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ABSTRACT
Determination of a magnetic field structure on a neutron star (NS) surface is an important problem of a modern astrophysics.
In a presence of strong magnetic fields, a thermal conductivity of a degenerate matter is anisotropic. In this paper, we present
3D anisotropic heat transfer simulations in outer layers of magnetized NSs, and construct synthetic thermal light curves. We
have used a different from previous works tensorial thermal conductivity coefficient of electrons, derived from the analytical
solution of the Boltzmann equation by the Chapman–Enskog method. We have obtained an NS surface temperature distribution
in presence of dipole-plus-quadrupole magnetic fields. We consider a case, in which magnetic axes of a dipole and quadrupole
components of the magnetic field are not aligned. To examine observational manifestations of such fields, we have generated
thermal light curves for the obtained temperature distributions using a composite blackbody model. It is shown that the simplest
(only zero-order spherical function in quadrupole component) non-coaxial dipole-plus-quadrupole magnetic field distribution
can significantly affect the thermal light curves, making pulse profiles non-symmetric and amplifying pulsations in comparison
to the pure-dipolar field.
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1 IN T RO D U C T I O N

A strength of magnetic fields on the neutron star (NS) surface may
reach ∼1012−13 and 1015 G in magnetars. One of possible ways
to observe surface magnetic fields is an observation of a thermal
radiation in the soft X-ray band (e.g. Pons et al. 2002; Page,
Geppert & Weber 2006; Haberl 2007). X-ray observatories, such
as ROSAT, Chandra, and XMM–Newton, have detected thermally
emitting compact objects. Seven nearby radio-silent XDINSs (X-
ray Dim Isolated Neutron Star) are called ‘magnificent seven’ (see
e.g. Turolla 2009 for a review). Periodic changes in spectra of such
NSs may indicate to non-uniform temperature distributions on their
surfaces. Such heterogeneities are determined by an anisotropic
thermal conductivity of degenerate matter in presence of a strong
magnetic field (e.g. Bisnovatyi-Kogan, Kulikov & Chechetkin 1976).
Outer layers of an NS consist of plasma with degenerate electrons,
and non-degenerate non-relativistic nuclei. The pressure is deter-
mined mostly by the electrons, and the matter can form a state of
the Coulomb crystal or liquid, and a heat transfers mostly by the
electrons as well. The thermal conductivity is suppressed across the
magnetic field lines. A degree of its suppression across the magnetic
field is determined by the so-called magnetization parameter ωτ ,
where τ is the average time between electron–nuclei collisions,
where ω = eB/m∗

ec is the electron cyclotron plasma frequency, with
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m∗
e = me

√
1 + pfe

2/m2
ec

2 as an effective relativistic electron mass,
and pfe = �(3π2ne)1/3 as an electron Fermi momentum, e as the
electron charge, c as the speed of light, and � as the reduced Planck
constant. A thermal conductivity tensor, as well as other kinetic
coefficients, for the plasma with degenerate electrons are derived in
a series of papers by Bisnovatyi-Kogan & Glushikhina (2018a,b) and
Glushikhina (2020), from the solution of the Boltzmann equation by
the Chapman–Enskog method. The degree of the heat flux depression
across the field is stronger, than in previous works (e.g. Flowers &
Itoh 1976; Urpin & Yakovlev 1980), where a ratio between heat
conductivities along and across the magnetic field lines is connected
by the relation κ‖

κ⊥ = 1 + (ωτ )2.
Heat transfer processes in the outer layers of the NS with the

coaxial dipolar and quadrupolar fields were considered earlier in
the paper Kondratyev et al. (2020), hereinafter referred as Paper I,
where the model of the magnetized envelope and used numerical
technique are described in details. In this paper, we obtain stationary
temperature distribution in outer layers of NSs in the presence of
dipole and quadrupole fields, whose axes are not aligned. We solved
numerically a three-dimensional heat transfer equation in the NS
crust for the densities ρ = 1010 to 2 × 1014 g cm−3 using our Ts−Tb

relationship for the outer magnetized envelope, which connects
temperature Tb on the ρ = 1010 g cm−3 with the temperature Ts on the
NS surface, similarly to Gudmundsson, Pethick & Epstein (1983),
Potekhin & Yakovlev (2001), and Kondratyev et al. (2020). We
have built ‘Ts−Tb’ relationship adopting thermal conductivities from
Bisnovatyi-Kogan & Glushikhina (2018a) in Paper I. In a 2D case, a
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problem about finding a stationary solution of the NS temperature is
was studied by several authors Geppert, Kuker & Page (2004), Perez-
Azorin, Miralles & Pons (2006), Geppert, Kuker & Page (2006), and
a 2D NS cooling problem was considered by Aguilera, Pons &
Miralles (2008), Pons, Miralles & Geppert (2009), and Vigano et al.
(2013) (see also a review by Potekhin, Pons & Page 2015). In this
work, we restrict ourselves to consideration of stationary temperature
distributions. We mention also a recent review Pons & Vigano (2019)
on numerical simulations of the magnetic field and thermal evolution
of an isolated NS.

The paper is organized as follows. In second part of this work,
we review a basic physical input, such as properties of heat transfer,
magnetic field configurations, and equation of state. In the third
part, we briefly discuss a thermal structure of a magnetized outer
envelope. In the fourth part, a formulation of the boundary problem
for the 3D heat transfer equation is given. In the fifth part, we present
the results about the temperature distributions, and thermal light
curves. In appendices, we discuss radiative opacities, and numerical
algorithm used in the calculations.

2 PH Y S I C A L I N P U T

2.1 Heat transfer in presence of a magnetic field

The temperature distribution is determined by the heat transfer
equation

C
∂T

∂t
= ∇ · κ̂ · ∇T + f , (1)

where C is a heat capacity, κ̂ is a thermal conductivity tensor, f is
defined by heat sources and sinks (Joule heating, neutrino emission,
etc.). We look for a stationary solution ( ∂T

∂t
= 0) in absence of sources

and sinks, with f = 0.
The thermal conductivity tensor κ̂ for strongly degenerate elec-

trons in the magnetic field was obtained by Bisnovatyi-Kogan &
Glushikhina (2018a) using the Chapman–Enskog method for the
Boltzmann equation. This tensor takes into account heat fluxes along
and across the magnetic field as well as the Hall heat flux. In the
Cartesian coordinates, it is written as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κij = k2
B

T ne

m∗
e

τ
(
κ (1)δij + κ (2)εijk

Bk

B
+ κ (3) BiBj

B2

)
κ (1) = 5π2

6

(
1

1+(ωτ )2 − 6
5

(ωτ )2

(1+(ωτ )2)2

)
κ (2) = − 4π2

3 ωτ
(

1
1+(ωτ )2 − 3

4
(ωτ )2

(1+(ωτ )2)2

)
κ (3) = 5π2

6 (ωτ )2
(

1
1+(ωτ )2 + 6

5
1

(1+(ωτ )2)2

)
, (2)

where ne = ρZ

Amu
is an electron number density, Z is the nucleus

(ion) charge number, and A is the mass number; τ = 3
32π2

h3

m∗
e Ze4�

is an average time between electron–nuclei collisions, kB is the
Boltzmann constant, h is the Planck constant, � is the Coulomb
logarithm (see e.g. Braginskii 1957), we adopt its value from the
paper by Yakovlev & Urpin (1980). Parameter ωτ changes drastically
in the crust and the envelope of the NS. Its value is close to unity at
ρ ∼ 1010 g cm−3, B ∼ 1013 G, and approximately is changing ωτ ∼
B/ρ2/3 for the ultrarelativistic degenerate electron gas in the crust.
As it follows from (2), the heat conductivity coefficients across and
along the magnetic field may be written as following:⎧⎨
⎩

κe⊥ = k2
BT ne

m∗
e

τκ (1),

κe‖ = k2
BT ne

m∗
e

τ
(
κ (1) + κ (3)

)
.

(3)

Note here one important detail. The value of a thermal conductivity
of a strongly degenerate electron gas along the magnetic field κ ′

e‖,

from papers by Flowers & Itoh (1976) and Urpin & Yakovlev (1980),
has a different numerical coefficient from (3) for κe�:

κ ′
e‖ = π2

3

k2
BT ne

m∗
e

τ, (4)

which is 2.5 times less than in (2). In a large amount of astrophysical
studies, electron thermal conductivity coefficient is used in that
setting. Expression (4) is used for the thermal electron conductivity
in metals in laboratory, in the condition of zero electron diffusion
velocity (electrical current).

This discrepancy can be shown clear for the thermal conduction
coefficient in the absence of a magnetic field, as well as the one along
the magnetic field. As it follows from the Boltzmann equation in the
Lorentz approximation, the heat flux q, and the average electron
velocity 〈ve〉 are defined as (e.g. Bisnovatyi-Kogan 2001)

q = −640kB

�

me(kBT )4

nNZ2e4h3

(
G5 − 1

2

G5/2

G3/2
G4

)
· ∇T

− 128

�

me(kBT )5

nNZ2e4h3

G5/2

G3/2
G4 · de

〈ve〉 = −128kB

�

me(kBT )3

nNneZ2e4h3

(
G4 − 5

8

G5/2

G3/2
G3

)
· ∇T

− 32

�

me(kBT )4

nNneZ2e4h3

G5/2

G3/2
G3 · de, (5)

where nN is a nuclei number density, a vector de determines a diffusive
flux (see Bisnovatyi-Kogan & Glushikhina 2018b). A function Gn =
Gn(x0) is the Fermi function, x0 = p2

fe
2mekBT

.
In laboratory conditions, when the electrical conductivity is small,

and electrical currents are damped rapidly, so that the current density
je ∼ 〈ve〉 = 0 in (5). This simplification leads to linear connection
between the diffusion vector de and the temperature gradient. It leads
to expression (4), which also follows from an approximate theory of
heat conductivity and diffusion, based on the mean free path. In a
more general case in the presence of the magnetic field, it leads
to the simple dependence of the thermal conductivity tensor on the
magnetization parameter.

In outer layers of magnetized NSs, the electric currents are substan-
tial, and thermoelectric effects take place Blandford, Applegate &
Hernquist (1983), so that the average velocity is not equal to zero
any more, and heat transfer should be considered together with
diffusion (see Bisnovatyi-Kogan & Glushikhina 2018b for details).
The expression for the heat flux we use is connected only with a
temperature gradient, when the diffusion vector de = 0. This approach
is approximate as well, and a consistent consideration of thermoelec-
tric processes has to be done. Nevertheless, our axisymmetric heat
transfer simulations from Paper I are in good agreement with the
ones by Geppert et al. (2004) for core-dipolar magnetic fields.

2.2 Magnetic field configuration

We consider dipole and quadrupole configurations of the magnetic
field, which are defined by the following formulae. For the dipole we
have (e.g. Landau & Lifshitz 1988)

B = BpdR
3
NS

2

3(d · r)r − dr2

r5
(6)

where Bpd is the value of a magnetic induction at the magnetic pole
on the NS surface, d is a unit vector in the direction of the magnetic
dipole, and RNS is an NS radius. For the quadrupole configuration,
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with a quadrupole momentum in the direction of z axis, we have

B = BpqR
4
NS

(
r2 − 5z2

2r7
r − ezz

r5

)
, (7)

where ez is a unit vector along a z-axis. In the subsequent consid-
eration, we consider a combination of these two field configuration,
with different values of Bpd and Bpq, and different angles between
vectors d and ez, in the envelope, and in the crust of NS.

2.3 Equation of state and envelope model

Density appears explicitly in the thermal conductivity tensor (2). We
have built an NS model by solving Tolman–Oppenheimer–Volkoff
equations of the hydrostatic equilibrium to get a density profile in
the crust. For the NS interior, we used moderately stiff equation of
state (EOS) SLy4 of Douchin & Haensel (2001), which is based
on microscopic calculations with an effective nuclear potential from
Chabanat et al. (1997). The used EOS describes consistently both
the crust and the core. We have chosen central density ρc = 1 ×
1015 g cm−3. The NS mass is MNS = 1.42 M�, where M� is the
Solar mass, the inner and outer radii of the NS crust are Rin =
10.59 km at ρ = ρ in = 2 × 1014 g cm−3 and Rout = RNS = 11.62 km
at ρ = 1010 g cm−3, respectively. We have taken into account a
neutronization of the matter in the crust with effective A and Z.
Those values are taken from Baym, Bethe & Pethick (1971b) for the
density ρ < ρdrip and from Baym, Pethick & Sutherland (1971a) for
ρ > ρdrip, where ρdrip = 4 × 1011g cm−3 is the neutron drip density.

The outer envelope of the NS is a thin near-surface layer (∼100 m
in depth) of plasma, which extends from the NS crust to the
radiative surface. It consists of partially degenerate electrons and
non-degenerate iron nuclei. We have neglected the effects of non-
ideality and quantizing magnetic fields on the EOS and assumed ideal
fully ionized plasma of iron (Z = 26, A = 56) with non-degenerate
non-relativistic nuclei, and degenerate relativistic electrons:

P = P (N)
n + P

(e)
d ,

where P (N)
n = nNkBT is an ion pressure, indices ‘n’, ‘d’ correspond

to non-degenerate and degenerate gases, respectively. The pressure
of the electrons at arbitrary degree of the degeneracy and relativism
can be written in terms of Fermi–Dirac integrals:

P
(e)
d = (2me)3/2

3π2�3β5/2

(
I3/2(χ, τ ) + τ

2
I5/2(χ, τ )

)
, (8)

where β = (kBT)−1, χ = βμ
(e)
id is the electron chemical potential,

normalized on kBT, τ = (βmec2)−1, and Fermi–Dirac integrals are
defined as follows:

Iν(χ, τ ) =
∫ ∞

0

uν
√

1 + τu/2

exp(u − χ ) + 1
du, (9)

here u = βmec
2(
√

1 + p2c2

m2
ec4 − 1), and p is an electron momentum.

We used the analytical approximations for the Fermi–Dirac integrals
from Blinnikov et al. (1996). For the electron chemical potential χ ,
we use a non-relativistic analytical approximation from Antia (1993)
with relativistic corrections adopted from Chabrier & Potekhin
(1998).

In a thin envelope, the radial temperature gradient and the radial
heat flux are much larger than the azimuthal ones. Therefore, the heat
flux approximately is assumed to be only radial through the envelope.
Such approach leads to the local, one-dimensional plane-parallel
model of the envelope thermal structure. Thus, the temperature
distribution in an envelope region can be calculated separately from
the crust. To solve the problem self-consistently, it is necessary to

find a common solution for the envelope and the crust, for a given
temperature of the isothermal NS core my means, suggested by
Geppert et al. (2004). The first step for finding this self-consistent
solution is a calculation of the relation between a surface temperature
Ts, and a temperature at the bottom of the envelope Tb with the
fixed density ρb. This relation is constructed by solution of local
one-dimensional heat transfer equation, with different microphysics
input. Due to anisotropic heat transfer in presence of a strong
magnetic field, the ‘Ts−Tb’ relationship is a variable over the NS
surface, depending on the magnetic field distribution. For non-
magnetized NSs, ‘Ts−Tb’ relationships were constructed in e.g.
Gudmundsson et al. (1983) and Potekhin, Chabrier & Yakovlev
(1997), and in Potekhin & Yakovlev (2001), Potekhin, Chabrier &
Yakovlev (2007), and Pons et al. (2009) they were calculated for
magnetized NSs (in the latter paper in 2D approach).

The thermal structure equation for the envelope reads (e.g. Gud-
mundsson et al. 1983; Potekhin & Yakovlev 2001):

dT

dP
= 3K

16gs

T 4
s

T 3
, (10)

where Ts is a local surface temperature, K = K(B, θB, T, ρ) is
an effective opacity, θB is a magnetic field inclination angle to the
normal of the surface, gs = GMNS/(R2

NS

√
1 − rg/RNS) is the surface

gravity acceleration, with approximate account of GR effects (e.g.
Gudmundsson et al. 1983; Van Riper 1988), G is the gravitational
constant, and rg is the NS gravitational radius.

The heat flux is determined by a sum of two processes: radiative
and electron heat transfer. For the radiative opacity, we have taken
into account free–free and bound–free transitions as well as an elec-
tron Thompson scattering for both non-degenerate and degenerate
electrons. More detailed discussion can be found in Appendix A.
The electron opacity can be derived from an analogy with a radiative
heat transfer:

Ke = 16σT 3

3κeρ
. (11)

Here, κe = κe�cos 2θB + κe⊥sin 2θB is a local effective value of the
thermal conductivity coefficient (3) for degenerate electrons.

Equation (10) is solved as a Cauchy problem for the given values
of surface temperature Ts and surface pressure Ps. The latter is
calculated from Eddington approximation Ps ≈ 2gs

3K(B,θB,Ts,ρs) (see
Potekhin et al. 1997). We used the tabulated Ts−Tb relationship for
ρb = 1010 g cm−3 to implement it in a radiative outer boundary
condition for the heat transfer equation in the crust, which was
presented and discussed in detail in Paper I.

3 A B O U N DA RY-VA L U E PRO B L E M

After a fast stage of neutrino cooling, the core of the NS cools down
slowly, and temperature distribution may be considered as a station-
ary one. So that, a thermal evolution of the NS could be considered as
a sequence of cooling models with a stationary temperature distribu-
tion over the NS. The temperature is supposed to be constant through
the core Tcore, because of a large value of the heat conductivity, and
to be equal to the value on the inner radius of the crust.

In a thin envelope, the radial temperature gradient and the radial
heat flux are much larger than the azimuthal ones, which are not
considered subsequently any more. In a thin low-mass envelope,
the local heat flux Fs, from the NS unit surface, is supposed to be
constant along the radius, varying only over the surface. The flux
is also supposed to have a blackbody spectrum, and follows the
Stephan–Boltzmann law Fs(θ, φ) = σT 4

s , with Ts(θ , φ) being the
local surface NS temperature.
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For a given core temperature Tcore, the way of construction of
thermal NS model, and its surface temperature Ts(θ , φ) may be
summarized in the following way.

1. Take a trial value of the surface temperature T (1)
s , which

determines uniquely the surface parameters, and local heat flux F (1)
s .

Using these parameters as boundary conditions for solution of the
heat conduction equation in the envelope, we obtain the value of the
temperature at the bottom of the envelope T

(1)
b (θ, φ), and find Ts–Tb

relationship.
2. The value is given for the core temperature Tcore which is equal

to the temperature at the inner crust with r = Rin, and r = Rout, as
inner and outer radii of the crust. The local flux distribution F (1)

s (θ, φ)
at the outer crust boundary is taken from the envelope structure. The
conditions at the inner and outer boundaries are

Tin = Tcore, κ(B, ρ, T )∇rT |out + Fs = 0, (12)

In the spherical layer Rin ≤ r ≤ Rout, we solve the boundary-value
problem for the heat transfer equation

∇ · κ(B, ρ, T ) · ∇T = 0 (13)

with the boundary conditions (12). We calculate 3D model of the
magnetized crust, and obtain distribution of the temperature on the
outer crust boundary T (1)

cr (θ, φ).
3. In the self-consistent model, the temperature at the inner

boundary of the envelope should coincide with the temperature at the
outer boundary of the crust, so two distributions should coincide

Tb(θ, φ) = Tcr(θ, φ). (14)

The iterations by Newton method are performed until the equality
T

(i)
b (θ, φ) = T (i)

cr (θ, φ) will be fulfilled with a necessary precision.
This procedure should be performed for each magnetic field distri-
bution under investigation.

A heat transfer problem in the crust of a magnetized NS was
solved numerically with our extension of the basic operators method
(Ardeljan & Kosmachevskii 1995). 3D mesh analogues of main
differential operators on an unstructured tetrahedral mesh were
derived by Kondratyev & Moiseenko (2019); numerical method for
obtaining a self-consistent solution of the heat transfer equation in
the crust is developed in Paper I; and the numerical implementation
of the method is briefly discussed in Appendix B of this paper.

4 R ESULTS

4.1 Temperature distributions

In Paper I, we have calculated a temperature in the NS crust and
on its surface for pure-dipolar, pure-quadrupolar magnetic fields
and their coaxial superpositions. In this work, we have obtained
the temperature distributions for non-coaxial superpositions of core-
dipolar and quadrupolar fields and have built thermal blackbody light
curves, which correspond to the obtained temperature distributions.
Because there is no physical constraint, which prohibit the rotation
of one field multipole from another one, inclusion of a quadrupolar
component in addition to the dipolar one leads us to consideration
of two more physical parameters, which affect the spatial temper-
ature distribution: an angle between the dipolar and quadrupolar
components �b and a relation between the polar inductions of the
components β = Bpq/Bpd, which determines the ‘strength’ of 3D
effects. The first (and obvious) conclusion is, that if β � 1, then the
temperature approaches to a pure-dipolar configuration, and when
β � 1, a pure-quadrupolar one is observable.

In Fig. 1, temperature distribution in the NS crust is shown for
magnetic the dipole and quadrupole, which are rotated on an angle

Figure 1. Temperature distribution (in units of 106 K) in the NS crust for
quadrupolar and dipolar magnetic fields with polar inductions Bpq = 5 ×
1012 G and Bpd = 1 × 1013 G correspondingly (β = 0.5). Magnetic axes are
rotated from each other to the angle �b = π /4, hereinafter a quadrupolar axis
if fixed along Z-axis, and dipolar component is rotated on plots. The core
temperature is Tcore = 2 × 108 K. Upper picture – cross-section in Z–Y plane
(the thickness of the crust is four times stretched for better visualization),
lower one – the NS crust surface.

�b = π /4 from each other, and the quadrupolar strength at the
quadrupole magnetic pole is a half from the dipolar one, β = 0.5.
The crustal temperature distribution is inverted in comparison to the
surface one, i.e. the crust temperature is smaller in regions, where
the magnetic field is at least radial, and larger in the regions with
an almost tangential field. The cause is as follows. The heat flux is
suppressed most crucially in the envelope, where the magnetization
parameter ωτ � 1. The suppressed heat flux from the envelope in
the NS regions with the tangential field (equatorial regions) causes
decrease of a temperature gradient in the crust, so that a variation of
the crust temperature on the magnetic poles, where the field lines are
radial, is higher, than on the equator. A temperature variation in the
crust is less than 20 per cent of its value.

The surface temperature distribution, which corresponds to the
crustal temperature from Fig. 1, is presented in Fig. 2 (upper panel) to-
gether with the surface temperature of the NS without the quadrupole
field (lower panel). A minimal temperature is approximately 3 ×
105 K, and a maximum one is near 1.6 × 106 K. In a pure-dipole
case, the surface temperature distribution is represented by two
hot polar caps and a cold ring-shaped ‘belt’. A ‘switching on’ of
the quadrupolar field effects on the heat transfer as follows. If the
parameters β < ∼1 and �b �= 0, the belt shape becomes irregular,
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Figure 2. Surface temperature distribution (in units of 106 K) for the same
parameters as in Fig. 1 (upper panel) and for the NS without the quadrupolar
field (lower panel).

and also the belt is broaden from the one side in comparison to
the pure-dipolar configuration. Hot polar caps are not located in
antipodal positions in such case, and they have different sizes as
well, resembling RX J0720.4−3125 (Haberl 2007). The presence of
the quadrupolar field decreases slightly an effective temperature of
the NS. Thus, the cold region is larger, than in a pure-dipolar case.

In Fig. 3, the temperature distributions are shown for the different
β and �b as well as for different core temperatures Tcore, which
correspond to various NS ages. With increasing of the quadrupole
field, the second belt appears, when β ∼ 0.9 for the moderate angles
�b ∼π /6, and on practice, when β � 1.5, the temperature approaches
to the pure-quadrupolar one. For the angles �b �π /2 the shape of the
belt takes away more and more from a circular one with increasing
of β, getting a shape of a ‘jaw’, and for β � 1.5 (1.5 for �b = π /3)
it transforms into the shape of two belts. Also we note here, that our
numerical solution is even with respect to a secant plane that passes
through the dipolar and quadrupolar axes.

According to 2D cooling calculations by Aguilera et al. (2008),
Tcore = 2 × 108 and 5 × 107K correspond to NS ages ∼500 and
∼104−105 yr, while Tcore = 1 × 109 K corresponds to the NS age
∼1 yr, due to NS cooling by neutrinos emitted from the NS core,
which do not disturb the radiation flux. Neutrino emitted from the
crust itself could change its temperature distribution, and influence
the thermal flux. Our calculations with the highest core temperature
(Tcore = 1 × 109 K) should be considered as model example, because
we have not included neutrino losses in the crust, although they

Figure 3. Surface temperature distributions (in units of 106 K) with param-
eters β = 0.75, Tcore = 5 × 107 K and �b = π /3 (upper panel) and β = 1,
Tcore = 5 × 107 K and �b = π /6 (lower panel). Dipolar component Bpd =
1 × 1013 in both cases.

are not-negligible. Nevertheless, the surface temperature distribution
will not be distorted significantly. The neutrino losses in the crust at
such temperatures may cause some redistribution of the crustal tem-
perature in accordance with inclusion of different cooling processes
on ρ−T plane, but the part of the neutrino flux emitted from the
crust is much smaller than the NS radiation flux, so that the surface
temperature is not affected significantly by neutrinos as well as the
shape of its thermal light curve.

During a cooling of the NS, the surface temperature anisotropy
is amplified. Thus, when the core temperature Tcore = 1 × 109 K, a
ratio between the hottest and coldest temperatures is Th/Tc ∼ 2.5,
and when the core temperature cools to 5 × 107 K, it equals to
Th/Tc ∼ 7. The magnetization parameter ωτ is weakly temperature-
independent, and thus we have obtained in our assumptions, that
the temperature distributions have the same topology during an NS
thermal evolution, if the magnetic dissipation effects are not included.

4.2 Observational manifestations

A modelling of thermal light curves from the rotating magnetized
NSs (particularly from XDINSs and X-ray pulsars) is a pretty studied
topic. A thermal emission from compact object was considered by a
long list of authors (e.g. by Greenstein & Hartke 1983 without general
relativity, and by Pechenik, Ftaclas & Cohen 1983; Page 1995;
Page & Sarmiento 1996; Zane & Turolla 2006; Turolla & Nobili 2013
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with taking into account light bending effects). We have examined
observational manifestations from the obtained surface temperature
distributions using a simple composite blackbody model. The thermal
energy flux is defined in a Newtonian space–time as follows:

dF = 2π

c2h3

R2
NS

D2

[ ∫
cos θ>0

dS cos θIE(E, T (θ, ϕ))

]

× E3 exp−NH σ (E) A(E) dE dt, (15)

where IE = (
exp

(
E

kBT

) − 1
)−1

is Planck distribution function, E is a
photon energy, θ and ϕ are azimuth and polar angles correspondingly,
D is a distance from the NS to an observer, and A(E) is an effective
detector area. We do not consider a detector response in this paper and
assume, that the detector has a unit area. An interstellar absorption
is taken into account by the term exp[−NHσ (E)], where NH is a
hydrogen column density between the NS and observer, and σ (E) is
an effective absorption cross-section (Morris & McCammon 1983).
Throughout this part of our work, we consider NH = 1020 cm−2. An
expression in square brackets in (15) has to be integrated over the
surface of a visible hemisphere, and after that dF is integrated over
the energies of the photons to obtain a phase-dependent light curve.

General relativistic effects are sufficient for the compact objects.
A rigorous relativistic theory of a light propagation near the compact
object was developed by Pechenik et al. (1983). In real conditions of
the NS, the effects of the general relativity are pronounced mostly
by a redshift of the photon energy and a deviation of the photon
trajectory from the straight line. The latter effect manifests itself
as follows. The ray, which leaves the surface with an angle θ

′
to

the normal to the NS surface, will be bend, and at the infinity this
angle will be θ > θ

′
for the observer. Thus, more than a hemisphere

is observable, and an effective visible NS radius is more, than the
exact one. A simple, but good approximate formula for the relation
between θ and θ

′
was proposed by Beloborodov (2002), and we use

it in further calculations:

1 − cos θ ′ = (1 − cos θ )(1 − xg), (16)

where xg = 2GMNS
c2RNS

. With the inclusion of the described effects in the
considered model, the energy flux is written as follows:

dF = 2π

c2h3

R2
NS∞
D2

[ ∫
cos θ ′>0

dS cos θ ′IE(E∞(1 − xg)−1/2, T )

]

× E3
∞ exp−NHσ (E∞) A(E∞) dE∞ dt∞. (17)

In the formula above, E∞ = E
√

1 − xg is a redshifted energy, an
effective NS radius is equal to RNS∞ = RNS/

√
1 − xg, and term

dt∞ = dt/
√

1 − xg corresponds to a time dilation near the NS. The
value of θ

′
is obtained from (16), and the integration of the expression

in the square brackets should be done over the visible part of the
surface. We consider an energy band of the XMM–Newton EPIC-pn
detector, so that Emin = 0.15 keV, and Emax = 1.5 keV.

During observation of the thermal emission from the rotating
magnetized NS, pulsations of the visible flux arise. To measure their
strength, let us introduce a so-called pulsed fraction (PF):

PF = Fmax − Fmin

Fmax + Fmin
, (18)

where Fmax and Fmin are the values of the maximal and minimum
fluxes of energy (the fluxes of photon counts may be considered for
the X-ray sources as well).

In the absence of the quadrupolar component, the pulse profile is
symmetric and sinusoidal, and light curve can be either two-peaked
(both magnetic poles are visible) or one-peaked (one precessing pole

is visible). Also we introduce here two angles, which characterize a
light curve: an angle between the rotational an the dipolar axes αd,
and an angle between the rotational axis and a line of sight of the
observer ζ . It was noticed by Greenstein & Hartke (1983), that for
pure-dipolar magnetic field configurations, when αd + ζ ≤ π /2, then
the light curve is one-peaked, and else, it is two-peaked. General
relativistic effects make this conclusion more strict (Page 1995).
Inclusion of the quadrupolar component adds one more degree of
freedom in a space of positions for the axes, which characterize the
light curve, so it makes its analysis much more complicated. Thus, we
consider only two limits: the first case (Case 1) is when all three axes
– rotational, dipolar, and quadrupolar – are in the same plane, and the
second one (Case 2) is when both dipolar and quadrupolar axes are
on the line of sight of the observer in some moments of time during
rotational period, so that αd = αq, where αq is an angle between the
rotational and quadrupolar axes (e.g. when magnetic axes are in the
equatorial plane with respect to the rotational one). Also, we restrict
ourselves with a constraint αd = ζ , unless otherwise specified.

In Fig. 4, the light curves for the orthogonal rotator (αd = ζ =
π /2) are presented for the different temperature distributions from
the previous subsection for the both limits for the positions of the
axes and for the pure-dipolar magnetic field configurations (black
lines). When all three axes are in the same plane (blue lines, Case
1), the main indicator of an existence of the quadrupolar field is as
follows. The light curve changes slightly from the dipolar ones in the
absence of the second cold belt in the temperature distribution (the
first two pictures). One peak is tighten, and the second one is broaden
in comparison to the pure-dipolar case. PF decreases slightly, e.g. it
is 5.1 per cent for the pure-dipole field and PF = 4.2 per cent for
the first picture in Fig. 4, then Tcore = 5 × 107 K. Table 1 gives
information about the maximum pulsed fractions for the different
light curves. Pulse profiles are symmetric in the Case 1, because of the
parity of the solution with respect to the secant plane, which is built
on the magnetic axes, so that the light curve has a mirror symmetry
at a half period. The third picture from Fig. 4 corresponds to the
temperature distribution, where the second cold belt appeared, so
that an additional lay-down is observable instead of the second peak.

More interesting situation is provided for the Case 2 (red lines):
the symmetry of the pulse profiles is broken, and light curves can take
various shapes. Moreover, the pulsations are amplified sufficiently,
from 4 per cent up to 17 per cent on the upper panel of Fig. 4. Perhaps,
a red line on this picture from Fig. 4 may describe qualitatively
the light curve from RX J0420.0−5022 (Haberl 2004). Its PF =
14.2 per cent, and a pulse shape is close to the one observed by the
XMM–Newton. Also, it should be mentioned that all the synthesized
light curves have become one-peaked due to the effects of general
relativity. A dashed line on the middle panel of Fig. 4 correspond to
the light curve in a flat space–time, and it is two-peaked. The light
bending effects have ‘blurred’ the pulse profile, making two peaks
merge into one.

We have considered the effect of the non-coaxial quadrupolar
field on the one-peaked light curves, i.e. on the curves, on which
only one polar cap is visible for the pure-dipolar magnetic field. We
still consider two limits for the positions of the quadrupolar axis in
the one-peaked case as well as for two peaked light curves. In Fig. 5,
the light curves for Case 1 are presented for different positions of
the quadrupolar field. In comparison to the light curve in the pure-
dipolar case (black line), a presence of the quadrupole requires to
consider more cases of position of the observer and the quadrupole.
The quadrupolar field makes one hot polar cap ‘smaller’ (those one,
where dipolar field lines directed from the NS surface to the core),
while the second cap remains at least the same or becomes larger
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Figure 4. Light curves for the different Tcore, β, and �b (ones from Figs 2
and 3) for an orthogonal rotator (αd = ζ = π /2). Blue lines correspond to the
case, when rotational, dipolar, and quadrupolar axes are in the same plane,
red ones correspond to the case, when αq = αd, so both magnetic axes are
visible for the observer. Black lines correspond to the light curves from the
NS with a purely dipolar field. A dashed black line is the light curve from the
Case 2, but without taking into account light bending effects.

Table 1. PFs (per cent) that correspond the two-peaked light curves from
Fig. 4.

β = 0.75 β = 0.50 β = 1.00
�b = 60◦ �b = 45◦ �b = 30◦

Dipole 5.1 4.2 3.1
Case 1 4.2 4.9 6.8
Case 2 14.2 17.2 9.1

due to a shift of a belt (Page & Sarmiento 1996; Paper I) and its
curvature, so that the caps are distinguishable, one from each other.
If �b = 0, then only two types of the light curves describe emission
from poles, if αd = ζ , and when the angle �b between components
is not equal to zero, the position of the quadrupole with respect to
the dipole and the observer leads to four different types of the light
curves. All the synthesized light curves are symmetric, and PF can
be amplified up to 14.7 per cent for the smaller cap in comparison
to the PF = 4.2 per cent for the pure dipole, and the larger cap is

Figure 5. One-peaked light curves for the case, when all axes are in the
same plane for the different positions of the magnetic component to each
other. Physical parameters are: Tcore = 2 × 108 K, Bpd = 1013G, β = 0.50,
and �b = 45◦ (Fig. 2). Black lines correspond to the pure-dipole. Coloured
lines correspond to the different positions of the quadrupolar component: blue
and yellow lines correspond to the smaller polar cap, while red and violet
ones show the light curves for the larger polar cap.

at least indistinguishable for the observer from the pure-dipolar one
by its thermal emission. Moreover, PF can be amplified by different
physical processes (e.g. by inclusion of an absorption line in the
spectrum, see review by Turolla (2009) about XDINSs as well as
a paper by Rigoselli et al. (2019), where the recently discovered
and fitted thermal component of PSR J0726−2612 shows strong
pulsations), so that an absence of quadrupolar features on the curves
may make their analysis more difficult.

In Fig. 6, the light curves for the Case 2 are shown, where the blue
lines correspond to the smaller caps, while the red ones correspond
to the larger caps. For both polar caps, the pulsations are amplified
(see Table 2 for the PF) in comparison to the NS with the purely
dipolar field. When the belt in the temperature distribution is the
only one, one side of the pulse profile looks similar to a straight
line, when the smaller cap is visible, and the curve takes an irregular
shape, when the larger cap is observed. This linear dependence of an
observed flux on the rotation phase makes the quadrupolar field to be
distinguishable. For the star with two cold belts the pulse minimum
is shifted from the half period on the light curve, if the energy has
maxima on the boundaries of the curve picture (a blue line on the
lowest panel of Fig. 6), so that one slope on the light curve is more
narrow, than the other one. Such skewness in the pulse profile is
inherent to RX J0806.4−4123 (see fig. 4 in Haberl 2004).

The latter situation shows itself more pronounced, when αd �= ζ .
Although we consider only αd = ζ , this constraint may be artificial,
and some types of light curves can be missed. For example, we have
calculated the light curve for the position of the dipolar component,
which differs from the viewing position (Fig. 7). Such case may
provide very non-symmetric pulse profile, about 70 per cent of the
flux dependence on the phase is described by a slope linear function.
This feature on the light curve may indicate an existence of the
second belt, so it corresponds to the strong quadrupolar component.

We do not affirm that the synthesized light curves fit all the
observed properties of the data from RX J0420 and RX J0806,
because we have not taken into account, at least, absorption features.
It was done properly by Zane & Turolla (2006) using population
analysis of models with coaxial dipole-plus-quadrupole fields. The
calculated light curves for the NS with non-coincident magnetic
axes of dipole and quadrupole can provide similar features as the
listed sources. Our model also provides non-antipodal hot caps in
the NS surface temperature distributions, which is possibly can be
applied to RX J0720. To construct the curves that fit the real data, the
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Figure 6. Light curves for the different Tcore, β, and �b for αd = ζ = π /4
and αq = αd (ones from Figs 2 and 3). Blue lines correspond to the case,
when only the ‘smaller’ pole, and red ones correspond to the ‘larger’ one.
Black lines correspond to the light curves from the NS with a purely dipolar
field.

Table 2. PFs (per cent) that correspond to the two-peaked light curves from
Fig. 6 for the dipolar field (black lines) and for the ‘larger’ (red lines) and
‘smaller’ (blue lines) hot caps.

β = 0.75 β = 0.50 β = 1.00
�b = 60◦ �b = 45◦ �b = 30◦

Dipole 5.1 4.2 3.1
‘Larger’ pole 10.0 13.8 7.4
‘Smaller’ pole 6.1 8.69 5.1

population analysis should be done like in Zane & Turolla (2006).
For 3D calculations, it may be computationally expensive.

5 C O N C L U S I O N S

In this work, we have studied the three-dimensional effects of the
anisotropic heat transfer in outer layers of the neutron star with
the inclusion of the simplest core-configurations of dipole-plus-
quadrupole magnetic fields. We have self-consistently solved the
stationary 3D heat transfer equation in the NS crust adopting our

Figure 7. A light curve for the temperature distribution from the lower panel
of Fig. 3. The viewing angle is ζ = 45◦, and αd = 63.5◦, αq = 45◦.

model of the thermal structure of the outer envelope, which was built
and discussed in Paper I, where we had calculated axisymmetric
heat transfer. We have obtained the temperature distributions in the
NS crust and on its surface, using the original numerical technique
and analytically obtained tensorial electron thermal conductivity
coefficient by Bisnovatyi-Kogan & Glushikhina (2018b).

For the computed surface temperature distributions, we have built
thermal light curves using a composite blackbody model. The main
purpose of this part of our study is to find some qualitative features on
the synthetic light curves, which may indicate the non-coaxial field.
Presence of the non-coaxial quadrupolar component may affect the
light curves by strengthen the pulsations of an observable flux and
changing the shape of the pulse profile, as well as making it non-
symmetric. Existence of a quadrupolar component in the magnetic
field can be detectable, because the synthesized light curves differ
both from the pure-dipolar ones and ones with inclusion of the coaxial
toroidal or crustal field (Geppert et al. 2006; Perez-Azorin et al.
2006), extending the ‘zoo’ of observational properties from thermally
emitting NSs.
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APPENDIX A : RADIATIVE O PACITIES

Radiative opacity is represented mostly by electron Thompson
scattering, free–free, and bound–free absorption. In an absence of the
magnetic field in non-relativistic limit, Thompson opacity is given
by Berestetskii, Lifshitz & Pitayevskii (1989):

KTh = neσT

ρ
= 8π

3

( e2

mec2

)2 ne

ρ
, (A1)

where σ T is a Thompson scattering cross-section and e2

mec2 is a
classical electron radius.

A cross-section of a free–free absorption with taking into account
spontaneous and stimulated emission in non-relativistic limit in local

thermodynamic equilibrium is given by

σ ∗
aff = 4π

3
√

3

Z2e6

m2
echvν3

gff

(
1 − e−hν/kBT

)
, (A2)

where v is an electron velocity, ν is a photon frequency, gff is
a Gaunt factor, which takes into account quantum corrections to
classical formula. To obtain the absorption coefficient (Bisnovatyi-
Kogan 2001) on one frequency, we have to average (A2) with a
Fermi–Dirac statistics:

αν
ff = 8πm3

e

Amuh3

∫ ∞

0

σ ∗
affv

2 dv

1 + exp( mv2

2kBT
− χ )

qff,

qff =
(

1 + exp

(
χ − hν

kBT
− mv2

2kBT

))−1

,

here mu is an atomic mass unit, and factor qff determines a fraction
of vacant electron states in a degenerate gas. An integration gives

αν
ff = 4π

3
√

3

8πZ2e6

Amuch4ν3
gffkBT log

(
eχ + 1

eχ−hν/kBT + 1

)
. (A3)

To obtain the opacity expression for free–free transitions, it is
necessary to derive the Rosseland meaning (e.g. Rybicki & Lightman
2004) from (A3) in the following manner:

Kff =
∫ ∞

0
1

αν
ff

dBν

dT
dν∫ ∞

0
dBν

dT
dν

.

In the formula above, Bν(T ) = 2hν3

c2
1

ehν/kBT −1
is an intensity of equi-

librium Planck blackbody radiation. The Rosseland mean opacity for
non-degenerate case reads (Bisnovatyi-Kogan 2001)

Knd
ff = 4.34 × 1022 ρ

T 7/2

Z2

A
cm2 g−1, (A4)

and in strongly degenerate limit the value of Kff is given by

K sd
ff = 0.036

32π2

3
√

3

e6gff

muchk2
B

Z2

AT 2
. (A5)

A cross-section of bound–free absorption is given by the following
formula in the non-relativistic limit (e.g. Bisnovatyi-Kogan 2001):

αν
bf = 4

3

√
2π

3

e6h2

m
3/2
e cmu(kBT )7/2

Z2

A
negbf

×
[

1

n

Eb

kBT
expEb/kBT

(
kBT

hν

)3

qbf

]
,

Eb = 2π2meZ
2e4

h2n2
,

qbf =
(

1 + exp

(
χ − hν

kBT
+ Eb

kBT

))−1

, (A6)

where Eb is an energy value of an energy level of a bounded electron
in a hydrogen-like ion, n is an energy level number, gbf is a Gaunt
factor, and qbf is a degeneracy correction factor. To obtain the opacity
coefficient, we have to summarize an expression in square brackets of
αν

bf in (A6) over all bound states and make a Rosseland averaging of
this expression. For non-degenerate electrons, we use an expression
of Kbf from the book by Bisnovatyi-Kogan (2001):

Knd
bf = 7.23 × 1024 ρ

T 7/2

Z2

A

gbf

t
cm2 g−1, (A7)

where factor t
gbf

takes values from 1 to 10. With increasing the
density the electron gas in the NS outer envelope goes fast to a strong
degeneracy. To take into account an influence of the degeneracy on
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the bound-free absorption, let us write a sum αν
bf in (A6) over the

electron bound states:

αν
bf = K0

∞∑
n=1

Eb

nkBT

e−χ

x3

ex − 1

e
x− Eb

kBT
−χ + 1

, (A8)

where K0 =Knd
bf t , and x = hν

kBT
. In the expression above the chemical

potential χ � 1, and mostly only very hard photons in a ‘tail’
of a Planck spectrum are absorbed effectively, and they will not
contribute sufficiently in the mean opacity. Neglecting an exponent

e
x− Eb

kBT
−χ in (A8) and averaging over n and frequencies according

to Schwarzschild (1958) for the non-degenerate case, the following
expression can be obtained for the degenerate case:

K sd
bf = K0e

−χ g′
bf

t ′ , (A9)

factor t ′
g′

bf
also takes values from 1 to 10. It is seen, that for the case of

the degenerate electron gas bf-opacity decreases exponentially with
the growth of the density.

To use formulae (A4) and (A5) for the ff-transitions and (A7) and
(A9) for the bf-transitions in our calculations, we have to stitch them
continuously, for example, in the following way:

Kff,bf = Knd
ff,bf

1

1 + emχ
+ K sd

ff,bf

emχ

ε + emχ
, (A10)

where m, ε > 1 are numbers, which determine the smoothness
of transition from one limit to another. We note, that in K sd

bf it
is necessary to replace χ = μe

kBT
by its absolute value. Thus, in

the absence of magnetic field the value of the radiative opacity
is composed of Thompson, free–bound and free–free ones: Kr(ρ,
T)B = 0 = KTh + Kbf + Kff.

In presence of the strong magnetic field, the photon opacity is
reduced and becomes anisotropic. We have taken into account an
effect of the magnetic field on the opacity in the same manner,
as in Potekhin & Yakovlev (2001). Authors of that work have
built an analytical approximation of numerically obtained magnetic
correction factors from Silant’ev & Yakovlev (1980) for Thompson
scattering and free–free absorption. The influence of magnetic field
on the bound–free opacity is assumed to be the same as on the free–
free one.

APPENDIX B: NUMERICAL IMPLEMENTAT I ON

B.1 Operator formulation of the problem

With an approach suggested and discussed in Ardeljan & Kos-
machevskii (1995), we have to include boundary conditions in an
operator-difference form of a considered problem. Let us write the
system of equations (13) in a difference form in a whole region using
a cell-node approximation:⎧⎪⎪⎨
⎪⎪⎩

∇× · κn · ∇�T n + δ1� · κn · �T n+
+δ2�κn · �T n = 0,

δ1T
n = Tcore,

δ2(κn · �T n + �nσT 4
s ) = 0,

(B1)

where the notations are adopted from (Ardeljan & Kosmachevskii
1995): ∇× · and ∇� are difference approximations of differential

divergence and gradient operators, � is a boundary operator, it
corresponds to a derivation procedure on the boundary. Here operator
δ is defined as follows: it equals to 0 in the interior mesh nodes and
to 1 on the boundary surface, indexes 1 and 2 correspond the sort of a
particular bound, 1 – inner and 2 – outer bound. Index n corresponds
to an iteration number in ‘time’, and T n

s = T n
s (δ2T

n−1). Temperature
is defined in the nodes, and magnetic field and density are defined in
the cells and boundary nodes of the mesh.

After acting on (B1) with scalar boundary operator and subtracting
it from the first equation, we obtain the following system:{∇× · κn · ∇�T n + δ1� · κn · �T n − δ2� · �nσT 4

s = 0
δ1T

n = Tcore
.

After that let us allocate the first (inner) boundary in the first equation
from (B1) and multiply the first equation from (B1) by δ1, and
after substituting one equation from another and a substitution the
Dirichlet boundary condition on the inner boundary, we can derive
the final operator-difference equation:

(I − δ1)∇× · κn · ∇�(I − δ1)T n

+ (I − δ1)∇× · κn · ∇�Tcore − δ2� · �nσT 4
s = 0, (B2)

where I is a unit operator. A resulting operator equation is a finite-
difference approximation of the considered boundary problem (13).

B.2 Algorithm of solving a heat transfer equation in an NS crust

In this work, we look for the stationary solution for the boundary
problem (13). This problem has to be solved self-consistently,
because surface temperature Ts in the outer boundary condition is
a function of a temperature in the crust itself. We implemented an
iterative procedure of relaxation: the problem is solved with boundary
conditions of first type on the inner boundary and of the second type

on the outer one n times until inequality max
∣∣ T n

s −T n−1
s

T n−1
s

∣∣ < ε is not

satisfied, where n is an iteration number, ε is a some small number.
After each iteration the value of Ts is specified with the Ts−Tb

relationship with the surface temperature distribution, obtained from
the previous iteration. The value T 0

s for the boundary condition on
the first iteration is obtained from the initial approach of the crust
temperature. In some sense, this procedure is equivalent to a solving
a time-dependent heat transfer equation with boundary conditions of
the first and the third types, while the value of the heat flux density
σT 4

s (T ) in the outer boundary condition from (13) is taken from the
previous ‘time’-step.

On each ‘time’-step the system (13) is solved with the Basic
operators method, described in Kondratyev et al. (2020).

The operator-difference equation (B2) is non-linear in Tn and
should be solved with Newton method of solving systems of non-
linear equations, and appeared system of linear algebraic equations
on the each Newton method iteration is solved by the iterative Seidel
method.

Thus, following the procedure described above, the self-consistent
temperature distribution can be found in a crust volume and on the
NS surface.
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