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Abstract. In this paper we study relations between various natural structures on F-manifolds.
In particular, given an arbitrary Riemannian F-manifold we present a construction of a canoni-
cal flat F-manifold associated to it. We also describe a construction of a canonical homogeneous
Riemannian F-manifold associated to an arbitrary exact homogeneous flat pencil of metrics
satisfying a certain non-degeneracy assumption. In the last part of the paper we construct
Legendre transformations for Riemannian F-manifolds.
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Introduction

Since its beginnings, the field of integrable systems has interacted deeply with the study of
differential geometric structures. A remarkable case of this interaction is provided by the notion
of a semi-Hamiltonian system of hydrodynamic type introduced by Tsarev in [Tsa86, Tsa91].
These systems form a very wide class of integrable quasilinear system of PDEs of the form

(0.1) uit = vi(u)uix, i = 1, . . . , n.
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The integrability is controlled by a set of n(n − 1) functions defined by the characteristic
velocities of the system

(0.2) Γiij =
∂jv

i

vj − vi
, i 6= j,

satisfying suitable conditions, called semi-Hamiltonian conditions [Tsa86, Tsa91] or richness
conditions [Ser91]. As the notation suggests, the functions Γiij can be identified with (a part
of) the Christoffel symbols of a connection ∇. A torsionless connection ∇ can be reconstructed
completely starting from Γiij in essentially two different ways. The first one leads naturally to
the notion of a Hamiltonian system of hydrodynamic type, while the second one leads to the
notion of an F-manifold with compatible connection.

In the first case, starting from Γiij one constructs a diagonal metric g satisfying the conditions

(0.3) ∂j ln
√
gii = Γiij, j 6= i,

and all the remaining Christoffel symbols are uniquely defined through Levi-Civita’s classical
formula (∇ is the Levi-Civita connection of the metric g). However, as it is easy to check, the
general solution of (0.3) depends on n arbitary functions of a single variable: if gii is a solution
then ϕi(u

i)gii is still a solution.
Connections defined this way were introduced by Dubrovin and Novikov in [DN84]. We call

them Hamiltonian connections since they are related to the Hamiltonian formalism. Indeed,
when ∇ is flat, the differential operator associated with the diagonal contravariant metric g

(0.4) P ij := giiδji ∂x − gilΓ
j
lku

k
x

defines a local Hamiltonian operator for the flow (0.1). In this case we call (0.1) a Hamiltonian
system of hydrodynamic type. Conversely, given a flat non-degenerate pseudo-Riemannian
metric gij, one can associate to it a local Poisson operator P ij as in (0.4). If the metrics
defined by the solutions of system (0.3) are not flat, it is still possible to introduce a class of
Hamiltonian operators of hydrodynamic type. The counterpart to the non-flatness of the metric
is the non-locality of the associated Hamiltonian operator (see [Fer91] for details). Integrability
of the corresponding system is realized via the existence of sufficiently many functionals Fk[u],
k = 1, 2, . . . , that Poisson commute with H[u] (the Poisson bracket is induced via (0.4) and is
called a Poisson bracket of hydrodynamic type). In some very important cases, the systems of
hydrodynamic type (0.1) are not only Hamiltonian, but bi-Hamiltonian.

If a system of hydrodynamic type (0.1) is bi-Hamiltonian with respect to two Poisson brackets
of hydrodynamic type induced by two local Hamiltonian operators, then the two corresponding
flat contravariant metrics form a flat pencil of metrics (see [Dub98]).

Another way to reconstruct a torsionless affine connection ∇ starting from Γiij was developed
in [LP11]. Such connection and the product obtained identifying the Riemann invariants with
the canonical coordinates lead naturally to introduce a class of F-manifolds, called F-manifolds
with compatible connection [LPR11]. In the flat case these manifolds previously appeared in
the literature under the name of Dubrovin manifolds [Get04] and F-manifolds with compatible
flat structure [Man05]. Following [LPR11] we will call them flat F-manifolds.

For a special class of integrable systems of hydrodynamic type the Hamiltonian connec-
tions and the natural connection coincide. They are called Egorov systems of hydrodynamic
type [PT03] since the metrics satisfying system (0.3) are potential for a suitable choice of
the Riemann invariants (depending on the chosen solution). Flat Egorov systems of hydrody-
namic type were studied by Dubrovin in [Dub90] and are called strongly integrable systems.
In a sense, [Dub90] can be seen as the dawn of what later would be the full-fledged theory of
Dubrovin-Frobenius manifolds (known in the literature until recently simply as Frobenius man-
ifolds). Indeed, in [Dub96] Egorov metrics appear as one of cornerstones of the vast landscape
of Dubrovin-Frobenius manifolds. Dubrovin showed in [Dub98] that starting from a flat pencil
of metrics that satisfies three properties (exactness, homogeneity, and Egorov property) one can
recover a Dubrovin-Frobenius manifold and coversely any Dubrovin-Frobenius manifold defines
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a flat pencil of metrics satisfying these properties. For instance, applying this construction to
the Saito flat pencil of metrics associated with a Coxeter group [Sai93, SYS80] one gets the
polynomial Dubrovin-Frobenius manifold structure on the orbit space of the group [Dub98].

Many of the constructions appearing in the theory of Dubrovin-Frobenius manifolds have
been generalized to the non-Egorov set-up, where Dubrovin-Frobenius manifolds are replaced
by flat and bi-flat F-manifolds (in the conformal case). We refer to the papers [AL13, Lor14,
KMS20, AL19, KM19] for relations with Painlevé trascendents, to the papers [KMS20, AL17,
KMS18] for relations with reflection groups (see also [Bo03, Bo05] for relations between complex
reflections and Painlevé VI), to the papers [ABLR20a, BB19] for relations with F-cohomological
field theories, and to [AL18, ABLR20b] for relations with integrable systems. In particular,
the results of [ABLR20a] combined with the results of [BR18] allow one to construct a gen-
eralization of double ramification hierarchy [Bur15, BR16] for any semisimple flat F-manifold.
The dispersionless limit of this hierarchy is the principal hierarchy associated with the given
flat F-manifold. More general (but only first order and second order) dispersive deformations
of the principal hierarchy have been considered in [AL18].

In [AL13, Lor14] the construction of bi-flat F-manifolds was based on an (augmented)
Darboux-Egorov system and the associated linear system of PDEs for the Lamé coefficients.
The diagonal metric defined by the square of the Lamé coefficients was interpreted in [ABLR20a]
as one of the data defining a semisimple Riemannian F-manifold (with Killing unit vector field).

This observation is the starting point of the present paper. The paper is divided into two
parts. In the first part we investigate the relations between (homogeneous) Riemannian F-
manifolds and flat (Section 1) and bi-flat F-manifolds (Section 2) without semisimplicity as-
sumption. This generalization is not straightforward and requires using explicitly the Hertling-
Manin condition for F-manifolds [HM99].

In the second part of the paper we study the system

∂kβij =βikβkj, i 6= j 6= k 6= i,
n∑
l=1

∂lβij =0, i 6= j,

n∑
l=1

ul∂lβij =− βij, i 6= j,

for functions βij, i 6= j, subject to the additional constraints∑
k 6=i,j

[(uj − uk)(∆β)ikβjk + (uk − ui)(∆β)jkβik] =(∆β)ij, i 6= j,

∑
k 6=i,j

[ui(uj − uk)(∆β)ikβjk − uj(ui − uk)(∆β)jkβik)] =
1

2
(ui + uj)(∆β)ij, i 6= j,

where (∆β)ij := βij−βji. In the Egorov case, i.e. when (∆β)ij = 0, the additonal constraints are
automatically satisfied and the above system reduces to the system studied by Dubrovin in the
theory of semisimple Dubrovin-Frobenius manifolds [Dub96]. In the non-Egorov case, the first
constraint selects semisimple flat Riemannian F-manifolds. This case is of great importance in
the theory of integrable systems because the flat metric defines a local Hamiltonian structure for
the associated integrable hierarchies. The existence of a second compatible local Hamiltonian
structure for these hierarchies requires that also the second constraint is satisfied. As an
example, we focus on the three-dimensional case. It turns out that for any solution of the
system above one can construct three different homogeneous Riemannian F-manifolds related by
Legendre transformations. These transformations were first considered by Dubrovin [Dub96] in
the case of Dubrovin-Frobenius manifolds and generalized later by Stedman and Strachan [SS17]
to a more general framework. The definition given in this last paper can be promptly adapted
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to F-manifolds with compatible connection and in particular to flat F-manifolds, and we discuss
it in Section 6.
Acknowledgements. The work of A. B. is supported by the Mathematical Center in Akadem-
gorodok under agreement No. 075-15-2019-1675 with the Ministry of Science and Higher Ed-
ucation of the Russian Federation. P. L. is supported by funds of H2020-MSCA-RISE-2017
Project No. 778010 IPaDEGAN.

1. Riemannian F-manifolds and flat F-manifolds

Throughout the paper we will use the Einstein summation convention for repeated upper
and lower indices, unless it is explicitly stated that such indices are fixed. Given a smooth
manifold M we denote by C∞M its sheaf of smooth functions and by TM and Ω1

M its tangent
and cotangent sheaves. Moreover, given one of these sheaves F , for brevity and at the cost of
a slight abuse of notation, we will write σ ∈ F to mean σ ∈ F(U) for any (or some, depending
on the context) open set U ⊂M . In case several such sections appear in the same formula, the
set U is assumed to be the same for all of them. All definitions can be immediately adapted to
the holomorphic setting. In this case TM is intended as the holomorphic tangent bundle and
all the geometric data are supposed to be holomorphic.

F-manifolds have been introduced by Hertling and Manin in [HM99].

Definition 1.1. An F-manifold is a triple (M, ◦, e), where M is a manifold, ◦ is a commutative
associative C∞M -bilinear product ◦ : TM×TM → TM on the C∞M -module TM of (local) vector fields,
satisfying the following identity:

[X ◦ Y,W ◦ Z]− [X ◦ Y, Z] ◦W − [X ◦ Y,W ] ◦ Z −X ◦ [Y, Z ◦W ] +X ◦ [Y, Z] ◦W(1.1)

+X ◦ [Y,W ] ◦ Z − Y ◦ [X,Z ◦W ] + Y ◦ [X,Z] ◦W + Y ◦ [X,W ] ◦ Z = 0,

for all local vector fields X, Y,W,Z, where [X, Y ] is the Lie bracket, and e is a distinguished
vector field on M such that e ◦X = X for all local vector fields X. The requirement of having
a unit vector field can be dropped, and in this case a pair (M, ◦) will be called an F-manifold
without unit.

Remark 1.2. Condition (1.1) can be written in a more compact way as

LX◦Y (◦) = X ◦ LY (◦) + Y ◦ LX(◦), X, Y ∈ TM ,

where LX denotes the Lie derivative.

If we express ◦ through a (1, 2) tensor c with components cijk with respect to some local
coordinate system on M , then condition (1.1) reads:

(1.2) cqjl∂qc
p
sk − c

q
sk∂qc

p
jl = cpjq∂lc

q
sk − c

p
qk∂sc

q
jl + cplq∂jc

q
sk − c

p
qs∂kc

q
jl.

A point p ∈ M of an n-dimensional F-manifold (M, ◦, e) is called semisimple if TpM has a
basis of idempotents π1, . . . , πn satisfying πk ◦ πl = δk,lπk. Thanks to integrability condition
(1.2) locally around such a point one can choose coordinates ui reducing the product to a
canonical constant form: ∂

∂uk
◦ ∂
∂ul

= δk,l
∂
∂uk

. Such coordinates are called canonical coordinates.
A generalization of canonical cordinates in the non semisimple regular setting has been found
by David and Hertling in [DH17].

Let us recall the following definition/notation.

Definition/Notation 1.3. Consider a manifold M equipped with a commutative associative
product ◦ in the tangent bundle.

1. The structure constants of the multiplication ◦ in some coordinate system will be denoted
by cijk.
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2. A (pseudo-)Riemannian metric g on M is called invariant, or compatible with the
product ◦, if

g(X ◦ Y, Z) = g(X, Y ◦ Z), X, Y, Z ∈ TM .(1.3)

In coordinates this condition reads giqc
q
lp = glqc

q
ip or, equivalently, giqclqp = glqciqp.

3. A torsionless connection ∇ on M is said to be compatible with the product ◦, if
(∇Xc)(Y, Z) is symmetric in all of its entries. This is equivalent to the property that
the Riemann tensor of the connection ∇(λ) given by

∇(λ)
X Y := ∇XY + λX ◦ Y, X, Y ∈ TM ,

doesn’t depend on λ. By a result of Hertling [Hert02, Theorem 2.14] this implies condi-
tion (1.1), and thus our manifold M is an F-manifold in this case.

4. If our manifold is equipped with a (pseudo-)Riemannian metric g and a unit vector field
for the product ◦, then the one-form θ on M given by θ(X) := g(e,X), X ∈ TM , is
called the counit.

5. The derivative of a function f along a vector field X on M will be denoted by X(f).

Definition 1.4. A (pseudo-)Riemannian F-manifold is the datum of an F-manifold (M, ◦, e)
equipped with an invariant (pseudo-)Riemannian metric g such that

(1.4) R(Y, Z)(X ◦W ) +R(X, Y )(Z ◦W ) +R(Z,X)(Y ◦W ) = 0, X, Y, Z,W ∈ TM ,

where R is the Riemann tensor of g. If, additionally, the condition

(1.5) Leg = 0

is satisfied, then the manifold is called a (pseudo-)Riemannian F-manifold with Killing unit
vector field.

In coordinates condition (1.4) reads

(1.6) Rj
sklc

s
mi +Rj

smkc
s
li +Rj

slmc
s
ki = 0.

Remark 1.5. In the literature condition (1.4) is usually replaced by (see, e.g., [LPR11, Defi-
nition 17] and [DS11])

(1.7) Z ◦R(W,Y )(X) +W ◦R(Y, Z)(X) + Y ◦R(Z,W )(X) = 0.

In two important cases the two conditions are equivalent:

• if R is the Riemann tensor of a torsionless connection compatible with the product (see
[LPR11, Remark 18]);
• if R is the Riemann tensor of the Levi-Civita connection of an invariant metric. Indeed:

g(R(W,Y )(X) ◦ Z +R(Y, Z)(X) ◦W +R(Z,W )(X) ◦ Y,Λ) =

= g(R(W,Y )(X), Z ◦ Λ) + g(R(Y, Z)(X),W ◦ Λ) + g(R(Z,W )(X), Y ◦ Λ) =

= −g(R(W,Y )(Z ◦ Λ) +R(Y, Z)(W ◦ Λ) +R(Z,W )(Y ◦ Λ), X).

Definition 1.6. A flat F-manifold (or an F-manifold with compatible flat structure) is a
manifold M equipped with a commutative associative product ◦ in the tangent bundle, a unit
vector field e, and a torsionless connection ∇ such that

(1) ∇e = 0,
(2) ∇ is compatible with the product,
(3) ∇ is flat.

As we already mentioned, the second condition implies that our manifold is indeed an F-
manifold.
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It turns out that in flat local coordinates (t1, ..., tn) the structure constants of the product are
the second order partial derivatives of a vector field F = (F 1, . . . , F n). From the associativity
of the algebras (TpM, ◦) and the fact that the vector field ei ∂

∂ti
is the unit it follows that

el
∂2F i

∂tl∂tj
= δij, 1 ≤ i, j ≤ n,(1.8)

∂2F i

∂tj∂tl
∂2F l

∂th∂tk
=

∂2F i

∂th∂tl
∂2F l

∂tj∂tk
, 1 ≤ i, j, h, k ≤ n.(1.9)

The vector field F is called the vector potential of the flat F-manifold.

Remark 1.7. Let us observe that in general a flat F-manifold is not a Riemannian F-manifold
that happens to possess a flat metric (and hence a flat connection). The reason being that it’s
possible that none of the metrics g compatible with ∇ (i.e. satisfying the condition ∇g = 0) is
compatible with the product in the sense of (1.3).

1.1. From Riemannian F-manifolds to flat F-manifolds.

Theorem 1.8. Let (M, ◦, g, e) be a Riemannian F-manifold with Killing unit vector field.

1. There is a unique torsionless connection ∇ on M satisfying the condition

(1.10) (∇Xg)(Y, Z) =
1

2
dθ(X ◦ Y, Z) +

1

2
dθ(X ◦ Z, Y ), X, Y, Z ∈ TM .

This connection is given by

∇XY = ∇̃XY −
1

2
(ιX◦Y dθ)

] , X, Y ∈ TM ,(1.11)

where ∇̃ is the Levi-Civita connection associated to g, ιX is the operator of contraction
with the vector field X, and ] : Ω1

M → TM is the isomorphism between local one-forms
and local vector fields induced by the cometric g−1.

2. The tuple (M, ◦,∇, e) defines a flat F-manifold.

Proof. For Part 1 the fact that the connection ∇ given by (1.11) satisfies (1.10) is proved by a
straightforward computation, while for the uniqueness of the connection see [ABLR20a, proof
of Theorem 1.13].

Let us prove Part 2. We have to check the three properties from Definition 1.6.
Let us prove that

∇e = 0.

Using (1.11) it is easy to see that

(1.12) g(∇Xe, Z) = g(∇̃Xe, Z)− 1

2
dθ(X,Z).

On the other hand,

(1.13) dθ(X,Z) = X(g(e, Z))− Z(g(e,X))− g(e, [X,Z]),

and using

0 =(∇̃Xg)(e, Z) = X(g(e, Z))− g(∇̃Xe, Z)− g(e, ∇̃XZ),

0 =(∇̃Zg)(e,X) = Z(g(e,X))− g(∇̃Ze,X)− g(e, ∇̃ZX),

and the fact that [X,Z] = ∇̃XZ−∇̃ZX in (1.13), it is easy to see that equation (1.12) becomes

(1.14) g(∇Xe, Z) =
1

2
g(∇̃Xe, Z) +

1

2
g(∇̃Ze,X).

Let us show that the right-hand side of (1.14) vanishes identically. Indeed, from (Leg)(X,Z) = 0

we have e(g(X,Z)) = g([e,X], Z) + g(X, [e, Z]). On the other hand, from (∇̃eg)(X,Z) = 0 we

have also that e(g(X,Z)) = g(∇̃eX,Z) + g(X, ∇̃eZ) and substituting this in 0 = (Leg)(X,Z)
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we get that the right-hand side of (1.14) vanishes identically. Since g is non-degenerate and Z
is arbitrary, we obtain ∇Xe = 0 for any local vector field X, as required.

Let us now prove that ∇ is compatible with the product ◦, i.e. (∇Xc)(Y, Z) = (∇Y c)(X,Z),
or, equivalently, ∇kc

i
lj = ∇lc

i
kj. We proceed as follows:

∇kc
i
lj −∇lc

i
kj =∂kc

i
lj − ∂lcikj + Γikmc

m
lj − Γmklc

i
mj − Γmkjc

i
ml − Γilmc

m
kj + Γmlkc

i
mj + Γmlj c

i
mk,

=∂kc
i
lj − ∂lcikj + Γikmc

m
lj − Γmkjc

i
ml − Γilmc

m
kj + Γmlj c

i
mk,(1.15)

where we have indicated with Γijk the Christoffel symbols of the connection ∇. We have

Γikl = Γ̃ikl −
1

2
gifcqkldθqf ,

where θi = gile
l, Γ̃ikl are the Christoffel symbols of the Levi-Civita connection constructed

from g, and dθqf = ∂qθf − ∂fθq. In the expression (1.15) it is convenient to treat separately
the contributions coming from the Levi-Civita connection of g, denote them by A, and those
coming from the additional terms containing the counit, denote them by B:

A =∂kc
i
lj − ∂lcikj +

1

2
giq(∂kgqm + ∂mgqk︸ ︷︷ ︸

∗∗∗

−∂qgkm)cmlj −
1

2
gmq(∂kgqj + ∂jgqk − ∂qgkj︸ ︷︷ ︸

∗∗

)ciml

− 1

2
giq(∂lgmq + ∂mglq︸ ︷︷ ︸

∗

−∂qglm)cmkj +
1

2
gmq(∂lgqj + ∂jgql − ∂qglj︸︷︷︸

∗∗∗∗

)cimk,

B =− 1

2
giscqkmdθqsc

m
lj +

1

2
gmscqkjdθqsc

i
ml +

1

2
giscqlmdθqsc

m
kj −

1

2
gmscqljdθqsc

i
mk.

Using the associativity of the product, i.e. cqlmc
m
kj = cqkmc

m
lj , the first and the third terms in the

last expression cancel out, and we remain with

B =
1

2
gmscqkjc

i
ml∂qθs −

1

2
gmscqkjc

i
ml∂sθq −

1

2
gmscqljc

i
mk∂qθs +

1

2
gmscqljc

i
mk∂sθq.

Since g is compatible with the product ◦, we have

B =
1

2
gmicqkjc

s
ml∂qθs −

1

2
gmscqkjc

i
ml∂sθq −

1

2
gmicqljc

s
mk∂qθs +

1

2
gmscqljc

i
mk∂sθq.

Now we integrate by parts obtaining:

B =
1

2
gmicqkj∂q(c

s
mlθs)−

1

2
gmicqkjθs∂qc

s
ml −

1

2
gmsciml∂s(c

q
kjθq) +

1

2
gmscimlθq∂sc

q
kj

− 1

2
gmicqlj∂q(c

s
mkθs) +

1

2
gmicqljθs∂qc

s
mk +

1

2
gmscimk∂s(c

q
ljθq)−

1

2
gmscimkθq∂sc

q
lj.

Now observe that θpc
p
sl = gpre

rcpsl, and using the compatibility of g with ◦ this is equal to
gpse

rcprl = gpsδ
p
l = gsl, since e is the unit of ◦, and analogously for other indices. Therefore, B

simplifies to

B =
1

2
gmi∂qgmlc

q
kj︸ ︷︷ ︸

∗

− 1

2
gms∂sgkjc

i
ml︸ ︷︷ ︸

∗∗

− 1

2
gmi∂qgmkc

q
lj︸ ︷︷ ︸

∗∗∗

+
1

2
gms∂sgljc

i
mk︸ ︷︷ ︸

∗∗∗∗

+
1

2
gmiθs

[
cqlj∂qc

s
mk − c

q
kj∂qc

s
ml

]
+

1

2
gmsθq

[
ciml∂sc

q
kj − c

i
mk∂sc

q
lj

]
.
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Note that the first four terms of B cancel out with four terms of A, and we are left with
A+B = C +D, where

C =∂kc
i
lj − ∂lcikj +

1

2
gim(∂kgmq − ∂mgkq)cqlj −

1

2
gms(∂kgsj + ∂jgsk)c

i
ml −

1

2
gim(∂lgqm − ∂mglq)cqkj

+
1

2
gms(∂lgsj + ∂jgsl)c

i
mk,

D =
1

2
gmiθs

[
cqlj∂qc

s
mk − c

q
kj∂qc

s
ml

]
+

1

2
gmsθq

[
ciml∂sc

q
kj − c

i
mk∂sc

q
lj

]
.

To conclude, we rewrite D using the Hertling-Manin condition (1.2). Renaming summed indices
and using the compatibility of g with ◦ in the second term (i.e. gmsciml = gmicsml and analogously
for the other monomial in the second term), we obtain:

D =
1

2
gisθp

[
cqlj∂qc

p
sk − c

q
kj∂qc

p
sl

]
+

1

2
gisθp

[
cqsl∂qc

p
kj − c

q
sk∂qc

p
lj

]
=

=
1

2
gisθp

[
cqlj∂qc

p
sk − c

q
sk∂qc

p
lj

]
− 1

2
gisθp

[
cqkj∂qc

p
sl − c

q
sl∂qc

p
kj

]
,

where in the last line we have rearranged the terms in order to apply (1.2) to the expressions
inside square brackets. Applying (1.2) and using the fact that θpc

p
jq = gjq (and analogously for

other indices), we obtain:

D =
1

2
gis
[
gjq∂lc

q
sk − gqk∂sc

q
jl + glq∂jc

q
sk − gqs∂kc

q
jl

]
− 1

2
gis
[
gjq∂kc

q
sl − gql∂sc

q
jk + gkq∂jc

q
sl − gqs∂lc

q
jk

]
=

1

2
gis
[
∂l(gjqc

q
sk)− c

q
sk∂lgjq −����

�∂s(gqkc
q
jl) + cqjl∂sgqk +���

��∂j(glqc
q
sk)− c

q
sk∂jglq

]
− 1

2
∂kc

i
jl

− 1

2
gis
[
∂k(gjqc

q
sl)− c

q
sl∂k(gjq)−����

�∂s(gqlc
q
jk) + cqjk∂sgql +���

��∂j(gkqc
q
sl)− c

q
sl∂jgkq

]
+

1

2
∂lc

i
jk,

where we have performed integration by parts and used the invariance of g with respect to ◦.
Now in the expression for D we write ∂l(gjqc

q
sk) = ∂l(gsqc

q
jk) and expand the expression using

the Leibnitz rule and do the same with ∂k(gjqc
q
sl):

D =
1

2
gis
[
cqjk∂lgsq − c

q
sk∂lgjq + cqjl∂sgqk − c

q
sk∂jglq

]
+

1

2
∂lc

i
jk −

1

2
∂kc

i
jl

− 1

2
gis
[
cqjl∂kgsq − c

q
sl∂k(gjq) + cqjk∂sgql − c

q
sl∂jgkq

]
− 1

2
∂kc

i
jl +

1

2
∂lc

i
jk.

To compare more effectively C and D, we rewrite C as

C =∂kc
i
lj − ∂lcikj +

1

2
gis(∂kgsq − ∂sgkq)cqlj −

1

2
gis(∂kgqj + ∂jgqk)c

q
sl

− 1

2
gis(∂lgqs − ∂sglq)cqkj +

1

2
gis(∂lgqj + ∂jgql)c

q
sk,

where we have renamed summed indexes and used the invariance of g with respect to ◦. It is
now immediate to see that C +D = 0, thus proving that ∇ is compatible with the product ◦.

Before proving that ∇ is flat, let us prove some preliminary lemmas.

Lemma 1.9. Let M be a manifold equipped with a torsionless connection ∇ and a vector field X
such that ∇X = 0. Then LXT = ∇XT for any tensor field T on M .

Proof. Note that for any vector field Y we have ∇XY = LXY +∇YX = LXY . Therefore, if T
is a (k, l) tensor, then

(LXT )(Y1, . . . , Yl) =LX(T (Y1, . . . , Yl))−
l∑

i=1

T (Y1, . . . ,LXYi, . . . , Yl) =

=∇X(T (Y1, . . . , Yl))−
l∑

i=1

T (Y1, . . . ,∇XYi, . . . , Yl) = (∇XT )(Y1, . . . , Yl),
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as required. �

Lemma 1.10. Consider a manifold M equipped with a commutative associative product ◦ and
a unit vector field e.

1. If M is equipped with a (pseudo-)Riemannian metric g such that Leg = 0, then Leθ = 0.
2. If M is equipped with a torsionless connection ∇ compatible with the product ◦ and such

that ∇e = 0, then Lec = 0.

Proof. For Part 1 we compute

(Leθ)(Y ) = e(θ(Y ))− θ(LeY ) = (Leg)(e, Y ) + g(Lee, Y ) +���
���g(e,LeY )−����θ(LeY ) = 0,

and for Part 2:

(Lec)(X, Y )
Lemma 1.9

= (∇ec)(X, Y ) = (∇Xc)(e, Y ) =((((
(((∇X(c(e, Y ))− c(∇Xe, Y )−����

��
c(e,∇XY ) = 0.

�

Lemma 1.11. Consider a manifold M equipped with a commutative associative product ◦, a
unit vector field e, and a torsionless connection ∇. Then ∇ is flat if and only if the curvature
operator R of ∇ satisfies condition (1.4) together with the condition

(1.16) R(e,X) = 0, X ∈ TM .

Proof. Substituting Y = e in (1.4) and using (1.16) and the fact that e is the unit for ◦, one
obtains immediately that R(Z,X)(W ) = 0 for all local vector fields X,Z,W . The converse
statement is obvious. �

Proposition 1.12. Consider a manifold M equipped with a commutative associative product ◦
and two connections ∇, ∇̃ such that ∇ is compatible with the product and

∇XY = ∇̃XY +W (X ◦ Y ), X, Y ∈ TM ,

for some (1, 1) tensor field W . Then

R(Y, Z)(X ◦W ) +R(X, Y )(Z ◦W ) +R(Z,X)(Y ◦W ) =(1.17)

=R̃(Y, Z)(X ◦W ) + R̃(X, Y )(Z ◦W ) + R̃(Z,X)(Y ◦W ), X, Y, Z,W ∈ TM ,

where R, R̃ are the Riemann tensors for the connections ∇, ∇̃, respectively.

Proof. Denote by Γhjk the Christoffel symbols of the connection ∇ and by ahjk the Christoffel

symbols of the connection ∇̃. We have

Γhjk = ahjk + bhjk,

where bjjk = csjkW
h
s and, therefore,

Rh
ikj =R̃h

ikj + ∂kb
h
ij − ∂jbhik + asijb

h
ks − asikbhjs + bsija

h
ks − bsikahjs + bsijb

h
ks − bsikbhjs =

=R̃h
ikj +∇kb

h
ij −∇jb

h
ik + bhsjb

s
ik − bhskbsij =: R̃h

ikj + T hikj.

Using the condition ∇kc
i
jl = ∇jc

i
kl it is immediate to prove that

T hikj =
(
cmij∇kW

h
m − cmik∇jW

h
m

)
+W s

l W
h
m(clikc

m
sj − clijcmsk)

or, equivalently,

R(X, Y )(Z) = R̃(X, Y )(Z) + [(∇XW )(Z ◦ Y )− (∇YW )(Z ◦X)]

+ [W (W (Z ◦X) ◦ Y )−W (W (Z ◦ Y ) ◦X)] , X, Y, Z ∈ TM ,

which implies (1.17) via a simple straightforward computation. �
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We are now ready to prove that ∇ is flat. Denote by R̂ the Riemann tensor of ∇. By

Lemma 1.11 it is sufficient to check that R̂ satisfies condition (1.4) together with condi-
tion (1.16). For the (1, 1) tensor field W on M defined by W (X) := −1

2
(ιXdθ)

] we have

∇XY = ∇̃XY + W (X ◦ Y ) and, therefore, by Proposition 1.12 condition (1.4) is true for the

tensor R̂, since this condition is true for the tensor R.

It remains to check that R̂(e,X) = 0 or, equivalently,

R̂h
ikje

j = 0.

We have

R̂h
ikje

j = ej∂kΓ
h
ij − e(Γhik) + Γsije

jΓhks − ΓsikΓ
h
jse

j,

Using the condition ∇e = 0 we can reduce the above expression to

R̂h
ikje

j = −e(Γhik)− ∂k∂ieh − Γhis∂ke
s − Γhks∂ie

s + Γsik∂se
h.(1.18)

Let us express

Γhik = Γ̃hik + bhik, where bhik = −1

2
ghsclikdθls.

Using that Leg = 0 it is not difficult to prove that

e(Γ̃hik) = Γ̃sik∂se
h − Γ̃him∂ke

m − Γ̃hkm∂ie
m − ∂i∂keh.

Similarly using Leg = 0, and the conditions Leθ = 0 and Lec = 0, which hold because of
Lemma 1.10, one can prove that

e(bhik) = bsik∂se
h − bhim∂kem − bhkm∂iem.

Combining the above relations we get

e(Γhik) = Γsik∂se
h − Γhim∂ke

m − Γhkm∂ie
m − ∂i∂keh,

and substituting this on the right-hand side of (1.18) we get R̂h
ikje

j = 0, as required. �

Let us remark that in Theorem 1.8 no assumption is made about the semisimplicity of the
product ◦ or even its regularity in the sense of David-Hertling (see [DH17]). The above theorem
was proved in [ABLR20a, Theorem 1.13] assuming that the product is semisimple.

1.2. From flat F-manifolds to Riemannian F-manifolds. Now we try to reconstruct a
Riemannian F-manifold with Killing unit vector field starting from a flat F-manifold.

Theorem 1.13. Let (M, ◦,∇, e) be a flat F-manifold and let g be an invariant metric satisfying
condition (1.10). Then the tuple (M, ◦, g, e) defines a Riemannian F-manifold with Killing unit
vector field.

Proof. The proof is based on the following lemma.

Lemma 1.14. Let (M, ◦,∇, e) be a flat F-manifold and g be any metric satisfying condi-
tion (1.10).

1. We have Leg = 0.

2. Let ∇̃ be the connection defined by

∇̃XY := ∇XY +
1

2
(ιX◦Y dθ)

].

Then ∇̃g = 0.
3. The Riemann tensor of g satisfies condition (1.4).
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Proof. Part 1:

(Leg)(Y, Z)
Lemma 1.9

= (∇eg)(Y, Z)
(1.10)
=

1

2
dθ(Y, Z) +

1

2
dθ(Z, Y ) = 0,

by skewsymmetry of dθ.
Part 2:

(∇̃Xg)(Y, Z) =X(g(Y, Z))− g(∇̃XY, Z)− g(Y, ∇̃XZ) =

=(∇Xg)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ)− g(∇̃XY, Z)− g(Y, ∇̃XZ) =

=(∇Xg)(Y, Z)− 1

2
dθ(X ◦ Y, Z)− 1

2
dθ(X ◦ Z, Y )

(1.10)
=

=0.

Part 3 immediately follows from Part 2 and Proposition 1.12, since ∇ is flat. �

The theorem obviously follows from the lemma. �

Remark 1.15. In the case of a semisimple flat F-manifold, in canonical coordinates, an in-
variant metric is diagonal, gij = δijgii, and system (1.10) reads

δij∂kgii − Γjkigjj − Γikjgii =
1

2
(δik − δ

j
k)(∂igjj − ∂jgii), 1 ≤ i, j, k ≤ dimM.

This is a complete compatible system whose general solution depends on n = dimM arbitrary
constants (see [ABLR20a, Proposition 1.8] and the paragraph before).

1.3. An example: the Lobachevsky hyperbolic half-plane. We conclude this section with
an example of Riemannian F-manifold with Killing unit vector field. Consider the following
(rotated) version of the Lobachevsky hyperbolic half-plane: H := {(x, y) ∈ R2|x > y} with the
metric g := 2

(x−y)2 (dx2 + dy2). We declare (x, y) to be canonical coordinates for a semisimple

product ◦, so that in these coordinates cijk = δijδ
i
k. The unit vector field is e = ∂x + ∂y. It is

immediate to check that Leg = 0 and that g is invariant. Finally, condition (1.6) in this case
reads:

Rj
sklδ

s
mδ

s
i +Rj

smkδ
s
l δ
s
i +Rj

slmδ
s
kδ
s
i = 0, 1 ≤ k, l,m, i, j ≤ 2,

which is clearly satisfied if k, l,m 6= i. Otherwise, since condition (1.6) is symmetric with
respect to cyclic permutations of k, l,m, we can assume that m = i. If also l, k 6= i, then
automatically l = k (because dimH = 2) and the condition reduces to Rj

mkk = 0, which is
true by skewsymmetry. If exactly two indices from k, l,m are equal to i, then we can assume
that i = m = l 6= k, and the condition reduces to Rj

iki + Rj
iik = 0, which is also satisfied by

skewsymmetry. If i = m = k = l, then all the terms in the constraint are equal to Rj
iii = 0,

again by skewsymmetry. Therefore, (H, ◦, g, e) is a semisimple Riemannian F-manifold with
Killing unit vector field.

It is easy to compute that flat coordinates of the associated flat F-manifold are given by

t1 = 4
x−y , t2 = x+y

2
, and a corresponding vector potential is (F 1, F 2) =

(
t1t2, (t

2)2

2
+ 2

3
(t1)−2

)
.

The unit vector field is ∂
∂t2

.
In Section 3.3 we will see that the Lobachevsky hyperbolic half-plane is an example of a

Riemannian F-manifold with flat normal bundle.

1.4. A non-semisimple example in dimension 2. Let us consider the flat structure defined
in David-Hertling canonical coordinates (x, y) (see [DH17]) by the data

ckij = δki+j−1, e = ∂x, E = x∂x + y∂y,

and by the Christoffel symbols (only non vanishing symbols are listed)

Γ1
22 =

b

y
, Γ2

22 =
a

y
,
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where a and b are constants (we list in the Appendix the vector potentials associated with this
family). It is easy to check that the associated metrics exist only if b = 0 and are given by

g =

[
f(y) cya

cya 0

]
where c is an abitrary constant and f(y) is an arbitrary function.

1.5. A non-semisimple example in dimension 3. Let us consider the flat structure defined
in David-Hertling canonical coordinates (x, y, z) by the data

ckij = δki+j−1, e = ∂x, E = x∂x + y∂y + z∂z,

and by the Christoffel symbols (only non-vanishing symbols are listed)

Γ3
23 = Γ3

32 =
a

y
, Γ3

22 =
(ab+ 2b)y − 2az

(a+ 2)

1

y2
, Γ2

22 =
a(a+ 1)

(a+ 2)

1

y
,

where a 6= 2 and b are constants (see [AL19, Theorem 5.10]). The associated invariant metrics
satisfying (1.10) (obtained using the computational software Maple) have the form

g =

g11 g12 g13
g21 g22 0
g31 0 0

 ,
where

g11 = 2F ′(y)yz +G(y)y +
2

9

(
a2(a2 + 3a+ 3)

(a+ 2)2

)
cy

4
3

a2−3
a+2 z2 − 2

(
bcy

1
3

4a2+3a−6
a+2 +

a2 − 2

a+ 2
F (y)

)
z,

g12 = g21 =
2

3

(
a(a+ 3)

a+ 2

)
cy

1
3

4a2+3a−6
a+2 z + yF (y),

g13 = g22 = g31 = cy
2
3

(2a+3)a
a+2 .

In the above formulas c is an arbitrary constant while F (y) and G(y) are arbitrary functions.

2. Homogeneous Riemannian F-manifolds and bi-flat F-manifolds

In this section we consider flat F-manifolds equipped with a second distinguished vector field,
called the Euler vector field. In the literature one can find three different and (a posteriori)
equivalent ways to do this:

(1) Dropping the axioms involving explicitly the metric apart from those involving only the
Levi-Civita connection in the definition of a (conformal) Dubrovin-Frobenius manifold.
This is the most straightforward way and leads to the definition of a Dubrovin-Frobenius
manifold without metric [AL17] or flat F-manifold with (linear) Euler vector field [DH19]
or homogeneous flat F-manifold [ABLR20a] (see also [ABLR20b, Remark 2.2]).

(2) In terms of a flat meromorphic connection on the bundle π∗TM on P×M called Saito
structure without metric (see [Sab98] for details).

(3) In terms of a pair of compatible flat structures. This generalizes the notion of compatible
flat metrics (flat pencil of metrics) and leads to the notion of a bi-flat F-manifold.

2.1. Homogeneous flat F-manifolds and bi-flat F-manifolds.

Definition 2.1. [ABLR20a] A homogeneous flat F-manifold (also called a manifold with Saito
structure in [KMS18]) is a flat F-manifold (M, ◦,∇, e) equipped with a vector field E, called
the Euler vector field, satisfying LE◦ = ◦ and ∇∇E = 0.

Definition 2.2. [AL13] A bi-flat F-manifold is a manifold M equipped with two different flat
F-manifold structures (◦,∇, e) and (∗,∇∗, E) related by the following conditions:

(1) LE◦ = ◦;
(2) X ∗ Y = (E◦)−1X ◦ Y for all local vector fields X, Y on M ;
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(3) ∇X(Y ◦ Z) −∇Y (X ◦ Z) = ∇∗X(Y ◦ Z) −∇∗Y (X ◦ Z) for all local vector fields X, Y, Z
on M .

Remark 2.3. Note that the condition LE◦ = ◦ in these two definitions implies that LEe = −e.

The connections ∇ and ∇∗ are called the natural connection and the dual connection, re-
spectively. The dual connection is defined at the points where the operator E◦ is invertible.
Moreover, from the above conditions it follows that it is uniquely determined in terms of the
natural connection, the dual product, and the Euler vector field via the following expression:

Γ∗kij = Γkij − c∗lji∇lE
k.

Conversely, the natural connection is uniquely determined in terms of the dual connection, the
product, and the unit vector field via:

Γkij = Γ∗kij − clji∇∗l ek.
Compatibility of the dual connection with the dual product is a consequence of the other axioms
(see [AL19] for details) and flatness of the dual connection is equivalent to linearity of the Euler
vector field (see [AL17] for the semisimple case and [KMS18] for the general case) ∇∇E = 0.
Therefore, the structure of a bi-flat F-manifold is equivalent to the structure of a homogeneous
flat F-manifold with invertible Euler vector field.

2.2. From homogeneous Riemannian F-manifolds to homogeneous flat F-manifolds.
The construction of Theorem 1.8 produces a homogeneous flat F-manifold provided that we
add some further conditions on a Riemannian F-manifold.

Definition 2.4. A homogeneous (pseudo-)Riemannian F-manifold is a (pseudo-)Riemannian
F-manifold equipped with a distinguished vector field E, called the Euler vector field, such that
the following conditions are satisfied:

LE◦ = ◦, LEg = Dg,

where D is a constant.

We can now state the main result of this section.

Theorem 2.5. Let (M, ◦, g, e, E) be a homogeneous Riemannian F-manifold with Killing unit
vector field. Then the data (M, ◦,∇, e, E), where ∇ is given by Theorem 1.8, defines a homo-
geneous flat F-manifold.

Proof. We only need to prove that ∇∇E = 0. Recall that

Γhjk = Γ̃hjk + bhjk,

where Γhjk are the Christoffel symbols of the connection ∇, Γ̃hjk are the Christoffel symbols of

the Levi-Civita connection of the metric g, and bhjk = −1
2
gshclkjdθls. Using the flatness of ∇ we

obtain

(2.1) (∇∇E)ikj = ∂k∂jE
i + Γijl∂kE

l + Γikm∂jE
m − Γmkj∂mE

i + E(Γikj).

From the homogeneity of the metric it follows that

E(gij) =−Dgij + gis∂sE
j + gsj∂sE

i,

E(gij) =Dgij − gis∂jEs − gsj∂iEs.

Using these facts, after an elementary but long computation, one gets

E(Γ̃ijk) = Γ̃sjk∂sE
i − Γ̃ijs∂kE

s − Γ̃isk∂jE
s − ∂j∂kEi.

Since LEg = Dg and LEe = −e, we have LEθ = (D − 1)θ and LEdθ = (D − 1)dθ. Using also
that LE◦ = ◦ we conclude that LEbhjk = 0 and, therefore,

E(bijk) = bsjk∂sE
i − bijs∂kEs − bisk∂jEs.
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Combining the above relations we get

E(Γijk) = Γsjk∂sE
i − Γijs∂kE

s − Γisk∂jE
s − ∂j∂kEi

and substituting this on the right-hand side of (2.1) we get ∇∇E = 0. �

3. Riemannian F-manifolds with flat normal bundle

A particular class of Riemannian F-manifolds consists of F-manifolds equipped with an in-
variant (pseudo-)metric g satisfying condition (1.5) together with

(3.1) Rij
kh =

N∑
α=1

εα
(
cjklc

i
hm − ciklc

j
hm

)
X l

(α)X
m
(α), εα = ±1,

where Rij
kh = gisRj

skh are the components of the Riemann curvature tensor of the metric g and
the vector fields X(α) satisfy the conditions

(3.2) cijl∇kX
l
(α) = cikl∇jX

l
(α),

(the fact that relation (3.1) implies condition (1.4) is a simple direct computation). Here ∇ is
the flat connection given by Theorem 1.8. Let us call such Riemannian F-manifolds Riemannian
F-manifolds with flat normal bundle.

Given a Riemannian F-manifold with flat normal bundle, it is easy to check that the affinors
W(α) := X(α)◦ satisfy the conditions

Rij
kh =

N∑
α=1

εα
(
(W(α))

j
k(W(α))

i
h − (W(α))

i
k(W(α))

j
h

)
,(3.3) [

W(α),W(α′)

]
= 0,(3.4)

gik(W(α))
k
j = gjk(W(α))

k
i ,(3.5)

∇̃k(W(α))
i
j = ∇̃j(W(α))

i
k,(3.6)

where ∇̃ is the Levi-Civita connection associated to the metric g. Equations (3.3,3.4,3.5,3.6)
can be interpreted as the Gauss-Peterson-Mainardi-Codazzi equations for an n-dimensional sub-
manifold with flat normal connection embedded in an (n+N)-dimensional (pseudo-)Euclidean
space. The (pseudo-)metric g can be interpreted as the induced metric and the affinors W(α)

as Weingarten operators.

3.1. Riemannian F-manifolds with flat normal bundle and Hamiltonian operators.
Conditions (3.3,3.4,3.5,3.6) also appear in the Hamiltonian formalism for systems of hydrody-
namic type [Fer91] (see also [FM90] for the special case of metrics with constant curvature and
[CLV20] for a detailed discussion of Jacobi identity).

Theorem 3.1. [Fer91] If det(gij) 6= 0, then the operator

(3.7) P ij = gij
d

dx
− gisΓjsku

k
x +

N∑
α=1

εα
(
W(α)

)i
k
ukx

(
d

dx

)−1(
W(α)

)j
h
uhx , εα = ±1,

defines a Hamiltonian operator if and only if (gij) defines a pseudo-Riemannian metric, the
coefficients Γjsk are the Christoffel symbols of the associated Levi-Civita connection ∇, and the
affinors W(α) satisfy conditions (3.3,3.4,3.5,3.6).

We thus see that any Riemannian F-manifold with flat normal bundle gives, via this theorem,
a non-local Hamiltonian operator.

Ferapontov also considered the limiting case where the index α takes values in infinite set
(even continuous, with the sum replaced by an integral) and conjectured that any integrable
diagonalizable quasilinear system of PDEs (semi-Hamiltonian system) is indeed Hamiltonian
w.r.t. a suitable Poisson bracket of this class. This conjecture has been verified in the case
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of arbitrary n-component reductions of dKP [GLR09] and dispersionless 2D Toda hierarchy
[CLR10]. In both cases the Riemann tensor of the generic reduction admits an integral repre-
sentation that in some special cases reduces to a finite sum of residues at some marked points.
In the case of semisimple Riemannian F-manifolds condition (1.4) ensures that all flows of the
associated principal hierarchy are semi-Hamiltonian. Thus, validity of the Ferapontov conjec-
ture in this setting would imply the possibility of writing the Riemann tensor associated with
the invariant metric g of a Riemannian F-manifold in terms of the solutions of system (3.2)
with the finite sum in (3.1) possibly replaced by an integral.

3.2. An example with a special Lauricella bi-flat F-manifold.

Proposition 3.2. ([AL13, Section 7], [Lor14, Section 5]) The connection ∇ defined by the
Christoffel symbols

Γijk := 0, Γijj := −Γiij, Γiij :=
εj

ui − uj
, Γiii := −

∑
l 6=i

Γili, i 6= j 6= k 6= i,

the dual connection ∇∗ defined by the Christoffel symbols

Γ∗ijk := 0, Γ∗ijj := −u
i

uj
Γ∗iij , Γ∗iij :=

εj
ui − uj

, Γ∗iii := −
∑
l 6=i

ul

ui
Γ∗ili −

1

ui
, i 6= j 6= k 6= i,

the products cijk := δijδ
i
k and c∗ijk := 1

ui
δijδ

i
k and the vector fields e :=

∑n
k=1 ∂k and E :=

∑n
k=1 u

k∂k
define a bi-flat semisimple F-manifold structure for any choice of the constants ε1, . . . , εn.

These examples are related to the theory of Lauricella functions [Lau1893], Lauricella con-
nections, and Lauricella manifolds [CHL05, Loo07] and for this reason are called the Lauricella
bi-flat structures [AL19].

We focus on the case εi = −1, i = 1, . . . , n. This is related to the system of chromatography
equations [Fer91]. The invariant metric in this case has non-vanishing components

gii = ci
∏
l 6=i

(ul − ui)2, i = 1, . . . , n,

where c1, . . . , cn are arbitrary nonzero constants. It was observed in [Fer91, Example 5] that
the associated Riemann tensor admits the following quadratic expansion:

Rij
ij = −

n∑
α=1

X i
(α)X

j
(α), i 6= j,

where

X i
(α) = ∂i

(
1

√
cα
∏

l 6=α(ul − uα)

)
.

This implies that condition (3.1) is satisfied.

Proposition 3.3. The vector fields X i
(α), α = 1, . . . , n of this specific example are covariantly

constant w.r.t. the flat connection ∇ with εi = −1, i = 1, . . . , n. The rank of the n× n matrix
whose columns are the vector fields X(α) is n− 1.

Proof. The proof is by a straightforward computation. �

Therefore, the Lauricella bi-flat F-manifolds with εi = −1 are Riemannian F-manifolds with
flat normal bundle.
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3.3. An example with the Lobachevsky hyperbolic half-plane. The Riemann tensor of
the Lobachevsky hyperbolic half-plane from Section 1.3 is given by R12

12 = 1 and thus condi-
tion (3.1) is satisfied with α = 1, ε1 = −1, and X(1) = e. Since ∇e = 0 condition (3.2) is also
satisfied. Therefore, the Lobachevsky hyperbolic half-plane is a Riemannian F-manifold with
flat normal bundle. The associated non-local Hamiltonian operator given by Theorem 3.1 is

(P ij) =

(
(u1−u2)2

2
0

0 (u1−u2)2
2

)
d

dx
+

(
u1−u2

2
(u1x − u2x) u1−u2

2
(u1x + u2x)

−u1−u2
2

(u1x + u2x)
u1−u2

2
(u1x − u2x)

)

−

(
u1x
(
d
dx

)−1
u1x u1x

(
d
dx

)−1
u2x

u2x
(
d
dx

)−1
u1x u2x

(
d
dx

)−1
u2x

)
.

4. Flat homogeneous Riemannian F-manifolds

Let (M, ◦, g, e, E) be a semisimple homogeneous (pseudo-)Riemannian F-manifold with Killing
unit vector field. In canonical coordinates the metric g is diagonal. Let us introduce the Lamé
coefficients Hi :=

√
gii and the Ricci rotation coefficients βij :=

∂jHi

Hj
, i 6= j. It is easy to check

that they satisfy the following overdetermined system of PDEs:

∂kβij =βikβkj, i 6= j 6= k 6= i,(4.1)

e(βij) =0, i 6= j,(4.2)

E(βij) =− βij, i 6= j,(4.3)

where

e =
n∑
i=1

∂i, E =
n∑
i=1

ui∂i.

Given a solution of the above system, the Lamé coefficients of the metric g are obtained solving
the overdetermined system of PDEs

∂jHi =βijHj, i 6= j,(4.4)

e(Hi) =0,(4.5)

E(Hi) =dHi,(4.6)

where d is an eigenvalue of the matrix Vij := (uj − ui)βij [Dub96, AL13]. Note that then
LEg = Dg with D = 2d+ 2.

This system has been extensively studied in [AL13] where it has been shown that in the case
n = 3 it is equivalent to a 2-parameter family of Painlevé VI. Replacing equation (4.3) with
the equation

E(βij) = (di − dj − 1)βij, i 6= j,

and equation (4.6) with the equation

E(Hi) = diHi,

one gets the system for general semisimple bi-flat F-manifolds [Lor14]. In this case only the
differences of the constants di can be chosen arbitrarily, while d1 must be an eigenvalue of the
matrix Vij := (uj − ui)βij − (dj − d1)δij. Comparing the system for generic semisimple bi-flat
F-manifolds to the special case related to homogeneous Riemannian F-manifolds with Killing
unit vector field it is clear that the first one reduces to the second one imposing the condition
d1 = d2 = . . . = dn.

In this section we want to study solutions of the system ((4.1),(4.2),(4.3),(4.4),(4.5),(4.6))
for which the resulting metric g is flat. This amounts to consider the additional conditions

(4.7) ∂iβji + ∂jβij +
∑
k 6=i,j

βikβjk = 0, i 6= j.
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These additional conditions are automatically fulfilled if the rotation coefficients are symmetric.
This is the special case corresponding to exact homogeneous flat pencils satisfying the Egorov
property, which are equivalent to Dubrovin-Frobenius manifolds.

Using (4.2) and (4.3) we can reduce conditions (4.7) to a set of n(n−1)
2

algebraic constraints.
Indeed, from (4.2) and (4.3) we get

∂jβij =
1

uj − ui

{∑
k 6=i,j

(ui − uk)∂kβij − βij

}
, i 6= j,

and thus (4.7) becomes

(4.8)
∑
k 6=i,j

[(uj − uk)(∆β)ikβjk + (uk − ui)(∆β)jkβik] = (∆β)ij, i 6= j,

where (∆β)ij := βij−βji. In the Egorov case (∆β)ij = 0 the above conditions are automatically
satisfied. The Egorov conditions imply ∂j(H

2
i ) = ∂i(H

2
j ) and thus (locally) the metrics with

rotation coefficients βij are potential in the coordinates (u1, . . . , un). The Egorov conditions are
not invariant with respect to transformations ui → ũi = ϕi(ui) preserving the diagonal form of
the metric. Metrics that are potential for a suitable choice of ũi satisfy the weaker conditions
[Dar10, Ego70]

(4.9) βijβjkβki = βjiβikβkj, i 6= j 6= k 6= i.

4.1. The three-dimensional case. The case n = 2 is trivial. In this case condition (4.8)
reduces to (∆β)ij = 0. Let us consider the case n = 3. Following [AL13] we can reduce the sys-
tem of partial differential equations (4.1,4.2,4.3) to a system of ODEs. Indeed, equations (4.2)
and (4.3) tell us that the functions βij are homogeneous functions of degree −1 which depend
only on the differences of the coordinates. This means that we can write

β12 =
1

u2 − u1
F12

(
u3 − u1

u2 − u1

)
, β21 =

1

u2 − u1
F21

(
u3 − u1

u2 − u1

)
,

β13 =
1

u3 − u1
F13

(
u3 − u1

u2 − u1

)
, β31 =

1

u3 − u1
F31

(
u3 − u1

u2 − u1

)
,

β23 =
1

u3 − u2
F23

(
u3 − u1

u2 − u1

)
, β32 =

1

u3 − u2
F32

(
u3 − u1

u2 − u1

)
.

Introducing the variable z = u3−u1
u2−u1 we get the system

dF12

dz
=

1

z(z − 1)
F13F32,

dF21

dz
=

1

z(z − 1)
F23F31,

dF13

dz
= − 1

z − 1
F12F23,

dF31

dz
= − 1

z − 1
F32F21,

dF23

dz
=

1

z
F21F13,

dF32

dz
=

1

z
F31F12.

The above system admits two first integrals I1, I2 given by det(V + λ Id) = λ3 + λI1 + I2 or,
explicitly,

I1 = F12F21 + F13F31 + F23F32, I2 = F13F32F21 − F23F31F12,

and

V =

 0 F12 F13

−F21 0 F23

−F31 −F32 0

 .
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The constraint (4.8) reads

(u2 − u3)(∆β)13β23 + (u3 − u1)(∆β)23β13 − (∆β)12 = 0,

(u1 − u3)(∆β)12β31 + (u2 − u1)(∆β)13β21 − (∆β)23 = 0,

(u2 − u1)(∆β)23β12 + (u2 − u3)(∆β)12β32 + (∆β)13 = 0,

or, in terms of the functions Fij,

I3 = (z2 − z)(∆F )12 + (z − 1)F23(∆F )13 − zF13(∆F23) = 0,

I4 = (z2 − z)F31(∆F )12 + (1− z)F21(∆F )13 + z(∆F )23 = 0,

I5 = (z2 − z)F32(∆F )12 + (1− z)(∆F )13 − zF12(∆F )23 = 0,

where (∆F )ij := Fij − Fji. This can also be written in the matrix form as

W

(∆F )12
(∆F )13
(∆F )23

 =

0
0
0

 , where W =

 z2 − z (z − 1)F23 −zF13

(z2 − z)F31 (1− z)F21 z
(z2 − z)F32 1− z −zF12

 .
It is easy to check that

detW = z2(z − 1)2(I1 − I2 + 1).

Here we have to distinguish two cases:

(1) The Egorov case: (∆β)ij = 0 for all i 6= j. In this case the constraints I3, I4, I5 are
automatically satisfied.

(2) The non-Egorov case: (∆β)ij 6= 0 for some i 6= j. In this case the determinant of the
matrix of the system must vanish. As a consequence, the values of the two first integrals
cannot be chosen independently:

I1 = I2 − 1.

Using this relation and the fact that the vector ((∆F )12, (∆F )13, (∆F )23)
t belongs to

the kernel of W it is possible to prove that the constraints I3 = 0, I4 = 0, I5 = 0
are compatible with the system of ODEs for the functions Fij. In other words, this
system can be reduced to the set defined by the algebraic system I1 = q − 1, I2 =
q, I3 = 0, I4 = 0, I5 = 0, where q is a constant. Since the functions Ii are, at a generic
point, functionally independent, it would be reasonable to expect that the system for
the functions Fij reduces to a single first order ODE on this set. Remarkably, this is
not the case due to a jump in the rank of the Jacobian of the functions Ii on this set.

4.1.1. An example: the case q = 0. Let us consider for instance the metrics satisfying the
potentiality condition (4.9). In this case q = 0 and the solution of the algebraic system I1 =
−1, I2 = 0, I3 = 0, I4 = 0, I5 = 0 (obtained using the computational software Maple) is given by

F12 =
(z − 1)(F 3

21F
2
31 + F21F

4
31 − F 3

21 + F21F
2
31)− F21(F

2
21 + F 2

31) + δ((z − 1)F 2
21F31 + F 3

31)

z(F 2
21 + F 2

31)
2

,

F32 =
−F31(z − 1)(−F 5

21 + F 3
21F

2
31 + 2F21F

4
31 − F 3

21 + 3F21F
2
31)

z(−F 4
21 − F 2

21F
2
31 − F 2

21 + F 2
31)(F

2
21 + F 2

31)

+
−F31(z − 1)δ(F 4

21F31 + F 2
21F

3
31 + 3F 2

21F31 − F 3
31)

z(−F 4
21 − F 2

21F
2
31 + 2δF21F31 − F 2

21 + F 2
31)(F

2
21 + F 2

31)
,

F23 =
(z − 1)(3F 4

21F31 + 3F 2
21F

3
31 + 3F 2

21F31 − F 3
31)F21

(−F 4
21 − F 2

21F
2
31 + 2δF21F31 − F 2

21 + F 2
31)(F

2
21 + F 2

31)

+
(z − 1)δF21(F

5
21 + F 3

21F
2
31 + F 3

21 − 3F21F
2
31)F21

(−F 4
21 − F 2

21F
2
31 + 2δF21F31 − F 2

21 + F 2
31)(F

2
21 + F 2

31)
,
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where δ =
√
−F 2

31 − F 2
21 − 1 and the function F13 is obtained substituting the previous expres-

sions in

F13 =
F31F23F12

F21F32

.

Moreover, on this set the Jacobian of the functions Ii has rank 4.
The reduced system is

dF21

dz
=
F21F31

[
3F 4

21F31 + 3F 2
21F

3
31 + 3F 2

21F31 − F 3
31 + δ(F 5

21 + F 3
21F

2
31 + F 3

21 − 3F21F
2
31)
]

z(−F 4
21 − F 2

21F
2
31 + 2δF21F31 − F 2

21 + F 2
31)(F

2
21 + F 2

31)
,

dF31

dz
=

[
F 5
21 − F 3

21F
2
31 − 2F21F

4
31 + F 3

21 − 3F21F
2
31 + δ(−F 4

21F31 − F 2
21F

3
31 − 3F 2

21F31 + F 3
31)
]
F31F21

z(F 4
21 + F 2

21F
2
31 − 2δF21F31 + F 2

21 − F 2
31)(F

2
21 + F 2

31)
.

The general solution is

F21 = − 1

az + b
, F31 = − az

(az + b)
√
−b2 − 1

.

Starting from this solution we get

F21 =
(u2 − u1)

(au1 − au3 + bu1 − bu2)
, F31 = − a(u1 − u3)

(au1 − au3 + bu1 − bu2)
√
−b2 − 1

,

F12 =
b(a+ b)(u1 − u2)

(au1 − au3 + bu1 − bu2)
, F13 =

(u1 − u3)(a+ b)
√
−b2 − 1

(au1 − au3 + bu1 − bu2)
,

F32 =
(u3 − u2)ab√

−b2 − 1(au1 − au3 + bu1 − bu2)
, F23 =

(u3 − u2)
√
−b2 − 1

(au1 − au3 + bu1 − bu2)
.

The matrix V in this case has eigenvalues 1, 0,−1. This means that if d = 1, 0,−1, then the
overdetermined system for the Lamé coefficients (4.4,4.5,4.6) admits solutions. For d = −1 we
get

H1 =
1

(a+ b)u1 − au3 − bu2
,

H2 = − 1

(a+ b)((u1 − u2)b+ a(u1 − u3))
,

H3 = − a√
−b2 − 1(a+ b)((u1 − u2)b+ a(u1 − u3))

.

For d = 0 we get

H1 =
(u2 − u3)

((a+ b)u1 − au3 − bu2)
,

H2 =
(u3 − u1)

((u1 − u2)b+ a(u1 − u3))b
,

H3 =
(u1 − u2)

((a+ b)u1 − au3 − bu2)
√
−b2 − 1

,

and for d = 1 we get

H1 = −((a+ b)(u1)2 − 2(au3 + bu2)u1 + a(u3)2 + b(u2)2)

((a+ b)u1 − au3 − bu2)
,

H2 = −((a+ b)(u1)2 − 2u2(a+ b)u1 + (2u2u3 − (u3)2)a+ b(u2)2)

((a+ b)u1 − au3 − bu2)(a+ b)
,

H3 = −((a+ b)(u1)2 − 2u3(a+ b)u1 + a(u3)2 − bu2(u2 − 2u3))a√
−b2 − 1((a+ b)u1 − au3 − bu2)(a+ b)

.
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Solutions corresponding to generic values of q can be treated in a similar way but the compu-
tations are much more involved.

Remark 4.1. In the case q = 0 the rotation coefficients satisfy the potentiality condition (4.9).
This means that there exist coordinates (ũ1, ..., ũn) related to canonical coordinates (u1, ..., un)
by ũi = ϕi(ui) (for some functions ϕi) reducing the metric to the potential form. In other words
this is the closest case to Dubrovin-Frobenius manifolds.

5. Exact homogeneous flat pencils of metrics

Definition 5.1. A pair of contravariant metrics (g1, g2) defines a flat pencil of metrics g2−λg1
if and only if the following conditions are satisfied:

• the metric g2 − λg1 is flat for any λ;
• the contravariant Christoffel symbols Γij(λ)k of the pencil are the pencil of the contravari-

ant Christoffel symbols:

Γij(λ)k = Γij(2)k − λΓij(1)k.

Flat pencils of contravariant metrics play a crucial role in the theory of Dubrovin-Frobenius
manifolds. Dubrovin proved that any Dubrovin-Frobenius manifold defines a flat pencil of
contravariant metrics ([Dub96]). In this case g1 coincides with the inverse of the covariant
metric η of the Dubrovin-Frobenius manifold and g2 is the intersection form defined by

gij2 := ηilcjlkE
k,

where cjlk are the structure constants of the product and Ek are the components of the Euler
vector field. Vice versa, Dubrovin showed how to construct a Dubrovin-Frobenius manifold
starting from a flat pencil of metrics satisfying the following three additional properties:

• Exactness : there exists a vector field e such that

Leg2 = g1, Leg1 = 0.

• Homogeneity :

LEg2 = (d− 1)g2,

where Ei := gil2 (g1)lje
j.

• Egorov property : locally there exists a function τ such that

ei = gis1 ∂sτ, Ei = gis2 ∂sτ.

Remark 5.2. Exactness implies that [e, E] = e and combining this with the homogeneity con-
dition we get

LEg1 = LELeg2 = LeLEg2 − L[E,e]g2 = (d− 2)g1.

Remark 5.3. In the case of Dubrovin-Frobenius manifolds the vector fields e and E coincide
with the unit vector field and the Euler vector field, respectively.

5.1. From flat pencils of metrics to homogeneous Riemannian F-manifolds.

Theorem 5.4. Let gλ = g − λη be an exact homogeneous flat pencil of metrics such that the
operator R defined by

Ri
j := ∇(1)jE

i −∇(2)jE
i

is invertible, where ∇(1) and ∇(2) are the Levi-Civita connections corresponding to the metrics η
and g, respectively, and we recall that Ei = gilηlje

j. Then the data (◦, η, e, E), where the
product ◦ is defined by the structure constants

cjhk := Lsh

(
Γ
(1)l
sk − Γ

(2)l
sk

)
(R−1)jl , Lsh := gsmηmh,

defines a homogeneous flat (pseudo-)Riemannian F-manifold with Killing unit vector field.
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Proof. To prove the theorem we need some results from [Dub98]. More precisely, let us introduce
the tensor field

∆jk
m := Lsmη

jt
(

Γ
(1)k
st − Γ

(2)k
st

)
.

The following identities hold true [Dub98, Lemmas 2.2 and 2.6]:

ηis∆jk
s = ηjs∆ik

s ,

gis∆jk
s = gjs∆ik

s ,

∆ij
s ∆sk

l = ∆ik
s ∆sj

l ,(5.1)

LE∆jk
i = (d− 1)∆jk

i .(5.2)

Note that from the first two identities it follows that

ηhs∆
sk
m = ηms∆

sk
h ,(5.3)

ghs∆
sk
m = gms∆

sk
h .(5.4)

Using the tensor ∆, the tensors R and c can be expressed as follows:

Rm
s =

(
Γ
(1)m
sl − Γ

(2)m
sl

)
El = gsrη

rq∆pm
q ηplE

l (5.3)
= gsp∆

pm
l El,

cjhk = ∆ml
h ηmk(R

−1)jl .(5.5)

Lemma 5.5. The following identity holds true:

∆tl
k (R−1)sl = ∆sl

k (R−1)tl .

Proof. Equivalently, we have to prove that ∆sh
k R

m
s = ∆sm

k Rh
s , for which we compute

∆sh
k R

m
s = ∆sh

k gsp∆
pm
l El (5.4)

= ∆sh
p gsk∆

pm
l El (5.1)

= ∆sm
p gsk∆

ph
l E

l (5.4)
= ∆sm

k gsp∆
ph
l E

l = ∆sm
k Rh

s ,

as required. �

In order to prove the theorem, we need to prove the following:

• The product is commutative:

cjhk = ∆ml
h ηmk(R

−1)jl
(5.3)
= ∆ml

k ηmh(R
−1)jl = cjkh.

• The product is associative:

Rl
ic
i
sjc

s
hk =∆ql

s ηqj(R
−1)sr∆

mr
h ηmk

Lemma 5.5
= ∆ql

s ηqj(R
−1)mr ∆sr

h ηmk
(5.1)
=

=∆qr
s ηqj(R

−1)mr ∆sl
h ηmk

Lemma 5.5
= ∆mr

s ηqj(R
−1)qr∆

sl
h ηmk

(5.1)
=

=∆ml
s ηqj(R

−1)qr∆
sr
h ηmk

Lemma 5.5
= ∆ml

s ηqj(R
−1)sr∆

qr
h ηmk = Rl

ic
i
skc

s
hj.

• The vector field e is the unit of the product:

cjhke
h = Lsh

(
Γ
(1)l
sk − Γ

(2)l
sk

)
(R−1)jl e

h = Es
(

Γ
(1)l
sk − Γ

(2)l
sk

)
(R−1)jl = Rl

k(R
−1)jl = δjk.

• The metric η is invariant with respect to the product:

ηsjc
j
hk =ηsj∆

ql
h ηqk(R

−1)jl
Lemma 5.5

= ηsj∆
jl
h ηqk(R

−1)ql
(5.3)
= ηhj∆

jl
s ηqk(R

−1)ql
Lemma 5.5

=

=ηhj∆
ql
s ηqk(R

−1)jl = ηhjc
j
sk.

• LE◦ = ◦. This is true, because equation (5.2) first implies that LERi
j = 0, and then

using (5.5) it gives that LEcjhk = cjhk, since LEηij = (2− d)ηij.

�

Remark 5.6. It is easy to check that the affinor L coincides with the operator of multiplication
by the Euler vector field. Indeed we have

cjhkE
h = gms∆l

shE
hηmk(R

−1)jl = gmsRl
sηmk(R

−1)jl = gmsηmkδ
j
s = gmjηmk = Ljk.
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Remark 5.7. It is is easy to prove that

Ri
j =

d− 1

2
δij +∇(1)jE

i +
1

2
gisdθsj.

Indeed,

∇(2)iE
k =∂iE

k +
1

2
gks
(
∂igjsE

j + Ej∂jgsi − ∂sgijEj
)

=

=∂iE
k +

1

2
gks
(
∂igjsE

j − gsj∂iEj − gij∂sEj + (1− d)gsi − ∂sgijEj
)

=

=∂iE
k +

1

2

(
gks∂igjsE

j − ∂iEk − gks∂s(gijEj) + (1− d)δki
)

=

=
1

2
∂iE

k +
1

2

(
gks∂igjsE

j − gks∂s(gijEj)
)

+
1− d

2
δki =

=
1

2
∂iE

k +
1

2

(
gks∂igjsE

j − gks∂sθi
)

+
1− d

2
δki =

=
1

2
∂iE

k +
1

2

(
gks∂i(gjsE

j)− gksgjs∂iEj − gks∂sθi
)

+
1− d

2
δki =

=
1

2

(
gks∂iθs − gks∂sθi

)
+

1− d
2

δki =

=
1

2
gksdθis +

1− d
2

δki .

In the Egorov case dθ = 0 this formula reduces to Dubrovin’s formula.

5.2. The semisimple case. Let us analyze what Theorem 5.4 gives us in the case of a semisim-
ple flat pencil of metrics. Semisimplicity means that there are special coordinates u1, . . . , un

such that

ηij = f iδij, gij = f iuiδij.

It is easy to check that the pencil is semisimple if and only if the eigenvalues of L are functionally
independent, and then these eigenvalues can be taken as coordinates u1, . . . , un. Using exactness
it is easy to check that in the coordinates u1, . . . , un the unit vector field and the Euler vector
field read

ei = 1, Ei = ui, i = 1, . . . , n.

Equations (5.3) and (5.4) imply that ∆jk
i = 0 for i 6= j, and then we compute

∆jk
j =

{
uj−uk

2
fk∂kf

j

fj
, if k 6= j,

fj

2
, if j = k,

Rk
j =

1

f j
∆jk
j =

{
uj−uk

2
fk∂kf

j

(fj)2
, if k 6= j,

1
2
, if j = k.

From (5.5), under the assumption detR 6= 0, we immediately get that cijk = δijδ
i
k.

Actually, in the semisimple case we don’t need the assumption detR 6= 0: we can directly
define

cijk := δijδ
i
k.

This product is clearly compatible with the metric η and satisfies the condition LE◦ = ◦. Thus,
the data (◦, η, e, E) defines a homogeneous flat Riemannian F-manifold with Killing unit vector
field.

We conclude that an arbitrary semisimple exact homogeneous flat pencil of metrics gives a
homogeneous flat Riemannian F-manifold with Killing unit vector field. The converse statement
is clearly not true since the existence of a second compatible flat metric requires the fulfillment
of the additional constraints [Mok17]

ui∂iβji + uj∂jβij +
∑
k 6=i,j

ukβikβjk = −1

2
(βij + βji), i 6= j.
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Using the previous conditions these constraints can be replaced by the following set of n(n−1)
2

constraints:

(5.6)
∑
k 6=i,j

[ui(uj − uk)(∆β)ikβjk − uj(ui − uk)(∆β)jkβik)] =
1

2
(ui + uj)(∆β)ij, i 6= j.

Summarizing, semisimple exact homogeneuos flat pencils are obtained by solutions of the system
(4.1,4.2,4.3) subject to the n(n− 1) constraints (4.8) and (5.6).

5.3. Semisimple exact homogeneous flat pencils in dimension 3. Let us consider the
three-dimensional case. We need to study the same system studied in Section 4.1 for the
functions Fij subject to the additional constraints (5.6), which, in terms of the functions Fij,
can be written asQ6

Q7

Q8

 =

−1
2
u1+u2

u2−u1 −
u1F23

u3−u1
u2F13

u3−u2

− u2F31

u2−u1
u3F21

u3−u1 −1
2
u2+u3

u3−u2

− u1F32

u2−u1
1
2
u3+u1

u3−u1
u3F12

u3−u2


(∆F )12

(∆F )13
(∆F )23

 =

0
0
0

 .
These can be replaced by the constraints

I6 = Q6 − u1I3 = 0,

I7 = Q7 − u2I4 = 0,

I8 = Q8 − u3I5 = 0,

that is I6I7
I8

 =

 −1
2

0 F13

z−1
0 F21(z−1)

z
−1

2
F32z −1

2
0

(∆F )12
(∆F )13
(∆F )23

 =

0
0
0

 ,
where we recall that z = u3−u1

u2−u1 . Assuming βij 6= βji for some i 6= j, the solution of the algebraic
system I3 = I4 = I5 = I6 = I7 = I8 = 0 is given by

F21 =
1

2

√
z − 1√
−z

, F31 =
1

2

√
z − 1, F12 =

1

2

√
−z√
z − 1

,

F32 =
1

2

√
−z, F13 = −1

2

√
z − 1, F23 = −1

2

1√
−z

.

It is easy to check that the above functions satisfy the system of ODEs for the functions Fij
and that the value of the first integrals I1 and I2 on this solution is 3

4
and 1

4
, respectively. The

eigenvalues of the matrix V are 1 and −1
2

(with multiplicity 2). This means that if d = 1,−1
2

the overdetermined system for the Lamé coefficients (4.4,4.5,4.6) admits solutions.
For d = 1 we get

H1 = c
√
u3 − u1

√
u2 − u1, H2 = −c

√
u1 − u2

√
u3 − u2, H3 = c

√
u2 − u3

√
u1 − u3.

This example can be immediately generalized to arbitrary dimensions leading to the pair of flat
diagonal metrics

(5.7) (g1)ii =
∏
k 6=i

(uk − ui), (g2)ii =
1

ui

∏
k 6=i

(uk − ui).

The corresponding bi-flat F-manifold structure is the special case of Lauricella bi-flat F-manifolds
corresponding to the choice εi = 1

2
, i = 1, . . . , n. The metrics of this example provide two lo-

cal Hamiltonian structures of hydrodynamic type for the quasi-classical limit of coupled KdV
equations [AF87, FP91].
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For d = −1
2

we get

H1 =
c1P

1
− 1

2

(
2u1−u3−u2
u2−u3

)
+ c2Q

1
− 1

2

(
2u1−u3−u2
u2−u3

)
√
u2 − u3

,

H2 = −c1
2

P 1
− 1

2

(
2u1−u3−u2
u2−u3

)
+ P 1

1
2

(
2u1−u3−u2
u2−u3

)
√
u3 − u1

− c2
2

Q1
− 1

2

(
2u1−u3−u2
u2−u3

)
+Q1

1
2

(
2u1−u3−u2
u2−u3

)
√
u3 − u1

,

H3 =
c1
2

P 1
− 1

2

(
2u1−u3−u2
u2−u3

)
− P 1

1
2

(
2u1−u3−u2
u2−u3

)
√
u3 − u1

+
c2
2

Q1
− 1

2

(
2u1−u3−u2
u2−u3

)
−Q1

1
2

(
2u1−u3−u2
u2−u3

)
√
u1 − u2

,

where P µ
ν (x) and Qµ

ν (x) are Legendre functions of the first and second kind respectively, i.e.
are solutions of the general Legendre equation

(1− x2) y′′ − 2xy′ +

[
ν(ν + 1)− µ2

1− x2

]
y = 0.

6. Legendre transformations

Throughout this section we will not assume that F-manifolds have unit.

6.1. The Legendre transformation for F-manifolds with compatible connection.

Definition 6.1. An F-manifold with compatible connection [LPR11] is a manifold M equipped
with an associative commutative product ◦ and a connection ∇ satisfying the following condi-
tions:

• ∇ is torsionless and compatible with the product ◦.
• The Riemann tensor R of ∇ satisfies the condition

(6.1) R(Y, Z)(X ◦W ) +R(X, Y )(Z ◦W ) +R(Z,X)(Y ◦W ) = 0.

Given a semisimple F-manifold with compatible connection one can define an integrable
hierarchy

(6.2) uit = cijkX
jukx, i = 1, . . . , n,

where the Xj are components of a vector field X satisfying the linear system of PDEs

(6.3) cijl∇kX
l = cikl∇jX

l.

Non-trivial solutions of this system exist because of semisimplicity [LPR11, Section 5]. If the
connection ∇ is flat, then condition (6.1) is automatically satisfied. In this case a countable set
of solutions of (6.3) is obtained starting from a frame of flat vector fields X(p,0), p = 1, . . . , n,
by means of the following recursive relations:

(6.4) ∇jX
i
(p,α+1) = cijkX

k
(p,α).

This was called the principal hierarchy, since in the case of Dubrovin-Frobenius manifolds it
reduces to Dubrovin’s principal hierarchy [LPR11].

Recall that an invertible vector field X is a vector field for which there exists another vector
field Y such that X ◦ Y = e. Following [Ste17, SS17], for any invertible vector field X solving
the linear system (6.3) we can define a generalized Legendre transformation. We will call such
a vector field a Legendre vector field.

Theorem 6.2. Let (M, ◦,∇) be an F-manifold with compatible connection and let X be an
invertible vector field satisfying condition (6.3). Then the data (M, ◦,∇), where ∇ is the con-
nection defined by

∇YZ := X
−1 ◦ ∇Y (X ◦ Z),

give an F-manifold with compatible connection.

Proof. The statement of the theorem follows from the following facts proved in [Ste17, SS17]:
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• The connection ∇ is compatible with the product ◦ if and only if ∇ is compatible with
the product ◦ and X satisfies condition (6.3).
• The torsion of ∇ vanishes as a consequence of the vanishing of the torsion of ∇ and of

condition (6.3).
• If X satisfies condition (6.3), then the Riemann tensor R of∇ and the Riemann tensor R

of ∇ are related by the following identity:

R(Y, Z)(W ) = X
−1 ◦R(Y, Z)(X ◦W ).

�

Remark 6.3. If ∇ is flat then ∇ is flat too. Moreover, if the product ◦ has a unit e and
∇X = 0, then ∇e = 0.

Remark 6.4. In canonical coordinates the Legendre transformation is given by the following
formulas:

Γ
i

ij = Γiij
X
j

X
i = Γiij + ∂j lnX

i
, i 6= j,

Γ
i

jj = Γijj
X
j

X
i = −Γiij − ∂j lnX

i
, i 6= j,

Γ
i

ii = Γiii + ∂i lnX
i
,

Γ
i

jk = 0, i 6= j 6= k 6= i,

where we have used the fact that

∂jX
i

= Γiij(X
j −X i

), i 6= j.

6.2. The Legendre transformation for Riemannian F-manifolds.

Theorem 6.5. Let (M, ◦, g, e) be a (pseudo-)Riemannian F-manifold with Killing unit vector
field and ∇ be the associated flat structure on M . If a Legendre vector field X is flat, i.e.
∇X = 0, then the data (M, ◦, e, g), where g is given by

g(Y, Z) := g(X ◦ Y,X ◦ Z), Y, Z ∈ TM ,

define a new (pseudo-)Riemannian F-manifold structure with Killing unit vector field on M
whose associated flat structure is ∇.

Proof. To prove invariance of the metric g, we compute

g(Y ◦ Z,W ) = g(X ◦ Y ◦ Z,X ◦W ) = g(X ◦ Y,X ◦W ◦ Z) = g(Y,W ◦ Z),

as required.
To prove that ∇ is the flat connection associated to g in the sense of Theorem 1.8, we have

to prove that

(6.5) (∇Y g)(W,Z) =
1

2
dθ(Y ◦W,Z) +

1

2
dθ(Y ◦ Z,W ).

Note that

dθ(W,Z) = W (θ(Z))− Z(θ(W ))− θ([W,Z]) = (∇Wg)(e, Z)− (∇Zg)(e,W ).

Therefore, condition (6.5) is equivalent to

(∇Y g)(W,Z) =
1

2
(∇Y ◦Wg)(e, Z)− 1

2
(∇Zg)(e, Y ◦W ) +

1

2
(∇Y ◦Zg)(e,W )− 1

2
(∇Wg)(e, Y ◦ Z).

(6.6)
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To prove this we compute

(∇Y g)(W,Z) =Y
(
g
(
X ◦W,X ◦ Z

))
− g

(
∇YW,Z

)
− g

(
W,∇YZ

)
=

=(∇Y g)
(
X ◦W,X ◦ Z

)
+ g

(
(∇Y c)(X,W ), X ◦ Z

)
+ g

(
X ◦ ∇YW,X ◦ Z

)
+ g

(
X ◦W, (∇Y c)(X,Z)

)
+ g

(
X ◦W,X ◦ ∇YZ

)
− g

(
∇YW,Z

)
− g

(
W,∇YZ

)
=

=(∇Y g)
(
X ◦W,X ◦ Z

)
+ g

(
(∇Y c)(X,W ), X ◦ Z

)
+ g

(
X ◦ ∇YW,X ◦ Z

)
+ g

(
X ◦W, (∇Y c)(X,Z)

)
+ g

(
X ◦W,X ◦ ∇YZ

)
− g (∇YW,Z)− g (W,∇YZ)

− g
(
X
−1 ◦ (∇Y c)(X,W ), Z

)
− g

(
W,X

−1 ◦ (∇Y c)(X,Z)
)

=

=(∇Y g)
(
X ◦W,X ◦ Z

)
.

Therefore, equation (6.6) is equivalent to

(∇Y g)(X ◦W,X ◦ Z) =
1

2
(∇Y ◦Wg)(X,X ◦ Z)− 1

2
(∇Zg)(X,X ◦ Y ◦W )(6.7)

+
1

2
(∇Y ◦Zg)(X,X ◦W )− 1

2
(∇Wg)(X,X ◦ Y ◦ Z).

Using that (∇Y g)(W,Z) = 1
2
dθ(Y ◦W,Z) + 1

2
dθ(Y ◦ Z,W ), for the left-hand side of (6.7) we

obtain
1

2
dθ(Y ◦X ◦W,X ◦ Z) +

1

2
dθ(Y ◦X ◦ Z,X ◦W ),

while for the right-hand side of (6.7) we get

1

4
dθ(Y ◦W ◦X,X ◦ Z) +

1

4
dθ(Y ◦W ◦X ◦ Z,X)− 1

4
dθ(Z ◦X,X ◦ Y ◦W )

−1

4
dθ(Z ◦X ◦ Y ◦W,X) +

1

4
dθ(Y ◦ Z ◦X,X ◦W ) +

1

4
dθ(Y ◦ Z ◦X ◦W,X)

−1

4
dθ(W ◦X,X ◦ Y ◦ Z)− 1

4
dθ(W ◦X ◦ Y ◦ Z,X) =

=
1

2
dθ(Y ◦X ◦W,X ◦ Z) +

1

2
dθ(Y ◦X ◦ Z,X ◦W ),

as required.
The fact that the Riemann tensor of g satisfies condition (1.4) follows now from the fact

that ∇ is flat and Proposition 1.12.
The property Leg = 0 follows from Lemma 1.14. �

Remark 6.6. In the semisimple case, in canonical coordinates the Lamé coefficients H i of the
metric g are related to the Lamé coefficients Hi of the metric g by

H i = HiX
i
, i = 1, . . . , n,

where X satisfies the condition

∂jX
i

= Γiij(X
j −X i

) = βji
Hj

Hi

(X
j −X i

), i 6= j.

Using this fact we get βij = βij. In classical differential geometry two diagonal metrics with the
same rotation coefficients are said to be Combescure equivalent.

If the Legendre vector field is homogeneous, then the associated transformation preserves the
homogeneity property.

Theorem 6.7. Let (M, ◦, g, e, E) be a homogeneous Riemannian F-manifold with Killing unit
vector field. If the Legendre vector field X is flat and homogeneous, i.e. LEX = d ·X for some
constant d, then the data (M, ◦, g, e, E) define a new homogeneous Riemannian F-manifold with
Killing unit vector field.
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Proof. Due to the previous theorem we only need to check homogeneity of the new metric g,
but this follows immediately from the hypothesis and we have LEg = (D + 2d+ 2)g. �

Below we provide an interpretation of the results from Sections 4.1.1 and 5.3 in terms of
Legendre transformations.

6.2.1. The flat F-manifolds from Section 4.1.1. Let us consider the flat structure (∇, ◦, e) as-
sociated with the first metric obtained in Section 4.1.1. In canonical coordinates it is given by
the Christoffel symbols

Γ1
12 =

b

(au1 − au3 + bu1 − bu2)
, Γ2

12 = − (a+ b)

(au1 − au3 + bu1 − bu2)
,

Γ1
13 =

a

(au1 − au3 + bu1 − bu2)
, Γ3

13 = − (a+ b)

(au1 − au3 + bu1 − bu2)
,

Γ2
23 =

a

(au1 − au3 + bu1 − bu2)
, Γ3

23 =
b

(au1 − au3 + bu1 − bu2)
,

using the conditions

(6.8) Γijj = −Γiij = −Γiji (i 6= j), Γijk = 0 (i 6= j 6= k 6= i), Γiii = −
∑
j 6=i

Γiij.

It is straightforward to check that vector fields that are flat with respect to ∇ are linear
combinations of the unit vector field X(1) := e, of the vector field X(2) with components

X
1

(2) := u2 − u3, X
2

(2) :=
(a+ b)

b
(u1 − u3), X

3

(2) :=
(a+ b)

a
(u2 − u1),

and of the vector field X(3) with components

X
1

(3) := −(a+ b)(u1)2 − 2(au3 + bu2)u1 − a(u3)2 − b(u2)2,

X
2

(3) := (a+ b)(u1)2 − 2(a+ b)u1u2 + au3(2u2 − u3) + b(u2)2,

X
3

(3) := (a+ b)(u1)2 − 2u3(a+ b)u1 + a(u3)2 − bu2(u2 − 2u3).

Applying the Legendre transformations generated by the vector fields X(2) and X(3) to the first
metric we get the second and the third metric of Section 4.1.1.

6.2.2. The F-manifolds from Section 5.3. Let us consider the flat structure (∇, ◦, e) associated
with the first metric of Section 5.3. In canonical coordinates it is given by the Christoffel
symbols

Γiij =
1

2(uj − ui)
, i 6= j,

using conditions (6.8). It is straightforward to check that vector fields that are flat with respect
to ∇ are linear combinations of the unit vector field X(1) := e, of the vector field X(2) with
components

X
1

(2) :=
P 1
− 1

2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
,

X
2

(2) := −1

2

P 1
− 1

2

(
2u1−u3−u2
u2−u3

)
+ P 1

1
2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
,

X
3

(2) := −1

2

P 1
− 1

2

(
2u1−u3−u2
u2−u3

)
− P 1

1
2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
,
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and of the vector field X(3) with components

X
1

(3) :=
Q1
− 1

2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
,

X
2

(3) := −1

2

Q1
− 1

2

(
2u1−u3−u2
u2−u3

)
+Q1

1
2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
,

X
3

(3) := −1

2

Q1
− 1

2

(
2u1−u3−u2
u2−u3

)
−Q1

1
2

(
2u1−u3−u2
u2−u3

)
√

(u1 − u2)(u1 − u3)(u2 − u3)
.

Applying the Legendre transformations generated by the linear combinations of the vector fields
X(2) and X(3) to the first metric we get the metrics corresponding to the eigenvalue −1

2
.

Remark 6.8. In dimension 3 the solution of the system (4.1,4.2,4.3,4.8,5.6) is unique: it
coincides with the collection of rotation coefficients of the metric g1 defined in formula (5.7).
The corresponding non-Egorov homogeneous exact flat pencils of metrics are obtained from the
flat pencil (5.7) by means of Legendre transformations. Some computations suggest a similar
scenario also in the case n > 3.

7. Appendix

In dimension 2 regular non semisimple homogeneous flat structures are given by the two-
parameter family considered in the Example 1.4. In this Appendix we list the associated vector
potentials. We have 5 different cases depending on the values of the parameter a.

Case I: a 6= −2,−1, 0, 1. The flat coordinates are given by

u = x− b

a
y, v =

ya+1

a+ 1
.

In these coordinates we have

e = ∂u, E = u ∂u + (a+ 1) v ∂v

and the vector potential reads

F 1 =
a2(a− 1)u2 + b2(a+ 1)

2
a+1v

2
a+1

2(a− 1)a2
, F 2 =

a(a+ 2)uv + 2b(a+ 1)
a+2
a+1v

a+2
a+1

(a+ 2)a
.

Case II: a = −2. The flat coordinates are given by

u = x+
1

2
b y, v = −1

y
.

In these coordinates we have
e = ∂u, E = u ∂u − v ∂v

and the vector potential reads

F 1 =
1

2
u2 − 1

24

b2

v2
, F 2 = uv + b ln v.

Case III: a = −1. The flat coordinates are given by

u = x+ b y, v = ln y.

In these coordinates we have
e = ∂u, E = u ∂u + ∂v
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and the vector potential reads

F 1 =
1

2
u2 − 1

4
b2e2v, F 2 = uv − 2b ev.

Case IV: a = 0. The flat coordinates are given by

u = x+ b y ln y, v = y.

In these coordinates we have

e = ∂u, E = (u+ bv)∂u + v ∂v

and the vector potential reads

F 1 =
1

2
u2 − 1

2
b2 v2(ln v)2 +

1

2
b2 v2 ln v − 3

4
b2 v2, F 2 = −b v2 ln v +

1

2
b v2 + uv.

Case V: a = 1. The flat coordinates are given by

u = x− b y, v =
y2

2
.

In these coordinates we have

e = ∂u, E = u ∂u + 2 v ∂v

and the vector potential reads

F 1 =
1

2
u2 − 1

2
b2 v ln v +

1

2
b2v, F 2 =

4

3
b
√

2 v
3
2 + uv.
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