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Abstract. We define the double ramification hierarchy associated to an F-cohomological field
theory and use this construction to prove that the principal hierarchy of any semisimple (ho-
mogeneous) flat F-manifold possesses a (homogeneous) integrable dispersive deformation at all
orders in the dispersion parameter. The proof is based on the reconstruction of an F-CohFT
starting from a semisimple flat F-manifold and additional data in genus 1, obtained in our pre-
vious work. Our construction of these dispersive deformations is quite explicit and we compute
several examples. In particular, we provide a complete classification of rank 1 hierarchies of
DR type at the order 9 approximation in the dispersion parameter and of homogeneous DR
hierarchies associated with all 2-dimensional homogeneous flat F-manifolds at genus 1 approx-
imation.
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Introduction

Since Witten’s conjecture [Wit91] and its proof by Kontsevich [Kon92], there have been grow-
ing and fruitful interactions between the area of integrable hierarchies of PDEs and algebraic
geometry of the moduli spaces of algebraic curves. In this context, and in connection with topo-
logical field theory, Dubrovin introduced in the 90s the notion of Frobenius manifold [Dub96],
a differential-geometric structure that encodes genus-zero information of a cohomological field
theory (CohFT) on the moduli space of stable curves, besides having far reaching connections
with other areas of mathematics.
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From the point of view of integrable systems, given a Dubrovin–Frobenius manifold, there
exists an associated integrable hierarchy of Hamiltonian quasilinear PDEs called Dubrovin’s
principal hierarchy, or simply principal hierarchy. An important problem in the theory of inte-
grable systems consists in constructing a full dispersive hierarchy starting from its dispersionless
limit.

In the framework of moduli spaces, the principal hierarchy associated to a Dubrovin–Frobenius
manifold and its dispersive deformation should satisfy additional constraints coming from the
intersection theory of the CohFT. In the semisimple case, there exist two different (but con-
jecturally Miura-equivalent [Bur15, BDGR18, BGR19]) constructions defining such dispersive
deformations:

(1) The Dubrovin–Zhang construction [DZ01] is based on the idea that the partition func-
tion of the corresponding CohFT in all genera is the logarithm of the tau-function of
a special solution (called the topological solution) to a full dispersive hierarchy (the DZ
hierarchy). One can construct the hierarchy itself starting from this tau-function, and it
turns out that the principal hierarchy is the dispersionless limit of DZ hierarchy. More-
over the full DZ hierarchy and the principal hierarchy are related by a special change
of dependent variables, called a quasi-Miura transformation, which can be uniquely de-
termined in the semisimple case from genus zero information.

(2) The double ramification construction, introduced by one of the authors in [Bur15], is
based on the definition of an infinite set of commuting Hamiltonian densities [BR16a] in
terms of intersection numbers of the CohFT, the double ramification cycles and other
natural tautological classes on the moduli space of curves.

For both constructions and in the (homogeneous) semisimple case, the reconstruction of the
full dispersive hierarchy from its dispersionless limit (the principal hierarchy of the Dubrovin–
Frobenius manifold encoding the genus 0 part of the CohFT) is possible thanks to the Givental–
Teleman reconstruction theorem for the CohFT itself from its genus 0 part [Tel12, Giv01].

Notice that, by construction, the dispersionless limits of both the DZ and DR hierarchies co-
incide with the principal hierarchy of the Dubrovin–Frobenius manifold underlying the CohFT.

In the last 20 years, it has been observed that many constructions related to Dubrovin–
Frobenius manifolds can be extended to a more general setting ([Sab98, Get04, Man05, LPR09,
SZ11, AL13a, Lor14, KMS15, AL17, DH17, BR18, KMS18, AL19, BB19, ABLR20]). For in-
stance, it was observed in [LPR09] that the notion of principal hierarchy does not require the
existence of an invariant flat metric. This leads naturally to the consideration of the gener-
alization of Dubrovin–Frobenius manifolds, called F-manifolds with compatible flat structure
[Man05] or simply flat F-manifolds [LPR09], obtained by replacing a flat metric with a flat
torsionless connection and keeping all the axioms of Dubrovin–Frobenius manifolds apart from
those involving explicitly the metric and not just the associated Levi–Civita connection. In
flat coordinates for the flat connection, the flows of the principal hierarchy are systems of con-
servation laws. In the case of Dubrovin–Frobenius manifolds, the presence of an invariant flat
metric has to deal with the presence of a local Hamiltonian structure.

In this paper we construct (homogeneous) double ramification hierarchies starting from a (ho-
mogeneous) CohFT. In particular, in the semisimple case, leveraging on the results of [ABLR20],
this provides dispersive deformations of the principal hierarchy associated to a semisimple (ho-
mogeneous) flat F-manifold. The existence of these dispersive integrable deformations relies
on:
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(1) a generalization of the notion of cohomological field theory, called F-cohomological field
theory (or F-CohFT for short) introduced in [BR18, ABLR20];

(2) a reconstruction theorem for a semisimple (homogeneous) F-CohFT starting from a flat
F-manifold and additional data in genus 1 [ABLR20];

(3) the definition of an infinite set of commuting flows (the DR hierarchy) in terms of
intersection numbers of the F-CohFT, the double ramification cycles, the top Hodge
class, and psi classes on the moduli space of stable curves.

The paper is organized as follows.

Section 1 is devoted to the construction of the DR hierarchy of an F-CohFT (see also [BR18]).
The main properties of this hierarchy are given in terms of densities of local vector fields on
the formal loop space and a special basis for their integrals of motion. We also consider the
additional properties of the hierarchy in the case of a homogeneous F-CohFT.

In Section 2, after recalling the definition of a flat F-manifold and the construction of its
associated principal hierarchy, we present our main result: given an arbitrary semisimple flat
F-manifold and an associated principal hierarchy, we construct a family of dispersive integrable
deformations of the principal hierarchy. These deformations, called the descendant DR hierar-
chies, come from the family of DR hierarchies associated to a family of F-CohFTs parameterized
by a semisimple point of our flat F-manifold. The descendant DR hierarchy depends on a choice
of a certain vector field on the flat F-manifold, which we call a framing. We prove that the
descendant DR hierarchies corresponding to different framings are not related to each other by
a Miura transformation that is close to identity.

In Section 3, we discuss the role of (descendant) DR hierarchies in the problem of classifica-
tion of integrable deformations of integrable dispersionless systems of conservation laws. One
can impose various constraints for such integrable deformations, and we discuss the correspond-
ing results (mostly at the approximation up to some finite power of ε) for flat F-manifolds of
dimension 1 and 2 in Section 3.2 and 3.1.1. In Section 3.3, we briefly mention the problem of
computing general integrable deformations of principal hierarchies of flat F-manifolds. It was
conjectured in [AL18] that the equivalence classes of such deformations are labeled by certain
functional parameters called Miura invariants. In the case of Dubrovin–Frobenius manifolds
and bihamiltonian deformations, these invariants are equivalent to central invariants, which are
known to classify deformations of semisimple local bihamiltonian structures of hydrodynamic
type ([DLZ06, CPS18]).

Acknowledgements. The work of A. B. is supported by the Russian Science Foundation
(Grant no. 20-71-10110). P. L. is supported by MIUR - FFABR funds 2017 and by funds of
H2020-MSCA-RISE-2017 Project No. 778010 IPaDEGAN.

1. Double ramification hierarchy of an F-CohFT

In this section, we associate to any F-CohFT with a vector space V an infinite sequence
of commuting vector fields on the formal loop space of V , i.e., an infinite sequence of com-
patible systems of evolutionary PDEs of rank N := dimV (in particular, in the form of con-
servation laws). This construction is a generalization of the double ramification hierarchy of
[Bur15, BR16a] to the context of F-CohFTs and enjoys most of its properties (for instance,
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recursion formulas for the higher symmetries), but loses in general the Hamiltonian nature.

1.1. F-cohomological field theories. We recall from [BR18, ABLR20] the definition of an
F-cohomological field theory on the moduli space Mg,n of stable curves of genus g with n
marked points. We will denote by H∗(X) the cohomology ring with coefficients in C of a
topological space X. When considering the moduli space of stable curves, X =Mg,n, the even
part Heven(Mg,n) in the cohomology ring H∗(Mg,n) can optionally be replaced by the Chow
ring A∗(Mg,n). Here and in what follows we perform summation over repeated Greek indices.

Definition 1.1. An F-cohomological field theory (or F-CohFT) is a system of linear maps

cg,n+1 : V ∗ ⊗ V ⊗n → Heven(Mg,n+1), 2g − 1 + n > 0,

where V is an arbitrary finite dimensional vector space, together with a special element e ∈ V ,
called the unit, such that, chosen any basis e1, . . . , edimV of V and the dual basis e1, . . . , edimV

of V ∗, the following axioms are satisfied:

(i) The maps cg,n+1 are equivariant with respect to the Sn-action permuting the n copies
of V in V ∗ ⊗ V ⊗n and the last n marked points in Mg,n+1, respectively.

(ii) π∗cg,n+1(e
α0⊗⊗ni=1eαi) = cg,n+2(e

α0⊗⊗ni=1eαi⊗e) for 1 ≤ α0, α1, . . . , αn ≤ dimV , where
π : Mg,n+2 →Mg,n+1 is the map that forgets the last marked point.
Moreover, c0,3(e

α ⊗ eβ ⊗ e) = δαβ for 1 ≤ α, β ≤ dimV .

(iii) gl∗cg1+g2,n1+n2+1(e
α0 ⊗⊗n1+n2

i=1 eαi) = cg1,n1+2(e
α0 ⊗⊗i∈Ieαi ⊗ eµ)⊗ cg2,n2+1(e

µ⊗⊗j∈Jeαj)
for 1 ≤ α0, α1, . . . , αn1+n2 ≤ dimV , where I t J = {2, . . . , n1 + n2 + 1}, |I| = n1,
|J | = n2, and gl : Mg1,n1+2 ×Mg2,n2+1 → Mg1+g2,n1+n2+1 is the corresponding gluing
map.

An F-CohFT taking value in H0(Mg,n+1) = C only is called an F-topological field theory (or
F-TFT). Moreover, there is an obvious generalization of the notion of an F-CohFT where the
maps cg,n+1 take value in Heven(Mg,n+1)⊗K, where K is a C-algebra. We will call such objects
F-cohomological field theories with coefficients in K.

Definition 1.2. An F-CohFT cg,n+1 : V ∗ ⊗ V ⊗n → Heven(Mg,n+1) is called homogeneous if
there exists an operator Q ∈ End(V ), a vector r ∈ V , and a complex constant γ such that
Qe = 0 and the following condition is satisfied:

(1.1) Deg ◦ cg,n+1 + π∗ ◦ cg,n+2 ◦ (⊗r) =

= cg,n+1 ◦

(
−Qt ⊗ Id⊗n +

∑
i+j=n−1

Id⊗ Id⊗i ⊗Q⊗ Id⊗j

)
+ γgcg,n+1,

where Deg ∈ End(H∗(Mg,n)) is the operator acting on H i(Mg,n) by the multiplication by i
2
,

π : Mg,n+2 → Mg,n+1 is the map that forgets the last marked point, ⊗r : V ∗ ⊗ V ⊗n → V ∗ ⊗
V ⊗(n+1) is the operator of tensor multiplication from the right by r, and Qt ∈ End(V ∗) is the
transposed operator. The constant γ is called the conformal dimension of our F-CohFT.

Remark 1.3. Our definition of a homogeneous F-CohFT is slightly more general, than the one
from the paper [ABLR20] where the operator Q was required to be diagonalizable. However, it
is easy to see that all the results from [ABLR20] about homogeneous F-CohFTs are true with
the new definition (see also Section 2.1 with a new definition of a homogeneous flat F-manifold).
An example of a homogeneous F-CohFT with a nondiagonalizable operator Q will appear in
Section 3.
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1.2. Vector fields on the formal loop space. Let Â and Λ̂ be the spaces of differential
polynomials and local functionals in formal (even) variables uαk , 1 ≤ α ≤ N , k ≥ 0, and ε, with
the differential grading deg∂x u

α
k = k, deg∂x ε = −1, where the definitions and the notations are

taken from [Ros17, Section 2.1].

The space of densities of local multivector fields (on the formal loop space of V ) is the
supercommutative associative algebra

Â• := C[[u∗, θ∗]][u
∗
>0, θ∗,>0][[ε]],

where the new formal variables θα,k, 1 ≤ α ≤ N , k ≥ 0, are odd (anti-commuting among
themselves and commuting with ε and uαk ) with deg∂x θα,k := k, uα := uα0 , and θα := θα,0,
and the symbol ∗, as an index, denotes any of the allowed values for that index. The alge-

bra Â• is endowed with the super grading, denoted by degθ, which is defined by degθ θα,k := 1

and degθ u
α
k = degθ ε := 0. The sub-vector space of Â• homogeneous of super degree i ≥ 0

is denoted by Âi and called the space of densities of local i-vector fields. We have Â = Â0,

while Â1 is called the space of densities of local vector fields. The homogeneous component of

the space Âi of differential degree k will be denoted by (Âi)[k].

The operator ∂x is extended from Â to Â• as the super-derivation

∂x :=
∑
k≥0

(
uαk+1

∂

∂uαk
+ θα,k+1

∂

∂θα,k

)
.

The space of local multivector fields is defined as

Λ̂• := Â•/(Im ∂x ⊕ C[[ε]])

and, for i ≥ 0, the space of local i-vector fields Λ̂i is the image of Âi in the quotient. If f ∈ Â•,
its image in Λ̂• is denoted by f =

∫
fdx. As before, Λ̂ = Λ̂0, and Λ̂1 is called the space of local

vector fields. Naturally, the spaces Λ̂i inherit the differential grading deg∂x .

For any 1 ≤ α ≤ N , we define the (super) variational derivatives

δ

δuα
:=
∑
k≥0

(−∂x)k
∂

∂uαk
,

δ

δθα
:=
∑
k≥0

(−∂x)k
∂

∂θα,k
,

which are well defined on Λ̂• since they vanish on Im ∂x ⊕ C[[ε]].

The Schouten–Nijenhuis bracket [·, ·] : Λ̂i × Âj → Âi+j−1 is defined by

(1.2) [f, g] :=
∑
k≥0

(
∂kx

(
δf

δθα

)
∂g

∂uαk
+ (−1)i∂kx

(
δf

δuα

)
∂g

∂θα,k

)
.

This Schouten–Nijenhuis bracket is a lift of the Schouten–Nijenhuis bracket [·, ·] : Λ̂i × Λ̂j →
Λ̂i+j−1 defined by

(1.3) [f, g] :=

∫ (
δf

δθα

δg

δuα
+ (−1)i

δf

δuα
δg

δθα

)
dx.

A further lift of the Schouten–Nijenhuis bracket to Âi × Âj can be defined employing formal
Dirac delta functions, similarly to what was done in [BR16b] for the quantum commutator of
two differential polynomials,
(1.4)

[f(x), g(y)] :=
∑
k,l≥0

(
∂f

∂θα,k
(x)

∂g

∂uαl
(y) ∂kx∂

l
yδ(x− y) + (−1)i

∂f

∂uαk
(x)

∂g

∂θα,l
(y) ∂kx∂

l
yδ(x− y)

)
.
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Taking the integral with respect to x of formula (1.4), using that
∫
δ(x − y)g(y)dx = g(y),

reproduces indeed formula (1.2), and further integration with respect to y gives (1.3).

As usual, for i = j = 1, the above Schouten–Nijenhuis brackets are called the Lie brackets.
For i = 1 and j = 0, the Schouten–Nijenhuis brackets reduce simply to the differentiation of
(a density of) a local functional along (a density of) a vector field, from which we see that the

symbol θα,k can be interpreted as the operator ∂kx ◦ δ
δuα

: Λ̂→ Â.

Given a local vector field X ∈ Λ̂1, there is a unique representative X ∈ Â1 of X such

that X = Xαθα with Xα ∈ Â. This representative is given by X = δX
δθα
θα. The system of

evolutionary PDEs associated to X is

(1.5)
∂uα

∂t
=
δX

δθα
(u∗∗; ε), α = 1, . . . , N.

Two systems of evolutionary PDEs

∂uα

∂t
=
δX

δθα
(u∗∗; ε), α = 1, . . . , N,

∂uα

∂s
=
δY

δθα
(u∗∗; ε), α = 1, . . . , N,

are compatible, in the sense that, for any 1 ≤ α ≤ N , ∂
∂t
∂uα

∂s
= ∂

∂s
∂uα

∂t
, if and only if the associ-

ated local vector fields X,Y ∈ Λ̂1 satisfy [X,Y ] = 0.

Under a Miura transformation (see [Ros17, Section 2.1] for more details) of the form

ũα = ũα(u∗∗; ε) ∈ Â[0] = (Â0)[0], 1 ≤ α ≤ N,(1.6)

ũ∗|u∗∗=0 = 0, det

(
∂ũ∗

∂u∗

)∣∣∣∣
u∗∗=0

6= 0,(1.7)

the generators u∗∗ and θ∗,∗ of Â• transform according to the formulae

uαk = ∂kxu
α(ũ∗∗; ε), θα,k = ∂kx

(∑
s≥0

(−∂x)s
(
∂ũµ

∂uαs

∣∣∣∣
u∗∗=u

∗
∗(ũ

∗
∗;ε)

θ̃µ

))
, 1 ≤ α ≤ N, k ≥ 0,

where uα(ũ∗∗; ε) is obtained by inverting ũα = ũα(u∗∗; ε) order by order in ε. For a local vector
field, these formulae give

X =

∫
(Xαθα)dx =

∫ (∑
s≥0

∂ũα

∂uµs
∂sxX

µ

)∣∣∣∣∣
u∗∗=u

∗
∗(ũ

∗
∗;ε)

θ̃α

 dx,

from which we obtain that a system of evolutionary PDEs (1.5) transforms into

∂ũα

∂t
= X̃α(ũ∗∗; ε) =

(∑
s≥0

∂ũα

∂uµs
∂sxX

µ

)∣∣∣∣∣
u∗∗=u

∗
∗(ũ

∗
∗;ε)

, α = 1, . . . , N.

Performing the change of formal variables

uαk = ∂kx

(∑
a∈Z

pαae
iax

)
, θα,k = ∂kx

(∑
a∈Z

qα,ae
iax

)
, 1 ≤ α ≤ N, k ≥ 0,(1.8)
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one can rewrite a density of a local multivector field f(u∗∗, θ∗,∗; ε) ∈ (Âm)[d] as a formal Fourier
series

f =
∑
n,s≥0

a1,...,an∈Z
b1,...,bm∈Z

fa1,...,an,b1,...,bmα1,...,αn,β1,...,βm;s ε
s pα1

a1
. . . pαnan qβ1,b1 . . . qβm,bm e

i(
∑n
j=1 aj+

∑m
j=1 bj)x,

where the coefficient fa1,...,an,b1,...,bmα1,...,αn,β1,...,βm;s, as a function of the indices a1, . . . , an, b1, . . . , bm, is a
homogeneous polynomial of degree s + d. Formal Fourier series of this type form a super-
commutative associative algebra where the formal variables q∗,∗ are odd. Moreover, the local

multivector field f corresponds to the constant term of the Fourier series. Similarly to the vari-
ables θ∗,∗, one should interpret the variable qα,a to represent the vector ∂

∂pα−a
. This is coherent

with the following formulae for the variational derivatives in the variables p∗∗ and q∗,∗:

δ

δuα
=
∑
a∈Z

eiax
∂

∂pα−a
,

δ

δθα
=
∑
a∈Z

eiax
∂

∂qα,−a
,

acting on local multivector fields to give densities of local multivector fields. Accordingly, using
the formal Fourier expansion δ(x) =

∑
a∈Z e

iax for the formal Dirac delta function, it is easy to

obtain the formula for the Schouten–Nijenhuis bracket (1.4) on Âi × Âj in the new variables:

(1.9) [f(x), g(y)] =
∑
a∈Z

(
∂f

∂qα,a
(x)

∂g

∂pα−a
(y) + (−1)i

∂f

∂pα−a
(x)

∂g

∂qα,a
(y)

)
,

from which analogues of (1.2) and (1.3) are easily obtained by integration in x and then y.

1.3. Densities of local vector fields for the DR hierarchy. Denote by ψi ∈ H2(Mg,n) the
i-th psi class, which is the first Chern class of the line bundle overMg,n formed by the cotangent
lines at the i-th marked point. Denote by E the rank g Hodge vector bundle over Mg,n whose
fibers are the spaces of holomorphic one-forms on stable curves. Let λj := cj(E) ∈ H2j(Mg,n),
these classes are called the Hodge classes.

For any a1, . . . , an ∈ Z,
∑n

i=1 ai = 0, denote by DRg(a1, . . . , an) ∈ H2g(Mg,n) the double ram-
ification (DR) cycle. We refer the reader, for example, to [BSSZ15] for the definition of the DR
cycle onMg,n, which is based on the notion of a stable map to CP1 relative to 0 and∞. If not
all the multiplicities ai are equal to zero, then one can think of the class DRg(a1, . . . , an) as the
Poincaré dual to a compactification inMg,n of the locus of pointed smooth curves (C; p1, . . . , pn)
satisfying OC (

∑n
i=1 aipi)

∼= OC . Consider the Poincaré dual to the double ramification cy-

cle DRg(a1, . . . , an) in the space Mg,n. It is an element of H2(2g−3+n)(Mg,n), and abusing
notation it is also denoted by DRg(a1, . . . , an).

The restriction DRg(a1, . . . , an)
∣∣
Mct

g,n
, where Mct

g,n is the moduli space of stable curves of

compact type, is a homogeneous polynomial in a1, . . . , an of degree 2g with the coefficients
in H2g(Mct

g,n). This follows from Hain’s formula [Hai13] for the version of the DR cycle defined
using the universal Jacobian overMct

g,n and the result of the paper [MW13], where it is proved
that the two versions of the DR cycle coincide on Mct

g,n (the polynomiality of the DR cycle

onMg,n is proved in [JPPZ17]). The polynomiality of the DR cycle onMct
g,n together with the

fact that λg vanishes onMg,n \Mct
g,n (see, e.g., [FP00, Section 0.4]) imply that the cohomology

class λgDRg(−
∑n

j=1 aj, a1, . . . , an) ∈ H4g(Mg,n+1) is a degree 2g homogeneous polynomial in
the coefficients a1, . . . , an.
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Given a vector space V with dimV = N and a basis e1, . . . , eN ∈ V , let cg,n+1 : V ∗⊗ V ⊗n →
Heven(Mg,n+1) be an F-CohFT with unit e = Aµeµ. For 1 ≤ β ≤ N and d ≥ 0, we define the
following system of formal Fourier series:
(1.10)

Yβ,d := −
∑

g,n≥0, 2g+n>0
a,a1,...,an∈Z

ia(−ε2)g

n!

(∫
DRg(a,−a−

∑n
j=1 aj ,a1,...,an)

λgψ
d
2cg,n+2(e

α ⊗ eβ ⊗⊗nj=1eαj)

)
qα,a

(
n∏
j=1

pαjaj

)
ei(a+

∑n
j=1 aj)x,

where the integral above is intended to vanish whenever the dimension of the DR cycle does
not match the degree of the integrand. Thanks to the polynomiality property of the DR cycle,

(1.10) can be rewritten as a system of densities of local vector fields Yβ,d ∈ (Â1)[1] as

Yβ,d = −
∑

g,n≥0, 2g+n>0
k,k1,...,kn≥0
k+

∑n
j=1 kj=2g

ε2g

n!
Coefak(a1)k1 ...(an)kn

(∫
DRg(a,−a−

∑n
j=1 aj ,a1,...,an)

λgψ
d
2cg,n+2(e

α ⊗ eβ ⊗⊗nj=1eαj)

)
θα,k+1

n∏
j=1

u
αj
kj
.

(1.11)

To this definition, we add the extra densities Yβ,−1 := −θβ,1, 1 ≤ β ≤ N .

The double ramification hierarchy associated to the given F-CohFT is the infinite system of
local vector fields Y β,d, 1 ≤ β ≤ N , d ≥ −1, associated with the above densities or, in terms of
evolutionary PDEs, the system

∂uα

∂tβd
= ∂xP

α
β,d, 1 ≤ α, β ≤ N, d ≥ 0,(1.12)

where
(1.13)

Pα
β,d :=

∑
g,n≥0, 2g+n>0
k1,...,kn≥0∑n
j=1 kj=2g

ε2g

n!
Coef(a1)k1 ...(an)kn

(∫
DRg(−

∑n
j=1 aj ,0,a1,...,an)

λgψ
d
2cg,n+2(e

α ⊗ eβ ⊗⊗nj=1eαj)

)
n∏
j=1

u
αj
kj
.

Let us adopt the convention Pα
β,−1 := δαβ . Notice that the system of evolutionary PDEs (1.12)

carries strictly less information than the corresponding densities (1.11). We have the following
result.

Theorem 1.4 ([BR18]). All the equations of the DR hierarchy (1.12) are compatible with each
other, namely,

∂

∂tβ2d2

(
∂uα

∂tβ1d1

)
=

∂

∂tβ1d1

(
∂uα

∂tβ2d2

)
, 1 ≤ α, β1, β2 ≤ N, d1, d2 ≥ 0.

This theorem is proved in [BR18], but we give another proof in Theorem 1.5 (see part (ii)).
For 1 ≤ β1, β2 ≤ N and d1, d2 ≥ 0, let us define the generating series

Yβ1,d1;β2,d2(x, y) := −
∑
g,n≥0

a,b1,b2,a1,...,an∈Z

ia(−ε2)g

n!

(∫
DRg(a,b1,b2,a1,...,an)

λgψ
d1
2 ψ

d2
3 cg,n+3(e

α ⊗ eβ1 ⊗ eβ2 ⊗⊗nj=1eαj)

)
·

· qα,a

(
n∏
j=1

pαjaj

)
e−ib1x e−ib2y,

(1.14)

where we adopt the convention that DRg(a, b1, b2, a1, . . . , an) := 0 when a+b1+b2+
∑n

j=1 aj 6= 0.

To this definition, for future convenience, we add Yβ1,−1;β2,d(x, y) = Yβ1,d;β2,−1(x, y) := 0,
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1 ≤ β1, β2 ≤ N , d ≥ 0.

We will use the symbol 11, as an index, to denote the sum over the values 1 ≤ α ≤ N for that
index with the coefficients Aα. For example, Y11,d := AµYµ,d, θ11,k := Aµθµ,k, and ∂

∂t11d
:= Aµ ∂

∂tµd
.

Theorem 1.5. For all 1 ≤ β1, β2 ≤ N and d1, d2 ≥ −1 such that d1 + d2 ≥ −1, we have

(i) [Yβ2,d2(y), Yβ1,d1(x)] = ∂xYβ1,d1+1;β2,d2(x, y)− ∂yYβ1,d1;β2,d2+1(x, y);
(ii) [Y β2,d2 , Y β1,d1 ] = 0;

(iii) [Y 11,1, Yβ1,d1 ] = ∂x(D − 1)Yβ1,d1+1, where D :=
∑
k≥0

(
uαk

∂

∂uαk
+ θα,k

∂

∂θα,k

)
+ ε

∂

∂ε
;

(iv) [Y β2,0, Yβ1,d1 ] = ∂x
∂

∂uβ2
Yβ1,d1+1;

(v) Y11,0 = −uαθα,1 + ∂2xS, S ∈ (Â1)[−1], which implies
∂uα

∂t110
= ∂xu

α for 1 ≤ α ≤ N ;

(vi)
∂

∂u11
Yβ1,d1+1 = Yβ1,d1,

∂

∂u11
P β2
β1,d1+1 = P β2

β1,d1
.

(vii)
∂

∂uβ2
P β1
11,1 = DP β1

β2,0
.

Proof. For n ≥ 0, let us use the notation [n] for the set {1, . . . , n}.

Let us prove part (i). If d1 = −1 or d2 = −1, then the statement easily follows from
the definitions. For d1, d2 ≥ 0, the statement is analogous to [BR16b, Lemma 3.3], and we use
[BSSZ15, Corollary 2.2], describing the intersection of the psi classes with the DR cycle, together
with the fact that that λg vanishes onMg,n\Mct

g,n. Let n ≥ 0 and consider integers a1, . . . , an+3

with the vanishing sum. For a subset I = {i1, . . . , i|I|} ⊂ [n + 3], i1 < i2 < . . . < i|I|, denote
by AI the string ai1 , ai2 , . . . , i|I|. For I, J ⊂ [n+ 3] \ {2, 3} with I t J = [n+ 3] \ {2, 3}, and for
g1, g2 > 0 with 2g1 + |I| > 0, 2g2 + |J | > 0, let us denote by DRg1(a2, AI ,−k)�DRg2(a3, AJ , k)
the cycle in Mg1+g2,n+3 obtained by gluing the two DR cycles at the marked points labeled by
the integers −k and k, respectively. Here, the coefficient aj, 1 ≤ j ≤ n + 3, is attached to the
marked point j. Then we have

(1.15) (a2ψ2−a3ψ3)λgDRg(A[n+3]) =
∑

ItJ=[n+3]\{2,3}
k∈Z, g1≥0, g2≥0

g1+g2=g
2g1+|I|, 2g2+|J |>0

λg ·k ·DRg1(a2, AI ,−k)�DRg2(a3, AJ , k).

One then needs to intersect this relation with the class −a1e−ia2xe−ia3yψd12 ψd23 cg,n+3(e
α1 ⊗

⊗n+3
i=2 eαi), where, as usual, the covector eα1 is attached to the marked point 1 and each vec-

tor eαi is attached to the marked point i. Thanks to the gluing axiom of the F-CohFT, by
the definitions (1.10) and (1.14), and after setting α2 = β1 and α3 = β2, the left-hand side
of equation (1.15) produces the right-hand side of the equation in part (i) and depending on
whether, in the above sum, the marked point 1 belongs to the subset I or J , we obtain either
of the two terms in the Lie bracket on the left-hand side of the equation in part (i).

Part (ii) is immediately obtained from (i) upon integration in both x and y.

Part (iii) is obtained from (i) after setting β2 = 11, d2 = 1 and integrating in y. The generating
series

∫
Yβ1,d1+1;11,1(x, y)dy reduces to (D − 1)Yβ1,d1+1 thanks to the following simple equality:∫

DRg(a,b1,0,a1,...,an)

λgψ
d1+1
2 ψ3cg,n+3(e

α ⊗ eβ1 ⊗ e⊗⊗nj=1eαj) = (2g + n)

∫
DRg(a,b1,a1,...,an)

λgψ
d1+1
2 cg,n+2(e

α ⊗ eβ1 ⊗⊗nj=1eαj),
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which is in turn a consequence of the following behavior of the involved cohomology classes
with respect to the morphism π : Mg,n+3 →Mg,n+2 forgetting the third marked point:

DRg(a, b1, 0, a1, . . . , an) = π∗DRg(a, b1, a1, . . . , an),(1.16)

cg,n+3(e
α ⊗ eβ1 ⊗ e⊗⊗nj=1eαj) = π∗cg,n+2(e

α ⊗ eβ1 ⊗⊗nj=1eαj),(1.17)

λg = π∗λg, π∗(ψ
d1+1
2 ψ3) = (2g + n)ψd1+1

2 .(1.18)

Indeed, the operator D multiplies each term of Yβ1,d1+1 by the number of variables ε, u∗∗, and θ∗,∗
appearing in that term, i.e., by 2g + n+ 1.

Part (iv) is similarly obtained from (i) by setting d2 = 0 and integrating in y, as
∫
Yβ1,d1+1;β2,0(x, y)dy

reduces by definition to ∂
∂uβ2

Yβ1,d1+1.

To deduce (v), we consider formula (1.10) and notice that, for (g, n) 6= (0, 1),∫
DRg(a,−a−

∑n
j=1 aj ,a1,...,an)

λgcg,n+2(e
α ⊗ e⊗⊗nj=1eαj) =

∫
π∗(λgDRg(a,−a−

∑n
j=1 aj ,a1,...,an))

cg,n+1(e
α ⊗⊗nj=1eαj),

and π∗(λgDRg(a,−a−
∑n

j=1 aj, a1, . . . , an)) is divisible by (a+
∑n

j=1 aj)
2 as proved in [BDGR18,

Lemma 5.1], where π : Mg,n+2 →Mg,n+1 is the map forgetting the second marked point. When
g = 0 and n = 1, we have instead DR0(a,−a− a1, a1) = 1, λ0 = 1, and c0,3(e

α⊗ e⊗ eα1) = δαα1
,

which gives the desired result.

Part (vi) immediately follows from parts (iv), (v), the properties Ker
(
∂x|Â1

)
= 0, Ker

(
∂x|Â

)
=

C[[ε]], and the fact ∂xP
β2
β1,d1

= δ
δθβ2

Y β1,d1 .

For part (vii), we compute ∂x
∂P

β1
11,1

∂uβ2
= δ

δθβ1

∫
Y11,1;β2,0 dx dy = δ

δθβ1
(D− 1)Y β2,0 = D δ

δθβ1
Y β2,0 =

D∂xP
β1
β2,0

= ∂xDP
β1
β2,0

. �

1.4. Densities of integrals of motion for the DR hierarchy. The DR hierarchy of a
CohFT is a Hamiltonian integrable system [Bur15, BR16a], so the Hamiltonians both generate
the commuting vector fields and provide integrals of motion for the hierarchy. In the non-
Hamiltonian F-CohFT case, integrals of motion have a separate geometric definition in terms
of intersection numbers on the moduli space of curves. For 1 ≤ β ≤ N and d ≥ 0, we define
the following system of formal Fourier series:

gβ,d :=
∑
g,n≥0

2g+n−1>0
a1,...,an∈Z

(−ε2)g

n!

(∫
DRg(−

∑n
j=1 aj ,a1,...,an)

λgψ
d
1cg,n+1(e

β ⊗⊗nj=1eαj)

)(
n∏
j=1

pαjaj

)
ei(

∑n
j=1 aj)x,

(1.19)

which, thanks to the polynomiality property of the DR cycle, can be rewritten as differential

polynomials gβ,d ∈ Â[0] as

gβ,d =
∑

g,n≥0, 2g+n−1>0
k1,...,kn≥0∑n
j=1 kj=2g

ε2g

n!
Coef(a1)k1 ...(an)kn

(∫
DRg(−

∑n
j=1 aj ,a1,...,an)

λgψ
d
1cg,n+2(e

β ⊗⊗nj=1eαj)

)
n∏
j=1

u
αj
kj
.

(1.20)

To this definition, we add the extra densities of conserved quantities gβ,−1 := uβ, 1 ≤ β ≤ N ,

and the “primary” local vector field Y := −
∫
gβ,0θβ,1 dx or, in other words, ∂xg

β,0 = δY
δθβ

,

1 ≤ β ≤ N .
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Finally, for 1 ≤ β1, β2 ≤ N and d1, d2 ≥ 0, let us define the generating series

gβ1,d1β2,d2
(x, y) :=

∑
g,n≥0, 2g+n>0
b1,b2,a1,...,an∈Z

(−ε2)g

n!

(∫
DRg(b1,b2,a1,...,an)

λgψ
d1
1 ψ

d2
2 cg,n+2(e

β1 ⊗ eβ2 ⊗⊗nj=1eαj)

)(
n∏
j=1

pαjaj

)
e−ib1x e−ib2y.

(1.21)

To this definition, for future convenience, we add gβ1,−1β2,d
(x, y) = gβ1,dβ2,−1(x, y) := 0, 1 ≤ β1, β2 ≤

N , d ≥ 0.

Theorem 1.6. For all 1 ≤ β1, β2 ≤ N and d1, d2 ≥ −1 such that d1 + d2 ≥ −1, we have

(i) [Yβ1,d1(y), gβ2,d2(x)] = ∂xg
β2,d2+1
β1,d1

(x, y)− ∂ygβ2,d2β1,d1+1(x, y);

(ii) [Y β1,d1 , g
β2,d2 ] = 0;

(iii) [Y 11,1, g
β2,d2 ] = ∂x(D − 1)gβ2,d2+1;

(iv) [Y β1,0, g
β2,d2 ] = ∂x

∂

∂uβ1
gβ2,d2+1;

(v)
∂

∂u11
gβ1,d1+1 = gβ1,d1;

(vi) Y 11,1 = (D − 2)Y ;

(vii) Y β,0 =
∂

∂uβ
Y .

Proof. The proof of (i) is completely analogous to the proof of (i) in Theorem 1.5. For d1 = −1
or d2 = −1, the statement easily follows from the definitions. Suppose d1, d2 ≥ 0. Let n ≥ 0 and
consider integers a1, . . . , an+2 with the vanishing sum. Let us write the same relation as (1.15),
but with the psi classes taken at other marked points:

(a1ψ1 − a2ψ2)λgDRg(A[n+2]) =
∑

ItJ=[n+2]\{1,2}
k∈Z, g1≥0, g2≥0

g1+g2=g
2g1+|I|, 2g2+|J |>0

λg · k ·DRg1(a1, AI ,−k) � DRg2(a2, AJ , k).

Intersecting this relation with the class (−i)e−a1ixe−a2iyψd21 ψd12 cg,n+2(e
α1⊗⊗n+2

j=2 eαj) and forming
the corresponding generating series, we obtain part (i) (after setting α2 = β1 and α1 = β2).

The proof of (ii) to (iv) follows strictly the arguments in the proof of the corresponding parts
in Theorem 1.5.

The proof of part (v) is the same as the proof of part (vi) in Theorem 1.5.

For the proof of (vi), consider the equation of part (iii) with d2 = −1. Multiplying it by θβ2 ,
summing over β2, and integrating over x we obtain, on the left-hand side,∫

[Y 11,1, u
β2 ]θβ2dx =

∫
δY 11,1

δθβ2
θβ2dx = Y 11,1

and, on the right-hand side,∫
∂x
(
(D − 1)gβ2,0

)
θβ2dx = −(D − 2)

∫
gβ2,0θβ2,1dx = (D − 2)Y .

Part (vii) is proved in an analogous fashion starting from (iv). �
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1.5. Homogeneous DR hierarchies. Let Yβ,q ∈ (Â1)[1] and gα,p ∈ Â[0], 1 ≤ β, α ≤ N ,
q, p ≥ −1, be the densities of local vector fields and of integrals of motion of the DR hierarchy
associated to a homogeneous rank N F-CohFT. Let

cαβγ := c0,3(e
α ⊗ eβ ⊗ eγ) ∈ C

for 1 ≤ α, β, γ ≤ N .

Consider the following vector field on the space of densities of local multivector fields on the
formal loop space:

Êγ :=
∑
k≥0

((
(δαβ − qαβ )uβk + δk,0r

α
) ∂

∂uαk
− (δαβ − qαβ )θα,k

∂

∂θβ,k

)
+

1− γ
2

ε
∂

∂ε
,

where qβαeβ := Qeα and rαeα := r. For convenience, let us define Yα,−2 = P β
α,−2 := 0 and

gα,−2 := Aα for all 1 ≤ α, β ≤ N .

Proposition 1.7. For all 1 ≤ α ≤ N and d ≥ −1, we have

(i) Êγ(Yα,d) = dYα,d + qβαYβ,d + rγcµγαYµ,d−1;

(ii) Êγ(P
α
β,d) = (d+ 1)Pα

β,d + qγβP
α
γ,d − qαγP

γ
β,d + rγcµγβP

α
µ,d−1;

(iii) Êγ(g
α,d) = (d+ 2)gα,d − qαβgβ,d + rγcαγµg

µ,d−1;

(iv) Êγ(Y ) = Y − rγcβγµ
∫
uµθβ,1dx.

Proof. The proof is a simple consequence of equation (1.1) together with dimension counting
for the intersection numbers involved in the definitions of gα,d, Yα,d, and Y and the fact that
π∗ψdi = ψdi − δ0i,n+1π

∗ψd−1i , 1 ≤ i ≤ n, d ≥ 1, where π : Mg,n+1 →Mg,n forgets the last marked

point and δ0i,n+1 is the closure inMg,n+1 of the locus of stable curves whose dual graph is a tree
with two vertices, one of which has genus 0 and exactly two legs marked by i and n+ 1. �

In [BRS20], the authors presented an explicit conjectural formula for a bihamiltonian struc-
ture of the DR hierarchy corresponding to a homogeneous CohFT. This in particular gives a re-
cursion of certain type, called a bihamiltonian recursion, expressing the flows ∂

∂tαd+1
, 1 ≤ α ≤ N ,

of the hierarchy in terms of the flows ∂
∂tαd

, 1 ≤ α ≤ N . For a general homogeneous F-CohFT,

we don’t expect the corresponding DR hierarchy to have a Hamiltonian structure. However,
we will now present a conjectural generalization of the bihamiltonian recursion in this setting.

Following [BRS20], we associate with a differential polynomial f ∈ Â a sequence of differential
operators indexed by α = 1, . . . , N and k ≥ 0:

Lkα(f) :=
∑
i≥k

(
i

k

)
∂f

∂uαi
∂i−kx .

Consider an arbitrary homogeneous F-CohFT and the corresponding DR hierarchy. Define
an operator R = (Rα

β) by

Rα
β := Êγ

(
L0
β(gα,0)

)
◦ ∂x +

(
1− γ

2
δµβ + qµβ

)
L0
µ(gα,0)x + ∂x ◦ L1

β(gα,0) ◦ ∂x,

where the notation Êγ
(
L0
β(gα,0)

)
(respectively, L0

β(gα,0)x) means that we apply the operator Êγ
(respectively, ∂x) to the coefficients of the operator L0

β(gα,0).
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Conjecture 1.8. The following recursion relation is satisfied:

Rα
µP

µ
β,d =

((
d+

3− γ
2

)
δµβ + qµβ

)
∂xP

α
µ,d+1 + (∂xP

α
µ,d)c

µ
βνr

ν , 1 ≤ α, β ≤ N, d ≥ −1.

(1.22)

Proposition 1.9.

(1) If our homogeneous F-CohFT comes from a homogeneous CohFT, then the recursion (1.22)
coincides with the bihamiltonian recursion from part (2) of [BRS20, Conjecture 1.13].

(2) Conjecture 1.8 is true in genus 0, i.e., if we set ε = 0.

Proof. For part (1), using the notations from paper [BRS20] let us note that Pα
β,d = ηαµ

δgβ,d
δuµ

.

Therefore, we have to check that ηβµK
αµ
2 = Rα

β . This follows from the properties ηβµΩk(g)αµ =

Lkβ(gα,0) and qµαηµβ + ηαµq
µ
β = γηαβ.

The proof of part (2) follows closely the proof of [BRS20, Proposition 2.1]. �

2. Principal hierarchy of a flat F-manifold and dispersive deformations

In this section, using the results from the previous section, we construct a family of disper-
sive integrable deformations of a principal hierarchy associated to an arbitrary semisimple flat
F-manifold. Moreover, we prove that different hierarchies from this family are not equivalent
to each other by a Miura transformation that is close to identity.

2.1. Flat F-manifolds. Here we recall the notion of a flat F-manifold ([Get04, Man05], see
also [AL18] and [LPR09]) and its main properties.

Definition 2.1. A flat F-manifold (M,∇, ◦, e) is the datum of an analytic manifold M , an
analytic connection ∇ in the tangent bundle TM , an algebra structure (TpM, ◦) with unit e on
each tangent space, analytically depending on the point p ∈ M , such that the one-parameter
family of connections ∇z = ∇+ z◦ is flat and torsionless for any z ∈ C, and ∇e = 0.

The algebras (TpM, ◦) are commutative and associative. Let tα, 1 ≤ α ≤ N , N = dimM ,
be flat coordinates for the connection ∇. Locally, there exist analytic functions Fα(t1, . . . , tN),
1 ≤ α ≤ N , such that the second derivatives

Cα
βγ :=

∂2Fα

∂tβ∂tγ
(2.1)

are the structure constants of the algebras (TpM, ◦), ∂
∂tβ
◦ ∂
∂tγ

= Cα
βγ

∂
∂tα

. Also, in the coordi-

nates tα the unit e has the form e = Aα ∂
∂tα

for some constants Aα ∈ C. Moreover, the following
equations are satisfied:

Aµ
∂2Fα

∂tµ∂tβ
= δαβ , 1 ≤ α, β ≤ N,(2.2)

∂2Fα

∂tβ∂tµ
∂2F µ

∂tγ∂tδ
=

∂2Fα

∂tγ∂tµ
∂2F µ

∂tβ∂tδ
, 1 ≤ α, β, γ, δ ≤ N,(2.3)

which are often called the oriented WDVV equations. TheN -tuple of functions F = (F 1, . . . , FN)
is called a vector potential of the flat F-manifold.

Conversely, given an open subset M of CN and analytic functions F 1, . . . , FN on M satisfying
equations (2.2) and (2.3), these functions define a flat F-manifold (M,∇, ◦, Aα ∂

∂tα
) with the con-

nection∇ given by∇ ∂
∂tα

∂
∂tβ

= 0, and the multiplication ◦ given by the structure constants (2.1).
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A point p ∈M of an N -dimensional flat F-manifold (M,∇, ◦, e) is called semisimple if TpM
has a basis π1, . . . , πN satisfying πα ◦ πβ = δα,βπα. Moreover, locally around such a point one
can choose coordinates ui such that ∂

∂uα
◦ ∂
∂uβ

= δα,β
∂
∂uα

. These coordinates are called canon-
ical coordinates. In particular, this means that the set of semisimple points is open in M . In
the canonical coordinates, we have e =

∑
α

∂
∂uα

. Following [Dub96, page 196], we call a flat
F-manifold (M,∇, ◦, e) semisimple if the set of semisimple points is dense in M .

A flat F-manifold given by a vector potential F is called homogeneous if there exists a vector
field E of the form

(2.4) E = ((δαβ − qαβ )tβ + rα︸ ︷︷ ︸
=:Eα

)
∂

∂tα
, qαβ , r

α ∈ C,

satisfying [e, E] = e and such that

Eµ∂F
α

∂tµ
= (2δαβ − qαβ )F β + Aαβt

β +Bα

for some Aαβ , B
α ∈ C. Note that this equation can be written more invariantly as LieE(◦) = ◦,

where LieE denotes the Lie derivative. The vector field E is called the Euler vector field. Around
a semisimple point, the Euler vector field has the following form in canonical coordinates:
E =

∑N
i=1(u

i + ai) ∂
∂ui

for some ai ∈ C.

Remark 2.2. As we already mentioned in Remark 1.3, our definition of a homogeneous flat
F-manifold is slightly more general than the one from [ABLR20], but all the results from that
paper remain valid.

Remark 2.3. In [AL13a], the authors introduced the closely related notion of a bi-flat F-
manifold that is the datum of two different flat F-manifold structures (∇, ◦, e) and (∇∗, ∗, E)
on the same manifold M intertwined by the following conditions: (1) [e, E] = e, LieE(◦) = ◦;
(2) X ∗ Y := (E◦)−1X ◦ Y (or X ◦ Y = (e∗)−1X ∗ Y ) for all local vector fields X, Y on M ,
where (E◦)−1 is the inverse of the endomorphism of the tangent bundle given by E◦; (3)
(d∇ − d∇∗)(X ◦) = 0 for all local vector fields X on M , where d∇ is the exterior covariant
derivative. For a bi-flat F-manifold, the flat structure given by (∇∗, ∗, E) is called the dual
structure. In the semisimple case, the flatness of the dual structure is equivalent to the condition
∇∇E = 0 [AL17] (see [KMS18] for the regular case). Thus, the structure of a semisimple
homogeneous flat F-manifold is equivalent to the structure of a semisimple bi-flat F-manifold.

Given an F-CohFT cg,n+1 : V ∗⊗V ⊗n → Heven(Mg,n+1), dimV = N , and a basis e1, . . . , eN ∈
V , with e = Aαeα, an N -tuple of functions (F 1, . . . , FN) satisfying equations (2.2) and (2.3)
can be constructed as the following generating functions:

Fα(t1, . . . , tN) :=
∑
n≥2

1

n!

∑
1≤α1,...,αn≤N

(∫
M0,n+1

c0,n+1(e
α ⊗⊗ni=1eαi)

)
n∏
i=1

tαi ,

thus yielding an associated flat F-manifold structure on a formal neighbourhood of 0 in V (see,
e.g., [ABLR20, Proposition 3.2]). The flat F-manifold associated to a homogeneous F-CohFT
is homogeneous with the Euler vector field (2.4) where qαβeα := Qeβ and rαeα := r.

2.2. Principal hierarchy of a flat F-manifold. Given a flat F-manifold (M,∇, ◦, e), one
can construct an integrable dispersionless hierarchy called a principal hierarchy associated to
(M,∇, ◦, e) (see [LPR09]). This construction generalizes the notion of a principal hierarchy
associated to a Dubrovin–Frobenius manifold. Before presenting the construction, let us intro-
duce a small generalization of the space of densities of local multivector fields.
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Let U be an open subset of CN , with coordinates u1, . . . , uN . Denote by O(U) the space of
analytic functions on U . Consider the following space:

Â•U := O(U)[u∗>0, θ∗,∗][[ε]].

Clearly, the space Â• can be considered as the space Â•U where U is a formal neighborhood

of 0. The space Â•U will also be called the space of densities of local multivector fields. It is

easy to see that all constructions from Section 1.2 work with the space Â•U . The space of local

multivector fields corresponding to Â•U will be denoted by Λ̂•U .

Consider a flat F-manifold (M,∇, ◦, e). For any point of M , on its open neighbourhood U ,
one can consider a basis (over C[[z]]) Xα(z) =

∑∞
d=−1Xα,dz

d+1, 1 ≤ α ≤ N = dimM , in the
space of flat sections of the deformed connection ∇−z = ∇− z◦:

(2.5) 0 = (∇− z◦)Xα(z) = (∇− z◦)
∞∑

d=−1

Xα,dz
d+1.

It is immediate to see from (2.5) that Xα,−1, α = 1, . . . N , are flat vector fields for ∇, while the
vector fields Xα,d+1 are obtained via the recurrence relation∇Xα,d+1 = Xα,d◦. If U is connected,
then the collection of flat sections Xα(z) is determined uniquely up to a transformation of the
form Xα(z) 7→ Xβ(z)Gβ

α(z), where G(z) = (Gα
β(z)) ∈ MatN,N(C)[[z]] is invertible. If M is

simply connected, then flat sections Xα(z) can be constructed on the whole M .

Definition 2.4. A calibration of a flat F-manifold (M,∇, ◦, e) is a basis Xα =
∑∞

d=−1Xα,dz
d+1,

Xα,d ∈ T (M), 1 ≤ α ≤ dimM , in the space of flat sections of the deformed connection ∇− z◦.
A flat F-manifold with a fixed calibration is called a calibrated flat F-manifold.

Consider now a flat F-manifold structure on M ⊂ CN given by a vector potential F , together
with a calibration Xα(z). The principal hierarchy associated to our calibrated flat F-manifold
is the following system of PDEs:

(2.6)
∂uα

∂tβd
= ∂x

(
Xα
β,d

∣∣
tγ=uγ

)
, 1 ≤ α, β ≤ N, d ≥ 0,

where Xα
β,d

∂
∂tα

:= Xβ,d. We see that the system (2.6) has the form of a system of conservation
laws. Moreover, this is a system of quasilinear evolutionary PDEs, which is dispersionless and
integrable, in the sense that all the flows pairwise commute (see [LPR09]).

Suppose that M is a formal neighbourhood of 0 ∈ CN . There exist unique flat sections Xα(z)
on M satisfying the condition Xα,−1 = ∂

∂tα
and the condition that Xα,d vanish at 0 for d ≥ 0.

The corresponding principal hierarchy is called the ancestor principal hierarchy.

Proposition 2.5. Consider an F-CohFT and the associated flat F-manifold and the DR hier-
archy. Then the dispersionless part of the DR hierarchy coincides with the ancestor principal
hierarchy of the flat F-manifold.

Proof. This immediately follows from the construction of the DR hierarchy and [ABLR20,
Proposition 3.2] (see also an analogous statement in [Bur15, Section 4.2.2]). �

We see that this proposition can be immediately used for a construction of dispersive de-
formations of ancestor principal hierarchies. In order to construct dispersive deformations of
arbitrary principal hierarchies, we need a generalization of the construction of the DR hierarchy,
which we will introduce in the next section.
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2.3. Dispersive deformations of a principal hierarchy: descendant DR hierarchies.
In order to construct dispersive deformations of a principal hierarchy associated to an arbitrary
semisimple flat F-manifold, we first need to study analytic families of F-CohFTs depending on
a semisimple point of a flat F-manifold together with a vector in the tangent space to that point.

Consider a semisimple flat F-manifold structure on M ⊂ CN defined by a vector potential F .
Recall that on a connected open neighborhood U of an arbitrary semisimple point t0 ∈M , one
has the following objects (we use the notations from [ABLR20, Section 1.2]):

• canonical coordinates ui;

• the matrix Ψ̃ :=
(
∂ui

∂tα

)
;

• the matrices D̃ and Γ̃ defined by dΨ̃ · Ψ̃−1 = D̃ + [Γ̃, dU ], where D̃ is a diagonal

matrix consisting of one-forms, Γ̃ is a matrix with vanishing diagonal entries, and U :=
diag(u1, . . . , uN) (in the homogeneous case this is the operator of multiplication by the
Euler vector field);

• a diagonal nondegenerate matrix H = diag(H1, . . . , HN) defined by dH ·H−1 = −D̃ (the
entries of this matrix can be interpreted as the Lamé coefficients of a diagonal metric
associated with the flat F-manifold);

• the matrices Ψ and Γ defined by Ψ := HΨ̃ and Γ := HΓ̃H−1;
• a sequence of matricesR0 = Id, R1, R2, . . . defined by the relations dRk−1+Rk−1[Γ, dU ] =

[Rk, dU ], k ≥ 1.

Note that the matrix H is defined uniquely up to the transformation H 7→ AH, where A is
a constant nondegenerate diagonal matrix. After such a transformation, the matrices Ψ, Γ,
and Rk transform as follows: Ψ 7→ AΨ, Γ 7→ AΓA−1, Rk 7→ ARkA

−1. Recall also that if we
fix H, then the matrices Rk are defined uniquely up to the transformation

Id +
∑
i≥1

Riz
i 7→

(
Id +

∑
i≥1

Diz
i

)(
Id +

∑
i≥1

Riz
i

)
,(2.7)

where Di, i ≥ 1, are arbitrary constant diagonal matrices.

Using the notations from [ABLR20, Section 4.4], for any G0 ∈ CN , let us define an analytic
family of F-CohFTs parameterized by a point t ∈ U by

cG0,t := Ψ̃−1(t)H−1(t)R−1(−z, t)H(t).ctriv,H
−2(t)G0 ,

where R(z) :=
∑

i≥0Riz
i, the above matrix action on F-CohFTs was introduced in [ABLR20,

Section 4.2], for any w1 = (w1
1, . . . , w

N
1 ) ∈ (C∗)N , and w2 = (w1

2, . . . , w
N
2 ) ∈ CN ,

cw1,w2

g,n+1(e
i0 ⊗⊗nj=1eij) :=


(w
i0
2 )g

(w
i0
1 )g+n−1

, if i0 = i1 = . . . = in,

0, otherwise,

and ctriv,w2 := c(1,...,1),w2 .

Note that the family cG0,t depends, first, on the choice of H and, second, on the choice of R(z).
However, the dependance on H is simple: under the transformation H 7→ AH, where A is a

nondegenerate constant diagonal matrix, R(z) transforms as R(z) 7→ AR(z)A−1 (and Ψ̃ doesn’t

change), and therefore cG0,t 7→ cA
−2G0,t.

We see that the simultaneous transformation H 7→ AH, G0 7→ A2G0 doesn’t change cG0,t.
This transformation doesn’t change the matrix H−2G0, which has a geometrical meaning: if

we denote by X α the degree zero part of cG0,t
1,1 (eα) ∈ H∗(M1,1), then X α ∂

∂tα
=
∑N

i=1H
−2
i Gi

0
∂
∂ui

.

Let us then choose H such that Hi(t0) = 1.
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Notice that if G0 = 0, then the maps cG0,t
g,n+1 are zero for g ≥ 1.

Let τ 1, . . . , τN be formal variables. Recall from [ABLR20, Section 3.2] (note, however, that we
prefer to use a different notation here) that for an F-CohFT cg,n+1 : V ∗⊗V ⊗n → Heven(Mg,n+1)
its formal shift Shτ (c)g,n+1 : V ∗ ⊗ V ⊗n → Heven(Mg,n+1)[[τ

∗]] is defined by

Shτ (c)g,n+1 :=
∑
m≥0

1

m!
πm∗ ◦ cg,n+m+1 ◦

(
⊗(ταeα)⊗m

)
,

where τ = (τ 1, . . . , τN) and πm : Mg,n+m+1 → Mg,n+1 forgets the last m marked points. The
maps Shτ (c)g,n+1 form an F-CohFT with the coefficients in C[[τ ∗]].

Proposition 2.6. 1. A vector potential of the flat F-manifold corresponding to the F-CohFT cG0,t0

is equal to F (t∗ − t∗0).

2. For t = t0+τ ∈ U , the Taylor expansion of cG0,t at t0 coincides with the formal shift of cG0,t0,

i.e., cG0,t0+τ
g,n+1 = Shτ (c

G0,t0)g,n+1, as elements of Hom
(
V ∗ ⊗ V ⊗n, Heven(Mg,n+1)[[τ

∗]]
)
.

Proof. 1. Since Hi(t0) = 1, we have cG0,t0 = Ψ−1(t0)R
−1(−z, t0).ctriv,G0 . The fact that a vector

potential of the associated flat F-manifold is equal to F (t∗ − t∗0) was proved in [ABLR20, Sec-
tion 4.4] (see equation (4.3) there).

2. An elementary computation shows that cG0,t = Ψ−1R−1(−z).cH,H
−1G0 , where the vector

H := (H1, . . . , HN) and the matrices Ψ−1, R−1(−z), and H−1 are computed at the point t. The
statement of part 2 of the proposition is equivalent to the property

∂

∂tβ

(
Ψ−1R−1(−z).cH,H

−1G0

)
g,n+1

= π1∗ ◦
(

Ψ−1R−1(−z).cH,H
−1G0

)
g,n+2

◦ (⊗eβ),

which was proved in [ABLR20, proof of Proposition 4.11]. �

The degree zero parts of cG0,t
1,1 (eα) ∈ H∗(M1,1) induce a vector field on U , X = X α ∂

∂tα
, and

we already noticed that X =
∑N

i=1H
−2
i Gi

0
∂
∂ui

. This motivates the following definition.

Definition 2.7. Consider a semisimple flat F-manifold (M,∇, ◦, e). A vector field X on M is
called a framing if around each semisimple point of M , in canonical coordinates ui, the field X
has the form X =

∑N
i=1 αiH

−2
i

∂
∂ui

for some complex constants αi, 1 ≤ i ≤ N .

Using this language, we can say that our family of F-CohFTs cG0,t induces a framing
X =

∑N
i=1X i ∂

∂ui
on U , with X i(t0) = Gi

0.

Suppose vice versa that all the points of our flat F-manifold M are semisimple and X is
a framing on M . We see that for any point t0 ∈ M the above construction gives a family
of F-CohFTs around t0 such that the induced framing coincides with X . This family is not
unique because the matrix R(z) is defined uniquely only up to the transformation (2.7). Sup-
pose that M is simply connected. Then it is easy to see that there is a consistent choice of
matrix R(z) in all the charts such that the local families glue in a global family of F-CohFTs

parameterized by t ∈ M . Let us denote this global family by cX ,t. This global family is not
unique: in order to fix the ambiguity, one can, for example, fix a choice of matrix R(z) at some

fixed point of M . Note that if X = 0, then the maps cX ,tg,n+1 are zero for g ≥ 1.

Let us now apply the construction of the DR hierarchy to the F-CohFTs cX ,t. We obtain

a family of densities Y t
β,d ∈ (Â1)[1], where the superscript t signals that the densities Y t

β,d
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analytically depend on t ∈M . It is convenient to consider the generating series of densities Y t
β,d:

Y t
β (z) :=

∑
d≥−1

Y t
β,dz

d+1.

Lemma 2.8. We have
∂Y tβ (z)

∂tγ
=

∂Y tβ (z)

∂uγ
− Cµ

βγzY
t
µ(z), 1 ≤ β, γ ≤ N .

Proof. This follows from the definition of the densities Y t
β,d, the property ∂

∂tβ
(cX ,t)g,n+1 = π1∗ ◦

(cX ,t)g,n+2 ◦ (⊗eβ) (which is equivalent to part 2 of Proposition 2.6), and the fact that π∗1ψ
d
i =

ψdi − δ0i,n+1π
∗
1ψ

d−1
i , 1 ≤ i ≤ n, d ≥ 1, where the class δ0i,n+1 was defined in the proof of

Proposition 1.7. �

Consider now a calibration Xα(z) of our flat F-manifold M . Define densities Ỹ t
β,d ∈ (Â1)[1],

1 ≤ β ≤ N , d ≥ −1, by
∑

d≥−1 Ỹ
t
β,dz

d+1 := Ỹ t
β (z) where

Ỹ t
β (z) := Y t

µ(z)Xµ
β (z).

Lemma 2.9. We have
∂Ỹ tβ,d
∂tγ

=
∂Ỹ tβ,d
∂uγ

.

Proof. This immediately follows from Lemma 2.8 and the property
∂Xµ

β (z)

∂tγ
= Cµ

γνzX
ν
β (z). �

Define densities of vector fields Y desc
β,d ∈ (Â1

M)[1], 1 ≤ β ≤ N , d ≥ −1, by

Y desc
β,d :=

(
Ỹ t
β,d

∣∣∣
u∗=0

)∣∣∣
tγ=uγ

∈ (Â1
M)[1].

The previous lemma implies that for a fixed t ∈ M the density Ỹ t
β,d is the Taylor expansion

of the density Y desc
β,d at uγ = tγ, i.e., Ỹ t

β,d = Y desc
β,d

∣∣
uγ 7→tγ+uγ , as elements of (Â1)[1]. Therefore,

since for any t ∈ M the densities Ỹ t
β,d produce a hierarchy of pairwise commuting flows, the

densities Y desc
β,d also produce a hierarchy of pairwise commuting flows. This hierarchy is called

the descendant DR hierarchy.

In more details, the equations of the descendant DR hierarchy are given by

∂uα

∂tβd
= ∂xP

desc;α
β,d , 1 ≤ α, β ≤ N, d ≥ 0,

where P desc;α
β,d =

(
P̃ t;α
β,d

∣∣∣
u∗=0

)∣∣∣
tγ=uγ

, P̃ t;α
β,d =

∑d+1
i=0 P

t;α
µ,d−iX

µ
β,i−1, and P t;α

β,d are the differential poly-

nomials (1.13) corresponding to the F-CohFT cX ,t. Also, we adopt the convention P desc;α
β,−1 :=

Xα
β,−1. Note that we have

∂P̃ t;αβ,d
∂tγ

=
∂P̃ t;αβ,d
∂uγ

.

We immediately see that P desc;α
β,d

∣∣∣
ε=0

= Xα
β,d

∣∣
tγ=uγ

, and therefore the dispersionless part of

the descendant DR hierarchy coincides with the principal hierarchy. For X = 0, the descendant
DR hierarchy coincides with the principal hierarchy.

Statements analogous to the ones from Theorem 1.5 are true for the descendant DR hierar-
chy. We present here the proof of a couple of them.

Note that if Xα
β,−1 = δαβ , then Xα

11,0 coincides with tα up to a constant. We will say that a
calibration is of standard type if Xα

β,−1 = δαβ and Xα
11,0 = tα.
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Proposition 2.10. 1. We have ∂
∂u11

P desc;α
β,d+1 = P desc;α

β,d , 1 ≤ α, β ≤ N , d ≥ −1.

2. If our calibration is of standard type, then ∂
∂uβ

P desc;α
11,1 = DP desc;α

β,0 , 1 ≤ α, β ≤ N .

Proof. To prove part 1, we compute ∂
∂u11

P desc;α
β,d+1

∣∣∣
uγ 7→tγ+uγ

= ∂
∂u11

P̃ t;α
β,d+1 = ∂

∂u11

∑d+2
i=0 P

t;α
µ,d+1−iX

µ
i−1,β =∑d+1

i=0 P
t;α
µ,d−iX

µ
i−1,β = P̃ t;α

β,d = P desc;α
β,d

∣∣∣
uγ 7→tγ+uγ

.

For part 2, we compute ∂
∂uβ

P desc;α
11,1

∣∣∣
uγ 7→tγ+uγ

= ∂
∂uβ

P̃ t;α
11,1 = ∂

∂uβ

(
P t;α
11,1 + P t;α

µ,0 t
µ
)

= DP t;α
β,0 +

tµ ∂
∂uµ

P t;α
β,0 = DP desc;α

β,0

∣∣∣
uγ 7→tγ+uγ

. �

To summarize the above constructions, given the following data:

• a flat F-manifold structure on M ⊂ CN given by a vector potential F such that M is
simply connected and all the points of M are semisimple;
• its calibration;
• a framing on M ;

we have constructed a dispersive integrable deformation of the principal hierarchy. In the next
section, we will prove that the dispersive deformations corresponding to different framings are
not related to each other by a Miura transformation that is close to identity.

2.4. Nonequivalence of dispersive deformations. We say that a Miura transformation (1.6)–
(1.7) is close to identity if ũα|ε=0 = uα.

Definition 2.11. Two dispersive deformations of the principal hierarchy of a calibrated flat
F-manifold are called equivalent if they are related by a Miura transformation that is close to
identity.

Theorem 2.12. Let us fix a calibrated flat F-manifold structure on a simply connected open
subset M ⊂ CN , with a vector potential F and which is semisimple at each point of M . Then,

for different framings X and X̂ on M , the corresponding descendant DR hierarchies are not
equivalent.

Proof of Theorem 2.12. Following [AL18], for a system of evolutionary PDEs of the form

∂uα

∂t
= Qα, Qα ∈ Â[1]

M , 1 ≤ α ≤ N,

let us consider the associated Miura matrix S(z) = (Sαβ (z)) ∈ MatN,N (O(M)[[z]]) defined by

Sαβ (z) :=
∑
d≥0

∂Qα

∂uβd+1

∣∣∣∣∣
uγc=δc,0t

γ

ε=z

.

For a Miura transformation (1.6)–(1.7) that is close to identity, introduce its symbol T (z) =
(Tαβ (z)) ∈ MatN,N (O(M)[[z]]) by

Tαβ (z) :=
∑
d≥0

∂ũα

∂uβd

∣∣∣∣∣
uγc=δc,0t

γ

ε=z

.

It is easy to see that under the Miura transformation the Miura matrix of our system of PDEs
transforms as follows:

S(z) 7→ T (z)S(z)T (z)−1.
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Now consider the descendant DR hierarchies corresponding to different framings X and X̂ .

Let us denote the Miura matrices of a flow ∂
∂tαd

from these two hierarchies by S(α,d)(z) and Ŝ(α,d)(z),

respectively. Clearly, S(α,d)(0) = Ŝ(α,d)(0). Suppose that the hierarchies are related by a Miura
transformation that is close to identity. Denote its symbol by T (z). For the calibration of
our flat F-manifold, without loss of generality, we can assume that Xα

β,−1 = δαβ . Consider the

expansions S(α,d)(z) =
∑

i≥0 S
(α,d)
2i z2i, Ŝ(α,d)(z) =

∑
i≥0 Ŝ

(α,d)
2i z2i, T (z) =

∑
i≥0 Tiz

i. Then we
have

Ŝ(α,d)(z) = T (z)S(α,d)(z)T (z)−1 ⇒

{
[T1, S

(α,d)
0 ] = 0,

S
(α,d)
2 + [S

(α,d)
0 , T1]T1 + [T2, S

(α,d)
0 ] = Ŝ

(α,d)
2 ,

⇒S(α,d)
2 − Ŝ(α,d)

2 = [S
(α,d)
0 , T2].(2.8)

For the descendant DR hierarchy corresponding to the framing X , we have

P̃ t;α
11,1 = P t;α

11,1 + P t;α
µ,0X

µ
11,0 +Xα

11,1, P̃ t;α
µ,0 = P t;α

µ,0 +Xα
µ,0,

which implies that the matrix S = (Sαβ ) := S
(11,1)
2 −

∑N
µ=1X

µ
11,0S

(µ,0)
2 is given by

Sαβ = Coefε2
∂P t;α

11,0

∂uβ2

∣∣∣∣∣
u∗=0

= Coefa2

∫
DR1(a,0,−a)

λ1ψ2c
X ,t
1,3 (eα ⊗ e⊗ eβ) =

= 2Coefa2

∫
DR1(a,−a)

λ1c
X ,t
1,2 (eα ⊗ eβ),

which is equal to 2Coefa2
∫
DR1(a,−a) λ1 = 1

12
times the degree zero part of cX ,t1,2 (eα ⊗ eβ). By

the construction of the cohomological field theory cX ,t, the degree zero part of cX ,t1,2 (eα ⊗ eβ) is

equal to
∑N

i=1
∂tα

∂ûi
X i ∂ûi

∂tβ
, where

∑N
i=1X i ∂

∂ûi
:= X and ûi are local canonical coordinates on M .

Since X 6= X̂ , we conclude that if we denote Ŝ := Ŝ
(11,1)
2 −

∑N
µ=1X

µ
11,0Ŝ

(µ,0)
2 , then Ψ̃(S − Ŝ)Ψ̃−1

is a nonzero diagonal matrix. On the other hand, since Ψ̃S
(α,d)
0 Ψ̃−1 is a diagonal matrix for

any 1 ≤ α ≤ N and d ≥ 0, the diagonal part of
[
Ψ̃
(
S
(11,1)
0 −

∑N
µ=1X

µ
11,0S

(µ,0)
0

)
Ψ̃−1, Ψ̃T2Ψ̃

−1
]

is

equal to zero, which contradicts (2.8). �

Note that during the proof of the theorem we have obtained the following explicit relation
between a framing and the differential polynomials defining the flows ∂

∂t111
and ∂

∂tµ0
of a corre-

sponding descendant DR hierarchy.

Lemma 2.13. Consider a flat F-manifold, a calibration satisfying Xα
β,−1 = δαβ , a framing X =

X α ∂
∂tα

, and a corresponding descendant DR hierarchy. Then we have

X α = 12
∂

∂u11xx
Coefε2

(
P desc;α
11,1 − P desc;α

β,0 Xβ
11,0

)∣∣∣∣
u∗=t∗

.

2.5. Homogeneous dispersive deformations. As at the beginning of Section 2.3, consider a
semisimple flat F-manifold structure on M ⊂ CN defined by a vector potential F , a semisimple
point, canonical coordinates ui on an open neighborhood U of this point, the diagonal matrix

of one-forms D̃, a diagonal nondegenerate matrix H, and matrices Rk. Suppose that our
flat F-manifold is homogeneous with an Euler vector field E of the form (2.4). By [ABLR20,

Proposition 1.14], the diagonal matrix iED̃ is constant, iED̃ = −diag(δ1, . . . , δN) = −∆, δi ∈ C.
Moreover, we have Eα ∂

∂tα
H = ∆H, and by [ABLR20, Proposition 1.16] we can fix a choice of

matrices Rk by the additional conditions Eα ∂
∂tα
Rk = −kRk + [∆, Rk] for k ≥ 1. By [ABLR20,
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proof of Theorem 4.10], for an arbitrary 1 ≤ l ≤ N and an eigenvector G0 of the matrix ∆

corresponding to the eigenvalue δl the family of F-CohFTs cG0,t satisfies the property

Deg ◦ cG0,t
g,n+1 + Eα ∂

∂tα
cG0,t
g,n+1 = cG0,t

g,n+1 ◦

(
−Qt ⊗ Id⊗n +

∑
i+j=n−1

Id⊗ Id⊗i ⊗Q⊗ Id⊗j

)
− 2δlgc

G0,t
g,n+1.

This implies that for any t ∈ U the F-CohFT cG0,t is homogeneous of conformal dimension −2δl.
Note that the corresponding framing X on U satisfies the property [E,X ] = (−2δl − 1)X .

Suppose that M is connected, then it is clear that up to permutations of the components the
vector (δ1, . . . , δN) doesn’t depend on a semisimple point. We come to the following natural
definition.

Definition 2.14. The vector γ := (−2δ1, . . . ,−2δN) is called the vector of conformal dimen-
sions corresponding to our flat F-manifold.

Suppose that all the points of M are semisimple. As in the previous section, we can now glue
the local families of F-CohFTs in a global family. Note that given a framing X on M satisfying
[E,X ] = (−2δl − 1)X we can now construct a unique global family cX ,t, t ∈ M , of F-CohFTs
fixing the choice of matrices Rk using the Euler vector field.

Summarizing the considerations of this section, we obtain the following result.

Theorem 2.15. Consider a homogeneous flat F-manifold structure on a connected open subset
M ⊂ CN defined by a vector potential F . Suppose that all the points of M are semisimple. Let
γ = (γ1, . . . , γN) be the vector of conformal dimensions. Let 1 ≤ l ≤ N and let X be a framing

on M such that [E,X ] = (γl − 1)X . Then the family of F-CohFTs cX ,t satisfies the property

Deg ◦ cX ,tg,n+1 + Eα ∂

∂tα
cX ,tg,n+1 = cX ,tg,n+1 ◦

(
−Qt ⊗ Id⊗n +

∑
i+j=n−1

Id⊗ Id⊗i ⊗Q⊗ Id⊗j

)
+ γlgc

X ,t
g,n+1.

In particular, for any t ∈M the F-CohFT cX ,t is homogeneous of conformal dimension γl.

Let us now discuss properties of the descendant DR hierarchies in the homogeneous case.
Under the assumptions of the theorem, suppose also that M is simply connected. By [BB19,

Proposition 4.4], there exists a calibration Xα(z) and complex matrices R̃i, i ≥ 1, such that

Xα
β,−1 = δαβ , [Q, R̃i] = iR̃i, and

Eµ ∂

∂tµ
X(z) = z

∂

∂z
X(z) + [X(z), Q] +X(z)R̃(z),

where X(z) :=
∑

d≥−1
(
Xα
β,d

)
zd+1 and R̃(z) :=

∑
i≥1 R̃iz

i. Such a calibration is called homoge-
neous. Consider now the associated descendant DR hierarchy.

Let us introduce a generating series P desc(z) by

P desc(z) :=
∑
d≥−1

(
P desc;α
β,d

)
zd+1.

Proposition 2.16. We have

ÊγlP
desc(z) = z

∂

∂z
P desc(z) + [P desc(z), Q] + P desc(z)R̃(z).
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Proof. Let us introduce generating series P̃ t(z) and P t(z) by

P̃ t(z) :=
∑
d≥−1

(
P̃ t;α
β,d

)
zd+1, P t(z) :=

∑
d≥−1

(
P t;α
β,d

)
zd+1.

We have to check that

ÊγlP
desc(z)

∣∣∣
uγ 7→tγ+uγ

= z
∂

∂z
P̃ t(z) + [P̃ t(z), Q] + P̃ t(z)R̃(z).

For this, we compute

ÊγlP
desc(z)

∣∣∣
uγ 7→tγ+uγ

=

(
Êγl + tα(δβα −Qβ

α)
∂

∂uβ

)
P̃ t(z) =

=

(
Êγl + tα(δβα −Qβ

α)
∂

∂uβ

)
P t(z) ·X(z)

by Prop. 1.7
=========

=z
∂

∂z
P t(z) ·X(z) + [P t(z), Q]X(z) + zP t(z)(EγCγ)X(z),(2.9)

where Cγ := (Cα
γβ), and we recall that Cα

βγ = ∂2Fα

∂tβ∂tγ
. Since zEγCγX(z) = Eγ ∂

∂tγ
X(z) =

z ∂
∂z
X(z) + [X(z), Q] +X(z)R̃(z), the expression in line (2.9) is equal to

z
∂

∂z
P t(z) ·X(z) + [P t(z), Q]X(z) + P t(z)

(
z
∂

∂z
X(z) + [X(z), Q] +X(z)R̃(z)

)
=

=z
∂

∂z
P̃ t(z) + [P̃ t(z), Q] + P̃ t(z)R̃(z),

as required. �

3. Towards a classification of dispersive deformations

In this section we consider the problem of classification of dispersive integrable deformations
of principal hierarchies for flat F-manifolds and observe the central role played in it by the DR
hierarchies. We propose two a priori different classes of deformations and we classify them, up
to some finite order in ε, for 1 and 2 dimensional flat F-manifolds, respectively. Up to that
approximation, we observe that both classes contain essentially the DR hierarchies considered
in Section 2.

3.1. Dispersive deformations of DR type and the rank 1 case.

3.1.1. Integrable systems of DR type. Given a local vector field X ∈ (Λ̂1)[1], consider the oper-

ator DX : Â1[[z]]→ Â1[[z]] defined by

DXY (z) := ∂x(D − 1)Y (z)− z[X,Y (z)],

Y (z) =
∑
k≥0

Yk−1z
k, Yk−1 ∈ Â1.

Suppose there exist N solutions Yα(z) ∈ (Â1)[1], 1 ≤ α ≤ N , to the equation DXYα(z) = 0
with the initial conditions Yα(z = 0) = −θα,1. Then a new vector of solutions with the same
initial conditions can be found by the following transformation:

(3.1) Yα(z) 7→ aµα(z)Yµ(z),

where aµα(z) = δµα +
∑

i>0 a
µ
α,iz

i ∈ C[[z]].

Theorem 3.1. Assume that X ∈ (Λ̂1)[1] satisfies the following properties:
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(a) there exist N solutions Yα(z) =
∑

d≥0 Yα,d−1z
d ∈ (Â1)[1][[z]], 1 ≤ α ≤ N , to the equation

(3.2) DXYα(z) = 0

with the initial conditions Yα(z = 0) = −θα,1,

(b) δ
δu11

X = −uαθα,1 + ∂2xR, R ∈ (Â1)[−1], where δ
δu11

= Aα δ
δuα

and Aα are some complex
constants.

Then, up to a transformation of type (3.1), we have

(i) Y11,0 = −uαθα,1 + ∂2x(D − 1)−1R,
(ii) Y 11,1 = X,

(iii)
[
Y α1,d1 , Y α2,d2

]
= 0, 1 ≤ α1, α2 ≤ N , d1, d2 ≥ −1,

(iv) [Y α2,0, Yα1,d] = ∂x
∂

∂uα2
Yα1,d+1, 1 ≤ α1, α2 ≤ N , d ≥ −1,

(v)
∂

∂u11
Yα,d+1 = Yα,d, 1 ≤ α ≤ N , d ≥ −1.

Proof. The proof follows closely the proof of [BDGR20, Theorem 5.1–5.2] with Lie brackets of
densities of local vector fields replacing Poisson brackets of differential polynomials. �

Remark 3.2. When we restrict to ε = 0, a particular local vector field satisfying condi-
tion (a) of Theorem 3.1 is given by X = −(D − 2)

∫
Fα(u1, . . . , uN)θα,1dx where the functions

Fα(t1, . . . , tN) are solutions to the oriented WDVV equations (2.2), (2.3). It is easy to check

that for such X solutions Yα(z) are given by Yα(z) = −
∑

d≥−1X
β
α,dθβ,1z

d+1 where the func-

tions Xβ
α,d form a calibration of the flat F-manifold satisfying Xβ

α,−1 = δβα (see Section 2.2).
Therefore, the functions Yα(z) are the generating series of densities of local vector fields of the
principal hierarchy of the flat F-manifold. Note that condition (b) for our X is equivalent to
∂Fα

∂t11
= tα, which can always be fulfilled by adding to Fα appropriate linear terms.

Definition 3.3. Let X ∈ (Λ̂1)[1] satisfy the hypotheses of Theorem 3.1. Then we say that X =
Y 11,1 and the induced hierarchy of compatible densities of local vector fields Yα,d, 1 ≤ α ≤ N ,
d ≥ −1, are of double ramification (DR) type.

Theorem 3.4. The double ramification hierarchy (1.11) associated to an F-CohFT is a hier-
archy of double ramification type.

Proof. Hypotheses (a) and (b) of Theorem 3.1 follow immediately from claims (iii) and (v),
respectively, of Theorem 1.5. �

3.1.2. Classification of rank 1 hierarchies of DR type. Thanks to Theorem 3.1 and Remark 3.2,
it makes sense to use equation (3.2) to find all possible deformations of DR type of a principal
hierarchy associated to a given flat F-manifold, at low order in the dispersion parameter ε.
These deformations will, in particular, include the ones coming from all F-CohFTs with the
given genus 0 part.

Consider the ancestor principal hierarchy associated to the genus 0 part of the trivial CohFT,
i.e., the CohFT with V = C〈e〉 and cg,n(e⊗n) = 1 ∈ H0(Mg,n) for all (g, n) in the stable range.
Let e1 = e, uk := u1k, θk := θ1,k for k ≥ 0, with u := u0, θ := θ1 as usual, and Yd := Y1,d = Y11,d.
A direct computation (at the approximation up to ε9) shows that its most general deformation
of DR type is either of the form

∂u

∂t1
=
δY 1

δθ
= uu1 + ε2C1,1u3 + ε4 (C2,1u5 + C2,2u2u3)(3.3)
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+ ε6
(
C3,1u2u5 + C3,2u3 (u2)

2 +

(
10 (C2,1)

2

7C1,1

+
9

35
C1,1C2,2

)
u7 +

(
−8C2,1C2,2

3C1,1

+ 3C3,1

)
u3u4

)
+ ε8

(
C4,1 (u2)

2u5 + C4,2 (u2)
3u3 +

(
15 (C2,1)

3

7 (C1,1) 2
+

58

105
C2,1C2,2 +

4

35
C1,1C3,1

)
u9

+

(
−123 (C2,1)

2C2,2

28 (C1,1) 2
+

57

100
(C2,2)

2 +
9

16
C1,1C3,2 +

33C2,1C3,1

7C1,1

)
u2u7

+

(
−177 (C2,1)

2C2,2

4 (C1,1) 2
+

201

100
(C2,2)

2 +
333

80
C1,1C3,2 +

33C2,1C3,1

C1,1

)
u4u5

+

(
44C2,1 (C2,2)

2

21 (C1,1) 2
− 55C2,1C3,2

12C1,1

− 44C2,2C3,1

21C1,1

+ 2C4,1

)
(u3)

3

+

(
−24 (C2,1)

2C2,2

(C1,1) 2
+

249

175
(C2,2)

2 +
9

4
C1,1C3,2 +

132C2,1C3,1

7C1,1

)
u3u6

+

(
88C2,1 (C2,2)

2

21 (C1,1) 2
− 55C2,1C3,2

6C1,1

− 88C2,2C3,1

21C1,1

+ 6C4,1

)
u2u3u4

)
+O(ε10),

with Ci,j ∈ C and C1,1 6= 0, or of the form

(3.4)
∂u

∂t1
=
δY 1

δθ
= uu1 + εCu2, C ∈ C.

Notice that, imposing Ck,2 = 0 for all k ≥ 1 in equation (3.3), we recover the most gen-
eral Hamiltonian deformation of DR type, obtained in [BDGR20], which is in turn in one to
one correspondence with the most general rank 1 CohFT. This shows that the extra parame-
ters Ck,2, k ≥ 1 control the strictly non-Hamiltonian deformations (at least with respect to the
Hamiltonian operator ∂x). We expect these to correspond to F-CohFTs that are not CohFTs.

Remark 3.5. It is easy to check that the r.h.s of equation (3.3) is a total x-derivative. Com-
paring with the results of [ALM15] we see that a similar result can be obtained starting from
generic scalar conservation laws of the form

∂u

∂td
= ∂xPd, d ≥ 0,(3.5)

Pd =
∑
l≥0

ε2lPd,l, Pd,l ∈ A[2l]
M ,

choosing

• Pd,0 = ud+1

(d+1)!
,

• ∂P1

∂ux
= 0; the reduction to this form by means of a Miura transformation is always

possible and it is unique,

and imposing the following conditions:

• Commutativity of the flows.
• String property: ∂

∂u
Pd+1 = Pd for d ≥ −1, where P−1 := 1.

According to the conjecture formulated in [ALM15], it should be possible to write all the
coefficients appearing in the deformation as functions of the coefficients of the quasilinear part.
Moreover, the coefficients of the quasilinear part should be constant (due to the string property)
and arbitrary. This is consistent with the formula (3.3) since the additional free parameters
appearing at the order ε8 are related to the coefficients of the quasilinear part by constraints
obtained considering higher order conditions.
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Even more intriguing is the isolated deformation (3.4), which, up to reabsorbing the con-
stant C into the factor ε, is the celebrated Burgers equation, which is dissipative and hence
non-Hamiltonian. The appearence of terms with odd powers of ε in a hierarchy of DR type
rules out the possibility that it is the double ramification hierarchy of an F-CohFT. However,
considering that flat F-manifolds are known to appear in genus 0 open Gromov–Witten and
Saito theory [PST14, BCT18, BCT19, BB19] it is tempting to conjecture that Burgers equa-
tion (3.4) and its higher symmetries might control some version of F-CohFT on the space of
Riemann surfaces with boundaries, where curves can indeed possess half-integer genus account-
ing for odd powers of the genus parameter ε.

The fact that Burgers equation (3.4) and its higher symmetries form a hierarchy of DR type
can be proved rigorously at all orders in ε as follows.

Theorem 3.6. The vector field X =
∫

(uux + εuxx)θdx of the Burgers equation defines a
hierarchy of DR type, i.e., it satisfies conditions (a) and (b) of Theorem 3.1.

Proof. Let us first present a reformulation of the Schouten–Nijenhuis bracket [·, ·] : Λ̂1×Â1 → Â1

in terms of formal differential operators. Consider an arbitrary local vector field X =
∫
Xθdx ∈

Λ̂1 and a density Y =
∑

k≥0 Ykθk ∈ Â1. The local vector field X defines a flow on the space of
differential polynomials by

∂u

∂t
=
δX

δθ
= X,

and we consider also formal differential operators L̃X and LY defined by

L̃X :=
∑
k≥0

(−∂x)k ◦
∂X

∂uk
, LY :=

∑
k≥0

Yk∂
k
x .

Directly from the definition (1.2), we obtain the following identity:

L[X,Y ] =
∂

∂t
LY − LY ◦ L̃X ,

where we apply the differentiation ∂
∂t

to the operator LY coefficient-wise.

Let us now take X =
∫

(uux + εuxx)θdx.

Let us prove condition (a) of Theorem 3.1 by showing that a required solution Y (z) =∑
k≥−1 Ykz

k+1 of equation (3.2) is given by

Y (z) = −ezε∂xez(u−2ε∂x)θ1 ⇔ LY (z) =
∑
k≥−1

zk+1LYk = −ezε∂x ◦ ez(u−2ε∂x) ◦ ∂x.

Since L̃X = −u∂x + ε∂2x, equation (3.2) is equivalent to

∂x ◦ D̃LY (z) = z

(
∂LY (z)

∂t
− LY (z) ◦ (−u∂x + ε∂2x)

)
,(3.6)

where D̃ :=
∑

n≥0 un
∂
∂un

+ ε ∂
∂ε

, and we apply D̃ to LY (z) coefficient-wise. Note that D̃LY (z) =

z ∂
∂z
LY (z). Therefore, equation (3.6) is equivalent to

−∂x ◦
∂

∂z

(
ezε∂x ◦ ez(u−2ε∂x) ◦ ∂x

)
=− ∂

∂t

(
ezε∂x ◦ ez(u−2ε∂x) ◦ ∂x

)
+ ezε∂x ◦ ez(u−2ε∂x) ◦ ∂x ◦ (−u∂x + ε∂2x)⇔

⇔ ezε∂x ◦ (−∂x ◦ u+ ε∂2x) ◦ ez(u−2ε∂x) ◦ ∂x =− ezε∂x ◦ ∂
∂t
ez(u−2ε∂x) ◦ ∂x

+ ezε∂x ◦ ez(u−2ε∂x) ◦ (−∂x ◦ u+ ε∂2x) ◦ ∂x ⇔
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⇔ ∂

∂t
ez(u−2ε∂x) =[ez(u−2ε∂x),−∂x ◦ u+ ε∂2x].

Note that the last equation follows from the elementary identity ∂
∂t

(u−2ε∂x) = [u−2ε∂x,−∂x ◦
u+ ε∂2x].

Condition (b) of Theorem 3.1 immediately follows from the equation δ
δu
X = −uθ1 + εθ2. �

3.2. Homogeneous dispersive deformations and the rank 2 case.

3.2.1. Homogeneous deformations with string and dilaton property. Let us fix a homogeneous
flat F-manifold structure on an open subset M ⊂ CN given by a vector potential F , together
with a homogeneous calibration of standard type. We consider systems of evolutionary PDEs
of the form

∂uα

∂tβd
= ∂xP

α
β,d, 1 ≤ α, β ≤ N, d ≥ 0,(3.7)

Pα
β,d =

∑
l≥0

ε2lPα
β,d,l, Pα

β,d,l ∈ A
[2l]
M ,

such that the following properties are satisfied:

(1) Commutativity of the flows: the flows ∂

∂tβd
pairwise commute,

(2) The dispersionless limit of the system (3.7) coincides with the principal hierarchy of the
given calibrated flat F-manifold,

(3) String property: ∂
∂u11

Pα
β,d+1 = Pα

β,d for d ≥ −1, where Pα
β,−1 := δαβ ,

(4) Dilaton property:
∂Pα11,1
∂uβ

= DPα
β,0,

(5) Homogeneity condition: ÊγP (z) = z ∂
∂z
P (z) + [P (z), Q] + P (z)R̃(z) for some γ ∈ C,

where P (z) :=
∑

d≥−1(P
α
β,d)z

d+1.

In this section, working out theN = 2 case, we observe how descendant DR hierarchies appear
in the problem of classification of dispersive integrable deformations of principal hierarchies of
flat F-manifolds of the above form, which we refer to as a homogeneous deformation with string
and dilaton properties. The role played by conditions (3), (4), and (5) is central in producing
finite dimensional spaces of deformations even without having to quotient with respect to
equivalence up to Miura transformations of the dependent variables.

Remark 3.7. Axioms (1), (3), and (4) above correspond closely to properties (iii), (iv), and (v)
of Theorem 3.1 for hierarchies of local vector fields of DR type. Homogeneity (5) corresponds to
property (iii) of Proposition 1.7 for homogeneous DR hierarchies. Finally, condition (2) above
is satisfied by hierarchies of DR type, see Remark 3.2. This means that homogeneous dispersive
deformations with string and dilaton properties contain homogeneous descendant hierarchies
of DR type whose local vector fields have only even powers of ε. It’s not a priori clear that the
converse is true and it would be interesting to investigate this point.

3.2.2. Classification of semisimple homogeneous flat F-manifolds in dimension 2. In the semisim-
ple case, using canonical coordinates u1, ..., uN , the structure of a homogeneous flat F-manifold
can be recovered from a solution of the following system ([AL19]):

∂Γiij
∂uk

= −ΓiijΓ
i
ik + ΓiijΓ

j
jk + ΓiikΓ

k
kj, i 6= k 6= j 6= i,

N∑
k=1

∂Γiij
∂uk

= 0,
N∑
k=1

uk
∂Γiij
∂uk

= −Γiij, i 6= j.(3.8)
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For N = 2, the above system reduces to (3.8), and the general solution is

Γiij =
εj

ui − uj
,

where ε1 and ε2 are arbitrary constants. Note that the corresponding vector of conformal
dimensions is equal to (2ε2, 2ε1). In order to compute a vector potential, we need to introduce
flat coordinates u, v (these correspond to t1, t2 in Section 2.1). We have to distinguish 3 cases:

I. ε1 + ε2 6= 0, 1. In this case, flat coordinates are

u =

(
u1 − u2

4

) 1
m

, v =
2 + c

4
u1 +

2− c
4

u2,

where c = 2 ε1−ε2
ε1+ε2

, m = 1
1−ε1−ε2 6= 0, 1, and a vector potential is

(F 1, F 2) =


(
uv − 2cu

m+1

m+1
, v

2

2
+ 4−c2

2
mu2m

2m−1

)
, if m 6= −1, 1

2
, 0, 1,(

uv − 2c log u, v
2

2
+ 4−c2

6
u−2
)
, if m = −1,(

uv − 4
3
cu3/2, v

2

2
+ 4−c2

4
u log u

)
, if m = 1

2
.

The unit is ∂
∂v

, the Euler vector field is E = 1
m
u ∂
∂u

+v ∂
∂v

, and γ =
(

(2−c)(m−1)
2m

, (2+c)(m−1)
2m

)
.

Ifm is a half-integer, these are the vector potentials of the bi-flat F-manifold structures
defined on the orbit space of the dihedral group I2(2m) [AL17]. If also c = 0, the above
vector potential comes from the Dubrovin–Frobenius manifold structure defined on the
orbit space of the dihedral group.

II. ε1 = c, ε2 = 1 − c, c 6= 0 (see the remark about the case c = 0 below). Using the flat
coordinates

u = u1 − u2 +
u2
c
, v = − ln (u1 − u2),

we obtain

F 1 =
c

2
u2 +

1− c
4

e−2v, F 2 = cuv + (2c− 1)e−v.(3.9)

The unit is 1
c
∂
∂u

, the Euler vector field is E = u ∂
∂u
− ∂

∂v
, and γ = (2 − 2c, 2c). For

c = 1
2
, the above vector potential comes from the genus 0 Gromov–Witten potential of

the complex projective line.

In the case c = 0, choosing the flat coordinates u = u2 and v = − ln (u1 − u2), we

obtain F 1 = u2

2
and F 2 = uv − e−v. This flat F-manifold is isomorphic to the flat

F-manifold (3.9) with c = 1 and shifted by v 7→ v + πi.

III. ε1 = c, ε2 = −c. If c 6= 0, then using the flat coordinates

u = u1 − u2, v = (u1 − u2) ln (u1 − u2) +
u2
c
,

we obtain

F 1 =cuv + u2
(
c+ 1

2
− c lnu

)
,

F 2 =
c

2
v2 + u2

(
−3c+ 1

4
+
c+ 1

2
lnu− c

2
(lnu)2

)
.

The unit is 1
c
∂
∂v

, the Euler vector field is E = u ∂
∂u

+ (u+ v) ∂
∂v

, and γ = (−2c, 2c).
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If c = 0, then choosing as flat coordinates the canonical coordinates u = u1 and
v = u2 we obtain

F 1 =
u2

2
, F 2 =

v2

2
.

The unit is ∂
∂u

+ ∂
∂v

, the Euler vector field is E = u ∂
∂u

+ v ∂
∂v

, and γ = (0, 0).

3.2.3. Integrable deformations of rank 2 homogeneous principal hierarchies. We now want to
classify all homogeneous deformations with string and dilaton properties of principal hierar-
chies associated to the homogeneous two-dimensional flat F-manifolds considered above. In our
computations below, we have observed the following remarkable facts:

• If such a deformation exists and is nontrivial at the ε2 approximation, then γ must be
equal to γ1 or γ2.

• For γ = γi, at the ε2 approximation, any such deformation coincides with the descen-
dant DR hierarchy constructed using an appropriate framing. In particular, any such
deformation at the approximation up to ε2 can be extended to a deformation at all
orders of ε.

Let us consider all three cases from Section 3.2.2 in detail.

Case I. For simplicity, we consider the case 1
m
6= Z, which guarantees that there is a unique

homogeneous calibration of standard type such that R̃i = 0 for i ≥ 1. Recall that the vector of

conformal dimensions is (γ1, γ2) =
(

(2−c)(m−1)
2m

, (2+c)(m−1)
2m

)
. We have three subcases.

Case I1. If γ1 6= γ2 and γ = γ1, we obtain

P 1
1,0 =v − 2cum

+ Au−
1
2
c(m−1)ε2

(
m(c− 2)(cm− c− 2m+ 4)um−3u2x +m(c− 2)2um−2uxx − cu−1vxx

)
+O(ε4),

P 2
1,0 =

m2(4− c2)
2m− 1

u2m−1 + Am(c2 − 4)u−
1
2
c(m−1)ε2

(
m(cm− c− 4m+ 6)u2m−4u2x

+m(c− 4)u2m−3uxx − um−2vxx
)

+O(ε4),

and

P 1
2,1 =uv − 2mc

m+ 1
um+1 + Au−

1
2
c(m−1)ε2

(
m(c− 2)(cm− c− 2m− 2)um−2u2x

+
m(c− 2)(cm− c− 2m− 2)

m− 1
um−1uxx −

cm− c− 4

m− 1
vxx

)
+O(ε4),

P 2
2,1 =

v2

2
+
m(4− c2)

2
u2m + Am(c+ 2)u−

1
2
c(m−1)ε2

(
m(cm− c− 4m)(c− 2)u2m−3u2x

+
m(cm− c− 4m)(c− 2)

m− 1
u2m−2uxx −

cm− c− 2m− 2

m− 1
um−1vxx

)
+O(ε4).

Here A is an arbitrary complex constant. This deformation is given by the descendant DR

hierarchy corresponding to the framing (X 1,X 2) = 12A
(

4
m−1u

− 1
2
c(m−1), 4m(c+2)

m−1 u−
1
2
(c−2)(m−1)

)
.
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Case I2. If γ1 6= γ2 and γ = γ2, we obtain

P 1
1,0 =v − 2cum

+Bu
1
2
c(m−1)ε2

(
m(c+ 2)(cm− c+ 2m− 4)um−3u2x +m(c+ 2)2um−2uxx − cu−1vxx

)
+O(ε4),

P 2
1,0 =

m2(4− c2)
2m− 1

u2m−1 +Bm(c2 − 4)u
1
2
c(m−1)ε2

(
m(cm− c+ 4m− 6)u2m−4u2x

+m(c+ 4)u2m−3uxx − um−2vxx
)

+O(ε4),

and

P 1
2,1 =uv − 2mc

m+ 1
um+1 +Bu

1
2
c(m−1)ε2

(
m(c+ 2)(cm− c+ 2m+ 2)um−2u2x

+
m(c+ 2)(cm− c+ 2m+ 2)

m− 1
um−1uxx −

cm− c+ 4

m− 1
vxx

)
+O(ε4),

P 2
2,1 =

v2

2
+
m(4− c2)

2
u2m +Bm(c− 2)u

1
2
c(m−1)ε2

(
m(cm− c+ 4m)(c+ 2)u2m−3u2x

+
m(cm− c+ 4m)(c+ 2)

m− 1
u2m−2uxx −

cm− c+ 2m+ 2

m− 1
um−1vxx

)
+O(ε4).

Here B is an arbitrary complex constant. This deformation is given by the descendant DR

hierarchy corresponding to the framing (X 1,X 2) = 12B
(
− 4
m−1u

1
2
c(m−1),−4m(c−2)

m−1 u
1
2
(c+2)(m−1)

)
.

Case I3. If γ1 = γ2 (which is equivalent to c = 0) and γ coincides with them, we get a
two-parameter family of deformations formed by linear combinations of the deformations from
Cases I1 and I2.

Case II. There is a unique homogeneous calibration of standard type such that Xα
β,0 = ∂Fα

∂tβ
,

R̃1 =

(
0 0
−c 0

)
, and R̃i = 0 for i ≥ 2. Recall that the vector of conformal dimensions is

(γ1, γ2) = (2− 2c, 2c). We have three subcases.

Case II1. If γ1 6= γ2 and γ = γ1, we obtain

P 1
2,0 =

c− 1

2
e−2v + A(c− 1)e2(c−1)vε2

(
uxx −

2c− 3

2c
e−vv2x +

2c− 3

c
e−vvxx

)
+O(ε4),

P 2
2,0 =cu− (2c− 1)e−v + Ae2(c−1)vε2

(
−2c− 1

2
evuxx +

(c− 1)2

c
v2x −

(c− 1)2

c
vxx

)
+O(ε4),

and

P 1
1,1 =

c2

2
u2 +

c(c− 1)

4
(2v + 1)e−2v + Ae2(c−1)vε2

(
c((c− 1)v + 1)uxx

− c− 1

2
((2c− 3)v + 3)e−vv2x +

c− 1

2
((2c− 3)v + 2)e−vvxx

)
+O(ε4),

P 2
1,1 =c2uv − c(2c− 1)(v + 1)e−v + Ae2(c−1)vε2

(
− c

2
((2c− 1)v + 2)evuxx

+
c− 1

2
((2c− 2)v + 3)v2x − (c− 1)((c− 1)v + 1)vxx

)
+O(ε4),

where A is an arbitrary complex constant. This deformation is given by the descendant DR
hierarchy corresponding to the framing (X 1,X 2) = 12A

c

(
e2(c−1)v,−e(2c−1)v

)
.
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Case II2. If γ1 6= γ2 and γ = γ2, we obtain

P 1
2,0 =

c− 1

2
e−2v +B(c− 1)e−2cvε2

(
−uxx +

2c+ 1

2c
e−vv2x −

2c+ 1

2c
e−vvxx

)
+O(ε4),

P 2
2,0 =cu− e−v(2c− 1) +Be−2cvε2

(
2c− 1

2
evuxx − cv2x + cvxx

)
+O(ε4),

and

P 1
1,1 =

c2

2
u2 +

c(c− 1)

4
(2v + 1)e−2v +B(c− 1)e−2cvε2

(
−(cv − 1)uxx +

1

2
((2c+ 1)v − 3)e−vv2x

−1

2
((2c+ 1)v − 2)e−vvxx

)
+O(ε4),

P 2
1,1 =c2uv − c(2c− 1)(v + 1)e−v

+Bce−2cvε2
(

1

2
((2c− 1)v − 2)evuxx −

1

2
(2cv − 3)v2x + (cv − 1)vxx

)
+O(ε4),

where B is an arbitrary complex constant. This deformation is given by the descendant DR
hierarchy corresponding to the framing (X 1,X 2) = 12B

c

(
c−1
c
e−2cv,−e−(2c−1)v

)
.

Case II3. If γ1 = γ2 (which is equivalent to c = 1
2
) and γ coincides with them, we get a

two-parameter family of deformations formed by linear combinations of the deformations from
Cases II1 and II2.

Case III. There is a unique homogeneous calibration of standard type such that R̃i = 0 for
i ≥ 1. Recall that the vector of conformal dimensions is (γ1, γ2) = (−2c, 2c).

Case III1. If γ1 6= γ2 (equivalently, c 6= 0) and γ = γ1 = −2c, we obtain

P 1
1,0 =u(1− 2c lnu) + cv + Au−2c−1ε2

(
−
(
c+

1

2

)
u−1u2x + cvxx +

(
3

2
− c(1 + lnu)

)
uxx

)
+O(ε4),

P 2
1,0 =u(lnu− c(1 + ln2 u)) + Au−2c−1ε2

(
−u−1

((
c+

1

2

)
lnu+ c

)
u2x+

+

(
c(1 + lnu)− 1

2

)
vxx +

(
2(1 + lnu)− c(1 + lnu)2 − 1

2c

)
uxx

)
+O(ε4),

and

P 1
2,1 =− c

2
u(cu(1 + 2 lnu)− 2cv − u) + Au−2c−1ε2

(
c(c− 1)uvxx + c(1− c)u2x+

+u

(
c(1− c) lnu−

(
c− 1

2

)
(c− 2)

)
uxx

)
+O(ε4),

P 2
2,1 =− c

4
u2(2(c lnu+ c− 1) + c− 1) lnu+

c2

2
v2+

+ Au−2c−1ε2
(
c

(
(1− c) lnu+

3

2
− c
)
u2x + cu

(
(c− 1) lnu+ c− 3

2

)
vxx +

+u

(
c(1− c) ln2 u− (2c2 − 4c+ 1) lnu− c2 + 3c− 3

2

)
uxx

)
+O(ε4),

where A is an arbitrary complex constant. This deformation is given by the descendant DR
hierarchy corresponding to the framing (X 1,X 2) = −12A

c
(u−2c, u−2c(1 + lnu)).
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Case III2. If γ1 6= γ2 (equivalently, c 6= 0) and γ = γ2 = 2c, we obtain

P 1
1,0 =u(1− 2c lnu) + cv +Bu2c−1ε2

((
c− 1

2

)
u−1u2x − cvxx +

(
c lnu+ c+

1

2

)
uxx

)
+O(ε4),

P 2
1,0 =u(lnu− c(1 + ln2 u)) +Bu2c−1ε2

((
1

2
− c(1 + lnu)

)
vxx+

+

(
c(lnu+ 1)2 − 1

2c

)
uxx + u−1

((
c− 1

2

)
lnu+ c− 1 +

1

2c

)
u2x

)
+O(ε4),

and

P 1
2,1 =− c

2
u(cu(1 + 2 lnu)− 2cv − u) +

c

2
Bu2c−1ε2

(
2(c+ 1)u2x − 2(c+ 1)uvxx+

+u(2(c+ 1) lnu+ 2c+ 3)uxx) +O(ε4),

P 2
2,1 =− c

4
u2(2(c lnu+ c− 1) + c− 1) lnu+

c2

2
v2+

+Bu2c−1ε2
((
c2 +

c

2
− 1 + c(c+ 1) lnu

)
u2x + u

(
1− c

2
− c2 − c(c+ 1) lnu

)
vxx+

+u

(
c2 + c− 3

2
+ c(c+ 1)(lnu+ 2) lnu)

)
uxx

)
+O(ε4),

where B is an arbitrary complex constant. This deformation is given by the descendant DR
hierarchy corresponding to the framing (X 1,X 2) = 12B

c

(
−u2c, u2c

(
1
c
− 1− lnu

))
.

Case III3. If γ1 = γ2 (equivalently, c = 0) and γ = γi = 0, we get the two-parameter family
of deformations

P 1
1,1 =

u2

2
+ Aε2uxx +O(ε4),

P 2
1,1 =

v2

2
+Bε2vxx +O(ε4),

which is given by the descendant DR hierarchy corresponding to the framing (X 1,X 2) =
12(A,B). This hierarchy is just the DR hierarchy of the rank 2 F-topological field theory

cg,n+1(e
α0 ⊗⊗ni=1eαi) =


Ag, if α0 = . . . = αn = 1,

Bg, if α0 = . . . = αn = 2,

0, otherwise,

and it coincides with the system of two uncoupled KdV hierarchies.

3.3. General integrable deformations and open problems. In Section 3.2.1, we con-
sidered the problem of classification of dispersive deformations, containing only even powers
of ε and satisfying properties (1)–(5), of principal hierarchies of two-dimensional homogeneous
semisimple flat F-manifolds. We observed that at the approximation up to ε2 all such defor-
mations are given by the descendant DR hierarchies.

In this section, we consider more general dispersive deformations of the same rank 2 principal
hierarchies: first, we allow odd powers of ε in the dispersive deformation (3.7), and, second, we
require that only properties (1)–(2) are satisfied. In other words, we require only integrability,
i.e., pairwise commutativity of the flows. In the table below, we summarize the results of
computations of such deformations at the approximation up to ε2 (the results for Case I were
already obtained in [AL18]). When we refer to a functional parameter relative to an integrable
deformation, we mean that at a specified order the equivalence classes of deformations depend
on an arbitrary function. Recall (see Definition 2.11) that two deformations are said to be
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equivalent if they are related by a Miura transformation that is close to identity.

Case Values of c Integrable
first order
deformations

Integrable sec-
ond order de-
formations

I c 6= ±2 Miura trivial Two functional
parameters

I c = ±2 One functional
parameter

Two functional
parameters

II c 6= 1 Miura trivial Two functional
parameters

II c = 1 One functional
parameter

Two functional
parameters

III arbitrary c Miura trivial Two functional
parameters

Table 1. Functional parameters for the integrable deformations at the approx-
imation up to ε2

For special values of the functional parameters, we recover the genus one approximations
of the descendant DR hierarchies from Section 3.2.3. Unfortunately, for generic choices of the
functional parameters the existence of a full dispersive hierarchy is an open problem. Concern-
ing this we point out that, in [AL18], it was conjectured that, up to equivalence, integrable
deformations for systems of any rank are labelled by a simple set of invariants called Miura
invariants. Consider a system of evolutionary PDEs of the form

∂uα

∂t
= Aαβ(u∗)uβx+ε

(
Bα
β (u∗)uβxx +Bα

βγ(u
∗)uβxu

γ
x

)(3.10)

+ε2
(
Cα
β (u∗)uβxxx + Cα

βγ(u
∗)uβxu

γ
xx + Cα

βγδ(u
∗)uβxu

γ
xu

δ
x

)
+ . . . , α = 1, . . . , N,

and as in the proof of Theorem 2.12 consider the associated Miura matrix

Mα
β (u∗, p) = Aαβ(u∗) +Bα

β (u∗)p+ Cα
β (u∗)p2 + . . . .

The Miura invariants of the system (3.10) are the eigenvalues λi(u∗, p) of the Miura ma-
trix. If the eigenvalues of the matrix (Aαβ) are pairwise distinct at some point (u1, . . . , uN) =

(u1orig, . . . , u
N
orig) ∈ CN , then the Miura invariants are well defined as formal power series whose

coefficients are functions on an open neighbourhood of (u1orig, . . . , u
N
orig):

(3.11) λi = vi + λi1p+ λi2p
2 + . . . , i = 1, . . . , N.

The functional parameters of Table 1 can be identified with a part of the coefficients λ11, λ
2
1, λ

1
2, λ

2
2

in formula (3.11). The presence of odd powers of p in the expansion (3.11) seems an exceptional
phenomenon. In the case of special deformations satisfying all the properties (1)–(5) from
Section 3.2.1, there are examples related to open Gromov–Witten theory ([BR18]) and we
expect that this is not a coincidence. However, this point requires further investigation.
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[BDGR20] A. Buryak, B. Dubrovin, J. Guéré, P. Rossi. Integrable systems of double ramification type. Interna-
tional Mathematics Research Notices 2020 (2020), no. 24, 10381–10446.
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Via Trieste 63, 35121 Padova, Italy

Email address: paolo.rossi@math.unipd.it


	Introduction
	Acknowledgements

	1. Double ramification hierarchy of an F-CohFT
	1.1. F-cohomological field theories
	1.2. Vector fields on the formal loop space
	1.3. Densities of local vector fields for the DR hierarchy
	1.4. Densities of integrals of motion for the DR hierarchy
	1.5. Homogeneous DR hierarchies

	2. Principal hierarchy of a flat F-manifold and dispersive deformations
	2.1. Flat F-manifolds
	2.2. Principal hierarchy of a flat F-manifold
	2.3. Dispersive deformations of a principal hierarchy: descendant DR hierarchies
	2.4. Nonequivalence of dispersive deformations
	2.5. Homogeneous dispersive deformations

	3. Towards a classification of dispersive deformations
	3.1. Dispersive deformations of DR type and the rank 1 case
	3.2. Homogeneous dispersive deformations and the rank 2 case
	3.3. General integrable deformations and open problems

	References

