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A charge-density-wave (CDW) phase is a macroscopic quantum
state consisting of a periodic modulation of the electronic charge den-
sity accompanied by a periodic distortion of the atomic lattice.1–5

Unconventional forms of superconductivity frequently emerge from
the CDW phase—hence, the fundamental interest. Early works on
CDW effects were performed with bulk samples, which have quasi-
one-dimensional (1D) crystal structures of strongly bound 1D atomic
chains that are weakly bound together by van der Waals forces. Many
spectacular observations were made—nonlinear transport, oscillating
electric current for time-independent voltages, effects analogous to the
Josephson effect observed in superconductors, giant dielectric
response, multi-stable conducting states, just to mention a few.1–8

As more of a rule than an exception, new properties, associated
with the broken-symmetry ground state of materials, offer application
opportunities. The most prominent examples are superconductivity
and various forms of magnetism. This will be the case for CDWs as
well. Novel properties, such as giant dielectric constants, and nonlinear
conductivity at low applied voltages—consequences of incommensu-
rate CDWs—are just two attributes.8 Additional ingredients for appli-
cations will emerge due to the low-dimensional character of the
materials involved. It is known that two-dimensional (2D)—or quasi-
2D—materials, following graphene, are, in general, emerging as fertile
hosts of application opportunities. This, coupled with the enhanced
response function associated with reduced dimensions, will ensure
that the broken symmetry states will be in the mix of application
opportunities. Another ingredient is the large variety of the ground
states, 1D, 2D, commensurate, incommensurate, eventually various
symmetries: the myriad of electron states, generating myriad of poten-
tially useful attributes. The need to operate at reduced temperatures—
where most of these broken symmetry states occur at present—makes
the application more cumbersome. However, just as in the case of

superconductors, eventually, we will possess a variety of materials
where such states will occur above room temperature (RT). The spin
density waves, the magnetic states closely related to CDWs, contribute
an additional exciting element to the physics and applications of den-
sity waves in solids.9

Recent years witnessed a rebirth of the CDW field driven by
research on layered quasi-2D van der Waals materials, where CDW
phases can manifest themselves at RT and above.10–18 The size and
geometry of quasi-2D CDW films provide new opportunities for
device fabrication. The interest in quasi-1D CDW materials has also
reemerged due to the possibility of investigating CDW effects in nano-
wires with small diameters, CDW effects above RT, photoconduction
and photo-controlled CDW transport, and recent findings of topologi-
cal nontriviality of many of such materials.19,20 The first reports of
depinning and sliding of CDWs in quasi-2D materials have emerged
suggesting some common features among CDW phenomena in
quasi-1D and quasi-2D systems.21,22 However, there is also an under-
standing of differences in physics governing CDW phases in material
systems of different dimensionalities and crystal structures.23,24 The
rebirth of the field of CDW materials and devices can also be viewed
in the context of 2D and 1D van der Waals materials research, which
has a broad base in physics and engineering communities.

An example of a new CDW material that recently attracted a lot
of attention is the 1T polymorph of TaS2—one of the quasi-2D van
der Waals materials of the transition-metal dichalcogenide group that
reveals several CDW phase transitions in the form of resistivity
changes and hysteresis.10–18 The transitions can be induced by temper-
ature, electric bias, and other stimuli. Two of the phase transitions in
1T-TaS2 are above RT—a feature, which opens the prospects of practi-
cal applications. Despite numerous open physics questions, the field of
CDW quantum materials is now evolving toward applied physics and
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engineering domains with application potential for amplifiers, detec-
tors, memory, optoelectronic devices, information processing, and
radiation-hard electronics.18,25–27

The above-mentioned developments motivated this Special
Topic issue on the CDW quantum materials and devices.28–45 The
topics covered in the issue include synthesis and characterization of
novel low-dimensional quasi-2D and quasi-1D CDW materials; phys-
ics of the CDW phase transitions and electron transport in nearly
commensurate and incommensurate CDW materials; topologically
nontrivial CDW states, effects of low-dimensionality, and stress; new
developments in CDW pinning; optical and electric switching of
CDW phases, photoconduction in CDW materials; “broad-band” and
“narrow-band” electronic noise in CDWmaterials; CDW phase inter-
action with light and other stimuli; advancements in the CDW theory;
as well as device applications of CDWmaterials.

This Special Topic issue includes a perspective on collective states
and CDWs in the transition metal trichalcogenides28 and original
papers that address the new developments in the theory of CDWs;29,30

physical properties of CDWs in quasi-2D and quasi-1D van der Waals
materials and the methods of CDW control with external perturba-
tions;31–38 the effects of mechanical stress on the CDW state;39–41 the
light and radio frequency radiation interaction with CDWs;42,43 mem-
ory and information processing applications of 1T-TaS2 CDW devi-
ces.44,45 The Special Topic invited and contributed papers emphasize
the applied physics aspect of the CDW field. One should keep in mind
that when the study describes the effect of external perturbations on
the CDW state—there is an application in mind. Multiple CDW
phases discovered in both quasi-1D and quasi-2D van der Waals
materials make practical applications of the CDW switching and hys-
teresis much more feasible.

In conclusion, this Special Topic issue provides an opportunity
for the readers to get a glimpse on the ongoing CDW research in terms
of a better understanding of fundamental physics and prospects of
practical electronic applications. While the research in the CDW field
is progressing fast, it is important to look back on the last few years
and summarize the most important findings. We hope this Special
Topic will be relevant and interesting for researchers both in and out-
side the field.
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