Russian Journal of Nonlinear Dynamics, 2021, vol. 17, no. 2, pp. 157-164.
Full-texts are available at http://nd.ics.org.ru
DOI: 10.20537/1d210202

MATHEMATICAL PROBLEMS OF NONLINEARITY

MSC 2010: 37G10, 37G35

On the Organization of Homoclinic Bifurcation Curves
in Systems with Shilnikov Spiral Attractors
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We study spiral chaos in the classical Rossler and Arneodo— Coullet — Tresser systems. Spe-
cial attention is paid to the analysis of bifurcation curves that correspond to the appearance of
Shilnikov homoclinic loop of saddle-focus equilibrium states and, as a result, spiral chaos. To
visualize the results, we use numerical methods for constructing charts of the maximal Lyapunov
exponent and bifurcation diagrams obtained using the MatCont package.
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1. Introduction

In this paper we present some results of studying the organization of homoclinic bifurcation
curves in the Rossler [1] and Arneodo— Coullet — Tresser [2] models. These are two well-known
classical systems that demonstrate chaotic attractors caused by the presence of Shilnikov saddle-
focus [3|. First, we consider the Rossler system given by the following equations:

T =y -z,
Y=+ ay, (1.1)
Z=br —z(c—x).

Here z, y, z are system variables, a, b and ¢ are positive parameters, for our study we have
fixed the parameter b = 0.3. There exist several similar representations for the Rossler model,
see also [4]. The representation above is chosen due to the fact that the equilibrium state Oy
is always located at the point (0,0,0) and does not depend on any parameter of the system.
It is convenient to use this feature in numerical experiments. The second equilibrium state Oo
has the coordinates (¢ — ab,b — c¢/a, —(b — ¢/a)). For the Rossler system the applicability of the
famous Shilnikov theorem on the existence of chaotic dynamics near a loop of saddle-focus was
first shown in [2]. A detailed two-parameter analysis near the homoclinic bifurcation curve in
this system was carried out in [5]. Note that system (1.1) is a strongly dissipative system with
slow x,y and fast z variables due to strongly negative divergence.
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Fig. 1. Charts of the maximal Lyapunov exponent superimposed with homoclinic bifurcation curves
hi, ha, ... for the Rossler model (1.1) (panel (a)) and for the Arneodo— Coullet—Tresser model (1.2)
(panel (b)). Gray indicates the region with trajectories going to infinity, the region of the chaotic attractor
existence is shown by red-orange colors, white regions correspond to stable periodic orbits. Homoclinic
curves are colored in black.

Figure 1 shows a chart of the maximal Lyapunov exponent superimposed with homoclinic
bifurcation curves for the systems under study. It is clearly seen that chaotic regions alternate
with stability windows. Such a structure of Lyapunov diagrams is typical for systems with
quasi-attractors [6]. In particular, for systems with a Shilnikov homoclinic loop, the structure of
stability windows was described in [5], see also [7]. Note that the black curves hy, ha, ... presented
in Fig. la correspond to a Shilnikov homoclinic bifurcation with equilibrium O;. From |8, 9] it
is known that such homoclinic curves have a parabola-like (U-shape) form. We have found these
homoclinic curves and placed them over the charts of the maximal Lyapunov exponent for clarity.

E — RUSSTIAN JOURNAL OF NONLINEAR DYNAMICS, 2021, 17(2), 157-164



On the Organization of Homoclinic Bifurcation Curves in Systems 159

The second model under consideration was introduced by Arneodo, Coullet and Tresser
in [2]|. It has the following form:

T =y,
Y =2z, (1.2)
Z2=—y—pPz+pux(l —ux).

As in the model (1.1), here z, y, z are variables, while 8 and u are parameters. There
are two equilibrium states O; (1,0,0) and Oy (0,0,0) in this system. The stability of these
equilibrium states depends on values of parameters g and p. They can be stable or completely
unstable. Also note that these equilibria can undergo an Andronov—Hopf bifurcation. Figure 1b
shows the chart of the maximal Lyapunov exponent and homoclinic bifurcation curves hy, ho, h3
for system (1.2). One can note that this diagram is similar to the analogous diagram for the
model (1.1) (cf. Figs. la and 1b).

The line that separates the region with a stable limit cycle from the region with the stable
equilibrium O; can be seen in Fig. 1b. This line corresponds to the supercritical Andronov -
Hopf bifurcation. Below this line O; changes its type and becomes a saddle-focus equilibrium
with 1D stable and 2D unstable manifolds. Note that the divergence of the system is constant
and equal to —f3, so attractors can exist only in the case 5 > 0, while for 8 < 0 system (1.2) can
have repellers which can even be chaotic. Further, we show that all attractors in this system are
associated with equilibrium Oy, while repellers appear due to equilibrium Os.

This work is devoted to the study of the global behavior of homoclinic bifurcation curves
hi, ha,... in two systems under consideration. Using MatCont software we demonstrate that
these curves are pieces of the same bifurcation curve, and each of its U-shaped pieces, which we
call h;, corresponds to an i-round homoclinic loop. In addition, we explain why there are no
other homoclinic bifurcation curves between the thin U-shaped pieces of this curve, but there
are complex sets of secondary bifurcation curves inside each such piece. Using the Arneodo—
Coullet —Tresser model (1.2) as an example, we study the structure of these loops in detail.

The paper is organized as follows: first, a one-parameter bifurcation analysis is carried out
for the model (1.2) in Section 2. Section 3 shows the results of a two-parameter bifurcation
analysis and describes the construction of multi-round homoclinic curves.

2. One-parameter bifurcation analysis.

There is a well-known fact, repeatedly proven for both the Arneodo— Coullet — Tresser model
and the Rossler model (see, e.g., [10, 11]), that chaos in these systems is developed via the
Shilnikov scenario [12] from the stable equilibrium. Let us demonstrate it using system (1.2) as
an example.

First, we fix 8 = 0.4 and increase parameter p. When 0 < p < g1 = 0.4, the equilibrium
state Oy is the only attractor in the system. When p > 1, the equilibrium state Oy loses stability
through a supercritical Andronov—Hopf bifurcation and becomes a saddle-focus, and a stable
limit cycle appears near it. The stable limit cycle exists on the interval pu; < p < pg ~ 0.72
(see Fig. 2a). Starting from p = pg, the limit cycle undergoes a cascade of period-doubling
bifurcations (see Figs. 2b, 2c, 2d, where 2-, 4- and 8- periodic cycles are shown) that leads to
a strange attractor of Hénon type (if one considers bifurcations on a corresponding Poincaré
map), see Fig. 2e. With a further increase of p up to uz ~ 0.86311445, attractor trajectories
start to pass arbitrarily close to the saddle-focus Oy, a homoclinic loop appears and we consider
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Fig. 2. One-parameter bifurcation analysis in the Arneodo— Coullet — Tresser model (1.2): from the stable
equilibrium to the Shilnikov attractor containing the saddle-focus O; with the 2D unstable invariant
manifold.

this to be the moment of creation of a Shilnikov spiral attractor, see Fig. 2f, which shows the
attractor with its primary homoclinic loop marked in red.

It is important to note that arbitrarily small changes of parameters split this homoclinic
orbit. However, in its small neighborhood there exist double, triple and other multi-round ho-
moclinic orbits |9, 13]. In order to illustrate it, let us provide the following numerical experiment
based on the fact that, when a homoclinic loop exists, the saddle-focus equilibrium becomes part
of an attractor, i.e., orbits in the attractor pass arbitrarily close to this equilibrium. Follow-
ing [10, 14|, we compute a distance between a sufficiently long orbit in the attractor and the
saddle-focus equilibrium. If this distance is less than some small threshold, we assume that a ho-
moclinic orbit exists. Then we compute a graph of minimal distance between the attractor and
the saddle-focus. Each minimum approaching zero corresponds to a homoclinic orbit. Figure 3
shows the corresponding graph of minimal distance for system (1.2) for a fixed value of 5 = 0.02.
Homoclinic orbits for each of its four minima superimposed with the corresponding attractor are
shown in Figs. 4a—4d.

The same scenario is observed in the Rossler system (1.1) (see, e.g., [10, 11]).

From Fig. 1 it can be seen that several homoclinic curves enter the region with chaos, the
structure and shape of the attractors on these curves are different and become more and more
complex with decreasing parameter ¢ in the Rossler model (1.1) and p in the Arneodo—Coullet —
Tresser model (1.2). So, the aim of this work is to study the structure of homoclinic bifurcation
curves in two systems under consideration.
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Fig. 3. The diagram of the minimum distances from the attractor to the saddle-focus equilibrium state
(1,2) at 8 =0.02, 0.8605 < p < 0.864 for the Arneodo— Coullet — Tresser model (1.2).

40.6 6 :
p=08625 11277770, ju=0.8631

Fig. 4. Four different Shilnikov attractors corresponding to the four minima in the distance graph pre-
sented in Fig. 3. Homoclinic loops are colored in red.
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In the next section we explain the arrangement of homoclinic bifurcation curves correspond-
ing to the presented homoclinic orbits on the parameter plane (u, §) using the Arneodo—Coul-
let — Tresser model as a case of study.

3. Two-parameter bifurcation analysis.

In this section we present two main results of two-parameter bifurcation analysis for sys-
tems (1.1) and (1.2). The first result is that homoclinic bifurcation curves hy, hs, ... are pieces
of one curve that looks like a “saw” with several “teeth” for both models under consideration.
To show this, we take the homoclinic bifurcation curve hy from Fig. 1, which corresponds to
the simplest homoclinic loop, and continue it on the corresponding parameter planes using Mat-
Cont software. To do it we choose the initial condition for the algorithm work using diagrams
of the minimum distance. The resulting homoclinic bifurcation curves superimposed with the
Lyapunov diagrams for systems (1.1) and (1.2) are shown in Fig. 5a and 5b, respectively. From
these figures one can see that the continuation of hy indeed gives the long “saw’-like curve whose

other “teeth” coincide with the curves ho, hs,.... We call this curve a primary homoclinic curve.
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Fig. 5. Charts of the maximal Lyapunov exponent superimposed with homoclinic curves for the Rossler
model (panel (a)) and for the Arneodo— Coullet —Tresser model (panel (b)). The black curves on both
charts are primary homoclinic curves, the blue and red ones on panel (b) are secondary homoclinic curves.

The second important result is that there are no other homoclinic bifurcation curves between
teeth hy, hs, ..., because of the splitting homoclinic loop “outside”, which prevents the formation
of secondary loops. The graphs of the distance between the saddle-focus and the attractor confirm
it, i.e., the distance does not vanish in the regions between the teeth (see [10] for system (1.1)),
which means that the saddle-focus does not belong to the attractor and there is no homoclinic
loop in the system for these values of parameters.

On the other hand, according to the diagram of the minimum distance presented in Fig. 3
for system (1.2), between the two branches of hi, which we call hll and hf, the distance is very
close to zero at some points. It gives numerical evidence of the appearance of other homoclinic
loops. We call such loops secondary homoclinic loops. The result of continuation of such loops
below the teeth hy and hg for system (1.2) are shown in blue and red in Fig. 5b, respectively.
Note that the blue bifurcation curve corresponds to a double homoclinic loop, while the red curve
corresponds to the triple homoclinic loop.
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Fig. 6. (a) Schematic representation of the enlarged part of the primary homoclinic curve. (b) Schematic
representation of an enlarged portion of the secondary homoclinic curve. (¢) Bykov-like heteroclinic cycle
for the Arneodo— Coullet — Tresser model (1.2).

The fact that we found these curves confirms that below each such tooth of the primary
homoclinic bifurcation curve there is a set of secondary homoclinic bifurcation curves. It is
schematically represented in Fig. 6a. Note that this sketch of the bifurcation diagram is in full
agreement with what we get in the numerically obtained diagram of the minimum distance. It
is clearly seen that points A, B, C, D in Fig. 3 correspond to points hll, hl2, 5, hY.

Finally, we note that the secondary homoclinic bifurcation curves round onto the codimen-
sion-two points that correspond to the Bykov-like heteroclinic cycles [15]. We illustrate it by
the secondary homoclinic bifurcation curves existing below hy and hso, see the corresponding
bifurcation sketch in Fig. 6b. The simplest heteroclinic cycle connecting two saddle-foci Oy
and O is shown in Fig. 6c.

4. Conclusion

We have provided a detailed one- and two-parameter bifurcation analysis for the Arneodo—
Coullet — Tresser model (1.2). This model was chosen because it is easier to study than the
Rossler model (1.1) with strong dissipation in the system. We also showed that there is only
one primary bifurcation homoclinic curve in the system that looks like a “saw” with several
“teeth” in the bifurcation diagram. The existence of secondary homoclinic bifurcation curves
was established below the primary one. The shape of secondary homoclinic bifurcation curves
gave us the idea to search for Bykov heteroclinic cycles in the system, the simplest of which we
found and presented in Fig. 6c. We believe that these results are relevant also for the Rossler
model (1.1), including the organization of secondary homoclinic bifurcation curves. We will show
it in our future work.

The authors thank A. Kazakov for the problem statement and fruitful discussions.
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