
[1,3,8-10,12-15,18,20,22,24]). A well-known MCLP and the
related supply chain activity involve the delivery of a
manufactured product to the end customer or/and to a
warehouse. In a classical MCLP, one seeks the location of
a number of facilities on a network in such a way that the
covered "population” is maximized [14,24].

MCLP was first introduced by Church and ReVelle [14]
on a network, and since then, several extensions to the
original problem have been made. A variety of numerical
approaches have been proposed to the practical treatment
of distinct MCLPs. Let us mention here exact, heuris-
tic and metaheuristic families of methods and also refer
to [8-10,12-15,18,20,22] for some necessary details, con-
crete solution algorithms and further references. Note that
heuristics and metaheuristics have usually been employed
in order to solve large size MCLPs (see e.g., [3,13,18,20]).
A recent interest to MCLPs has arisen out the uncertainty
of model parameters, such as demands or/and locations of
demand nodes [9,10,24].

The main aim of our contribution is with a strong theoretic
foundation of the newly elaborated separation method.
The optimization approach we propose includes an equiv-
alent transformation of the original MCLP that finally
involves a common Knapsack problem (see e.g., [16] and
references therein). The developed approach reduces the
complexity of an initially given MCPL and makes it possi-
ble to apply various exact methods to the original MCLP.
We concretely use the well-known Lagrange relaxation
scheme for this purpose [12,16]. And, it should be noted
already at this point that the MCLP based optimization
algorithm we propose can be effectively implemented (at
the optimization stage) in a concrete RSCMS.

The remainder of our paper is organized as follows: Section
2 contains a formal problem statement and some necessary
concepts. In Section 3 we prove our main separation result,
namely, Theorem 1 and give a constructive characteriza-
tion of the obtained auxiliary problems. Section 4 deals
with the celebrated Lagrange relaxation scheme applied
to the initially given MCLP as well as to the auxiliary
Knapsack problem. We use our main theoretic results and
propose a self-closed algorithm for an effective numerical
treatment of the initially given MCLP. Section 5 contains
a simplified computational example of an optimal RSCMS
design. This practically oriented example illustretes the
applicability of the proposed numerical scheme. Section 6
summarizes our paper.

2. PROBLEM FORMULATION AND SEPARATION

An optimal design of a complex logistics network can
generally be implemented in two steps. Firstly one solves
the location problem and next considers the correspond-
ing demand allocation problem. Note that a conventional
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MCLP does not constitute a ”universal” solution approach
under assumption of possible process disruptions (techni-
cal faults, maintenance and so on). This is specifically true
with respect to the second sub-problem mentioned above.
We next introduce a suitable analytic extension of the con-
ventional MCLP that includes the possible updates of the
demand allocation for the same location distribution. The
extended modelling approach we propose can be expressed
in the form of a (specific) linear integer program

n
maximize J(z(y)) := ijzj
i=1
SLy=keN, 1>k (1)

l
2j <D iy @ijYis
2€B”, yecB

subject to

Here w; € Ry, j = 1,...,n are given nonnegative objective
"weights” and variables z;, j = 1,...,n determine the
"facilities to be served”. By y;, where i = 1,...;1, we
define the generic decision variables of the problem under
consideration and k € R in (1) describes the total amount
of the facilities to be located. Elements a;;, where

12a;; 20, Z aij =1,
i=1,..1

are components of the so called ”eligibility matrix”
i=1,...,1
A= (aij)Z

j=1,....n
associated with the eligible sites that provide a resilient
covering of the demand points indexed by 7 = 1, ..., n. Note
that the second index in (1), namely, i = 1, ..., is related
to the given "facilities sites”. Finally, the admissible sets
B” and B! in the main problem (1) are defined as follows:

B":= {0,1}", B':= {0,1}".
Note that the objective functional J(-) from (1) has a
linear structure. We use the following natural notation
z = (21,..,20)T and y = (y1,...,y)T. The implicit
dependence

J(Z(y)> = (w,z>, w = (w1> 7wn)
of the objective functional J on the vector y is given
by the corresponding (componentwise) inequalities con-
straints z < ATy in (1). By (-, -) we denote here the scalar
product in the corresponding Euclidean space. A vector
pair (z,y) that satisfies all the constraints in (1) is next
called an admissible pair for the main problem (1).

T

The abstract optimization framework (1) provides a con-
structive and modelling approach for various practically
oriented problems (see e.g., [1,9,11,13,18,22,24]). Follow-
ing [14] we next call the main optimization problem (1)
a Maximal Covering Location Problem (MCLP). Let us
also refer to [24] for a detailed discussion on the applied
interpretation of the MCLP (1). Note that the main MCLP
is formulated under the general (non-binary) assumption
related to the elements a;; of the eligibility matrix A. This
corresponds to a suitable modelling approach under incom-
plete information (see e.g., [10] and references therein).
Roughly speaking every selection of an admissible param-
eter a;; in (1) has a ”fuzzy” nature (similar to [8]). This
fuzzy characterization of the MCLP under consideration
provide an adequate modelling framework for the RSCMS
(see Section 5).

The mathematical characterization of (1) can evidently be
given in terms of the classic integer programming (see e.,
g. [11,16,19] for mathematical details). Let us note that
(1) posesses an optimal solution (an optimal pair)

(Zo;mf7 yopt) cB" ®Bl7
where

opt .__ ( opt opt\T opt .__ (., opt opt\T
2P0 = (207, )y = ()

This fact is a direct consequence of the basic results from
[11,16,19]. Our aim is to develop a simple and effective
numerical approach to the sophisticated MCLP (1). We
firstly ”separate” the original optimization problem and
introduce two auxiliary optimization problems. These for-
mal constructions provide a necessary basis for the future
numerical development we propose. The first auxiliary
problem can be formulated as follows

n l
maximize E ,ujg a;jYi
j=1 i=1

Zé:l Yi = ka AS Bl,
wi €0,1] Vi=1,...,n

(2)
subject to {

The second auxiliary problem has the following specific
form:

maximize J(z):= ijzj
- 3)

subject to {Zj = Zé:l @il
z € B

where § € B! is optimal solution of problem (2). The com-
ponents of § are denoted as ¢;, i = 1,...,I. The existency
of an optimal solution for (2) is a direct consequence of the
results from [11,19]. The same is also true with respect to
the auxiliary problem (3). Let 2 € B", 2 := (31, ...,2,)T
be an optimal solution to (3). Evidently, problem (3)
coincides with the originally given MCLP (1) in a specific
case of a fixed variable y = g. Let us note that in general

g #yrt.
The first auxiliary problem, namely, problem (2) is a

usual linear scalarization of the following multiobjective
optimization problem (vector optimization):

l l
“ E amyi}
i=1

maximize {Z ai1yi, ..
oo (@)
subject to {Zi—l Yi =&

i=1
y € B

Recall that a scalarizing of a multi-objective optimization
problem is an adequate numerical approach, which means
formulating a single-objective optimization problem such
that optimal solutions to the single-objective optimiza-
tion problem are Pareto optimal solutions to the multi-
objective optimization problem. We next assume that the
multipliers p;, j =1,...,n in (2) are chosen by such a way
that problems (2) and (4) are equivalent (see e.g., [2,11,19]
for necessary details). In this particular case we call (2) an
adequate scalarizing of (4). Moreover, problems (2) and
(3) have a structure of a so-called Knapsack problem (see
[16] and references therein). Various efficient numerical
algorithms are recently proposed for a generic Knapsack
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problem. We refer to [16] for a comprehensive overwiev
about the modern implementable numerical approaches to
this basic optimization problem.

3. THE SEPARATION BASED SOLUTION
APPROACH

The relevance and main motivation of the auxiliary opti-
mization problems (2) and (3) introduced in Section 2 can
be stated by the following abstract result.

Theorem 1. Assume (2°Pt,y°Pt) is an optimal solution of
(1) and (2) is an adequate scalarizing of (4). Let § be an
optimal solutions of (2) and Z be an optimal solution of
the auxiliary problem (3). Then (1) and (3) possess the
same optimal values, that is

T2 (yr")) = J (). (5)
Moreover, in the case problems (1), (2), and (3) possess
unique solutions we additionally have (z°P¢, y°Pt) = (2,7).

Proof: Since

I !
Z?)i =k, %< Zaiﬂ%
i—1 i=1

we conclude that (2,4) is an admissible pair for the
original MCLP (1). Taking into account the definition of
an optimal pair for problem (1), we next deduce

J(2(§) < T (y)). (6)

= rz®ry C B"@Bl
be a solutions set (the set of all optimal solutions) for
problem (1). We also define the solutions sets I'(5.0) C B
and I'(5.3y C B" of problems (2) and (3), respectively. From
(6) it follows that

INCEN ® Lo CT. (7)
Taking into account the restrictions associated with the
variable y in (1) and (2), we next obtain

Fy = F(Q_g). (8)
Since (2) is an adequate scalarization of the multi-objective
maximization problem (4), we deduce

l
zj < l max Zaijyi.
{Zil yl = ka i=1

y € B

Let

This fact implies

I', C F(gig). (9)
Inclusions (7), (9) and the basic equivalence (8) now imply
the following crucial equivalence

F(Q'g) ® F(g.z) =T. (10)
Taking into account the same form of the objective func-
tionals in (1) and (2.3), we immediately obtain the basic
relation (5). In a specific case of one point sets I', I'( 3y
and I'(2.9) the expected relation (z°P',y°P") = (£,9) is a
direct consequence of (10). The proof is completed. O

Theorem 1 makes it possible to separate (equivalently) the
originally given sophisticated problem (1) into two simple

optimization problems. It provides a theoretical basis for
effective numerical approaches to the abstract MCLPs and
to corresponding applications.

We now observe that the first auxiliary optimization
problem, namely, problem (2) has a trivial combinatorial
structure and can be easily solved:

gi=1ifiel; g;=0ifie{1,..,[}\I, (11)

where

I={1<i<l | Sa, € m]?X{SAl,...,SAL}},

- (12)
Sa, = Zﬂjam Ai = (aﬂ,...,am)T.
j=1

Here A; is a vector of i-row of the eligibility matrix A
and operator max; determines an array of k-largest num-
bers from the given array. Evidently, the choice (11)-(12)
determines an optimal solution of (2). Roughly speaking
the combinatorial algorithm (11)-(12) assigns the maximal
value ¢; = 1 for all vectors A; which sum of components
S, belongs to the array of k-largest sums of compoents
of all vectors A;, ¢ = 1,...,1. It is easy to see that for
the given eligibility matrix A with the specific elements
a;; (determined in Section 2) the sum of components S,
constitutes a specific norm of the given vector A;. Let us
also note that the total complexity of the combinatorial
algorithm (11)-(12) is equal to
O(l x logk) + O(k)
(see e.g., [16] for details).

Let us denote
n 1
>
j=11i=1

Then the inequality constraints in (3) imply the generic
Knapsack-type constraint with uniform weights
n

Z z; <c.

j=1
We now present a fundamental solvability result for the
second auxiliary optimization problem, namely, the Knap-
sack problem (3).

Theorem 2. The Knapsack problem (3) can be solved in
O(nc) time and O(n + ¢) space.

The formal proof of Theorem 2 can be forund in [16].

4. LAGRANGE RELAXATION AND
CONSTRUCTIVE NUMERICAL TREATMENT OF
THE ORIGINAL MCLP

Our main analytic results, namely, Theorem 1, the combi-
natorial choice algorithm (11)-(12) and Theorem 2 provide
a theoretic basis for a novel exact solution scheme for the
originally given MCLP (1). Finally we need to define a
suitable and implementable procedure for an effective nu-
merical treatment of (3). This auxiliary optimization prob-
lem, which is A'P-hard, has been comprehensively studied
in the last few decades and several exact algorithms for
its solution can be found in the literature (see [16] and
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the references therein). Constructive algorithms for Knap-
sack problems are mainly based on two basic approaches:
branch-and-bound and dynamic programming. Let us also
mention here the celebrated ”combined” approach.

In this paper we apply the well-known Lagrange relaxation
scheme to the second auxiliary problem (problem (3)).
”Relaxing a problem” has various meanings in applied
mathematics, depending on the areas where it is defined,
depending also on what one relaxes (a functional, the
underlying space, etc.). We refer to [2,4-7,12, 21] for
various implementable relaxation techniques. Introducing
the Lagrange function

n n l
L(z,0) =Y wizy =Y Az — Y aijfi)
j=1 j=1 i=1

associated with the Knapsack problem (3), we next con-
sider the following relaxed problem
imize L(z, A

maximize (z 2@ (13)

subject to z € B

The relaxed problem (13) does not contain the unpleasant

inequality constraints which are included in the objective

function (3.17) as a penalty term

n l
> Nz =D aiin).
j=1 i1

Recall that all feasible solutions to (3) are also feasible
solutions to (13). The objective value of feasible solutions
to (3) is not larger than the objective value in (13) (see
[16] for the necessary proofs). Thus, the optimal solution
value to the relaxed problem (13) is an upper bound to
the original problem (3) for any vector of nonnegative
multipliers A := (A1,...,A\,)T, A; > 0. For a concrete
numerical solution of the relaxed problem (13) we use here
the classic branch-and-bound method (see e.g., [11,16]).
In a branch-and-bound algorithm we are interested in
achieving the tightest upper bound in (13). Hence, we
would like to choose a vector of nonnegative multipliers

AC = (AE, . AD)T, AE 2 0
such that (13) is minimized. This evidently leads to the
generic Lagrangian dual problem

minimize L£(z,\)
subject to A >0

It is well-known that the Lagrangian dual problem (14)
yields the least upper bound available from all possible
Lagrangian relaxations. The problem of finding an optimal

vector of multipliers A > 0 in (14) is in fact a linear
programming problem [11,19]. In a typic branch-and-
bound algorithm one will often be satisfied with a sub-
optimal choice of multipliers A > 0 if only the bound can
be derived quickly. In this case subgradient optimization
techniques can be applied [19]. The following analytic
result is an immediate consequence of our main Theorem
1 and of the basic properties of the primal-dual system
(13)-(14).

(14)

Theorem, 3. Let (£, Af) be an optimal solution of the
primal-dual system (13)-(14) associated with the auxiliary
problem (3). Assume that all conditions of Theorem 1 be
satisfied. Then

J (2P (yP")) < J(25). (15)

and the obtained inequality (15) constitutes a tightest
upper bound.

We are now ready to formulate a complete algorithm for
an effective numerical treatment of the basic MCLP (1).

Algorithm 1.

I. Given an initial MCLP (1) separate it into two
auxiliary problems (2) and (3);
IT. Apply the combinatorial algorithm (11)-(12) and
compute ¥;
ITI. Using ¢, construct the Lagrange function £(z,\) and
solve the primal-dual system (13)-(14).

The numerical consistency of the proposed Algorithm 1
is established by our main theoretic results, namely, by
Theorem 1 - Theorem 3.

Finally let us note that the Lagrange relaxation scheme
is usually applied to the original problem (1) (see e.g.,
[12,16]). In that case the resulting (relaxed) problem
and the corresponding Lagrangian dual problem possess
a higher complexity in comparison with the proposed
"partial” Lagrange relaxation (13)-(14) of the original
MCLP (1). This is an immediate consequence of the
proposed separation method (Section 3) that reduces the
initial problem (1) to two auxiliary optimization problem

(2)-(3)-

5. APPLICATION TO THE OPTIMAL DESIGN OF A
RESILENT SUPPLY CHAIN MANAGEMENT
SYSTEM

This section is devoted to a practical application of the
proposed novel numerical approach to the MCLP (1). We
use the basic MCLP model and optimize a Resilient Supply
Chain for a family of manufacturing plants - warehouses.
Note that the "resilience” of a Supply Chain Management

Manufacturers

< N N £© M

Warehouses

Fig. 1. Fuzzy eligibility model

System is modelled here by an eligibility matrix A with the
fuzzy-type components a;; (see Section 2). The conceptual
Supply Chain scheme that include ! = 8 manufacturing
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plants and n = 5 warehouses is indicated on Fig. 1.

Here 7' is an index that corresponds to a "resilient” cover
of demand point. We also assume that a;; + a;; > 1 for
i =1,..5 7 = 1,...8. The last condition means that at
least two feasible facilities (warehouse) cover a given de-
mand point (the manufacturing plants). The correspond-
ing (transposed) eligibility matrix A is given as follows:

0.81286 0.0 0.0 0.62968 0.0
0.25123 0.58108 0.32049 0.89444 0.79300
0.0 0.0 0.64850 0.91921 0.94740
0.54893 0.90309 0.74559 0.50869 0.99279
1.0 0.0 0.0 0.0 0.0
0.77105 0.27081 0.65883 0.60434 0.23595
0.0 0.51569 0.0 0.0 0.57810
0.64741 0.91733 0.60562 0.63874 0.71511

Recall that the objective weights w; € Ry, j = 1,...,n
indicates a priority and are assumed to be equal to

w’ = (32.0, 19.0, 41.0, 26.0 37.0 49.0 50.0 11.0)”
Note that the fifth demand point in this example has no
"resilient” character (only one facility covers this point).
We assume that the Supply Chain decision maker is inter-
ested opens k = 2 facilities. Moreover, we also calculate
from (12)

Sa, =8.06295 S 4, = 5.86033 S4, = 5.30955
Sa, =7.47098 S 4, = 6.99921
Application of the basic Algorithm 1 leads to the following
computational results:
#"=(1,1,0, 1,1, 1,0 17,
y' =1, 0,0, 1,07,
The corresponding (maximal) value of the objective func-
tional is equal to
J (2P (y°P")) =

(16)

max
Problem(1)

J(z(y)) =174.0

Let us also note that the computed scalarizing multiplier
w in the auxiliary problem (2) for the given problem data
is equal to

= (2.0, 2.0 1.0 2.0 2.0 2.0 1.0 2.0)7.

The practical implementation of the computationall Al-
gorithm 1 was carried out by using the standard Python
package and an author-written program.

For comparison, the given MCLP problem was also solved
by a direct application of the standard CPLEX optimiza-
tion package. We use the concrete problem parameters
given above and obtain the same optimal pair as in (16).
The CPLEX integer programming solver proceeds with 6
MIP simplex iterations and 0 branch-and-bound nodes for
in total 13 binary variables and 9 linear constraints. Let
us finally note that all the customers (except the fifth) are
covered and moreover, could still be covered if one of the
facilities is closed.

6. CONCLUDING REMARKS

In this contribution, we proposed a conceptually new nu-
merical approach to a wide class of Maximal Covering

Location Problems with the fuzzy-type eligibility matri-
ces. This computational algorithm is next applied to the
optimal design of a practically motivated Resilient Sup-
ply Chain Management System. The developed computa-
tional scheme is based on a novel separation approach to
the initially given maximization problem. The separation
scheme we propose makes it possible to reduce the original
sophisticated problem to two Knapsack-type optimization
problems. The first one constitutes a generic linear scalar-
ization of a multiobjective optimization problem and the
second auxiliary problem is a simple version of the classic
Knapsack formulation. Application of the conventional
Lagrange relaxation in combination with a specific com-
binatorial algorithm leads to an implementable algorithm
for the given Maximal Covering Location Problem as well
as for the optimal design of a Resilient Supply Chain.

Theoretical and computational methodologies we present
in this contribution can be applied to various general-
izations and extensions of the basic MCLP and also to
several optimization problems associated with the RSCMS
design. One can combine the elaborated separation scheme
with the conventional branch-and-bound method, with
the celebrated dynamic programming approach or/and
with an alternative exact or heuristic numerical algorithm.
Let us finally note that we discussed here only theoretic
aspects of the newly elaborated approach and presented
the corresponding conceptual solution procedure. The ba-
sic methodology we developed needs a comprehensively
numerical examination that includes solutions of several
MCLPs and simulations of the corresponding optimal
RSCMSs.
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