OPEN r-SPIN THEORY I: FOUNDATIONS
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ABSTRACT. We lay the foundation for a version of r-spin theory in genus zero for Riemann
surfaces with boundary. In particular, we define the notion of r-spin disks, their moduli
space, and the Witten bundle, we show that the moduli space is a compact smooth orientable
orbifold with corners, and we prove that the Witten bundle is canonically relatively oriented
relative to the moduli space. In the sequel to this paper, we use these constructions to define
open r-spin intersection theory and relate it to the Gelfand—Dickey hierarchy, thus providing
an analogue of Witten’s r-spin conjecture in the open setting.

1. INTRODUCTION

On a smooth marked curve (C; z1, ..., 2,), an r-spin structure is a line bundle S together
with an isomorphism
SO == we (— Z%‘[%]) )
i=1
where a; € {0,1,...,7 — 1}. There is a natural compactification /\/l ’ {al’ an} of the moduli

space of r-spin structures on smooth curves, and this space admits a virtual fundamental
class ¢y known as Witten’s class. In genus zero, Witten’s class is defined by

(1.1) cw = e((R'm,S)Y),

where 7 : C — MO {a1

higher genus, on the other hand, R'7,S may not be a vector bundle, and there are several
(all much more intricate) versions of the definition of Witten’s class [25] [7, 211 [13], [6].
Given any of these definitions, one defines the closed r-spin intersection numbers by

(12) < . Tdn >r’c — 7,.1 g /1 cw N ,lpfl .. .wzn
M

an} 18 the universal curve and S is the universal r-spin structure. In

-----

where ¥q,...,9, € H 2(M517,/{Ta1,...,an}) are the first Chern classes of the cotangent line bundles
at the n marked points. This theory has received a great deal of attention in recent years; for
example, it led to a proof of a conjecturally complete set of tautological relations on Mg,n [23],
and it is a special case of Fan—Jarvis—Ruan—Witten theory [13] as well as the gauged linear
sigma model [I4]. For our purposes, perhaps the most interesting feature of r-spin theory was
proven by Faber—-Shadrin—Zvonkine [I2]: after a simple change of variables, the generating
function of the closed r-spin intersection numbers becomes a tau-function of the rth Gelfand—
Dickey hierarchy. This statement generalizes Witten’s celebrated conjecture (proven by
Kontsevich) regarding the generating function of -integrals on HW.

A different direction in which the intersection theory of Mg,n can be generalized is the con-
sideration of Riemann surfaces with boundary. This work was undertaken by Pandharipande,

Solomon, and the third author in [24], in which a moduli space MOM was constructed that
1
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parameterizes tuples (X;x1, ..., zx; 21, . . ., 2;) where 3 is a stable disk, x; € 93 are boundary
marked points, and z; € ¥\ 0% are internal marked points. The authors also constructed
intersection numbers on Mo,k,z that can be viewed as integrals of 1-classes at the internal
marked points. This construction was extended in [28] to all genera, yielding a generating
function F° of open intersection numbers. In order to define the extension, Solomon and the
third author introduced graded 2-spin structures and proved that the moduli space of 2-spin
surfaces with boundary is canonically oriented. The open analogue of Witten’s conjecture
was proved by the first and third authors in [5] 2, 29], relating exp(F°) to the wave function
of the KdV hierarchy.

Combining r-spin theory with open theory, one might hope to define open r-spin theory
and generalize Witten’s conjecture to this setting. In order to do so even in genus zero,

though, one first must define an appropriate open r-spin moduli space M(l)/,: {a1,...,ay) AN an

open analogue of Witten’s bundle (R'7,S)Y. We carry out the construction of such a moduli
space in this paper, referring to its objects as graded r-spin disks.

1.1. Moduli space of graded r-spin disks. Graded r-spin disks are defined, roughly, as
follows. Let C' be an orbifold curve equipped with an involution ¢ : C' — C that realizes
the coarse underlying curve |C| as a union of two Riemann surfaces ¥ and ¥ (where X is
obtained from ¥ by reversing the complex structure) glued along their common boundary:

‘C’ = Y Uys 3.

Let 21,...,2 € ¥\ 0 be a collection of internal marked points, let Z; := ¢(2;) € ¥ be their
conjugates, and let x1,...,xp € 0¥ be a collection of boundary marked points. On such
a curve, a graded r-spin structure with twists aq,...,a; is an orbifold line bundle S on C
together with an isomorphism

!

15|87 22 Wi © O (— Z a;lz) = ) ailz] — Z(r — 2)[%])

=1 =1 7j=1
on the coarse underlying curve |C/|, an anti-holomorphic involution gg .S — S lifting ¢, and a
certain orientation of (S |@E\{xj})¢, which we refer to as a grading. In what follows, we prove

that there exists a moduli space ﬂé/,: {ar,...a} Of graded r-spin disks with twists ay, ..., a,
and that this moduli space is a compact, orientable, effective, smooth orbifold with corners.

On Mﬁ/,ﬁf {a1,...ar}» there is an open Witten bundle, which is a real vector bundle, defined
roughly as

W= (R'm.(SY @ wy))y = (R'7.S)Y,

where “+” denotes the space of g—invariant sections and “—” the space of g—anti—invariant
sections. There are also cotangent line bundles IL; ..., L; at the internal marked points. We
define these bundles carefully below and explore their behavior under forgetful morphisms
and restriction to boundary strata.

It is straightforward to show that the cotangent line bundles have canonical complex
orientations. The open Witten bundle, on the other hand, is a real vector bundle and hence
it is not clear that it is orientable at all. One of the main results of this paper is that not
only is W orientable, but it carries a canonical relative orientation relative to the moduli
space; the grading plays a central role in the construction of this canonical orientation. We
also analyze the behavior of the canonical orientation under restriction to boundary strata.



OPEN r-SPIN THEORY I: FOUNDATIONS 3

1.2. Companion works. This paper lays the foundations for the sequel [4], in which we use

1111

intersection numbers and prove an open r-spin version of Witten’s conjecture. In particular,
in [4], we calculate all the genus-zero open r-spin intersection numbers and prove an explicit
relationship between their generating function and the genus-zero part of the Gelfand—Dickey
wave function. In addition to verifying the generalization of Witten’s conjecture in genus
zero, this leads to a conjecture for higher-genus open intersection numbers.

The content of [4] also illuminates an intriguing connection between open r-spin theory and
an extension of closed r-spin theory, in which one allows a single marked point with twist —1.
We define this “closed extended r-spin theory” carefully in the companion paper [3] to this
work, and in [4], we make the correspondence between the two theories precise.

1.3. Plan of the paper and the main ideas. The structure of the current paper is as
follows. In Section [2, we define r-spin disks and introduce the notion of a grading, and in
Section [3, we describe the moduli space of graded r-disks, its orbifold structure, and its
orientation. Section [4] contains the definition of the cotangent line bundles L; and the open
Witten bundle W, as well as an investigation of the behavior of these bundles under certain
important morphisms.

In Section 5] we establish the canonical relative orientation of W and analyze its behavior
under the relevant morphisms. This section is the main technical contribution of this paper,
and in particular, it is where the importance of the grading is manifested; without the grad-
ing, as we discuss in Remark [2.8] the Witten bundle may not be canonically oriented relative
to the moduli space. However, equipped with the grading, for any collection of internal twists
and a specific number of boundary twists, we are able to produce in Construction an
explicit basis for the fiber of the Witten bundle. The canonical relative orientation of the
Witten bundle for any collection of twists arises from there by analyzing the behavior of this
basis under degenerations of the underlying surface.
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by a research grant from the Center for New Scientists of Weizmann Institute, by Dr. Max
Rossler, the Walter Haefner Foundation, and the ETH Ziirich Foundation, and by the ISF
(grant No. 335/19).

2. GRADED 7-SPIN DISKS

We denote by [n] the set {1,2,...,n} and by N the set of natural numbers Z>;. Through-
out what follows, a marking of a set A is a function

m:A— 2N

such that, for all distinct a,a’ € A, we have m(a) Nm(a’) = 0. A marking is strict if () is not
in its image.
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Given a marking, we identify elements of A\ m™(0)) with their images in 2V, and if the
image is a singleton, we identify it with an element of N. Such functions are used in what
follows to label the marked points on a curve; the possibility of marking some points by () or
with a set is desired to handle marked points that arise via normalization of a nodal curve.

2.1. Smooth r-spin surfaces. Recall that an orbifold Riemann surface is a smooth, proper,
possibly disconnected, one-dimensional Deligne-Mumford stack over C. We sometimes refer
to such a surface as closed, to distinguish it from the Riemann surfaces considered below
that may have boundary.

A (smooth) marked orbifold Riemann surface with boundary is a tuple

(Ca (ba E? {Z’i}’iela {xj}jGBv mla mB)a

in which:

(i) C'is a (closed) orbifold Riemann surface;

(ii) ¢ : C' — C is an anti-holomorphic involution (conjugation) that realizes the coarse un-
derlying Riemann surface |C/| topologically as two Riemann surfaces ¥ and ¥ (where ¥
is obtained from Y by reversing the complex structure) glued along their common
boundary 9% = 9% = Fix(|4|):

|C’ = X Uys i;

(iii) z; € C is a collection of distinct points (the internal marked points) labeled by the
set I, whose images in |C| lie in ¥\ 0%, with conjugate marked points z; := ¢(2;);

(iv) z; € Fix(¢) is a collection of distinct points (the boundary marked points) labeled by
the set B, whose images in |C| lie in 0%;

(v) the only nontrivial isotropy of C' occurs at the (internal, conjugate, and boundary)
marked points;

(vi) m?: I — 2N and m® : B — 2N are maps such that, for any connected component C’ of
C with marked points labeled by I’ C I and B’ C B, the restrictions m!|p and m?|p
are markings, and whenever C' N ¢(C”) # (), the marking m! |y is strict.

A marked orbifold Riemann surface C' is stable if each genus-zero connected component
has at least three marked points (including conjugate marked points) and each genus-one
connected component has at least one marked point.

We observe that the choice of a preferred half ¥ C |C|, which is a part of the data of an
orbifold Riemann surface with boundary, endows 9% with a canonical orientation. In what
follows, we typically suppress ¢ from the notation and write T for ¢(x) when z lies in X.

An isomorphism of marked orbifold Riemann surfaces with boundary

(Cla¢1a X, {Zl,z‘}z‘eb {xl,j}jeBam{ 7771?1) = (02, P2, g, {22,1'}1'6[2, {$2,j}j632am£ 7m2BQ)
consists of an isomorphism s : C; — C5 and bijections f! : I, — I, f®: B, — B, such that
() SO¢1 :¢2087
(i) s(31) = 2o,
(iii) s (zlj) 22 sB(;) for all j € By and s(w1;) = 9 y1(;) for all i € I,
(iv) mit = mi2 o fI and mP =mb2 o fB.
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Let C' be a marked orbifold Riemann surface with boundary in which every marked point
has isotropy group Z/rZ. We denote

(2.1) We,log = P W|C|log = WC (Z[Zz] + Z[Z_J + Z[:L‘ﬂ) )

iel iel JjEB

where p : C'— |C| is the morphism to the coarse underlying Riemann surface and [z;], [Zi],
and [z;] denote the degree-1/r orbifold divisors of the marked points. An r-spin structure
on (' is an orbifold line bundle L together with an isomorphism

(2.2) T L¥ 2 woieg

and an anti-holomorphic involution 5 : L — L lifting ¢ such that $®’" agrees under 7 with
the involution on we e induced by ¢. We denote by mult,(L) the multiplicity of L at a
point p, which is defined as the integer m € {0,1,...,7 — 1} such that the local structure of
the total space of L near p is [C?*/(Z/rZ)] with the action

¢ (z,0) = (G, ("v)

by the canonical generator ( of the isotropy group.
Associated to an r-spin structure L on C', there is a unique twisted r-spin structure S
on C, defined as the complex line bundle

(2.3) S =Lx0O| - Z r(z;] — Z riz] — Z 7[z;]

i | mult,, (L)=0 i | multz, (L)=0 7l multy ; (L)=0
This bundle satisfies
(2.4)
ST wepe®O0 | = Y rlal- > rE— > )],
i | mult,, (L)=0 i | multz, (L)=0 Jl multy ; (L)=0

in which, on the right-hand side, [z;], [Z;], and [z;] now denote the corresponding divisors
on |C|. It follows that the coarse underlying bundle |S| := p,.S satisfies

(2.5) 1SI%" = wio ® O (‘ D ailz =) ailzm) - Z@'[%’])

iel iel JjEB
with a;,b; € {0,1,...,r — 1} defined by the requirement that
a; =mult,, (L) =1 modr, b =mult, (L) -1 modr.

We refer to the numbers a; and b; as internal and boundary twists. In fact, pushforward un-
der p defines an equivalence of categories between bundles S satisfying and bundles |S|
satisfying for some choice of a; and b;; hence, in particular, the data of |S| and its
twists is equivalent to the data of an r-spin structure on C. See the appendix of [I0] for a
more detailed discussion of this equivalence.

Let

(2.6) J=5"® we,
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which inherits an involution that we also denote by (Z Using the fact that

wo = p'wio) ® O (Z(T =Dzl + ) (= DE+ Y (r - 1)[%]) )

iel el JjEB

which follows directly from ([2.1]), one shows easily that

J=p" (|S|V ® wc> ® O (Z mult,, (J)[z] + ZmultZ(J)[z_i] + Zmultxj(J) [m]]) )

iel iel jeB
and hence
(2.7) 7] =1S]" @ wicy.-

In particular, since |J| is a bundle on a non-orbifold curve and hence has integral degree,
the following observation is immediate.

Observation 2.1. The twists a;, b; for a twisted r-spin structure on a smooth marked orbifold
Riemann surface with boundary satisfy the following congruence condition:

6::22ai+zbj+(9—1)(7“—2) c7

(2.8)

?

where g is the genus of C. (In case C' is disconnected, we define g =) . g(C;) — I + 1, where
C4,...,C are the connected components of C'.)

All the above also works in the more familiar setting of closed marked orbifold Riemann
surfaces (C, {z;}icr,m!). However, in this case, it is important in what follows to allow
the possibility of limited —1 twists; see Observation 4.1 Thus, we define a closed twisted
r-spin structure as a closed marked orbifold Riemann surface equipped with an orbifold line

bundle S satisfying
SO o p* <wc|710g ® O (— Z T[Zl])> ,
i€lp

where Iy C [ is a subset of the marked points such that mult,,(S) = 0 for all ¢ € [ and each
connected component of C' contains at most one marked such point z; with i ¢ . In this

case, one has

el
with a; € {—1,0,...,7 — 1} and a; = —1 for at most one marked point z; in each connected
component of C'. Analogously to Observation [2.1 we have the following.

Observation 2.2. The twists a; for a closed twisted r-spin structure satisfy

An isomorphism of r-spin structures consists of an isomorphism of marked orbifold Rie-
mann surfaces with boundary, as defined above, together with an isomorphism s : s*Ly = [4
of the spin bundles such that:

(i) 3 commutes with the involutions, i.e. S0 ¢, = ¢ 0 5;
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(ii) the diagram

* ®r 1 *
§*Ly" —— 5" wey log

o] 72 |

Xr
Ly > W0 log

commutes, where the right-hand vertical arrow is induced by s.

Similarly, an isomorphism of twisted r-spin structures is an isomorphism s : s*S; = 57,
satisfying the analogues of (i) and (ii).

2.2. Gradings on smooth r-spin disks. From here forward, we restrict to Riemann sur-
faces with boundary in which each connected component has genus zero, which we refer to
as disks. The definitions extend to higher genus, as well, but they are not needed for the
current work. We denote by (C, ¢, %, {2 bier, {z;}je, m!,m?P) a smooth marked orbifold
disk. Note that we allow the case 09X = (), and that if a smooth marked orbifold disk is
connected (meaning that C' is connected), then 9% # ().

Let A C 0¥\ {z,};ep be an open subset (where we identify the boundary marked points
with their images in |C]), and let s € T'(A,wic))? be a section fixed under the fiberwise
involution on wic(|a induced by ¢. We call s positive if, for any p € A and any tangent
vector v € T,(0Y) in the direction of orientation, we have (s(p),v) > 0. A similar notion of
positivity applies to ¢-fixed sections of any tensor power of wjc| over A.

Definition 2.3. Given a twisted r-spin structure S, a lifting of S over A is a continuous,
¢-invariant section

ver (A, ys@
such that the image of v®" under the map on sections induced by the injection
(2.10) 1SI¥" = wiey

is positive. A lifting of J over A is a g—invariant section
weTl (A, |J|<5)

for which there exists a lifting v of S over A with (w,v) € I'(A,wy) positive on A,
where (—,—) is induced by the natural pairing between |S|¥ and [S|. We consider two
liftings v and v" (of either S or J) equivalent if v = cv’ for a continuous function ¢ : A — RT.
We write [v] for the equivalence class of v.

Observe that a twisted r-spin structure admits a lifting of S over A precisely if it admits
a lifting of J over A. Moreover, there is a bijection between equivalence classes of liftings of
S and of J, in which [v] corresponds to [w] if (w,v) is everywhere positive for all represen-
tatives v and w of [v] and [w]. If a twisted r-spin structure admits a lifting (of either S or
J) over all of 0¥\ {z;},ep, we call it compatible.

We now define the notion of a lifting “alternating” at a boundary marked point.

Definition 2.4. Let w be a lifting of J over 0¥ \ {z;};ep. A boundary marked point z; is
said to be illegal if there exists a lifting w’ € [w] that can be continuously extended to x;
without Vanishingﬂ. If x; is not illegal, we say that it is legal and that w alternates at x;.

1One can define legality in the exact same manner for liftings of S, and it is straightforward to see that x;
is legal for the class [w] of liftings of J precisely if it is legal for the corresponding class [v] of liftings of S.
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It is immediate that legality is well defined under equivalence of v. Furthermore, legality
and compatibility are closely related to the twists.

Proposition 2.5. (1) When r is odd, any twisted r-spin structure is compatible, and there
s a unique equivalence class of liftings.

(2) When r is even, the boundary twists b; in a compatible twisted r-spin structure must be
even. Whenever the boundary twists are even, either the r-spin structure is compatible
or it becomes compatible after replacing ¢ by £ o q§ Y for € an rth root of —1, which
yields an isomorphic r-spin structure.

(8) Suppose r is odd and v is a lifting over a punctured neighborhood of a boundary marked
point x;. Then x; is legal if and only if its twist is odd.

(4) Suppose r is even. If a lifting over 0¥ \ {x;};ep alternates precisely at a subset D C
{wj}jGB; then

r

If (2.11) holds, then there ezist exactly two liftings (up to equivalence) that alternate
precisely at D C {x;};ep, one of which is the negative of the other.

(2.11) = |D| mod 2.

Proof. We begin by choosing trivializations

~20Y xR

¢
(2.12) wie
ox

and

= (0¥ \ {z;}jep) xR
X\{z;}jeB

¢
wic| <— Z a;[z;] — Zaz Zi| Zb T, )

i€l iel jeB

such that a section of either of these bundles is positive precisely if its image lies in the
positive ray RT C R in each fiber. Let I; be the connected component of 0¥ \ {z;}en
defined by the property that z; is the left endpoint of the closure of I; with respect to the
orientation of 0¥. Since the rth tensor power of a g—invariant section of |S| is ¢-invariant,
one can see that on each I;, either there is a section v; € I'(1}, |S|$) with v} mapping to 1

under the composition of (2.10)) and (2.12)), or there is a section v; with v§’" mapping to —1.
Now, for the first item, suppose r is odd. Then, by replacing v; with —wv; if necessary, we

ﬁnd for each [ a sectlon v; € I'(4;,|S |¢) such that v7" maps to 1 under the composition

of and (| . Thus, there is always a lifting.
If T is even, then if there is a section v; € I'(1;, |S\¢) with v7" mapping to the constant

section €; = %1, then (—v;)®" maps to (—1)"¢; = ¢;, and there 1s no real section that maps
to —e¢;. We see that when 7 is even, the structure is compatible precisely if €; = 1 for all j.

Suppose the elements of B are enumerated cyclically so that x; follows x;_; in the cyclic
order of j € {1,...,|B|} around the boundary. Choose a local coordinate x on 0% centered
around a boundary marked point z;. Then the map on local sections induced by is
multiplication by the local section z% of O(b;[x;]). The section

¢
z% el | U\ {z;}, wic| (—Zai[zi] — Za’ Zi) Zb x; ) ;

iel iel jeB

r
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defined in a small punctured neighborhood U \ {z;} without any other markings, extends to
all of U as a nowhere-vanishing local section that we denote by s. In addition, there exists a
section v € T'(|S]?|yny,) with v®" mapping to €;s. Since s does not vanish, v can be extended
to all of U without vanishing in such a way that v®” maps to s. Given that 7% changes sign
at x; precisely when b; is odd, we see that

€ = <—1)bj€j_1.
Thus, if each €; equals 1, then all b; must be even. In case all b; are even, it could still be

the case that €; = —1 for each j, but then replacing ¢ by & o ¢ o £~! reverses the notion of
positivity and hence ensures that the spin structure is compatible. The second item follows.

For the third item, by the considerations of the previous two items, for r» odd there is a
unique 7th root

v(z) = x b/,

Its rth power v®" does not change sign after crossing z; (and hence gives rise to a lifting)
precisely if b; is even.

The last item is a consequence of the real zero count for a section of |J|. Using (2.7), we
have

2 ; b +2—2 2 ; b; + 2
dog((J)) = 22Ut L2 2wt RhAE Ly
r r
Viewing the degree as the number of zeroes minus the number of poles of a meromorphic

section, one sees also that

deg(]J|) = deg (]JHBZ) mod 2,

since we may choose a a—invariant meromorphic section, and for such sections non-real zeroes
and poles come in conjugate pairs.

The number of zeroes minus the number of poles of a g—invariant meromorphic section
of |J]| oy, 18 even precisely if the real subbundle [.J|* on 9% is orientable. The orientability

of |J|? — 9%, on the other hand, can be deduced from the number of legal marked points

on 0¥ a section w, as in Definition gives a trivialization of |J|?|ss away from boundary
marked points, and the transition functions between these trivializations are sign-reversing
exactly at the legal marked points. Equation follows. The same considerations also
allow us, assuming holds, to construct a lifting that alternates precisely at the points
of D. The equivalence class of such a lifting is determined by choosing a lifting at any
unmarked boundary points, and there are exactly two such choices. 0

The last paragraph of the above proof also yields the following statement.

Corollary 2.6. The bundle |J|5 on 0% is orientable if and only if the number of legal marked
points on 0% is even.

If S is a compatible twisted spin structure on a smooth marked orbifold disk, then we
define a grading of S as a lifting w for J over 02\ {z; };cp that alternates at every boundary
marked point. We apply the same notion of equivalence as above to the grading w.

Given this, we can now define our main objects of study, in the case where C' is smooth.

Definition 2.7. A graded r-spin structure on a smooth marked orbifold disk is a compatible
twisted spin structure .S in which all boundary twists are r — 2, together with an equivalence
class [w] of gradings.
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Remark 2.8. The key reason for introducing the grading is that it induces a notion of
positivity—that is, a choice of a preferred real ray in Jf at any unmarked boundary point
q. Without this choice, for even r, the Witten bundle may not be orientable relative to the
moduli space. Indeed, the grading cancels the automorphism of the spin bundle obtained by
scaling it fibers by —1. This automrphism lifts to the Witten bundle as scaling by —1 again.
Thus, if the rank of the Witten bundle is odd, this automorphism is orientation reversing,
and in particular the Witten bundle is neither orientable nor relatively orientable. However,
as we will show in Theorem the Witten bundle on the moduli space of graded r-spin
structures indeed admits a canonical relative orientation.

The positivity induced by the grading will also play a crucial role in the sequel, [4], in the
definition of boundary conditions for the open r—spin intersection numbers.

For that definition we also need to restrict to boundary twists of r — 2. In the closed r-spin
cohomological field theory, twists of » — 2 correspond to point constraints, which are those
that couple nontrivially with the unit. In the open setting the role of boundary twist r — 2
appears in the construction of the intersection numbers, specifically in [4, Proposition 3.20].
In that work, we use the combinatorics of Witten bundle ranks that arise from these specific
twists in our construction of canonical boundary conditions for the bundles @ L% @ W.
These boundary conditions are necessary in order to ensure that the Fuler class of such a
bundle has a well-defined integral over a moduli space with boundary.

Remark 2.9. Graded 2-spin structures were first introduced and explored by Solomon and the
third author in [27], in which an equivalent definition of graded structures is also described,
purely in terms of the preferred half-surface ¥ considered as an orbifold Riemann surface
with corners; a similar definition can be given for the graded r-spin case as well. The moduli
space of graded 2-spin surfaces is described in [28], where the authors prove that the higher-
genus open intersection theory of [24] is defined. A combinatorial description of graded
2-spin structures in terms of Kasteleyn orientations of triangulations appears in [29], and it
is used to prove a combinatorial formula for open intersection numbers.

A smooth marked orbifold disk together with a twisted spin structure and a grading
is called a smooth graded r-spin disk. An isomorphism of graded r-spin disks consists of
an isomorphism of twisted spin structures, as defined above, such that the image of the
equivalence class of gradings [w;] on C} under the map on sections induced by s and 5 is the
equivalence class [wy].

If Fix(¢) = 0, the above notion of grading is vacuous, but we require an additional datum.

Definition 2.10. A smooth graded r-spin sphere is a smooth r-spin sphere together with a

choice of a distinguished marking z;, referred to as the anchor, such that

(1) m’(z;) = 0 and 2; is the only marked point marked (;

(2) if there is a marked point with twist —1, then it must be the anchor;

(3) if the twist a; of the anchor is 7 — 1, we have a map 7 : (|S| ® O ([2]))*” }Z, — C defined
as the composition '

(IS1@ O ()", = wie(z))],, = C,

where the second identification is the residue map. In this case, we also fix an involution 5
on the fiber (|S| ® O ([z])),, and require it to satisfy two properties: first,

7 ($(0)*") = =7 (v%")
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for all v € (|S| ® O ([2i])),,, where w + W is the standard conjugation; and second,

{7 lve(sI8 0 (=)} 2Ry,

where i is the root of —1 in the upper half-plane. Finally, we pick a positive direction on
(1S|® O ([z]))?,, meaning a connected component V of (|S| ® O ([z;]))? \ {0} such that
7' (v®") € iR, for any v € V.

Since

7] @ (15| @ O ([21]))., = wiey([21])],.
»;, also denoted by 5, by the

the involution 5 induces a conjugation on the fiber |J
requirement that

(), d(v)) = =(w,v)
under the identification of wic([z])., with C. Similarly, a positive direction is de-

fined on |J |¢ by the requirement that w € |J |¢ is positive if, for any positive v €

(IS|® 0O ([ZZ])) one has
(w,v) € iR,.

An isomorphism of graded r-spin spheres is an isomorphism of r-spin spheres that preserves
the anchor and, in the case where the anchor has twist » — 1, also preserves the involution ¢
and the positive direction.

Remark 2.11. The anchor is an auxiliary tool that is useful when sphere components arise
from normalization. The anchor of a sphere component should be thought of as the half-node
at which the component met a disk component, or met a simple path of sphere components
connecting it to a disk component, or met a contracted boundary node. This situation is
relevant in what follows when the anchor has twist —1 or r — 1.

An anchor of twist —1 appears when there is an internal Ramond node. In this case, as we
shall see below, the Witten bundle does not decompose as a direct sum. Still, by choosing a
preferred half-edge (the anchor) we can obtain a slightly weaker decomposition, Proposition
[4.7] that will be crucial for the inductive construction of the intersection theory in the sequel.
An anchor of twist » — 1, on the other hand, appears when a graded r-spin disk without
boundary markings degenerates to a sphere, with the boundary contracting to a point. In
this case, the global parity constraint induced by the grading determines the twist of the
contracted boundary node to be r — 1, and the residue map described above is the limiting
notion of grading under this degeneration.

We observe the following parity constraint, which follows from Observation [2.1| when 7 is
odd and from item [4 of Proposition when r is even.

Observation 2.12. For any graded spin disk, we have
(2.13) e=|B|—1 mod 2,
where e is defined by equation (2.8)) with ¢ = 0 and b; = r — 2 for all j.

In both the closed (sphere) theory and the open (disk) theory, one has an existence and a
uniqueness result.
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Proposition 2.13. If (C,{z1,...,z}) is a marked sphere and a4, ...,a; € {—1,0,...,r—1}
are twists satisfying (2.9)) such that at most one a; equals —1, then there exists a unique
twisted r-spin structure on C' with twists aq,...,a;. The only automorphisms are given by
scaling S fiberwise by an rth root of unity. For any choice of z;, there exists a unique graded
r-spin structure on (C,S) with anchor z;, and it has no automorphisms if the anchor has
twist r — 1.

Suppose (C, 0, %, {z1,...,zi},{x1,...,2x}) is a connected marked disk and ay,...,a; €
{0,1,...,r =1}, by,..., b € {0,1,...,7 — 2} are such that (2.8)) holds. If r is even, let
D C [k] be an arbitrary set for which holds, and if r is odd, let D := {i € [k] | 21 bg}.
Then C' admits a unique r-spin structure with a lifting such that the internal twists are
given by the integers a;, the boundary twists are given by the integers bj, and D is the set of
legal boundary marked points. The r-spin structure has no automorphisms that preserve the
lifting.

In particular, when all b; are equal to r — 2 and and hold, there exists a
unique graded r-spin structure on this disk with internal tuists given by the integers a;, and
this graded structure has no automorphisms.

Proof. The first part is well known; see, for example, the appendix of [10]. The statement
regarding the grading in the closed setting is clear, except for the automorphism claim in
case the anchor has twist » — 1. In this case, when r is odd, scaling by a root of unity is not
compatible with the involution ¢ in the fiber of the anchor. When r is even, scaling by —1
is compatible with the involution but not with the choice of positive direction.

Now, fix a connected marked disk and twists aq,...,q; such that (2.8) and hold.
Note that the integrality requirement for the closed case (Observation is satisfied on the
closed marked Riemann surface

(Ci{z1y oy 21,21, 21, X1, - TR ),

so there exists a twisted r-spin structure S on C.
To define a twisted r-spin structure in the sense of surfaces with boundary, we must
produce an involution

¢S] =15
lifting the involution |¢| on |C|. In order to do so, choose a boundary point p € 0% \
{x1,..., 2}, and choose a vector v € |S|, such that the image of v*" in w¢y|,, under the

injection ([2.10)), is positive. For any other point ¢ € ¥ that is not a marked point, and any
u € |S],, we define ¢(q, u) = (¢(q), p(u)) as follows. Let 7 be a path in the total space of

‘S| ‘ E\{ziticpAzitiem

with 7(0) = (p,v) and F(1) = (q,u), and let v be the image of 7" image in the to-

tal space of the bundle w|c\|2\{zi}ie[z],{mg‘}je[k]. There is a unique path in the total space of

|S] ’¢(E)§;{2¢}ie[z]7{x1}je[k]’ denoted by ¢(7) and starting at (p,v), whose rth power maps to ¢(7).

Define ¢(q,u) to be its endpoint.

It is easy to see that the above definition is independent of choices, and the conjugation
extends uniquely, up to isomorphism, to the marked points. So far, we have defined a twisted
r-spin structure on the marked disk, and what remains is to define the grading. For this,
one can take as the lifting any smooth section v of |S ‘d)‘az\{xj}je[k] that alternates at each
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FIGURE 1. The closed curve |C|, with the open disk ¥ shaded.

boundary marking; such a section exists because the parity constraint is satisfied. The
lifting determines a grading w.

The absence of automorphisms, when r is odd, is due to the involution: fiberwise multi-
plication by an rth root of unity does not commute with ¢, so it is not an automorphism.
When r is even, multiplication by —1 does commute with the involution, but it does not
preserve the grading w, so it is again not an automorphism of the graded structure. 0

2.3. Stable graded r-spin disks. Thus far, we have considered only graded r-spin struc-
tures on smooth curves. In order to compactify the moduli space of such objects, however,
we also need to allow the curves C' to be nodal.

A nodal marked orbifold Riemann surface with boundary is a tuple

(Cv (ba 27 {Z’i}’iela {xj}jGBa mla mB)7

defined exactly as in Section [2.1] except that C' is a nodal, possibly disconnected, orbifold
Riemann surface (curve) as in [I], and Fix(|¢|) is locally homeomorphic near every point
either to an open subset of R, to the union of the coordinate axes

{zy =0} CR?,

or to a single point. We recall from [I] that C' is only allowed to have a nontrivial isotropy at
marked points and nodes, each of which has isotropy group Z/rZ, and all nodes are required
to be balanced in the sense that, in the local picture {zy = 0} C C? at the node, the action
of the distinguished generator ( of the isotropy group is given by

(z,y) — (Cz, ().

The nodes in a Riemann surface with boundary can be divided into three types:

(1) Internal nodes, which are nodes in the interior ¥ (together with a conjugate node in X);
(2) Boundary nodes, which are nodes in 93, around which 0% is locally homeomorphic to
the union of the coordinate axes

{zy =0} CR%
(3) Contracted boundary nodes, which are nodes arising in the limiting case where one
component of Fix(|¢|) is a single point.

The three types of nodes are illustrated in Figure [1]
A nodal Riemann surface is stable if every connected component of its normalization is
stable.
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An r-spin structure on a nodal marked orbifold Riemann surface with boundary is defined,
exactly as in the smooth case, as a complex line bundle L on C with an isomorphism 7 as
in 7 together with an involution ¢ : L — L lifting ¢ that is compatible with 7. There is
an associated twisted r-spin structure S, defined by

(2.14) S=Leo = rl-> rE- > ).

i€l i€lp 7l multe (L)=0

where Iy C I is a subset of the marked points such that mult, (L) = 0 for all i € I, and
such that the connected components of C' not meeting the ¢-fixed locus contain at most one
multiplicity-zero marked point z; with ¢ ¢ I, whereas the connected components meeting
the ¢-fixed locus do not contain any multiplicity-zero z; with i ¢ I;. The bundle S satisfies

(2.15) SO = p" | wiclig @ O | — ZT’[Zz] - ZT[Z] - Z rla;] ,

i€l i€l J | multe, (L)=0
and we again define J = SV ® we, as in (2.6).

Remark 2.14. Closed orbifold Riemann surfaces have additional “ghost” automorphisms in
the presence of nodes, which play a role in our calculation of the automorphism groups of
stable graded r-spin disks below. Specifically, in the local picture of a node as {zy = 0} C C?,
there is one ghost automorphism of the form

(2.16) (z,y) = (§x,y)

for each rth root of unity £. These act trivially on the coarse underlying curve |C|, but they
act nontrivially on the orbifold C' and induce a nontrivial action on orbifold line bundles.
Indeed, let ¢ be a node of C' with branches p and p’ (given locally by y = 0 and = 0,
respectively), and let m be the multiplicity of S at p (where multiplicity at a branch of
a node is defined analogously to multiplicity at a marked point). Then, if g is a ghost
automorphism given by , the lift g : ¢*S = S multiplies the fiber over p by {™, or in
other words, changes the gluing of the fibers of S over p and p’ by a factor of £™; see [§|,
Proposition 2.5.3].

From here on, we restrict again to the case where each connected component has genus
zero. Let n: C — C be the normalization morphism. Then n*L — Cis an r- spin structure,
but n*S is not a twisted spin structure, in general, since it may not satisfy the requisite
conditions on the subset I. Still, there is a canonical way to associate to S a twisted spin

structure on C , by setting

(2.17) S:=n'S®0 (-Z@]).

qeER

Here, [ | is the degree-1/r orbifold divisor of a point ¢, and R is the subset of the half-nodes
geC (thought of as marked points of C) with mult,(n*S) = 0 that satisfy one of the
following:

(1) n(q) is a boundary node;

(2) n(q) is a contracted boundary node;
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(3) n(q) is an internal node of C' that belongs to a connected component not containing any
marked point of twist —1 and not meeting the ¢-fixed locus;

(4) n(q) is an internal node of C' that belongs to a connected component containing a marked
point of twist —1, and if one normalizes C only at n(g), then the half-node corresponding
to ¢ is in the same connected component as the marked point of twist —1;

(5) n(q) is an internal node of C' that belongs to a connected component meeting the ¢-fixed
locus, and if one normalizes C' only at n(q), then the half-node corresponding to ¢ is in
the connected component meeting the ¢-fixed locus.

Thus, for each irreducible component C; of C, if {2 }ies,, {Zi }ie1,, and {z;},ep, are the marked
points lying in C; and {p }ren, are the branches of nodes in Cj, we have the equation

~ r
(2.18) (|SH|CZ|) = wie ® 0 <— D ailz) =D i@ =Y bl - Y Ch[Ph]>
iel, iel, jeB hen,
with
aj,cp, € {—1,0,....,r =1}, b;€{0,...,r—1}.

The numbers a;, b;, and ¢, are the twists of the corresponding internal marked points, bound-
ary marked points, and half-nodes.
Note that if p and p’ are the two branches of a node, then we have

¢p+cy =r—2 modr.

If ¢, = —1 mod r (and hence ¢y, = —1 mod r, as well), we say that the node is Ramond.
Otherwise, we have ¢, + ¢, = 7 — 2, and we say that the node is Neveu-Schwarz.

Aslong as C' does not have a contracted boundary node, the notion of lifting can be defined
as before, as a continuous, ¢-invariant section of |S| on (an open subset of) the complement
of the special points in 0% whose rth power is positive, and we say that a twisted r-spin
structure is compatible if it admits a lifting over the entire complement A of the special points
in 0X. Two liftings v and v" are equivalent if there is a continuous function ¢ : A — R* such
that v = cv’. We similarly define liftings and equivalence for J, and the same correspondence
between equivalence classes of liftings for S and J holds. If w is a lifting of J over A, then
it induces a lifting of

j =wa ® § v

over the complement of the special points in the boundary 9% of the normalization. We say
that w alternates at a marked point or half-node ¢, and that q is legal, if the induced lifting
on J alternates at q. Otherwise, the lifting does not alternate, and the point is said to be
illegal. A lifting w of J over A that alternates at all boundary marked points is a grading if,
in addition, one of the two half-nodes of every Neveu-Schwarz boundary node is legal and
the other is illegal.

Observation 2.15. In a compatible r-spin structure for even r, all boundary half-nodes have
twists of even parity, by item [2[ of Proposition In particular, in this case there are no
Ramond boundary nodes, since the twist of such a node is odd. When 7 is odd, Ramond
boundary nodes may exist, but both of their half-nodes are necessary illegal. Indeed, since
the twist of a Ramond boundary half-node is » — 1 (by the definition of S and the twists
in and ), which is even, the illegality of Ramond boundary half-nodes follows
from item [3| of Proposition [2.5]
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If C has a contracted boundary node, on the other hand, then in any connected component
with such a node, the complement of the special points in 0% is empty, so we must adapt
the definition of a lifting. Given that each connected component of C' has genus zero, there
can only be one contracted boundary node in each connected component. Restrict to one
such component, and let ¢ be the contracted boundary node. Assume, additionally, that g is
Ramond. Recall that the fiber wi¢ !q is canonically identified with C via the residue, and the
involution ¢ is sent, under this identification, to the involution z — —Z, whose fixed points
are the purely imaginary number. We define a lifting as a ¢-invariant element

veT({g} 1SN =15l],

such that the image of v®" under the map
&r
(8177, = wiel,

is positive imaginary, meaning that it lies in R, . In this case, we call the twisted r-spin
structure compatible if the contracted boundary node is Ramond and a lifting exists. Two
liftings are equivalent if, at the contracted boundary node, they differ by multiplication by
a positive number. There always exists a ¢-invariant w € |J Hq such that (v, w) is positive
imaginary, and we refer to this w as a grading; this is the limiting case of the notion of
grading for smooth curves.

With or without a contracted boundary node, we now have the following definition:

Definition 2.16. A stable genus-zero graded r-spin surface is a nodal marked orbifold Rie-
mann surface with boundary whose coarse underlying surface (|C|, {2;},{Z}, {z;}) is a stable
Riemann surface in which each connected component has genus zero, together with:

(1) a compatible twisted r-spin structure S in which all boundary marked points have twist
r — 2 and all contracted boundary nodes are Ramond;

(2) an equivalence class of gradings;

(3) a choice of one distinguished special point (called the anchor and marked (}) in each
connected component C” of C' that is either disjoint from the set Fix(¢) or meets the
set Fix(¢) in a single contracted boundary node. If either a contracted boundary node
or marked point of twist —1 exists, we require the anchor to be this point; if not, the
anchor is simply required to be a marked point. We also require that the collection of
anchors is ¢-invariant, so that it descends to X. Finally, if the twist of an anchor z;
is r — 1, we fix an involution ¢ on the fiber (|S| ® O ([z;])), and an orientation of the

g-ﬁxed subspace, as in Definition m

The internal and boundary marked points are required to satisfy the same properties as in
the smooth case, and in particular, an anchor, if it is a marked point, is the only marked
point in its connected component that is marked ().

We conclude this subsection with an existence and uniqueness result analogous to Propo-
sition [2.13] Here, we refer to irreducible components of C' that do not meet the preimage
of Fix(|¢|), or that meet the preimage of Fix(|¢|) in a single contracted boundary node, as
sphere components, and we refer to the other irreducible components as disk components.

2The residue of a conjugation-invariant form ¢ can be calculated as ﬁ fL ¢, where L C ¥ is a small
loop surrounding ¢ whose orientation is such that ¢ is to the left of L. Applying conjugation and using the
invariance of ¢ shows that the residue is imaginary.
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Proposition 2.17. Suppose that (C,¢, %, {z1,...,z1},{x1,...,2x}) is a connected stable
marked disk and ay, .. .,a; € {0,1,...,7—1} are such that and hold with |B| = k
and b; = r—2 for all j. Then there exists a unique graded r-spin structure on this stable disk
with internal twists given by the integers a;.

The order of the automorphism group of the graded r-spin structure is r™ where 2n is the
number of internal nodes of C.

Proof. The proof of the existence and uniqueness of the graded structure closely mirrors the
proof of Proposition [2.13] In particular, there exists a unique twisted r-spin structure on the
closed genus-zero surface C' with the given twists at all internal, conjugate, and boundary
marked points, so what remains is to produce the involution ¢ : S — S and the sections v
and w. _

First, suppose that there is no contracted boundary node. Then the involution ¢ can
be defined component-by-component. Namely, starting from some boundary point p, we
first construct the involution on a single component using the argument of Proposition [2.13]
At each node, there is an identification of the fibers of S on the two half-nodes, so when
we encounter a boundary half-node, the involution on one side induces the involution on
the other side, and we use the other half-node as the basepoint for the construction of the
involution in its component. An analogous treatment works for conjugate internal nodes.
The resulting involution is unique up to an isomorphism.

The lifting v and the grading w can be defined componentwise, uniquely up to isomorphism
(as we prove below), using either the parity of the twist (in the case where r is odd) or the
parity constraint (in the case where r is even) to determine whether it alternates at
each half-node. Ramond boundary nodes appear only when r is odd, and then there is no
choice in the lifting. For Neveu-Schwarz boundary nodes, there are two choices of lifting
when r is even, but they are equivalent via the isomorphism scaling the fibers of S by —1.

To prove that there is a unique choice of grading satisfying the requisite condition at a
Neveu-Schwarz boundary node ¢, let p and p’ be the two branches with respective twists ¢,
and ¢,;. When r is odd, the fact that w alternates at exactly one branch is immediate from
item |3 of Proposition , since exactly one of ¢, and ¢, is odd. When 7 is even, assume for
simplicity that the nodal Riemann surface C' consists of two sphere components joined at
the node ¢. Then, adding the parity constraints on the two components, one obtains

442> a;+ Y bi+cp+cy
T

=k+ 5;“ + 5;“ mod 2,

where k is the number of boundary marked points, and (5;“ is defined to be 1 if w alternates
at p and 0 otherwise. Combining this with the parity constraint (2.11]) on the entire curve,
one finds
2EOH Y _ gy gt nod 2,

r
so we indeed see that if ¢, + ¢,y = r — 2, then w alternates at exactly one branch.

This completes the proof of the existence of the graded r-spin structure in the case where
there is no contracted boundary node. When there is a contracted boundary node, it must
be Ramond. To see this, apply constraint (2.8]) to see that the internal twists satisfy

(2.19) —2—22%50 mod 7.
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On a single component of C, on the other hand, the degree of the restriction of .S is
—2=>ai—¢
r Y

so we must have

(2.20) —Q—Zai—cpEO mod 7.

Combining and (2.20), we find that 2(c, + 1) = 0 mod r. When r is odd, this is

sufficient to conclude that ¢, =r —1 mod r. When 7 is even, we apply to find
242> a

r

=0 mod 2.

Therefore, we have
1 i
+—z:a cZ
r

Y

so 1+ > a; =0 mod r. Combining this with (2.20)) again shows that ¢, =7 —1 mod r.

When there is a contracted boundary node ¢, the involution ¢ can be defined first in
the fiber of ¢, by choosing a lifting of the conjugation on w10g|q. There are r such choices;

when r is odd, they are all equivalent, while when r is even, there are r/2 equivalent choices
that make the structure compatible, but in either case, we choose one. We then extend the
conjugation to the other components of (' if there are any, component-by-component, using
the argument in the beginning of this proof. Since the contracted boundary node is Ramond,
we can now choose the grading as above. We observe that, again, there is no choice when r
is odd and there are two equivalent choices when r is even.

Finally, we compute the order of the automorphism group. The closed case is known
(see, for example, [I8, Proposition 1.18] or [I1l Section 2.3]): an r-spin structure on a
closed, genus-zero stable curve with N nodes has 7*! automorphisms. Namely, each node
contributes r ghost automorphisms of the curve, which can each be lifted to the spin bundle,
as in Remark [2.14] and each of the resulting automorphisms of the spin structure can be
composed with a global fiberwise scaling by an rth root of unity.

Let us now consider which of these automorphisms respect the graded structure. By
compatibility with the involution, a ghost automorphism at an internal node determines the
ghost automorphism at its conjugate node, but is otherwise unconstrained. Nontrivial ghost
automorphisms at boundary and contracted boundary nodes, on the other hand, cannot
respect both the conjugation and the graded structure. Indeed, at a boundary node,
may constitute an automorphism only if £ is real. For odd r, this implies that £ = 1.
When r is even, £ = —1 is also a possibility; however, in this case, by Remark [2.14] this
ghost automorphism acts on the spin bundle by changing the gluing of the fibers at the node
by a factor of £, in which m is the multiplicity at one half-node. By Observation [2.15] the
twists at the half-nodes are even, so m is odd. It follows that £™ = (—1)" = —1, and hence
the ghost automorphism does not respect the grading. At a contracted boundary node, we
consider the automorphisms in local coordinates, in which they have the form

(z,y) = (§x,Cy),

where  and ¢ are rth roots of unity. Such an automorphism is compatible with the con-
jugation, which locally has the form (z,y) — (7,Z), only if ( = £ = ¢!, But in this case,
given the orbifold structure at the node, it is the identity automorphism.
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It follows, then, that there are " contributing ghost automorphisms, where 2n is the
number of internal nodes. Since we have already argued in Proposition that the fiber-
wise scalings on disk components do not respect the graded structure, there are no further
automorphisms. 0

3. MODULI SPACE OF GRADED 7-SPIN DISKS

Henceforth, we usually denote an r-spin disk with a lifting simply by >, the preferred half,
suppressing most of the notation.

3.1. Stable graded r-spin graphs. It is useful to encode some of the combinatorial data
of graded r-spin disks in a decorated dual graph.

Definition 3.1. A genus-zero pre-stable dual graph is a tuple
I'= (V7 H7 UOquHCva)u
in which
(i) V is a finite set (the vertices) equipped with a decomposition V = VO LV into open
and closed vertices;

(ii) H is a finite set (the half-edges) equipped with a decomposition H = H? U H' into
boundary and internal half-edges;

(iii) oo : H — V is a function, viewed as associating to each half-edge the vertex from which
it emanates;

(iv) ~ is an equivalence relation on H, which decomposes as a pair of equivalence relations
~pgon H? and ~; on H!. The equivalence classes are required to be of size 1 or 2, and
those of size 1 are referred to as tails. We denote by T? C HE and T' C H' the sets
of equivalence classes of size 1 in H? and H, respectively;

(v) HYP is a subset of T!, the contracted boundary tails
(vi) m is a function given by

m=mPum’ TP u(T"\ HP) — 2N,

where m? and m! (the boundary and internal markings) satisfy the definition of a
marking when restricted to any connected component of I', and where m/! is strict on
connected components with an open vertex or a contracted boundary tail.

Note that (V, H, 0g) defines a graph, and that we do not require this graph to be connected;
denote its set of connected components by Conn(I') = {A;}. We require the above data to
satisfy the following conditions:

(1) For each boundary half-edge h € HZ, we have oo(h) € V°;

(2) For each A;, we have h'(A;) = 0;

(3) Each A; contains at most one half-edge in HP, and if A; contains such a half-edge, then
all vertices of A; are closed;

(4) For each A;, the sub-graph formed by its open vertices (if any exist) and their incident
boundary edges is connected.

Conditions (2), (3), and (4) guarantee that for any nodal graded r-spin surface with dual
graph I', each connected component of the closed surface C' has genus zero.
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We refer to elements of T2 as boundary tails and to elements of T\ HEP as internal tails,
and we denote T := T7 LI T®. Note that ~ induces a fixed-point-free involution on H \ T,
which we denote by o;. Write

EP .= (HP\T?)) ~p,  El:=(H'\T/ ~;

and refer to these as boundary edges and internal edges. The set of edges is E := EB L ET.
Denote by of the restriction of oy to H?, and similarly for of.

For each vertex v, set k(v) := |(¢f)7*(v)| and I(v) := |(o)7!(v)|. We say that an open
vertex v € V9 is stable if k(v) + 2[(v) > 2, and we say that a closed vertex v € V¢ is stable
if [(v) > 2. A graph is stable if all of its vertices are stable, and it is closed if VO = (). A
graph is smooth if there are no edges or contracted boundary tails.

Definition 3.2. An isomorphism between two genus-zero pre-stable dual graphs
I'=(V,H,00,~, H® m) and I = (V',H',0),~', H® m')

is a pair f = (fV, f), where fV : V — V' and f¥ : H — H’ are bijections satisfying

(1) hy ~ hg if and only if f(hy) ~ f(hs),

(2) fV o0y =0y0 f1,

(3) m=m'o fH,

(4) F(HOP) = FoP,

We denote by Aut(I') the group of automorphisms of I'.

Pre-stable dual graphs encode the discrete data of a marked orbifold Riemann surface with
boundary. In order to encode the additional data of a twisted spin structure and a lifting,
we must add further decorations.

Definition 3.3. A genus-zero twisted r-spin dual graph with a lifting is a genus-zero pre-
stable dual graph I' as above, together with maps

tw: H—{-1,0,1,...,r -1}
(the twist) and
alt : H? — 7./27
and a subset T* C T (the anchors), satisfying the following conditions:

(i) Any connected component of I' that is not stable consists either of (a) a single open
vertex with a single internal tail, or (b) a single closed vertex with exactly two tails,
one of which is in H“? and the other of which is in H'.

(ii) Every closed connected component contains exactly one tail in 7. All contracted
boundary tails and all tails ¢ with tw(t) = —1 belong to 7. Open connected components
have no tails in 7. Any element of T*\ H? is marked by () and is the only tail marked
by 0 in its connected component.

(iii) For any vertex v, the total number of incident half-edges h with h € T* or tw(h) = —1

Is at most one.

(iv) For any contracted boundary tail t € HB, we have tw(t) =r — 1.

(v) For any open vertex v € V9,

2 Z tw(h) + Z tw(h) =r—2 mod r

he(og) = (v) he(og) ! (v)



OPEN r-SPIN THEORY I: FOUNDATIONS 21

and

2 Zhe(aé)_l(v) tW(h) + Zhe(g(f?)—l(v) tW(h) + 2
T

= alt(h) mod 2.

he(of) =1 (v)

(vi) For any closed vertex v € V',

Z tw(h) =r—2 mod r.

heaal(v)
(vii) For any half-edge h € H \ T', we have
tw(h) + tw(o1(h)) =r—2 mod r,

and at most one of tw(h) and tw(oy(h)) equals —1. No boundary half-edge h satisfies
tw(h) = —1. In case h € H! \ T' satisfies tw(h) = —1 mod r, then tw(h) = r — 1
precisely if, after detaching the edge, h belongs to the connected component containing
an anchor t* € T* (if h is in a closed connected component of ') or an open vertex
v € VO (if h is in an open connected component of T').

(viii) For any boundary half-edge h € HZ \ T? if tw(h) # r — 1 we have

alt(h) + alt(oy(h)) =1,

and if tw(h) = r — 1 then alt(h) = alt(oy(h)) = 0.
(ix) If r is odd, then for any h € H?,

alt(h) = tw(h) mod 2,
and if r is even, then for any h € H®,
tw(h) =0 mod 2.

Boundary half-edges h with alt(h) = 1 are called legal, and those with alt(h) = 0 are
called illegal. Half-edges h with tw(h) € {—1,7 — 1} are called Ramond, and those with
tw(h) € {0,...,r — 2} are called Neveu-Schwarz. An edge is called Ramond if one (hence
both) of its half-edges is Ramond, and Neveu-Schwarz otherwise.

We say that a genus-zero twisted r-spin dual graph with a lifting is stable if the underlying
dual graph is stable, in the sense specified above. An isomorphism between genus-zero twisted
r-spin dual graphs with liftings consists of an isomorphism in the sense of Definition that
respects tw, alt, and T™. Analogously to Definition [2.16] we define a genus-zero graded r-spin
graph to be a genus-zero twisted r-spin dual graph with a lifting such that every boundary
tail h € H® has

tw(h) =r—2, alt(h) =1.

Any stable graded r-spin disk 3 induces a stable genus-zero graded r-spin graph I'(X).
Namely, the correspondence associates an irreducible component of Y to a vertex, a marked
point to a tail, a node to an edge, and a contracted boundary node to a contracted boundary
tail. The twist is represented by tw and the alternation by alt, and the anchors correspond
to elements of 1.
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3.2. Moduli of stable graded r-spin disks. In the situation without boundary, there is

a well-studied moduli space /V;/:b of stable Riemann surfaces with r-spin structure, which
is known to be a smooth Deligne-Mumford stack with projective coarse moduli, for which
the forgetful map to M, is finite (see [§] or, in the setting of a slightly different compacti-

fication, [16]). This moduli space admits a decomposition into open and closed substacks,

——1/r ——1/r
(3.1) Moo= ] M)
(al’ 70‘”)
where a; € {0,1,...,r — 1} for each ¢ and ./\/l denotes the substack of r-spin structures

with twist a; at the zth marked point. In genus zero the situation is even simpler: accordmg
to Proposition [2.13| for any choice of @ such that . holds, the moduli space MO ~ has

coarse moduli isomorphic to MO,n and generic additional isotropy Z/rZ. The isomorphism
of coarse moduli is given by the smooth map Forg, that forgets the spin structure.

When there is no boundary, it is also straightforward to add the information of a grading.
Indeed, the moduli space of graded r-spin spheres for which the anchor does not have twist r—

1 is canonically isomorphic to Mé/;; , whereas the moduli space of graded r-spin spheres With
twist @ and anchor twisted  — 1 is canonically an r-to-1 cover of the moduli space /\/l , on

which o agrees with a@ except that the anchor has twist —1.

To generalize the construction of the moduli space to the open setting, we first note
that in [24] the moduli space ﬂo,k,z of connected stable marked disks with boundary marked
points marked by {1, ..., k} and internal marked points marked by {1, ..., [} was considered.
It is a smooth orientable manifold with corners in the sense of [19], and its dimension is

dimR<M0,kJ) =k + 20 — 3.

Let ﬂé’/,:,l denote the set of isomorphism classes of connected stable graded r-spin disks,
with boundary and internal marked points as above. There is a set-theoretic decomposition

analogous to (3.1)),
1/7’ 1/r
Mo, = |_|M0ka7

in which ./\/lo ka S ﬂé{,;l consists of those disks for which the ith internal marked point

has twist a;. By Proposition [2.17, whenever Mé{,:ﬁ # (), there is a bijection given by the
forgetful map

——1/r -
Forspm MO k,d — MOJC,I?

! : :
and we use these to give /\/l07/ ,:71 the structure of a manifold with corners.

This describes the coarse underlying space of Mé/,:l The main theorem of this section is
that it can also be given an orbifold-with-corners structure in the sense of [22], Section 3.

Theorem 3.4. The moduli space M})’/,j’, of connected stable graded r-spin disks with boundary
marked points marked by {1,...,k} and internal marked points marked by {1,...,1} is a
compact smooth orientable orbifold with corners of real dimension k + 2l — 3. Its universal
bundle admits a universal grading.



OPEN r-SPIN THEORY I: FOUNDATIONS 23

We split the proof of Theorem into three parts. Lemma[3.6|shows that the moduli space
is a compact smooth orbifold with corners, Lemma proves the existence of the universal
grading, and Proposition together with Observation [3.10| proves the orientability.

Remark 3.5. In fact, for all » > 2 the moduli space M;’/,:,l of connected stable graded
genus g marked r-spin surfaces with boundary is a compact smooth orbifold with corners
of real dimension k + 2l + 3¢9 — 3, and its universal bundle admits a universal grading. For
r = 2, this is proven in [28], and the moduli space is moreover shown in [29] to be canonically
oriented. The general r case will be proven elsewhere; in this case, the moduli space may
not be orientable.

Lemma 3.6. Mom has the structure of a compact smooth orbifold with corners.

Proof. We describe a procedure that defines an orbifold-with-corners structure on ./\/lO kil
analogous to the procedure performed in [22 Section 2|. To define the procedure, we make
reference to the following sequence:

1/"" 1/r (4) 1/r ( 1/rZ -—1/rZ2 (1) 5—'1/r
(3.2) Mok 8 Mo/kl O/kl & Mo/kl » 2 My k+22l & Mo -
The moduli spaces and maps appearing in are deﬁned as they appear in what follows.

Step 1: First, MO % +2l is the suborbifold of /\/lo ko1 iven by the condition that the
first k£ markings have twist » — 2 and that the integer defined in is of the same parity

as k + 1. Inside this space, ./\_/l(l],/,:f;l is the fixed locus of the involution defined by

(O; Wi,y 7wk+2l,5) = (C;wl, cooy WEy W41y - -+ W20, WE41, - - - ,wk+z75),

where C' and S are the same as C' and S but with the conjugate complex structure (more
details on the fixed point functor on stacks can be found in [26]). As the fixed locus of an

. L. . ——1/rZ . .
anti-holomorphic involution, /\/l(l)/,: "o has the structure of a real orbifold. It parameterizes
isomorphism types of marked spin spheres with a real structure (an involution ¢ covering

the conjugation ¢ on C') and the prescribed twists, and it maps to M(l)/,: 4o (in general, it is
not a sub-orbifold, since some isotropy is lost), so it inherits a universal curve via pullback.

Remark 3.7. Let us digress to discuss the isotropy of Héf;f;,, especially near nodal strat.

The generic point of ﬂ(l)/,:f;l has isotropy coming from scaling the fibers of the spin bundle by
real rth roots of unity. When r is odd, there are no such roots and hence no generic isotropy,
while when r is even, there is generic Z/27Z isotropy. Nodal strata have additional Z/rZ
isotropy for each internal Neveu—-Schwarz node, coming from the ghost automorphisms.

For boundary nodes, there is a difference in behavior for r odd or even. When r is
odd, boundary nodes also contribute no further isotropy. Furthermore, if U x [—1,1] is a
neighborhood in the moduli space of a curve with a single boundary node, such that U x {0}
is the intersection with the nodal stratum and (u,t) for ¢t # 0 corresponds to a smooth real
sphere, then the passage from ¢ < 0 to ¢ > 0 geometrically corresponds to flipping one of the
two disk components and defining the involution on the spin bundle in the unique possible
way. Thus, in this case, the behavior near the node is exactly like in the real, non-spin

3Without spin structure, the nodal strata of the real moduli space Mo k.1 are discussed in [20} Section 3],

and in the closed case with spin structure, the nodal strata of Méf[ are discussed in [9, Section 4].
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case, and the spin moduli continues to be a trivial degree-one cover of the non-spin moduli
generically. When r is even, on the other hand, boundary nodes contribute additional Z/27Z
isotropy, coming from ghost automorphisms of the form (z,y) — (—x,y); see the discussion
in the proof of Proposition [2.17} On the moduli level, the picture is that a neighborhood
of a nodal curve with a single boundary node looks locally like U x [—1,1]|/(Z/27Z), where
U x {0} is the nodal locus and the generator of Z/27Z takes (u,t) to (u, —t).

Contracted boundary nodes add no additional isotropy, as we saw in the end of the proof
of Proposition . On the moduli level, again let U x [—1,1] be a neighborhood in the
moduli space of a curve with a contracted boundary, such that U x {0} is the intersection
with the nodal stratum and (u, t) for ¢ > 0 corresponds to a smooth real sphere on which the
conjugation has nonempty fixed locus. Then (u,t) for ¢ < 0 corresponds to a real sphere on
which the conjugation has no fixed points, so after taking the quotient by the conjugation,
the result is a marked real projective plane.

Step 2: Returning to our discussion of (3.2)), the next step is to cut ﬂé{,:f;l along the
real simple normal crossings divisor consisting of curves with at least one real node, via the
“real hyperplane blow-up”, as in [22], yielding an orbifold with corners ./\/1(1)/ ,:lZ . We direct
the reader to [22, Section 3.3] for more details, but the idea is the following.

Near the real divisor consisting of curves with a contracted boundary node—or, when r
is odd, near the real divisor consisting of curves with a boundary node (a real node that
is not an isolated fixed point of the conjugation)—the real blow-up is the standard cutting
procedure that can be defined without a spin structure. In the notation of Remark [3.7] the
real blow-up corresponds to the natural quotient map

Ux[-1,0]uUx[0,1] = U x [-1,0]uU x [0,1] =U x [-1,1].

When r is even, the blow-up near the real divisor consisting of curves with a boundary node
is a topologically trivial operation, but nontrivial on the orbifold level. In particular, in
local charts, the real blow-up, when r is even, is equivalent to blowing up before taking the
extra Z/27 quotient mentioned in Remark and then taking the quotient, so it kills the
additional Z/27Z isotropy on nodal strata. In other words, the blow-up is locally the map

(U x [~1,0]UU x [0,1]) /(Z/2Z) — (U x [-1,0]0U x [0, 1))/(Z/2Z) = U x [~1,1]/(Z,/27),

where the generator of Z/2Z takes (u,t) € U x [-1,0] U U x [0, 1] to (u, —t).

Step 3: Consider the subset of M(l)/ ,:lZ > whose generic point is a smooth marked real spin

—

sphere with nonempty real locus. Then /\/l(l)/ 1:,1 is the disconnected 2-to-1 cover of this subset

given by the choice of a distinguished connected disk component of C'\ C?. Equivalently,
in the generic (smooth) situation, we first restrict to the connected components of ./\/l(l)/ ,:lZ ?
consisting of real spheres on which the conjugation has nonempty fixed locus, and then we

choose an orientation for C?. It is important to note, however, that this choice can be

—

uniquely continuously extended to points in the boundary of /\/l(l)/ 1:,1-

Step 4: Inside /\/l(l]/ ,:}l, we denote by M\(l]/ ,:J the union of connected components such that
the marked points w1, . .., wgsy lie in the distinguished stable disk and, for even r, the spin
structure is compatible.

Step 5: Finally, M(l)/,:l is the cover of M\é/ ., given by a choice of grading. When r is
odd, this is the identity, while when r is even,’ it is a 2-to-1 cover given by forgetting the
global Z /27 isotropy.
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As a topological space, M(l)/sz is indeed the same space defined previously, but now it has

the additional structure of an orbifold with corners. The proof that ./\/lO r, is an orbifold
with corners is identical to the proof of the analogous Theorem 2 in [22]. The space Mé{;l

then inherits the orbifold-with-corners structure from M\é/ .- It is moreover compact since
compactness is preserved at every step. [l

Vi . . . S
Over MO,/I:,lv there is a universal curve whose fibers are compatible stable spin disks. The
content of Lemma below is that one may construct a graded structure, in a continuous
way, on the fibers.

Lemma 3.8. One can continuously choose a grading for the fibers of the universal curve
of ./\/lé/,:l. This choice is unique when r is odd, while for even r it is unique up to a global
change of grading in each connected component of the moduli space.

Proof. We first prove the lemma for the universal curve over

1/r _%
Int(MO k, l) 0,k,{a1...,a;} \ a'/\/lO kfar...,a;}"

The statement is clear when r is odd, and its uniqueness up to a possible global change of
grading in each component is immediate when r is even, given the existence. We hence prove
the existence for even r.

The fact that this choice can be made locally in a continuous way is straightforward. The

obstruction to making such a choice global in Int(/\/lé’/ ,:l) is the possible existence of a loop

v 0N — Int(mg,k,{al...7az})’

where A is the closed unit disk, along which a continuous choice of grading alternates.
Since the strata corresponding to disks with an internal “bubble” are of codimension
two, it may be assumed that v(0A) C /\/lé/,za We first show that v may be extended
toy : A — /\_/l(l)/;:[; by verifying that m (Moy,) is trivial. This is true when [ = 0, as
every connected component of Mg is the contractible associahedron. By considering the
forgetful map MOk; 1 /\/lo k0, whose fiber is contractible, it is easy to see that /\/lo k1 1S
also contractible. For [ > 1, it is enough to consider an arbitrary v : 9A — Mg, and to

show that it can be extended to the disk. By working in the unit disk model where z; is
mapped to the origin and z; to 1, one may write v(6) as

(1, 22(0),...,2,(0),0,22(0), ..., z(0)).

An extension 4 may be written as

g e ey

;Y(T’ 9) — (1’erlog:p2(9)+(lfr)%7 erlogx3(9)+(17r)%
erlogay(0)+(1— r) 2= Limi .0, = 2(6), Tl_223(9), L ra(0),
where we define the logarithm by excluding the positive real ray.

As Ais contractible, standard homotopy arguments now show that we can uniquely extend
the grading from an arbitrary grading at (1) to a grading for all points of §(A). Restricting
to A, the grading defines a grading for the points of v. Thus, the grading does not alternate
along v, and therefore it can be defined globally.
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Given a grading for the fibers of the universal curve over the interior of the moduli space,
we extend it to fibers over the boundary by continuity. If 3, is a family of smooth graded r-
spin surfaces converging to Xy, then the gradings of 32; determine, by continuity, a compatible
lifting on Yy away from special points. An argument as in Proposition shows that this
lifting is in fact a grading, and it is independent of the family ;.

Suppose ¥ € 8M(1)7/,:7l has a contracted boundary node, which in particular forces that
k = 0. Using the same argument as in Proposition for the contracted boundary case,
we observe that the contracted boundary node must be Ramond. The limit of the grading in
the smooth case, at the boundary stratum consisting of surfaces with a contracted boundary
node, is precisely a grading in the sense of contracted boundary nodes defined above. 0J

Remark 3.9. It is interesting to note that even for nodal spin disks with Neveu-Schwarz
nodes, the choice of grading cannot be performed independently for different components, if
it is required to be continuous. It is the real blow-up stage in the construction of the orbifold
with corners that fixes this choice, up to a global change of grading in each connected
component of the moduli space.

The above results can be carried out in greater generality. First, if the images of the

markings are any sets B and I, one can clearly define the space Mé/; ; in the same way
as above. Furthermore, associated to each connected stable genus-zero twisted graded r-
spin dual graph I', there is a closed suborbifold with corners Mi " C Méf;ﬁ ; whose general

point is a graded r-spin disk with dual graph I'. We also allow for the possibility that I’
is disconnected, in which case /V;/T is defined as the product of the moduli spaces ﬂ;/r

associated to its connected components. Inside ﬂ;/r, we define M 111/ " as the open suborbifold
consisting of graded r-spin disks whose dual graph is precisely I'.

There are forgetful maps between the moduli spaces, but we note that marked points
can only be forgotten if their twist is zero (otherwise (2.5)) is not preserved), and boundary
marked points can only be forgotten if they are in addition illegal (otherwise the grading
does not descend to the moduli space with fewer marked points). We define
(33) FOI'B/J/ . Mll-\/r — Mll—\{r
for B', I' C Z by forgetting all twist-zero internal marked points marked by I’ and all twist-
zero illegal boundary marked points marked by B’. This process may create unstable com-
ponents; we repeatedly contract them. If the process ends with some unstable components,
we remove them. We denote by forg (I') the graph I resulting from this procedure.

1
3.3. Orientation of M, (01} In the following section, we describe a natural orientation
_1
on the spaces Mg, (. ., thereby completing the proof of Theorem The ideas presented
here are not new; in particular, they are similar to those presented in [24] Section 2.5] and are
closely related to the earlier discussion in [I5, Section 2.1.2]. First, we reduce the question
of orientability to a simpler setting.

1
Observation 3.10. We claim that the moduli space M), (a1ar} is orientable exactly if M
1

is orientable, and that an orientation on ﬂo,k,l induces one on ﬂg k{arar} by pullback under
the map

L. T
FOrspln . MO,k,{al...,al} — MOJ@[
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that forgets the graded spin structure.

1
To see this, note that the map Forg;, : Ok far ) My, on the open moduli

spaces is a diffeomorphism on the coarse underlying level, which means that the open lo-
1

cus Mg, (a1} is indeed orientable precisely if Mgy is orientable. To pass from the
1 -
open locus to the full moduli space, one can construct M, (o101} (respectively, Mg ,)

1
from ./\/lg’k’ {arat) (respectively, M) in two stages. First, add loci parameterizing disks
without boundary nodes or contracted boundary components; such loci are of real codimen-
sion two and hence do not affect orientability. Then, add the boundary of the moduli space;
this contains strata of real codimension one, but the fact that they lie in the boundary means
that they do not affect orientability. This proves the claim.

We henceforth discuss orientations on M, but, in light of Observation [3.10 all state-
ments carry over to the spin case. Furthermore, orientations can be studied on a connected

component at a time, and the connected components of both ﬂé{;,d and M p 5 are indexed
by cyclic orders of B.

Notation 3.11. If 7 : [|B|] — B is an order of B, we denote its induced cyclic order
by 7, and we denote by ﬂ(l)/];i; (respectively, MZ; pg) the connected component of Méf};@

(respectively, WO, p.z) that parameterizes disks for which the cyclic order of boundary mark-
ings taken along the boundary of the disk, with its canonical orientation, is 7. We denote
- 7mam

by M@, Mo, C M., the subspaces where the induced cyclic order on the boundary
marked points is the cyclic order induced from the standard order 74 on [k].

We denote by Ord(B) the set of all orders of B, by Cyc(B) the set of cyclic orders, and
by Sp the group of permutations of B. Note that Sp acts both on Ord(B), by composition,

and on Mé{;ﬁ, by permuting markings.

Definition 3.12. Let {0™ = 0f 5 ;} be a family of orientations, where B runs over all sets
of size k, I runs over all sets of size [,  runs over all orders of B, and o p ; is an orientation

for W,B,I' We say such a family is covariant if, whenever f : B — B' and f!: 1 — I

.o . A 4 A 4 . . ~ ~ B
are bijections and F' : My — My p r is the induced map, we have of 5 ; = F*ogB",’},.

o

0,8 {as}ict is covariant if it is the pullback of a

A family {o™ = of p (71} of orientations of M

covariant family of orientations for M, 5 ;.

The fiber of the forgetful map Foryi; : Mogiy1 — Mo, is a punctured disk with a
canonical complex orientation. For k > 1, the fiber of the forgetful map Mg jy1; — Mok,
is a union of open intervals, so it is canonically oriented as the boundary of an oriented disk
(as above). Denote this orientation by Ofor; !, (%)

Proposition 3.13. Suppose k + 21 > 3. Then there exists a unique covariant family of
orientations og p ; for the spaces /737371 with the following properties:

(1) In the zero-dimensional case where k = 1 = 1, the orientation is positive, while when
k=3 and | = 0, the orientations are negative.
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(2) Fizx an integer h, and let 7 € Ord(B) and g € SBA be such that g sends ) t0 Tx(itn)

cyclically. Then g preserves the orientation of HE;BJ if and only if h(|B| — 1) is even
(this holds for any orientation of the moduli space of disks).
(3) The orientation of, ., agrees with the orientation induced from of, , by the fibration

Mo kiv1 — Mok and the complex orientation on the fiber.
——main ~ qstd o * < std
(4) On Mo,k’+1,l7 we h;a/Ue 007k+17l — OFOTI:il(Z) ® FOTk+100,k,l7T .

k—1

Remark 3.14. For k odd, the orientations described here differ from those of [24] by (—1) = .
This choice is more natural from the point of view of integrable hierarchies.

Proof of Proposition[3.13. If orientations 0, exist, then properties — imply that
they are unique. It remains to check existence.
For property to hold, we must show that permutations of labels that map the compo-

nent M;“ZT to itself affect the orientation according to their sign. This can be checked with
respect to any orientation. Write

U::{(z,w) z=(21,...,2) € (SH, i # 2z 1F] }

w=(wy,...,w) € (int D*)!, w; #w;, i#j
Denote by U™ C U the subset where the cyclic order of zy,...,z, on S' = 9D? (with
respect to the orientation induced from the complex orientation of D?) agrees with the
standard order of [k]. Then

o = U™ [PSLy(R).

When £ is odd, cyclic permutations of the boundary labels preserve the orientation of [/™ain
—— main

and thus also Mg#7? and M, ;. When k is even, a cyclic permutation of boundary labels

that moves each boundary label by h multiplies the orientation by the sign (—1)". Renam-
ing internal markings is a complex map that preserves orientations trivially, and similarly,

—— main

arbitrary permutations of the interior labels preserve the orientation of Mg ;.

A direct calculation shows that the orientation on M 31 induced by property (3)) from 00.3.0
agree with the orientation induced by property from og, ;. Thus, the required og 5,
exists. Existence of o, ; satisfying properties and (4] for other k and [ follows from the
commutativity of the diagram of forgetful maps

—— main —— main

Mo,k+1,z+1 - Mo,k-i—l,l

l l

—— main —— main

Mo,k,l+1 - Mo,k,l .

Covariance, at this point, gives a unique way to extend the orientations to other connected
components and to moduli spaces for different B, I. O

Notation 3.15. Denote by 07 5 (4., the orientation on Wé{;’f{ai}ie , defined as Forg;, 07 5 ;-

For the next lemma we need the following facts. Let I be an r-spin dual graph with a
lifting which corresponds to a stratum of My p (4,},c,- Assume furthermore it consists of two
vertices v; and v, connected by a single edge e, with boundary labels B and internal labels 1.
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We have
——1/r ~ ——1/r
(3.4) it det(T My g (43,0,) = det(N) @ det(TM gepacn, F))

where NV is the normal bundle of Hi/’“ relative to Hé’ ;’ {ai this can be identified with

}61’

the tensor product of the tangent line bundles at the half-nodes on the moduli spaces va

——1 : . . . .
and ./\/lng associated to the Vertlce These two tangent lines are canonically oriented
complex lines when e is internal, and are canonically oriented real lines when e is boundary.
In both cases, IV carries a canonical orientation, in the first case it is the complex orientation.

In the second case M;/T is a real codimension 1 boundary stratum, hence NV is a real one
dimensional bundle. Nonzero elements in the fibers correspond to either inward-pointing

vectors, vectors which point to the interior of Mé{;, {ai}se;» OF Outward-pointing ones. The
canonical orientation of NV is the one which makes the outward directions positive.

Lemma 3.16. The orientations of g (aiticr satisfy the following two properties:

(1) Write I = I, U Iy, and take B = By U By. Let T be the graph with two open vertices, vy
and v, connected by an edge e, where the vertex v; has internal tails labeled by I; and k;
boundary tails labeled by B;, and let h; denote the half-edges of v;. Let w be a cyclic
ordering of B in which all tails of v1 are consecutive and all tails of vy are consecutive.
Denote by m the unique ordering of B such that, for any ¥ € MZF with normalization
Y1 U Xy (where 3; corresponds to v;), we have

e under m, the marked points of 31 appear before those of ¥g;
e when m is restricted to the points of ¥;, it agrees with the order of the points on 9%;
with its natural orientation, starting after the node.
Let 7, be the restriction of m to the points of ¥, but adding the half-node xy, in the
end, and let my be the restriction to points of ¥y, bul adding the half-node xp, in the

beginning. By (3.4)) we have

det<TMo B,{a; )|M§ = det(N) ® det(TMF),

}ZEI

where N s the normal bundle with the canonical orientation ox given by the outward-
pointing normal. Then

T Bi|-1)|B
0 |M§ = (=1)IB=DIEloy @ (05, Bioghn B 00 {hg}uBg,12>

(2) Let T" be a graph with two vertices, an open vertex v° and a closed vertex v¢. By ({3.4))
we have

det(TMr) = det(N) K det(T M) K det(T M),
where N 1s again the normal bundle. Then, for any order m,
(3.5) 6W|MF =on ® (05, K 0,c),

where oy and 0, are the canonical complex orientations.

4To be more precise, the isomorphism holds only on the coarse level, as the actions of the isotropy
groups of the moduli space on the fibers are not the same; see Remarks and However, these actions
are clearly orientation-preserving, so this issue does not affect our orientation analysis, and will therefore be
ignored below.
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Proof. We prove the first item (which is analogous to Lemma 3.16 in [24]) by induction

on the dimension Mé{; ;- By Observation |3.10} it is enough to prove the analogous claim

for Mo,k,l- The proof of the second item uses exactly the same arguments, so it is omitted.

Covariance shows that it is enough to prove the claim when B = [k] and 7 is the order
1,...,k. The base cases where the moduli space has dimension one or two can be checked
by hand. Suppose, then, that the desired statement holds for all moduli spaces of dimension
less than n, where n > 3. After possibly interchanging the roles of v; and vy, we can
assume that a tail of vy can be forgotten without affecting stability; here, we use item
of Proposition and the fact that dimg M,, = |B;| mod 2 to see that the interchanging
affects the equation with the correct sign. Let I'” be the stable graph obtained by removing
a tail of ve. If this tail is a boundary tail, assume it is labeled k. Write v}, for the resulting
vertex of IV and 7’ for the restriction of 7 to [k — 1].

Consider first the case where the forgotten tail corresponds to a boundary point x;. With
the notation of Proposition 3.13, we have 0f;.; = Ope, 1) ® For,*;ﬁg:hl, SO

(36) aﬂ—|MF = OForlzl(E) ® Forzaﬂ,|MF"
By induction, we have
(3.7) 57r/|/vtp/ — (_1)(|Bllfl)(|B2|*1)0N ® (o7 X 52,22)_

We can identify For, ' (V] My ) = Ny, and the identification preserves natural orientations.
Finally,

/
*x <o

Putting equations (3.6)), (3.7), and (3.8) together, and recalling that dimg M,, = |B]
mod 2, we obtain the result.

If the forgotten tail corresponds to an internal marked point labeled ¢, then
(3.9) 6g,k,l = OFor; () ® For:ag,k,l—l = 0" | pmp = OFor; (%) ® Forjaﬂfvtp/,

where we abuse notation somewhat by using For; to denote the map forgetting the ith
internal marked point. By induction, we have

(3.10) 0" |y, = (—1)IBIDIRloy @ 5™ X 077

Observe that For; ' (N|a,,) = Nuy., and the equation preserves natural orientations. Finally,

(3.11) 077 = Opgy-1(x) @ Forfﬁj}é".
Putting equations (3.9)), (3.10), and (3.11)) together, and noting that dimg For; *(X) = 2, we
obtain the result. U

4. ASSOCIATED VECTOR BUNDLES

4.1. Witten bundle. In closed genus-zero r-spin theory, the virtual fundamental class is

defined using the Witten bundle (R'w,S)Y, where 7 : C — ﬂé/g is the universal family and
S — C is the universal twisted r-spin bundle. This is an orbifold vector bundle with the
fibers

HY(C, $)" = H(C, J),

of complex rank M
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Observation 4.1. As observed in [I7] and studied in detail in [3], the Witten bundle is a bundle
as long as at most one marked point has twist —1 and all other twists are non-negative, since
this ensures that R°7,.S = 0.

We now define an open analogue of the Witten bundle. Denote by 7 : C — Mé{gf;l the

universal curve over the moduli space of real spin spheres defined above, and by & — C the
universal spin bundle. Then R!7,S is a vector bundle, since (2.5]) implies that spin structures
have negative degree and hence R°7,S = 0. There are universal involutions

$:C—C and ¢:8 — S,
which induce an involution on R'7,.S. Let
wre .= (R, J)4 = (R'7,S)Y

be the vector bundle of a—invariant sections of J, where J := 8" ® w,; the second equality
uses Serre duality, under which invariant sections become anti-invariant. From here, the
open Witten bundle, which is a real vector bundle, is defined as

W = w WP,

where @ : Mé{;l — ﬂé{,:f;l is the composition of the morphisms defined above.

Remark 4.2. We pull back W from the moduli space ﬂé{,:f;l of spheres in order to avoid the
need to define derived pushforward in the orbifold-with-corners context. To avoid cluttering
the notation in what follows, however, we often write W = (R°m.J), even on /V(l)/,:l
Whenever we write such expressions, they should be understood as pulled back under w. In
addition, we sometimes write W = (R, J )4 on Mé/;; , where no involution is needed; in this
case, the subscript should be ignored and the equation is to be interpreted as W = Rr, J.

Remark 4.3. Due to the canonical isomorphism
(4.1) H°(J) = H(|J)),

the fibers of the Witten bundle can equivalently be viewed as sections of |J| on |C|. Further-
more, if C'is a graded 7-spin disk and p € C'is a non-orbifold point, then the fiber J, is identi-
fied with the fiber |.J|,,) over the image point p(p) € |C|. In particular, if s € H°(J) is an el-
ement of the fiber of the Witten bundle over C' corresponding under to p«(s) € H(|J)),
then the evaluation of s at p agrees under the identification J, = |J|,(,) with the evaluation
of p.(s) at p(p). Because of these observations, we view the fibers of the Witten bundle
interchangeably as H°(J) or as H°(|J|) in what follows.

The real rank of W is
(42) QZai+ij—(r—2)
T

which is the number e defined in after setting ¢ = 0. Indeed, a standard Riemann—Roch
calculation shows that is the complex rank of R%r,J, and taking involution-invariant
parts reduces the real rank by half. Furthermore, in the notation of , there is the
canonical isomorphism

(43) W == FOI'*B/’I/W

Y
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for any subsets B’, I’ C Z. This identification involves replacing a graded r-spin disk C'
by a partially coarsened (and possibly stabilized) disk C’. However, in the same vein as
Remark [4.3] if s € H°(J) is an element of the fiber of W over C that corresponds under
to an element Forp ,(s) in the fiber of Fory, W over €, and if p € C'is a non-special point
whose component is not stabilized when passing to C”, then the evaluation of s at p coincides
under (4.3)) with the evaluation of Fory, ;,(s) at the image of p.

4.2. Decomposition properties of the Witten bundle. The open Witten bundle, like
its closed analogue, satisfies a decomposition property along nodes. In order to state the
property, we must define a normalization morphism on the moduli spaces, which can be
described by a “detaching” operation on graphs.

Definition 4.4. Let I' be a genus-zero graded r-spin graph, and let e be an edge of I' with
half-edges h and h’. Then the detaching of " at e is the disconnected graph

detach,(T') = (V', H', o}, ~', H'B m/),

defined to agree with I" except that h ¢ h'. We keep alt and tw the same, and we extend the
marking and the anchor as follows. If e is a boundary edge, set m/(h) = m/(R') = (). If e is an
internal edge, then exactly one of the components of detach,.(I") is closed and unanchored;
suppose, without loss of generality, that this is the component containing . Then we set h
to be the anchor of its component, and we set m’(h) = ) and m’(h’) to be the union of the
markings of the internal tails h” # h in the same component as h.

If t € HYB is a contracted boundary tail, then the detaching of T' at t is the graph
detach,(T") defined to agree with I except that t € (T")! \ (H')“Z. We keep alt and tw the
same and leave ¢t as the anchor.

Note that the new internal and boundary markings still satisfy the requirements of Def-
initions and 3.3l In particular, since there is a canonical identification of E(T') \ {e}
with the edges of detach.(I') and of F(I') with the edges of detach(I"), one can also iterate
the detaching process. For any subset N C E(I') U HYB(T"), we denote by detachy(T") the
graph obtained by performing detach; for each element f € N; the result is independent
of the order in which the detachings are performed. When we write detach(I") without any
subscript, we mean detachgr(I').

Let I' be a stable r-spin dual graph, and let T = detachy (I") for some set N C E(I') U
HYB(T') of edges and contracted boundary tails. Unlike the moduli space of curves, the
r-spin moduli space does not always have a gluing map M%/T — M(l),/l:,b because there is
no canonical way to glue the fibers of the spin bundle at the internal nodes. Instead, we
consider the following diagram of morphisms:

(44) My & My o, M5 MY R

Here, M, ﬂf are the moduli spaces of marked disks with dual graphs T, r respectively.
The morphism ¢ is defined by sending the spin structure S to S as in (2.17)).

The map p is an isomorphism, though we distinguish between its domain and codomain
because they have different universal objects. While the map ¢ is in general not an isomor-
phism (see Remark [4.5| below), it has degree one. This fact is known in the closed case (see,

for example, [11]); the key point is that each element of M%/T has a single geometric preim-
age under ¢, and in both the domain and codomain of ¢, the order of the automorphism
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group is ¢, where ¢ is the number of components. By the analysis of automorphisms in
Proposition the same argument applies in the open case.

Remark 4.5. The reason that ¢ is not, in general, an isomorphism is that it does not induce
an isomorphism on automorphism groups. Automorphisms on a normalized curve are given
by separate fiberwise scalings on each sphere component; on a nodal curve, however, scalings
by ¢ and 7 at opposite branches of a node only glue to give a global automorphism if one
can act by a ghost automorphism of C' to make the scalings at the two branches agree—in
other words (by Remark [2.14)), if there exists £ € Z/rZ for which ¢ - ™ = 5, where m is the
multiplicity of S at the (-branch of the node. Thus, ¢ is an isomorphism only if each internal
node satisfies ged(r,m) = 1, so that such ¢ exists. (Boundary nodes need not satisfy any
condition, since fiberwise scaling on a disk component is not an automorphism of the graded
spin structure.)

Notation 4.6. For I" and N as above, we denote the map gop ™" : H; " ﬂ%/’" by Detach .
When N = {e} is a singleton, we denote this map by Detach,.

There are two natural universal curves over the fiber product Mz X 51, M
by the fiber diagram

;/T. We define Cr

Cr C

d |

- —1/r irop ——1/r
Mz Xgq. My ——= Mg

and Cp by the fiber diagram

C~—Cr

| !

—1/r q —-— __
i—? < Mf Xﬂl" MF 3

in which 5 is the universal curve over ﬂ;/’". There are universal bundles S and § on these
two universal curves, and they are related by the universal normalization morphism
n: Cf — CF.

We can now state the decomposition properties of the Witten bundle. We state the
properties in the case where N = {e} for a single edge e, but all can be readily generalized
to the setting where more than one edge is detached.

Proposition 4.7. Let T be a stable genus-zero twisted r-spin dual graph with a lifting.
Suppose that I' has a single edge e, so the general point of /V;/T 1s a stable r-spin disk with
two components Cy and Cy meeting at a node p. Let r= detach.(T'). Let W and V/\7 denote
the Witten bundles on Mé/,:l and H%/T, respectively.
Then, topologically, the Witten bundle decomposes as follows along the node p:
(i) If e is a Neveu-Schwarz edge, then p*ifW = FW.
(i1) If e is a Ramond boundary edge, then there is an exact sequence

(4.5) 0 — gV — ¢W = T+ — 0,
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where T, 1s a trivial real line bundle.
(111) If e is a Ramond internal edge connecting two closed vertices, write ¢*W = W; B W,
in which W is the Witten bundle on the component containing the anchor of I' (defined

via §|Cl) and Wy is the Witten bundle on the other component. Then there is an exact
sequence

(4.6) 0= Wy — @it W — W — 0.

Furthermore, if T is defined to agree with r except that the twist at each Ramond tail
isr—1, and ¢ : ﬂf X M; [ M%{r 1s defined analogously to q, then there is an
exact sequence

(4.7) 0= witW = ()W = T =0,

where )7\/\’ 1s the Witten bundle on M%{r and T is a line bundle whose rth power is
trivial.

(iv) [fe 18 al Ramond zntemal edge connecting an open vertez to a closed vertex, write q W =
W, B Wg, in which Wy is the Witten bundle on the disk component (defined via S|C1)
and WZ is the Witten bundle on the sphere component. Then the exact sequences (4.6
and both hold.

(v) Suppose that T' has a single verter, no edges, and a contracted boundary tail t, and

let T = detach,(T). If W and W denote the Witten bundles on Mé{,:’l and M%T,
respectively, then the sequence (4.5)) also holds in this case.

Remark 4.8. We say that the Witten bundle decomposes “topologically” as above to em-
phasize that, while the coarse underlying Witten bundle behaves as above, the action of the
isotropy groups of the moduli space on the fibers may not respect these identifications. (This
is only relevant for internal nodes, since boundary and contracted boundary nodes do not
contribute isotropy to the moduli space.) For example, in the case of a Neveu-Schwarz in-
ternal node, an element of the fiber of q*V/\7 is acted on by independently scaling the sections
of J on the two components, while Remark shows that this is not in general possible for
elements of the fiber of p*ipW.

Proof of Proposition[4.7 First, let us fix some notation. Letting J = §Y ® w, and decom-
posing Cy into components C; and Co, we define:

Si =n"S Ci» ‘§7, = ‘§|Ci7 \71 ® Wr;

for i = 1,2. We view p*iiW = (R°7,J )4 and q*VV\ = (ROW1*j1 ® R° W2*$)+.
Suppose that e is Neveu-Schwarz. Then the normalization exact sequence yields

0—=S—=nn'S— S|a, =0,

where A, C Cr is the orbifold divisor corresponding to the node p. Since the twist of
every tail of I' is non-negative, except at most one tail that may have twist —1, we have
R, 81 = R%75,. S, = 0, and we obtain

(48) 0— O';S — RITI'*S — Rlﬂ'l*Sl D RIWQ*SQ — 0.

The assumption that e is Neveu—Schwarz implies both that ‘S/‘\Z = §; for + = 1,2 and that
0,8 = 0, since sections of an orbifold line bundle necessarily vanish at Neveu-Schwarz points.
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Thus, dualizing and taking involution-invariant parts of (4.8]) shows that the fibers of p*if W

and q*W are canonically identified.
Suppose now that e is a Ramond boundary edge. Then

S =8®O(=rA;,),

where A, ,, C C; is the orbifold divisor corresponding to the half-node in Cj;. The normaliza-
tion exact sequence for J yields

(4.9) 0— R'n.J — R'7,(n*T) — 0,T — 0.

Now, passing to coarse underlying bundles (which does not affect cohomology), the middle

term can be re-written:
=S¥ ® O(Aip) @ wiay = |-

~ ol (151 @
IC:l
Thus, the sequence (4.9) can be re-expressed as

(4.10) 0 — R'm,J — ROmi.Jh @ R°mo. s — 05T — 0.

g

C;

Because e is Ramond, the bundle 7 := (0} J) has trivial rth power, using that the restriction
of both w; and wy e to the locus of nodes is trivial. Taking involution-invariant parts
in yields , where the real line 7, is trivialized using the grading.

Next, suppose that e is a Ramond internal edge connecting two closed vertices. Denote
the two vertices of I' by v; and vy, and let v; be the vertex supporting the anchor. Then
R°75, S, = 0, and if v; contains at least one tail of positive twist, then R%7,S; = 0, as well.

In this case, we still have the sequence (4.8]). We also have
(4.11) 0= 0:S = R'm.S; — R'm.Si — 0.
The sequences (4.8)) and (4.11)) fit together into a commutative diagram

0 O;S Rlﬂ*gl R'r.S; 0
0 oS R'1.8§ —— R'1,.8, @ R'7, Sy — 0,

p

in which the middle vertical arrow can be constructed by dualizing the sequence (4.10)). By
the Snake Lemma the cokernel of the middle vertical arrow is R'7m9,Ss = R'7m2,Ss, s0

0 — R'7.,S, — R'm.S — RS, — 0.

Dualizing and taking involution-invariant parts proves .

Still assuming that e is a Ramond internal edge connecting two closed vertices, suppose
that every tail of v; except the anchor has twist zero. In this case the anchor must have
twist —1. Then R%7,S; is one-dimensional, and in the normalization exact sequence

0— R07T1*81 ) R17TQ*82 — 0';8 — Rlﬂ'*s — Rlﬂ'l*Sl ) Rlﬂ'g*,

the first map is an isomorphism. Hence, R'7,S = R'7,S) @ R'72,.Ss. A similar argument
shows that the first map in

0— Roﬂ'l*Sl — O';Sl — R07T1*§1 — Rom*Sl —0
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is an isomorphism, so we also have R! 7T1*31 ~ R'1,8;. Since gg = & by construction,
we conclude that R'7,.S = R! 7T1*81 69 R 7T2*82, which implies that (4.6) holds (and, in fact,
splits) in this case. The proof of (4.7) is identical to the proof of (4.5 above.

If e is a Ramond internal edge connecting an open vertex to a closed vertex, then the
proof that holds is identical to the proof for an edge joining two closed vertices (with
R7,81 = R'15.8, = 0), and the proof that holds is exactly as in (4.5]). Finally, in the
situation where I' has a single vertex, no edges, and a contracted boundary tail, the exact
sequence still holds, by the same proof. [l

One further observation will be needed later.

Observation 4.9. Suppose I' C [[] is such that ) .., a; < r—1. Let I' be a graph with
exactly two vertices, a closed vertex v containing exactly the internal tails labeled by I’ and
an open vertex v°, connected by a single edge. Then H;/ " = Mye X Myo. One can compute

that the twist at the node is r — 2 — Zie ; a; and the Witten bundle W, on M has rank
zero, so Proposition [£.7 implies that

M*Z;WF = q*Tr;WU"a
where 7, is the projection to the second factor.

4.3. Cotangent line bundles. For each i € I, a cotangent line bundle L; is defined on the

moduli space of stable marked disks as the line bundle whose fiber over (C, ¢, 3, {2}, {z;}, m!, m®?)

is the cotangent line 77 3. Alternatively, IL; is the pullback via the doubling map of the usual

line bundle L; on MQHQZ. We define cotangent line bundles IL; on Mé{,:,l by the pullback

under the morphism forgetting the spin structure, and for any graph I', we let L} be the
——1/r

pullback of L; to M .
We mention a few important properties of these bundles in the observation below. The
proofs are identical to the proofs of the analogous statements in [24], Section 3.5].

Observation 4.10. (i) If e is an edge of I', I'y and I'y are the two connected components of
detach.(I"), and i is a marking of an internal tail of I'y, then

LI Prot]IIL,F1

where Proj; : M§ " ﬂi/f is the projection.
(ii) If B CZ\ {i}, I' CZ, and I'" = forg ;/(I'), then there exists a canonical morphism

!
tRB/,I’ : ]:_“01"*3171/1[41r — Lzr,

which is an isomorphism away from strata where the component containing z; is con-
tracted by the forgetful map, and which vanishes identically on the remaining strata.
(iii) L} is canonically oriented as a complex line bundle.

5. ORIENTATION: CONSTRUCTIONS AND PROPERTIES

5.1. Relative orientation of the Witten bundle. The open Witten bundle does not
carry a canonical complex orientation. Nevertheless, it is canonically relatively oriented,
relative to the moduli space of stable graded r-spin disks. Before stating this precisely, we
require some notation.
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Consider a set B of boundary markings, a set I of internal markings, and a set of twists
{a;}ier. Given decompositions I = I; U Iy and B = By LI By such that

(5.1) [Bil=1=> a; modr, |Byf=)» a; modr
i€l i€l
and hence

22 ier, i+ | Bo|(r —2)

r

=|Bs| mod 2,

let I' = I'y, 1,.8,.8, be the graph with two open vertices v; and vy joined by a boundary
edge e, in which v; contains the internal tails marked by I; and the boundary tails marked
by B;. If h; is the half-edge of e incident to v;, then a straightforward computation shows
that

tw(hy) = alt(hy) = 0.

Let us denote by BI' the graph with vertices v] and v, obtained by detaching e and forget-
ting hq; this is a very special case of the notion of the “base” of a graph I', defined in general

in the sequel. Let /\/ll/r M

v ?
corresponding to the vertlces vy, vy, and vg, thought of as r-spin graphs.

By the discussion in Section [3.2] the maps ¢ and p are isomorphisms in the case of a single
boundary edge, which implies that

Ml/r ~ Ml/r N

Composing with the forgetful map forgetting the twist-zero tail hy on v;, we obtain a map
LMY M}g/; =

By Proposition [£.7] and the fact that the Witten class pulls back under the forgetful map,

and Migr be the moduli spaces of stable graded r-spin disks

—1/r
v

ML« M

U1

1/r
vy

(5.2) irW = FfWgr = W, BW,,.
In this situation, we also have
(5.3) it det (TMy 5 goy,.,) = det(N) @ det(fr) ® F det(T M),

where N is again the normal bundle of M;/ ", and fr is the fiber of Fy (which can be identified
with the fiber of the map on M,, that forgets the marked point z, associated to h;). Note
that fr also carries a canonical orientation, as a subset of the boundary of a disk.

The main theorem of this section is the following.

Theorem 5.1. The morphism W — J\/l(l)/; {as}ies U8 canonically relatively oriented. More

precisely, for any sets B and I of boundary and internal markings, and any set {a;}icr of

——1/r

the internal twists, there exists a distinguished orientation 0o s {a;}ie; 0f TMo g taitic, © W-

These orientations satisfy the following properties:
(i) If f?: B — B" and f1 : I — I' are bijections such that f preserves twists, and if
ey ——1/r
F : MO,B, i i — MO B’ {ai}iell
is the induced map, then oo B fa,},c; = F*00, B/ {a;},p0- 10 particular the canonical orien-
tation is invariant to renumbering marked points.
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(1) If I = I, U1y and B = By U By satisfy (5.1) and I' = I'f, 1,.5, B,, then under the
isomorphisms (5.2) and (5.3)), we have

% E3
1100,B,{a;}icr = ON @ Op; @ FF (00731,11 X 0{h2}UBz712)a

in which oy, op, are the canonical orientations on N and fr respectz’vely.ﬂ
(111) If T is a graph with one open vertex v° and one closed vertex v°¢, then under the iden-
tification

——1/r

it det(T My g 0y,.,) = det(N) @ (det(TMyo) K det(TM,e))
we have
(5.4) 1100,B {ai}ic; = ON @ (0y0 B 0ye)

where oy is canonically defined as above and 00,0, are the orientations on the total
space associated to the two vertices, o, 1s the standard complex one.

Remark 5.2. Note that in the last item we have used that if 0 — A £ B — ¢ — 0 is an
exact sequence of vector bundles, then there is a canonical isomorphism

det(A) ® det(C') = det(B).

In case e is Neveu-Schwarz, the Witten bundle decomposes as a direct sum by Proposi-
tion , but when e is Ramond, we use in order to write . In both cases, the
decomposition may not respect the isotropy group actions, but these actions are orientation-
preserving as they are induced from scaling the closed Witten bundle summand by roots of
unity.

The proof of Theorem is the content of the remainder of this section. Equipped with

this theorem, we will have a canonical relative orientation opr on W — Mi” whenever I is
a connected smooth graded graph. Furthermore, we can extend the definition to the case
where I' is a smooth graded graph, but not necessarily connected, by putting

or = MaeConn(r)0n,

in which we use that the Witten bundle WV on M;/r is canonically isomorphic to the direct

sum of the Witten bundles on the moduli spaces M}\/r associated to A € Conn(T).

The key point in the proof of Theorem is Construction [5.6, which defines an explicit
frame for the Witten bundle of tuples ({a;}icy, k), for & = k(ai,...,a). By studying the
properties of these frames and using compatibility relations we are able to construct orien-
tations in full generality, and analyze their properties.

Remark 5.3. Theorem determines a unique family of orientations, up to the follow-
ing ambiguity: if 09 B f4;1.,c, i a family satisfying the conditions of the theorem, then
(=1)!B1=Y04 B 1a:),c, also satisfies these conditions; see Lemma and Remark below.

5Since the rank of the Witten bundle and the dimension of the moduli are of the same parity, the
canonical orientations represent even variables, this means, in particular that it.0 B, {a, =ony Qop, ®
FF(O{hz}UBQJQ X 09,B,,1,) also holds

}1'61
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5.2. Extending the internal twists. Throughout this section, we write Wy for the
Witten bundle on ﬂé’/,:@ for any tuple @ = {aq,...,a}.

1
Thus far, we have assumed that in the open r-spin moduli space Mék (a1} the internal
twists satisfy a; € {—1,0,1,...,r — 1}. However, when defining orientations, it is useful to
allow more general twists. In fact, there exists a smooth orientable orbifold with corners
Mé{,:,d for any tuple of non-negative integers @ = {as, ..., a;}, parameterizing stable nodal
marked orbifold Riemann surfaces with boundary together with an orbifold line bundle S,
an isomorphism

1S = wio ® O (‘ > ailz =D awlz] =) (r- 2)[%]) ,

iel el JjEB

and a grading. Moreover, there is a Witten bundle on this moduli space, defined as before.
The relationship between the Witten bundle with twist a; and twist a; + r was observed
by Jarvis—Kimura—Vaintrob [I8] in the closed case, and the same is true in the open theory.

Lemma 5.4. Let @ = {ay,...,a;} be a tuple of non-negative integers, and let @ = {a; +
r,as,...,ar}. Then there is an isomorphism
——1/r ——1/r

K Moga = Moga
and the Witten bundles on Mé,/,:ﬁ/ and Mé{,:@ are related by a short exact sequence
0= L= Wora — & Wopa — 0,

in which L is an orbifold line bundle satisfying

]i@?“ o (L\l/)®(a1+1) ‘

Proof. The isomorphism « is given by sending the twisted r-spin structure S’ to
S =50 (rla]+rz))),
where [z1] and [Z;] denote the orbifold divisors of the first internal marked point and its
conjugate, so that
S| = 15"l @ O ([a] + [21])
on |C|. If §’ denotes the universal twisted r-spin structure on the universal curve C over mé{,:75,

and S := 8" ® O (A,, + As,) for the divisors A,,, As, C C corresponding to z; and Z, then
the short exact sequence

0—|S'|— S| — |S] -0

Azl +A31

implies

0 — R'r, ( > — R'1,|S'| — R'm,|S| — 0.

|8| ‘Azl +AEI
Taking g—invariants part yields
0— oy|S| — (11%17T>,<|5"|)Jr — (le*|8|)+ — 0,
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where oy is the section of |C| associated to the first internal marked point. The first bundle
in this sequence satisfies

l
<0>1k’8|)®r & O'T <W7r|,log <_ Z((IZ + 1)AZZ>> (Y] L?(al+l)7

i=1
since ojWir|log 18 trivial. Dualizing thus proves the claim. O

5.3. Orientability of the Witten bundle. Before we show how to choose canonical ori-
entations, we first confirm that the Witten bundles are orientable. For this, recall the action

of Sp on ﬂéfg@ by permuting markings, and note that this action lifts canonically to Wy 1 a.

Lemma 5.5. The bundles Wy i, {a,....a,} are orientable.

Moreover, suppose g € Sg preserves the component Mé{;’;, meaning that there exists an
integer h such that

g9(m(i)) = m(i+ h),
interpreted cyclically. Then, for any orientation o of Wok fa;....ar} — ﬂé/;’;, the permuta-
tion g acts with sign ", where ¢ = e, = (—1)k71. The action of g € S; by permuting the
internal markings, which also lifts canonically to Wo k. fa;....a;}, 1S ori€ntation-preserving.

Proof. Suppose, first, that [ > 1 and k — 1 > > a;. Observe that
k:—lEZai mod 7.
There exists a (usually non-unique) tuple (a, ..., a;) with
a; >0, a;=a; modr, Z&i:k—l.

By Lemma the bundles W := Wy i, 4,....q,} and W = Wk {ar...a} differ by a bundle £
that is a direct sum of complex line bundles. Thus, one has

det(E) ®@ det(W) = det(W),

so, since F is canonically oriented, orienting WV is equivalent to orienting W. Note that S B
and S; act with the trivial sign on E. We can thus reduce to the case where k — 1 =" a,.
In this case, the Witten bundle is of real rank e = > a; = k — 1. Since the boundary of

1
the base space does not affect the orientability of a bundle, W — M, (a1} is orientable
_1 1
precisely if W — M, (a1 a1} \ OM; (a1} is orientable. Furthermore, this is the case
1
exactly if W is orientable on the moduli space M, (011} of smooth graded r-spin disks,
since compact strata of real codimension two do not affect orientability. It is therefore

Lx
enough to prove that the bundle W is orientable over each connected component M, {ar,ar}
1
of Mg, 1a,.ay @ssociated to an order 7 : [k] — [k] with induced cyclic order 7.
Lx .
The following gives explicit sections of W — M’ that form a basis in any fiber.

kav{al7"'7al}

Construction/Notation 5.6. Let > be a smooth graded r-spin disk. Identifying ¥ with the
upper half-plane, let

€ =€ = V15 — 5)dw

(0 — 2z;)(w — )

(Zr(i) = T )dw

(0 — Zr)) (W — Tr(j))

, L, ek, &= , J el
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where /—1 is the root in the upper half-plane. Define sections

S im

(0j)s = (07)2 = (00 k {a1,ar}j) = = (—1)"*! H & H fi_(iarl)ff(lﬂ) e H'(, |J]),

i€(l] 1€[k]

for j € [k — 1], where k 4+ 1 is taken to be 1. More precisely, inside the parentheses in the
above formula, a global section of

l ! k
wigy - ® O (Z ailz]+ ) alz) + ) (r— 2)[%]) = [ J]*

i=1 i=1 j=1
is written. This section is ¢-invariant and positive on the arc from x1 to x14;, with respect
to the canonical orientation. One can construct an rth root in the sense of a global section o;
of |J| whose rth power is mapped to the expression in parentheses. Indeed, this can be done
locally away from special points, and the order of zeroes and poles at special points guarantee
that the construction extends globally and univalently. When r s odd, a real rth root s
unique. When r is even, there are two real rth roots, one of which agrees with the grading
on the arc from 1 to x14; and the other of which agrees on the complementary arc; we
choose o; to be the one that agrees on the arc from x; to x14;.

We claim that, for any ¥ € ./\/lOk {ar,..ar) the sections (o7 )y for j € [k — 1] form a basis

of the fiber of W over X. To see this, observe first that the forms &; and ¢;; are PSLy(R)-

invariant and conjugation-invariant. It is immediate that for all j, o; is nowhere-vanishing
La

on Mg car o at As the number of those sections is k — 1, it is enough to show that they are

hnearly independent. But this is clear, since (o;)y, has poles only at xﬂ(l) and Tr(14j), and

by calculating coefficients of poles (for example at . for i € {2,...,k}), we see that if
> ¢ioy)s =0,
then ¢; = 0 for all j € [k — 1]. Thus, W — Ok {ar,..a) 15 Orientable.

Remark 5.7. Let (X, S, [w]) be a graded spin disk as above and (¥',5", [w']) = (£, 5, [-w])
the same disk with opposite grading. The two disks represent the same moduli point, and
we would expect that the orientation described above will be the same, whether we calculate
it at the fiber of ¥ or of ¥'. As a sanity check we shall verify it directly. Recall that the
isomorphism « between (3, S, [w]) and (X,5’, [w']) is realized as the identity on the surface
and acts by negation on the bundle and grading. The induced map on the fibers of the
Witten bundles HY(J) = H°(J') is given by sending a section s’ € H°(J') to a*(s') = —s'.
Since the grading is also flipped, it is evident that a*(o}) = o;, where o} is defined via
Construction applied to Y¥’. Thus, the isomorphism « takes the constructed orientation
of the Witten fiber at ¥’ to that of the Witten bundle at ¥, as expected [

The next case is [ = 0. Recall from equation (3.3) that Wy (o} is the pullback of W, ;¢
by the forgetful map /Vo,k,{o} — Mo 9. The fiber of this forgetful map is an open disk, and

6In higher genus, changing the grading of one boundary is not an isomorphism. In that case, the
orientation may change. For example, in [28], which deals with the all-genus r = 2 case, it is proven that
changing the grading of a boundary with m boundary marking changes the canonical orientation of the
moduli space by (—1)™~!; see also [29, Section 6.2].
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in particular, it is contractible. Thus, Wy ¢ is orientable exactly if Wy (0} is orientable,
and the latter is orientable by the first case.
The last case is when I > 1 and k —1 < Y a;. Let k' = 1+ a;, so that Wy fa,,...a1}

is orientable by the first case. Consider the boundary stratum ﬂ;/r defined by a graph I
with two open vertices v; and v, in which v; has &' — k& boundary tails and no internal
tails, while vy has the rest. Note that the half-edge hy of v; has tw(hy) = alt(h;) = 0. By
Proposition and equation (3.3)), we have an identification

%
it Wok far,ay = Worr—k+1,0 B Wo fas,..an}-

Hence,
det(WO,k’,{al,...,al}>|ﬂp = det(WO,k’—k—i-l,@) X det(WO,k:,{ah...,al})'

As Wor' {ar,....ary and Wy r_r41,0 are orientable by the first two steps, Wy (a1,
orientable.

Regarding the signs of actions of Sp and Sy, consider first the case where [ = 1. In this
situation, K = 1+ a; mod r. As noted above, the bundles Wy . o, and Wy i, (113 differ by
a direct sum of complex line bundles by Lemma [5.4] and this decomposition is invariant
under Sp. The claim in this case follows, then, if we prove it for the bundle Wy (11}
Moreover, it suffices to prove the lemma for h = —1, so we assume this in what follows.

Observe that, since the bundle is orientable and all components of the moduli space are
isomorphic, the claim can be verified for any specific component by fixing any orientation o
for W over this component and comparing 0,5 to g*ox, where g - ¥ is obtained from ¥ by
renaming markings according to g and ¥ is an arbitrary point in the specified component.

Using these comments, fix a generic smooth ¥ and write ¥/ = ¢ - ¥. Let o™ be the
orientation determined by the ordered basis (o7, ...,07_;). Comparing o]y with g*of; is
equivalent to calculating the ratio of 0™ to 097 at the same point of the moduli space. To
this end, first observe that the residues of (O’;-T)Z at w1y and T, (14;) are real and of opposite
sign. The sign of the residue at x() is independent of j, and moreover, it equals the sign of
the residue of (O’;rl)g at x(1) for 7" = g- 7. Thus, the coordinate change between the ordered

bases (e1,...,ex 1) = (07,...,0F s, (), .,k 1) = (07 ,...,00 |)gx is given by

-----

¢y = —aier + fieg, .. €y = —agger + By oeko1, € = —qp_ie,
where «;, 3; are positive numbers depending on 3. Hence, the induced sign on the orientation
is equal to the sign of [](—qy), which is (—1)*~1.

The case | = 0 follows by the same argument as in the proof of orientability above: we
first add an internal point with twist zero, and then we reduce to the case [ = 1.

Finally, for [ > 1, we compare the two orientations at a generic point of Mp, where I is
a graph with two vertices, a closed vertex v; with all internal tails and an open vertex v
with only boundary tails. By Proposition we have pW|m. = ¢*(W,, BW,,), and the
decomposition is invariant under the actions of S and S;. Now, p* and ¢* are complex
maps and hence preserve signs. Furthermore, W, is canonically oriented as a complex
bundle, ¢ € Sp acts on it trivially, and g € S; (which preserves twists) acts on it as a
complex isomorphism, hence preserves sign. Thus, the sign induced by g on the orientation
of Wok{ar,...ary (0r, equivalently, on the orientation of W|uy.) is the sign it induces on the
orientation of W,,. It is 1 for g € S, and it equals (—1)*~! for g € Sp by the first case. O
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5.4. Choosing canonical orientations.

Notation 5.8. Denote by I'gx fa;...q;) the connected graded smooth graph with a single
vertex v, boundary tails marked by [k], and internal tails marked [I], such that the ith
internal tail has twist a;.

Throughout what follows, we continue with the notation from the proof of Lemma [5.5

Definition 5.9. Fix a set of twists @ of size [ and an integer k£ > 0. Let {0™} be a family of

orientations, one for each W — Mg:;/,;, in which 7 runs over all orderings of B and B runs
over all sets of size k. We say that the family {0™} is covariant if, whenever f% : B — B’

and f': I — I are bijections such that f’ preserves twists, we have of 5 ; = F *og;"fa, where
—1/r ——1/r . .

F: W= Mopiaye) = W= Myp iay,.,,) is the induced map.

Remark 5.10. By the second part of Lemma , whenever {07} is a covariant family and
g € Sp cyclically satisfies g(m(i)) = m(i + h) for some integer h, we have the equality
0" = e"097 where € = g = (—1)*"1. Thus, associated to any multiset (@, k) are exactly two
covariant orientations, determined by choosing o™ for a single 7 to be any orientation of the
Witten bundle of /V(l)/,:;r, and then extending covariantly.

Definition 5.11. Suppose a; < r — 1 for each i and k — 1 = Zie[l] a;. When k£ > 1, for an

order m of the boundary marked points, denote by of, - the orientation of W&g; defined
using the ordered basis 0™ = (07, ...,0f ;) on the smooth locus. For any [ of size [ and B
of size k = 1+, ; a;, this uniquely defines a covariant family of orientations {of 5 {ai}iEI}ﬂ.
When k = 1 and hence all a; = 0, the Witten bundle is zero-dimensional; in this case, define
its orientations {0 {4} {0}, } to be the positive orientations.

In case | = 0, a is the empty vector, and k& = r + 1, Remark implies that there
are exactly two covariant families, induced by the two choices of orientation of the Witten

1
bundle on the space M& pg With [B| = r+ 1. Fix one of these orientations, to be chosen
later, and denote it by 0,1. )

Now, let I,k > 0, and fix ay,...,a; € {0,...,r — 1} with M(§7k7{a1---7al} # (). Suppose we
have a covariant family of orientations with twists {ai,...,q;} and B of size k. We now
show how to induce, given 0,1 as above, a covariant family of orientations with the same
twists but for B’ of size k' := k + r, assuming k' is non-negative.

Suppose, first, that & = k —r. Let B’ be a set of size k — r, and let ©’ be an order of B’.
Let B be a set of size k containing B’, and let 7 be an order of B that extends 7/, such that
the first k£ — r element of B with respect to 7 are those of B'.

Let I" be a graph with two open vertices and no closed vertices, for which there is one
vertex vg that contains all the internal tails, all the boundary tails marked by B’, and one
half-edge ho. The other vertex, vy, contains the remaining » boundary tails marked by B\ B’

and the half-edge o1hg. By construction, tw(hg) = alt(hg) = 0. Observe that in /\/l;/ T’ﬁ, the
boundary marked points on the component corresponding to vy are cyclically ordered by

7. The Witten bundle Wr on M;/r can be identified with W,, H W,,, so we have an
identification

det(Wr) = det(W,,) X det(W,, ).
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7L

Define an orientation indr 0™ on W — Mo B {ashieny 88 the unique orientation satisfying

i€(l]

0"lw_,,,, = (indr 0™ Kot
MI‘ >

where 77 is the order on the half-edges of v induced from 7, starting from oy hyg.

This procedure defines o™ uniquely from o™. The construction is easily seen to be inde-
pendent of choices, and yields a covariant family. Moreover, inverting the steps allows us
to define o™ uniquely from o™, and if the latter comes from a covariant family, so will the
former. Thus, the case k' = k + r is also treated.

Therefore, given twists {a; }ic;, we can uniquely define a covariant family of orientations o™

for any set B such that ﬂé{;ﬁ # () by inducing the orientations iteratively, starting from
the covariant family of Definition (the case k => a; + 1) or, when I =), from o0, ;.

Definition 5.12. Given o0,,; and the orientations of Definition |5.11} define {0™} as the
unique covariant family of orientations induced by the above procedure from the family
{00 B.a;),e, tno defined when k —1 =3 a;.

Observation 5.13. If I C I" and a; = 0 for all ¢ € I, then 00,5 {ai},ey = For}\long,{ai}Eﬂ.

Indeed, the case |B| —1 = )_ a; follows from the definitions, while the general case follows
easily by noting that the forgetful map behaves well with respect to the induction procedure.

5.5. Properties of the orientations. The family of orientations in Definition[5.12]respects
the decomposition properties of the Witten bundle.

To make this precise, we first state two lemmas, whose proofs are postponed to the next
section. We first fix decompositions I = I L Iy, B = By LU By, and k = k; + k5 such that

k:l—lzz:ai mod r, kQEZai mod 7.

i€l i€lg

Let I" be a graph with two open vertices, v; and vy, connected by an edge e, in which the
vertex v; has internal tails labeled by I; and k; boundary tails labeled by B;. If h; are the
half-edges of v;, then a simple calculation shows that

tw(hy) = alt(hy) = 0.

Let 7 be an order in which the elements of B; are consecutive and come before the elements
of By. Consider ¥ € M%, where the normalization of ¥ has components ¥; and ¥, corre-
sponding to v; and vy, respectively. Let m; be the restriction of 7 to the points of ¥, and
let 75 be the restriction to points of s but with the half-node x;,, added as the first point.

On M?, the bundle Wr is again identified with W,, HW,,, so we have the identification

(5.5) det(Wr) = det(W,,) B det(W,,),

and this is respected by the orientations in Definition [5.12, That is, we have the following
statement.

2

0.{ha}UBa. Iy under

Lemma 5.14. For ¥ as above, the orientation o™ agrees with og'p ; X o

the isomorphism ([5.5)).
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Similarly, the family of orientations in Definition [5.12] satisfies a decomposition property
along internal nodes. To specify this, write
> ai—(r—=2)+((r—2-73"a;) (mod r)’)

m*({ai}ier) = . )

where z (mod r)’ is the unique element of {—1,0,...,r — 2} congruent to z modulo r.
Now, let I' be a graph with two vertices, an open vertex v° and a closed vertex v¢. By

Proposition and Remark 7 the Witten bundle Wr on ﬂ;/r satisfies
(5.6) detOWVr) = (go p )" ( det(Wyo) K det(WUc)> ,

and we have the following.

Lemma 5.15. There exists 6 = +1, depending only on the choice of 0,11, such that for
any I';v°, and v° as above and any order 7, the orientation 077|M§ agrees with 5mc({“i}iefc)ogo®

0,c under the isomorphism (5.6), where 0, is the canonical complex orientation and I¢ are
the labels of v¢. Moreover, changing 0,1 to the opposite orientation changes d to —o.

Definition 5.16. Define 0,1 to be the unique covariant family of orientations of W —

M&T 10 for which the § = 1 in Lemma [5.15] This induces orientations 057 pa ol the Witten
bundle for all B and @ by Definition [5.12]

We can now complete the proof of Theorem
_1
Proof of Theorem[5.1. Let of 5 ; be the orientations on the moduli spaces Mg g ;, described
explicitly in Notation 3.15 and let of 5 ; be the orientations on the Witten bundle described
in Definition [5.16] By Lemma and Proposition [3.13] the relative orientation

(5'7) 00,B{ai}icr = 63,3,{%}1{1 ® 03737{%}1‘61

14
for the Witten bundle on _g,’; (articr is independent of the choice of 7. The same argument,
together with Remark [5.10 shows the invariance property.

For the second item, first note that, under the notation of Lemma and using item
of Proposition [3.13, we may write

03;1 = Op, X 0:,11,
where 7] is the extension of 7y defined by writing hy as the last element, and the pullback
of 07} is with respect to the map that forgets the half-node n;,. Note also that
1
——1/r

dimgM,, = [B1| —1 mod 2, rankgW,, = |Bs| mod 2.

v

From here, the second item is a consequence of Lemma [5.14] and Lemma [3.16] where the
sign (—1)IB1=DIB2l disappears when commuting 072 with o7}
1

The last item is a direct consequence of Lemmas and O

Lemma 5.17. The properties of Theorem[5.1] characterize precisely two families of orienta-
tions: the family {00 B {as}icr }BAaite; and the family {(=1)"%1Y00 5 ta1ic, } B {astic -
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Proof. Suppose that {0 5 (.1, }B{ai}ie, 15 a different family of orientations satisfying the
requirements of Theorem 5.1} Let dps € {£1} be the ratio of of g,y 10 00,5 {a;}ic;-
Then item (i) shows that dp 4 = dp| 4. Item shows that 5.5, = 0|B|{>"a; mod r}. Since
> a; = |B| =1 modr, we denote 0|5 (> a; modr} by 0. Finally, item shows that
Satd = 0atr10p. Thus, §; = 0 and &, = 657!, where 6, € £1. The claim follows. O

Remark 5.18. This ambiguity from Lemma is killed by specifying the orientation of
Witten’s bundle for a single real one- dlmenswnal moduli space: the additional requirement

is that if we orient ./\/l02 gy for m = (1,2) by o7, then the bundle W — ./\/l0 541} 18 oriented
so that sections that are positive with respect to the grading on the arc from 1 to xo.

5.6. Proof of Lemmas [5.14] and [5.15 We now return to the proofs of the two lemmas
from the previous section.

Proof of Lemmal5.1] We first treat the case

k1—1:Za,~, ]{JQZZCLQ.

i€l 1€ly

For convenience, assume that B = [k|, that B; = [k], and that 7 is the standard order.
We show that if j < ki, then up to rescaling by a positive function, the jth basis element
Yr® and that if § > ky, it

of 0™ converges to aglkl (a as one approaches a point in My
b b 1
This verification implies the lemma.

. iYiely3J
1

CONVEIEES O 0 1k, (a3} e1yij—hr+1
We assume that ki, ks > 0, since otherwise, the result is straightforward. Recall that a

vector u € Woka)s for ¥ € M;/T’ﬁ can be written as u = uy B uy with u; € W,,)y,.
1

To calculate a coordinate expression for w;, let {¥;}ic(0,1/2) be a path in Mg, (arat) such

that lim;_,o X; = X. One can model (3;);~¢ on the upper half-plane, preserving the complex
orientation, such that all markings of 35_; tend to 0 as ¢t — 0 but all markings of >3; tend to
finite, nonzero limits. The resulting marked upper half-plane is a model for ¥; in which x,
is mapped to the origin. If the vectors u; € Wy, converge to u, then their expressions in the
coordinates induced from the upper half-plane model converge to the coordinate expression
for u;. Moreover, as t — 0, the ratio between any two markings going to zero is bounded

away from zero, since otherwise, ¥ € Ml/r \ Ml/ "
Suppose, ﬁrst, that j > k1, so that 1 + 7 is a marked point of 5. Recall that

1

T

of = | (U™ e 1] &din &

i€l 1€[k]

and we have

T r+1 a; T —Lgr "
e NCVas | IS | (Gt GRS B

i€ls i€ka+1]

where Zr,1) = xp,. Then, by the discussion above,

(Hhe[lﬂ 1] (xﬂ(hﬂ) - xﬂ(h))) ' (o7
Hheh(\/_(zh - Zh))
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The function in the above by which we multiply (07)s, is positive. Moreover, for ¢ close
enough to zero, the ratios between any two factors T (441) — Trn) and z; — 25, are bounded,
hence they tend to zero uniformly. In fact, since ), 1, @n = k1 — 1, the expression

[ne 1 (@r(nrn) = Tz
[Thern, (V=1(zn — z1))

has a nonzero limit. Calculating the same expression but in a gauge-fixing for which the

points of Y5 approach zero as t — 0, while those of ¥; have distinct finite images, the same

argument shows that the limiting section, when projected to W,,,, has zero of order %
Suppose, now, that j < ki, so that 1+ j is a marked point of ¥;. Recall that

oft = | o I er T () ()

i€l 1€[k1]

Write xj, for the half-node of ;. Again, we work with the upper half-plane model for >,
where x5, is mapped to the origin and the orientation of the image of 9% agrees with the
standard real orientation of R. Consider again a path of smooth surfaces ¥;, where t € (0, %),
that converges to X. Choose 7; € I; and write

C.. = — (Zil - Zil)(’giZ - Zig)

711 - — —

v (2, — 2i) (20, — Zis)
1

This is a well-defined, positive function on M, (a , so it has a positive rth root; further-
sy 1--.,(11}

. . . : .. (S
more, it vanishes at Mpr. The same considerations as above reveal that the limit of %,

when projected on W,,, is nonzero, but its projection on W,, vanishes to order 1 — i /2 r.
Moreover, the projection of the limit on W,, has the zero profile of o7, hence they agree
up to multiplication by a real function, by degree reasons and involution invariance. This
function is positive, since both sections are positive on the arc from z; to z14;.
We now turn to the general case. Write
my = ka1 _1_21'6[1 aiy My = kZ_ZieIz ai.
r r

The proof is by induction on m = |my| + |ma|. The case m = 0 has been treated above.
Note that, perhaps by applying Observation [5.13] we may assume [y and I, are nonempty.
Suppose that the claim has been proven for m — 1, and assume my < 0.

Let B} O By be a set of size kl, = | Ba| + r, and write B’ = B, U BY,. Consider the graph I
obtained by attaching to I' an open vertex, connected to v, by an edge whose half-edge h
in vy has tw(h) = alt(h) = 0, and that has r boundary tails labeled by B’ \ B. Let «’ be
an order on B’ extending 7, such that the last elements are those of B\ B’ and are ordered
so that tails belonging to the same open vertex are labeled consecutively. Let I's be the
component of vy in detach,(I"). By the construction of the induced orientation, we have

’
5.9 o gy = Ol W0,

where o], is the orientation for the Witten bundle of the new component with respect to
the order induced from 7’ after putting the node as the first element. On the other hand,
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by the induction assumption, we have

! _ T ™
(5.9) o ’ﬂ’;; =005, X 00 {ha}UB), Iy

where 7}, is the restriction of s to Bj. By the construction of the induced orientation, this
time with respect to M(l)/{hgu By {ai}ier, We have

(5.10) Oﬂ—é’ﬂgé =0™ KXo, ;.
2

Putting these observations together, we see that

(5.11) 07T|/vt§ =055, 1, ¥ Og?{hQ}uBQ,Ig'

The case my > 0 is treated similarly to the above, so we omit it. The remaining case
is mo = 0. In this case, m; # 0, and the proof is similar, so we merely remark on the
changes. First, we work with the graph IV obtained from I" by attaching a new vertex with r
boundary tails, no internal tails, and one legal half-edge of twist » — 2 to v;. We choose the
order 7’ so that boundary tails of v; comes first and those of vy come last. If we let e; be the
edge of vy and ey the edge of the new vertex, then we compare the orientation expressions

for W — My, obtained in two ways. First, we induce orientation from W — M;l ., I 10
W — M;relr' via Ind, and then to W — M., to obtain (using the above notation)

! o rko T T /
0 |M§5 =€ (—1)"0m Ko™ XNo, .
: : : : : : : - -
Here, €, is the sign appearing from inducing the orientation from W — M, to W — My,

and (—1)"2 comes from the fact that, in 7/, the tails of the new vertex are not last, so
we have to perform a shift in 7’ in order to calculate the sign induced using Ind. Using
Lemma we see that the total added sign is (—1)"*2. Next, we induce orientation from

W — M;l v oW — ./\/ldSQF/, and then, via Ind, to W — M{,. The result is

Oﬂ/’M;;f = 60" Mol Ko™ =e(—1)"0™ Ko™ Ko/,
in which ¢, is the sign that appears from inducing the orientation to W — /V;;F, and the

sign (—1)™2 comes from changing the order of 0™ and o, ;. One of € or € is determined
by induction to be 1, so the other is also 1. The case my = 0 is thus proven. 0

Proof of Lemma[5.15. Write
0”|M§ = E?Gi}ielc,{ai}iaoﬂozo X o,e,
where 19 are the labels in the open part and I¢ in the closed part. By covariance, €las}

sercait;c;0.B
is independent of 7 and can be written as €{a,},_ ¢ {a;},.,0.18- We prove the lemma by showing

the following:
(1) €fai}, o faitic 0.8 = €fai}, o, Meaning that it depends only on {a;}icre.
(2) If I¢ = I, U I, where neither I; nor I, is empty and |I;| > 2, then

Haitiero = Haitier, Haitier,U{3 ¢, ai mod 1}
Thus, € is fully determined by its value on pairs of elements.
(3) If a+b < r, then €fqpy = 1.
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(4) €{a,btc(mod 7)}€{b,c} = €{atb(mod ),c} €{ab} and whena <r—1buta+b>r

€{a,b} = €{1,a+b—r}€{a,b} = €{1+a,b}€{1,a} = €{1+a,b}s
so that for r <a+b<2r —2, €qqp =0 € {1} is a constant.
(5) E{ai}iejc = 5mc({ai}iefc).

For the first item, it is enough to show that faitsesofaitc 0.8 = Sait,cjofail, 0B where

B C B and I° C I'°. To show this, consider the graph I' consisting of two open vertices, v°
and v’, and a closed vertex, where the open vertices are connected by an edge ¢’ whose half-
edge h in v° has tw(h) = alt(h) = 0, and the component of v° in detach./(I") is I'. Denote
the internal edge of I (and of I') by e. Let ©’ be an order extending 7 to B’ such that the
first elements are those of B. By abuse of notation, denote also by 7’ the restriction of =
to B’ \ B. We calculate the orientation of WW|a(., in two ways. First, by the definition of €
applied to the moduli space for the graph d.I" obtained by smoothing the edge ¢’ of IV, we
have

Oﬂ-ll 7 = €a;}. o {a;} , B’USJB/ {a;} X Oye.
Md g1\l 0% oL iEI,OU{EieIC a;( mod r)}

’
E,F

_1
Applying Lemma [5.14] to M 5, (a:} gives

ie]’OU{Zielc a; mod 1}

/

m N T i
0 |MF; o E{ai}ielc’{ai}ielol’B/OUO X o7, B 0ye.

_1
On the other hand, by Lemma |5.14] applied to M 5, (ai} , we have
iSOy’ 0
0 |M§;F/ - Oova{ai}iE[CU[O & 07)/ :

The claim now follows since, by the definition of €, we have

! . T 7’
0 ‘ - e{ai}i€1C7{ai}i6107Bo’l}O IX OUC IZ 0’Ul N

M,
For the second item, first note that if A is a connected, closed r-spin graph consisting of

two vertices vy and vy and an edge between them, then

07r|/VlA = 0’01 & 01}2’

where all the orientations in the equation are the canonical complex orientations. Consider
a graph IV with two internal closed vertices v; and vy and an open vertex v°, where v° is
connected to ve by es and vs is connected to vy by e;. We again calculate the orientation of
W — My in two ways. First, by the definition of e,

°W|M’§elr = €lai},e e 0750 X 04c,
where v° is the closed vertex of d,,I" and I are the labels of its tails. Then
0" jz = €{as}, 0 00 X0y, Kooy,
On the other hand, by the definition of €,
0’T|M§e2F = €las}icr, K07, Koy,
where v is the open vertex of d.,I" and I; are the labels of the tails on v;. Again by the
definition of €,

T - lis
0 |M§ = astier, E{ai}iEIQU{Ziejl a;( mod r)}Oyo X o, Xo,,,
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as claimed.

For the third item, we use Observation [4.9] Let I = [I] and B = [k] and assume that
k—1=3,ai Suppose I' C [I] is such that } ;. a; <r —1, and let I be the graph with
a closed vertex v° containing exactly the tails labeled I’ and an internal edge to the open
vertex v° with internal tails labeled by [I] \ I’ and boundary tails labeled [k]. We claim, in
this situation, that the two orientations °F|ﬂ? and og’k,{ai}ie[l]\,/u{z ai}icy O1 W — My agree
(where for convenience we omit the pullback maps from the notation).

To prove this claim, writea = ), a;, and let 0; = Ug,k,{ai}ie[l];j and o = Ug,k,{ai}ie[l]\I/U{a};j'
Then it is a direct computation to verify that, when ¥’ — ¥ € MF, the section (o;)ss con-
verges to a section (d;)s of Wy that is the pullback of ¢7. Indeed, denoting by zp the

half-node in the disk component of ¥, the projection to W, of the limit of (0;)s is

r

v _1<2h° — ’Zho)dw ‘ ap /T — r
< H 5’1}/ H 6h(}z+1)§1(1+]‘) ;

(W = zpo ) (w — Zpo) he[l\I’ helk]

as claimed. Thanks to the first item, this claim implies the third item.

The fourth item is a direct consequence of the second item, by partitioning the set {a, b, ¢}
in two different ways. Its second part uses the third item, applied twice to {1, a, b}.

The last item follows by induction on [/¢| > 2. The third and fourth items serve as the
base case. Suppose, then, that we have shown the claim for [I¢| = n, and let [I¢] =n + 1.
Write I¢ = I, U I, with I, = {a, b}, and write c = a + b mod r. Then

€lait,e e = Eaidien Uiek€as = (—1)7,
where the power p is given by
c+dai—(r—2)+(r—2—c—> a (modr))
T

+a+b—(r—2)—|—(r—2—a—b)(modr)’.

p

The induction now follows from the definition of m¢ and the two equations

T—2—C—Zai(modr)':r—2—2ai (mod r)’,

iely i€IC

c+(r—2—a—>)(modr) =r—2.

The “moreover” statement of the lemma is straightforward from the definitions. Indeed,
when k& = 1+ > a;, the orientation is defined without 0,1, so it does not change when
0,41 changes. For general k', the construction of orientations in Definition uses the

map indg_x, and it is immediate from the definition of indy_,;» that changing o0,,; changes
k’/_ZiEI a;—1

the orientation by a factor of (—1) v . The claim now follows from noting that
2ier @ . =m® ({a;}icsc) + Do ai (m T>}T 2igro @ :
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