Stabilization of a class of switched dynamic systems: the Riccati-equation-based Approach

M. Bonilla*
CINVESTAV-IPN, Control Automático, UMI 3175 CINVESTAV-CNRS, A.P. 14-740, México 07000
N.A. Aguillón, and M.A. Ortiz Castillo
CINVESTAV-IPN, CONACYT México, A.P. 14-740, México 07000
Jean Jacques Loiseau
CNRS, LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, 44321
Nantes, Cedex 03, France
M. Malabre
LS2N (Laboratoire des Sciences du Numérique de Nantes), UMR 6004, B.P. 92101, 44321 Nantes, Cedex 03
V. Azhmyakov
Higher School of Economics, MIEM, School of Computer Engineering, and with the Institut für Theoretische Informatik, Mathematik und Operations Research, Universität der Bundeswehr München, Zwergerstraße 33, 85579 Neubiberg, Germany

AND
S. Salazar

CINVESTAV-IPN, Sistemas Autónomos de Navegación Aérea Y Submarina, UMI 3175
CINVESTAV-CNRS. A.P. 14-740. México 07000
*Corresponding author. E-mail: mbonilla@cinvestav.mx
[Received on 9 March 2020; revised on 12 May 2021; accepted on 30 June 2021]
Our paper deals with the stabilization of a class of time-dependent linear autonomous complex systems with a switched structure. The initially given switched dynamic system is assumed to be controlled by a specific state feedback strategy associated with the linear quadratic regulator (LQR) type control. The proposed control design guarantees stabilization of the closed-loop system for all of the possible location transitions. In the solution procedure of the Algebraic Riccati Equation related to the LQR control strategy, only the knowledge of the algebraic structure related to the switched system are needed. We prove that the proposed optimal LQR type state feedback control design stabilizes the closed-loop switched system for every possible active location. The theoretical approach proposed in this paper is finally applied to a model of the Single Wing Quadrotor Aircraft, when changing from its Quadrotor Flight Envelope to its Airplane Flight Envelope.

Keywords: switched dynamic systems; implicit control systems; linear quadratic regulator (LQR); algebraic Riccati equation (ARE); Lyapunov stability.

1. Introduction

General switched dynamic systems (SDSs) belong to a wide family of the complex systems studied by many authors (see e.g. (Karcanias \& Livada, 2020)). Because SDSs constitute a useful modelling approach for various engineering systems and processes, many useful control strategies for these dynamics have been developed. For example, in (Bonilla et al., 2015a), it was shown that a wide class of time-dependent autonomous systems with a switched structure (as defined in (Liberzon, 2003)) can be adequately represented by the formal state space representation of the type

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x=A_{q} x+B u \tag{1.1}
\end{equation*}
$$

Here $B \in \mathbb{R}^{\bar{n} \times m}$ is an injective matrix and A_{q} has the common structure (see e.g. (Narendra \& Balakrishnan, 1994)):

$$
\begin{equation*}
A_{q}=\bar{A}_{0}+\bar{A}_{1} \bar{D}(q) \tag{1.2}
\end{equation*}
$$

where $\bar{A}_{0} \in \mathbb{R}^{\bar{n} \times \bar{n}}, \bar{A}_{1} \in \mathbb{R}^{\bar{n} \times \hat{n}}$ is an injective matrix and $\bar{D}(q) \in \mathbb{R}^{\hat{n} \times \bar{n}}$ are surjective matrices. ${ }^{1}$ Let us denote $n=\bar{n}+\hat{n}$.

Because of the usual dynamics of a SDS, it remains in a specific location

$$
\begin{equation*}
q \in \mathscr{Q} \triangleq\left\{q_{1}, \ldots, q_{\eta} \mid q_{i} \in \mathbb{R}^{\mu}, \quad i \in\{1, \ldots, \eta\} \subset \mathbb{Z}^{+}\right\} \tag{1.3}
\end{equation*}
$$

for all time instants $t \in \mathscr{I}_{i}$. Here $\mathscr{I}_{i} \triangleq\left[t_{i-1}, t_{i}\right), t_{i} \in \mathbb{R}^{+}, t_{0}=0, t_{i-1}<t_{i}$, for all $i \in \mathbb{Z}^{+}, \lim _{i \rightarrow \infty} T_{i}=\infty$, and $\mathfrak{s}:\left\{\mathscr{I}_{i} \subset \mathbb{R}^{+} \cup\{0\}, i \in \mathbb{Z}^{+}\right\} \rightarrow \mathscr{Q}, \mathfrak{s}\left(\mathscr{I}_{i}\right)=q_{j}, j \in\{1, \ldots, \eta\}$.

We now assume that the locations set has a specific structure described by the following basic Hypothesis.

Hypothesis 1.1. (Bonilla et al., 2015b) Given $\bar{q}_{0}, \bar{q}_{1}, \ldots, \bar{q}_{\ell} \in \mathbb{R}^{\mu}$, the locations $q_{j} \in \mathscr{Q}, j \in\{1, \ldots, \eta\}$, belong to the set described as follows

$$
\begin{equation*}
q_{j} \in \overline{\mathscr{Q}}_{\bar{q}_{0}} \triangleq\left\{q_{j} \in \mathscr{Q} \mid q_{j}=\bar{q}_{0}+\left[\bar{q}_{1} \cdots \bar{q}_{\ell}\right] \bar{\gamma}_{j}, \bar{\gamma}_{j} \in \mathbb{R}^{\ell}, j \in\{1, \ldots, \eta\}\right\}, \tag{1.4}
\end{equation*}
$$

and additionally for each $\mathscr{I}_{i} \in \mathfrak{s}^{-1}\left(q_{j}\right), \bar{\gamma}_{j}=\left[\gamma_{j, 1} \cdots \gamma_{j, \ell}\right]^{T}$ take constant values in $\mathbb{R}^{\ell} ; i \in \mathbb{N}, j \in$ $\{1, \ldots, \eta\}$.

[^0]$$
\operatorname{dim} \operatorname{ker} \mathscr{A}=r_{2}-r_{3},
$$
where \mathscr{A} denotes the linear map associated with the given matrix. Injectivity of the matrix is defined as
$$
\operatorname{dim} \operatorname{ker} \mathscr{A}=0 \Rightarrow r_{2}=r_{3}
$$
and the surjectivity is equivalent to $r_{3}=r_{1}$.

Hypothesis 1.2. (Bonilla et al., 2015b) There exist $\bar{\Delta}_{0}, \bar{\Delta}_{\bar{\gamma}_{j}} \in \mathbb{R}^{\hat{n} \times \bar{n}}, j \in\{1, \ldots, \eta\}$, such that

$$
\begin{equation*}
\bar{D}(q)=\bar{\Delta}_{0}-\sum_{i \in \mathbb{N}} \mathbf{1} \mathscr{I}_{i}(t) \bar{\Delta}_{\overline{\mathfrak{F}}\left(\mathscr{I}_{i}\right)}, \tag{1.5}
\end{equation*}
$$

where ${ }^{1} \mathscr{I}_{i}(t)$ is the characteristic function of the time interval \mathscr{I}_{i}, and $\overline{\mathfrak{s}}:\left\{\mathscr{I}_{i} \subset \mathbb{R}^{+} \cup\{0\}, i \in \mathbb{Z}^{+}\right\} \rightarrow$
 j.

We also assume
Hypothesis 1.3. The pair $\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}, B\right)$ is controllable.
In (Bonilla et al., 2015b), authors additionally propose a specific variable structure decoupling control strategy based on the ideal proportional and derivative (PD) feedback control strategy. As next a proper practical approximation of the above ideal PD feedback is developed. Such feedback control strategies reject the initially given 'variable structure' of the resulting system and make it possible to establish the required stability property for control strategies under consideration.

In this paper, we consider the stabilizing problem for a class of time-dependent switched dynamic systems equipped with a relative simple static state feedback. Our paper is organized as follows: in Section 2, we give a formal description of the LQR-based stabilization of switched systems. The initial system description is proposed in (Ortiz Castillo et al., 2020). We next follow the more formal approach discussed in Bonilla et al. (2015a). In Section 3, we apply the celebrated Riccati stabilizing state feedback (see also Section 2) for a control design that stabilizes a Single Wing Quadrotor Aircraft in the case when changing from its Quadrotor Flight Envelope to its Airplane Flight Envelope. Section 4 summarizes our paper.

2. Riccati Equation-Based Approach to the Stabilization Problem

Let us formulate the following problem.
Problem 2.1 Find a constant state feedback that stabilizes system (1.1) and (1.2),

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x=\left(\bar{A}_{0}+\bar{A}_{1} \bar{D}(q)\right) x+B u
$$

We next assume that the locations (1.3) are unknown

$$
q \in \mathscr{Q} \triangleq\left\{q_{1}, \ldots, q_{\eta} \mid q_{i} \in \mathbb{R}^{\mu}, \quad i \in\{1, \ldots, \eta\} \subset \mathbb{Z}^{+}\right\}
$$

We also assume the full knowledge of the essential parameters of constant system structure, (1.2) and (1.5), determined by the following triplet $\left(\bar{A}_{0}, \bar{A}_{1}, \bar{\Delta}_{0}\right)$.

Solution of this problem involves the proposed state feedback with the linear quadratic regulator structure

$$
\begin{equation*}
F_{* 0}=R^{-1} B^{T} P_{0}, \quad u=-F_{* 0} x, \tag{2.1}
\end{equation*}
$$

where R is a selected positive definite matrix and P_{0} is a solution of the algebraic Riccati equation (ARE) (recall Assumption 1.3)

$$
\begin{equation*}
\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)-P_{0} B R^{-1} B^{T} P_{0}+\bar{Q}_{0}=0, \tag{2.2}
\end{equation*}
$$

and \bar{Q}_{0} is a selected positive semidefinite matrix. The above ARE is determined by the essential parameters of system (1.1) and (1.2), namely ($\bar{A}_{0}, \bar{A}_{1}, \bar{\Delta}_{0}$) (recall that (1.2) and (1.5)).

Applying the state feedback (2.1) to the switched system representation (1.1), we next obtain the closed-loop state space form

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x=\left(A q_{i}-B R^{-1} B^{T} P_{0}\right) x \tag{2.3}
\end{equation*}
$$

Taking into consideration the previously derived formulae (1.2) and (1.5) in (2.3), we also get

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x=\left(\bar{A}_{0}+\bar{A}_{1}\left(\bar{\Delta}_{0}-\sum_{i \in \mathbb{N}} \mathbf{1} \mathscr{I}_{i}(t) \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{\mathscr { F }}_{i}\right)}\right)-B R^{-1} B^{T} P_{0}\right) x \tag{2.4}
\end{equation*}
$$

In the same way as in Narendra \& Balakrishnan (1994), let us define the following Lyapunov function

$$
\begin{equation*}
V(x)=x(t)^{T} P_{0} x(t) . \tag{2.5}
\end{equation*}
$$

The usual Lie derivative of (2.5) (the derivative along the trajectories of system (2.4)) can be calculated as follows

$$
\begin{aligned}
\mathrm{d} V(t) / \mathrm{d} t= & \mathrm{d} x^{T} / \mathrm{d} t P_{0} x+x^{T} P_{0} \mathrm{~d} x / \mathrm{d} t \\
= & x^{T}\left(\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)^{T} P_{0}-\sum_{i \in \mathbb{N}}{ }^{1} \mathscr{I}_{i}(t)\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)^{T} P_{0}-\left(B R^{-1} B^{T} P_{0}\right)^{T} P_{0}\right) x \\
& +x^{T}\left(P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)-\sum_{i \in \mathbb{N}} 1 \mathscr{I}_{i}(t) P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)-P_{0}\left(B R^{-1} B^{T} P_{0}\right)\right) x \\
\mathrm{~d} V(t) / \mathrm{d} t= & x^{T}\left(\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)-P_{0} B R^{-1} B^{T} P_{0}\right. \\
& \left.-\sum_{i \in \mathbb{N}}{ }^{1} \mathscr{I}_{i}(t)\left(\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)\right)-P_{0} B R^{-1} B^{T} P_{0}\right) x .
\end{aligned}
$$

From (2.2) and (2.1) we next deduce

$$
\begin{align*}
& \mathrm{d} V(t) / \mathrm{d} t=-x^{T}\left(\bar{Q}_{0}+\sum_{i \in \mathbb{N}}{ }^{1} \mathscr{I}_{i}(t)\left(\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{S}}\left(\mathscr{I}_{i}\right)}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)\right)+F_{* 0}^{T} R F_{* 0}\right) x, \\
& \mathrm{~d} V(t) / \mathrm{d} t=-x^{T}\left(Q_{0}+\sum_{i \in \mathbb{N}}{ }^{1} \mathscr{I}_{i}(t)\left(\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{S}}\left(\mathscr{I}_{i}\right)}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)\right)\right) x, \\
& \mathrm{~d} V(t) / \mathrm{d} t=-x^{T}\left(Q_{0}+\sum_{i \in \mathbb{N}}{ }^{1} \mathscr{\mathscr { I }}_{i}(t) \bar{Q}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right) x, \tag{2.6}
\end{align*}
$$

where

$$
\begin{align*}
\bar{Q}_{\overline{\mathfrak{s}}\left(\mathscr{F}_{i}\right)} & =\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\overline{\mathfrak{s}}\left(\mathscr{I}_{i}\right)}\right), \quad i \in\{1, \ldots, \eta\}, \tag{2.7}\\
Q_{0} & =\left[\left(\sqrt{\bar{Q}_{0}}\right)^{T} F_{* 0}^{T}\right]\left[\begin{array}{cc}
\mathrm{I} & 0 \\
0 & R
\end{array}\right]\left[\begin{array}{c}
\sqrt{\bar{Q}_{0}} \\
F_{* 0}
\end{array}\right], \text { and } \bar{Q}_{0}=\left(\sqrt{\bar{Q}_{0}}\right)^{T}\left(\sqrt{\bar{Q}_{0}}\right) .
\end{align*}
$$

The analytic relations obtained above constitute in fact a formal proof of our main stability result Theorem 2.2. Assume that all the technical assumptions of this section are fulfilled. Then the system (2.3) is stable in the sense of Lyapunov if one of the two following conditions is satisfied

$$
\begin{equation*}
\lambda_{\min }\left\{Q_{0}+\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right)\right\}>0, \quad \forall j \in\{1, \ldots, \eta\} \tag{2.8}
\end{equation*}
$$

or if the pair $\left(\sqrt{\bar{Q}_{0}},\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}\right)\right)$ is observable and moreover,

$$
\begin{equation*}
\lambda_{\min }\left\{Q_{0}+\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right)\right\} \geq 0, \quad \forall j \in\{1, \ldots, \eta\} \tag{2.9}
\end{equation*}
$$

Proof. Let us first note that (1.5), (1.2) and (2.7), imply:

$$
\begin{equation*}
\bar{Q}_{\bar{\gamma}_{j}}=\left(\bar{A}_{1} \bar{\Delta}_{\bar{\gamma}_{j}}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{1} \bar{\Delta}_{\bar{\gamma}_{j}}\right)=\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{j}}\right), j \in\{1, \ldots, \eta\} . \tag{2.10}
\end{equation*}
$$

Application of Theorem 5.10 from Chapter 6, Section 5 of Stewart (1973), and Corollary 2.6-2 of Kailath (1980)) concludes the proof.

Remark 2.1. The obtained result provides a stability criterion for the switched systems in the absence of the exact (a priori given) information about a concrete switching mechanism.

Starting from a model given in the form (1.1), the feedback design procedure can next be summarized as follows.

1. Identify the essential parameters of the constant system structure, (1.2) and (1.5), ($\left.\bar{A}_{0}, \bar{A}_{1}, \bar{\Delta}_{0}\right)$.
2. Choose matrices R and \bar{Q}_{0} and solve the Riccatti equation (2.2).

Fig. 1. Single wing quadrotor aircraft. (a) Perspective view. (b) Tangential variables, Γ : flight path angle, Θ : pitch angle, $\boldsymbol{\alpha}$: angle of attack, V : longitudinal flight speed.
3. If one of the two conditions of Theorem 2.2, (2.8) or (2.9), are satisfied go to next item, otherwise return to the previous item.
4. Define the specific feedback control law by (2.1).

3. A Practical Example

Let us consider the Single Wing Quadrotor Aircraft (SWQA) as shown in Fig. 1. The mechanical motion of the SWQA is studied in a fixed orthogonal axis set (earth axes) ($O \mathbf{X Y Z}$), where $O \mathbf{Z}$ is a vertical axis, along the gravity vector $\left[\begin{array}{lll}0 & 0 & \mathrm{~g}\end{array}\right]^{T}$.

Let Φ, Θ and Ψ be the conventional Euler angles, roll, pitch and yaw, measured with respect to the axis $O_{B} \mathbf{X}_{B}, O_{B} \mathbf{Y}_{B}$ and $O_{B} \mathbf{Z}_{B}$. Here $\left(O_{B} \mathbf{X}_{B} \mathbf{Y}_{B} \mathbf{Z}_{B}\right)$ is the body axis system with its origin O_{B} fixed at the centre of gravity of the SWQA (Cook, 2013). The total mass of the quadrotor of the SWQA is equal to $m=1.6[\mathrm{~kg}]$ and the moments of inertia with respect to the axis $O_{B} \mathbf{X}_{B}, O_{B} \mathbf{Y}_{B}$ and axis $O_{B} \mathbf{Z}_{B}$ are $\mathrm{I}_{x x}=0.058\left[\mathrm{~kg} \mathrm{~m}^{2}\right], \mathrm{I}_{y y}=0.048\left[\mathrm{~kg} \mathrm{~m}^{2}\right]$ and $\mathrm{I}_{z z}=0.052\left[\mathrm{~kg} \mathrm{~m}^{2}\right]$, respectively. We consider here some concrete values: for the gravity $g=9.81\left[\mathrm{~m} \mathrm{~s}^{-2}\right]$ and the air density parameter $\rho=1.2\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$.

Moreover, we assume that the single wing has a S5010 low-speed airfoil for flying wings (Selig et al., 1996), with the aspect ratio: $A R=6$, span $b=1.35[\mathrm{~m}]$ and mean aerodynamic chord $\overline{\bar{c}}=$ 0.165 . Let [m] be a distance of the c.g. along $\overline{\bar{c}}: h=0.1$ and location of the aerodynamic centre $h_{0} \approx 0.25$.

3.1. Description of the longitudinal directional behaviour

We next assume that the lateral directional dynamics ($\mathbf{X}-\mathbf{Y}$ plane) has been already asymptotically stabilized. Thus, we only need to consider the longitudinal directional movement ($\mathbf{X}-\mathbf{Z}$ plane). The

SWQA is represented by the following differential equations:

$$
\begin{align*}
{\left[\begin{array}{c}
\mathrm{d}^{2} X / \mathrm{d} t^{2} \\
\mathrm{~d}^{2} Z / \mathrm{d} t^{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
g
\end{array}\right]-(1 / m)\left[\begin{array}{cc}
\cos \Gamma & \sin \Gamma \\
-\sin \Gamma & \cos \Gamma
\end{array}\right]\left[\begin{array}{c}
D(V, \boldsymbol{\alpha}) \\
L(V, \boldsymbol{\alpha})
\end{array}\right]+(F / m)\left[\begin{array}{c}
\cos \Theta \\
-\sin \Theta
\end{array}\right], \tag{3.1}\\
\mathrm{d}^{2} \Theta / \mathrm{d} t^{2} & =\left(1 / \mathrm{I}_{y y}\right)\left(T_{q}+M(V, \boldsymbol{\alpha})+\overline{\bar{c}}\left(h-h_{0}\right) L(V, \boldsymbol{\alpha})\right),
\end{align*}
$$

where the lift, drag and pitching moment equations of the wing are given by the following relations (see (Cook, 2013) for details):

$$
\begin{equation*}
L(V, \boldsymbol{\alpha})=\frac{1}{2} \rho \frac{b^{2}}{A R} V^{2} C_{L}(\boldsymbol{\alpha}), D(V, \boldsymbol{\alpha})=\frac{1}{2} \rho \frac{b^{2}}{A R} V^{2} C_{D}(\boldsymbol{\alpha}), M(V, \boldsymbol{\alpha})=\overline{\bar{c}} \frac{1}{2} \rho \frac{b^{2}}{A R} V^{2} C_{M}(\boldsymbol{\alpha}) \tag{3.2}
\end{equation*}
$$

Here V is the flying speed calculated by

$$
\begin{equation*}
V=\sqrt{(\mathrm{d} \mathbf{X} / \mathrm{d} t)^{2}+(\mathrm{d} \mathbf{Z} / \mathrm{d} t)^{2}} \tag{3.3}
\end{equation*}
$$

Assuming now the absence of wind and denote by $\boldsymbol{\alpha}$ the angle of attack, defined as the angle between the chord line of the airfoil and the velocity vector. Clearly, it is related to the pitch angle Θ

$$
\begin{equation*}
\Theta=\boldsymbol{\alpha}+\Gamma, \quad \Gamma=\arctan \left(\frac{-\mathrm{d} \mathbf{Z} / \mathrm{d} t}{\mathrm{~d} \mathbf{X} / \mathrm{d} t}\right) \tag{3.4}
\end{equation*}
$$

where Γ is called the flight path angle and defined as the angle between the velocity vector and the horizontal plane (Cook, 2013, p. 18) (c.f Fig. 1). The dimensionless aerodynamic coefficients C_{L}, C_{D}, C_{M} in (3.2) have the classic expressions:

$$
\begin{equation*}
C_{L}(\boldsymbol{\alpha})=C_{L_{0}}+C_{L_{1}} \boldsymbol{\alpha}, C_{D}(\boldsymbol{\alpha})=C_{D_{0}}+C_{D_{1}} \boldsymbol{\alpha}+C_{D_{2}} \boldsymbol{\alpha}^{2}, \quad C_{M}(\boldsymbol{\alpha})=C_{M_{0}}+C_{M_{1}} \boldsymbol{\alpha} \tag{3.5}
\end{equation*}
$$

where $\left(C_{L_{0}}, C_{L_{1}}\right)=(0.1875,0660),\left(C_{D_{0}}, C_{D_{1}}, C_{D_{2}}\right)=(0.0212,0.0014,0.0004)$ and $\left(C_{M_{0}}, C_{M_{1}},\right)=$ ($-0.0134,0.0092$).

The input forces and moments in the body frame are obtained from the angular velocities of the existing four rotors: $\omega_{i}, i=1, \ldots 4$ according to

$$
\left[\begin{array}{c}
F \tag{3.6}\\
T_{p} \\
T_{q} \\
T_{r}
\end{array}\right]=\left[\begin{array}{cccc}
k_{f} & k_{f} & k_{f} & k_{f} \\
k_{\tau} & k_{\tau} & -k_{\tau} & -k_{\tau} \\
-k_{q} & k_{q} & k_{q} & -k_{q} \\
-k_{r} & k_{r} & -k_{r} & k_{r}
\end{array}\right]\left[\begin{array}{c}
\omega_{1}^{2} \\
\omega_{2}^{2} \\
\omega_{3}^{2} \\
\omega_{4}^{2}
\end{array}\right]
$$

where F is the input thrust, T_{p}, T_{q} and T_{r} are the input torques of the rotors along the body axes and k_{f}, k_{τ} are the force and torque coefficients of the rotors, respectively. Additionally, k_{q} and k_{r} are torque coefficients derived from the rotor configuration shown in Fig. 1 (Powers et al., 2014).

3.2. Problem statement

Consider the SWQA equipped with the four rotors vertically oriented in a hover flight $\Theta=90^{\circ}$ (as shown in Fig. 1b). In fact, we are dealing with the Quadrotor Flight Envelope ($Q F E$) and want to change the quadrotor mode into Airplane Flight Envelope (AFE). That means the SWQA has to fly as an airplane in a horizontal flying path $\Gamma=0^{\circ}$ with a positive angle of attack $\boldsymbol{\alpha}$. This angle needs to be not larger than 10° and the flying speed V is predefined to be not larger than $5[\mathrm{~m} / \mathrm{s}]$. The required change between these two flight modes guarantees that the SWQA will continue the flight and not fall down.

To solve the problem described above, we have to track a take-off path in terms of its nominal tangential velocity. Given a desired flying speed, \bar{V} and a required flight path angle $\bar{\Gamma}$, the SWQA has to track a prescribed trajectory $(\overline{\mathbf{X}}, \overline{\mathbf{Z}})$ such that

$$
\begin{equation*}
\mathrm{d} \overline{\mathbf{X}} / \mathrm{d} t=\bar{V} \cos (\bar{\Gamma}), \quad \mathrm{d} \overline{\mathbf{Z}} / \mathrm{d} t=-\bar{V} \sin (\bar{\Gamma}) \tag{3.7}
\end{equation*}
$$

In the $Q F E$, the thrust F of the rotors is the main lift force, and in the $A F E$, these are the wing aerodynamic forces. By L and D, we denote the main lift forces. During the transition phase between two flight envelopes mentioned above, the importance between two different types of forces changes gradually.

The nominal values of F and L are obtained from (3.1), (3.3), (3.4) and (3.7) as

$$
\begin{align*}
{\left[\begin{array}{c}
\bar{F} \\
\bar{L}
\end{array}\right]=} & {\left[\begin{array}{c}
D(\bar{V}, \overline{\boldsymbol{\alpha}}) / \cos (\overline{\boldsymbol{\alpha}}) \\
-D(\bar{V}, \overline{\boldsymbol{\alpha}}) \tan (\overline{\boldsymbol{\alpha}})
\end{array}\right]+(m g)\left[\begin{array}{c}
\sin (\bar{\Gamma}) / \cos (\overline{\boldsymbol{\alpha}}) \\
\cos (\bar{\Gamma})-\sin (\bar{\Gamma}) \tan (\overline{\boldsymbol{\alpha}})
\end{array}\right] } \\
& -m\left[\begin{array}{c}
-(\mathrm{d} \bar{V} / \mathrm{d} t) / \cos (\overline{\boldsymbol{\alpha}}) \\
(\mathrm{d} \bar{V} / \mathrm{d} t) \tan (\overline{\boldsymbol{\alpha}})-\bar{V}(\mathrm{~d} \bar{\Gamma} / \mathrm{d} t)
\end{array}\right], \tag{3.8}
\end{align*}
$$

where: $\bar{V}=\sqrt{(\mathrm{d} \overline{\mathbf{X}} / \mathrm{d} t)^{2}+(\mathrm{d} \overline{\mathbf{Z}} / \mathrm{d} t)^{2}}$ and $(\cos (\overline{\boldsymbol{\alpha}}) \approx 1$ and $\sin (\overline{\boldsymbol{\alpha}}) \approx \overline{\boldsymbol{\alpha}})$:

$$
\begin{equation*}
\overline{\boldsymbol{\alpha}} \approx \frac{(m g) \cos (\bar{\Gamma})+m \bar{V} \mathrm{~d} \bar{\Gamma} / \mathrm{d} t-(1 / 2) \rho\left(b^{2} / A R\right) \bar{V}^{2} C_{L_{0}}}{(1 / 2) \rho\left(b^{2} / A R\right) \bar{V}^{2}\left(C_{L_{1}}+C_{D_{0}}\right)+(m g) \sin (\bar{\Gamma})+m \mathrm{~d} \bar{V} / \mathrm{d} t} . \tag{3.9}
\end{equation*}
$$

Note that the nominal value of the pitching moment T_{q} is given by

$$
\begin{equation*}
\bar{T}_{q}=\mathrm{I}_{y y} \mathrm{~d}^{2} \bar{\Gamma} / \mathrm{d} t^{2}-M(\bar{V}, \overline{\boldsymbol{\alpha}})-\overline{\bar{c}}\left(h-h_{0}\right) \bar{L}(\bar{V}, \overline{\boldsymbol{\alpha}}) . \tag{3.10}
\end{equation*}
$$

Using these predetermined nominal values we are able to define the longitudinal incremental variables given as follows

$$
\begin{equation*}
\mathbf{x}=\overline{\mathbf{X}}-\mathbf{X}, \quad \mathbf{z}=\overline{\mathbf{Z}}-\mathbf{Z}, \quad \theta=\bar{\Theta}-\Theta, f=\bar{F}-F, \quad \tau_{q}=\bar{T}_{q}-T_{q} . \tag{3.11}
\end{equation*}
$$

Fig. 2. Take-off path (3.12) and (3.7); $\bar{V}_{0}=1[\mathrm{~m} / \mathrm{s}], \bar{V}_{N}=15[\mathrm{~m} / \mathrm{s}], t_{N}=5[\mathrm{~m} / \mathrm{s}]$. (a) $\bar{V}[\mathrm{~m} / \mathrm{s}]$ v.s. $\overline{\mathbf{X}}[\mathrm{m}]$. (b) $\bar{\Gamma}[\mathrm{rad}]$ v.s. $\overline{\mathbf{X}}[\mathrm{m}]$. (c) $-\overline{\mathbf{Z}}[\mathrm{m}]$ v.s. $\overline{\mathbf{X}}[\mathrm{m}]$.

3.3. Problem solution method

In order to use the constructive treatment of the problem established in the previous section, let us first define the following smooth take-off path

$$
\begin{equation*}
\bar{V}=\bar{V}_{0}+\frac{\bar{V}_{N}-\bar{V}_{0}}{2}\left(1-\cos \left(\pi \frac{t}{t_{N}}\right)\right)[\mathrm{m} / \mathrm{s}], \quad \bar{\Gamma}=\frac{\pi}{2}-\frac{\pi}{4}\left(1-\cos \left(\pi \frac{t}{t_{N}}\right)\right)[\mathrm{rad}] \tag{3.12}
\end{equation*}
$$

where t_{N} is the transition time, \bar{V}_{0} is the initial speed and \bar{V}_{N} denotes the desired cruise speed (see Fig. 2).

We next consider a necessary time partition: $\mathscr{P}_{10}=\left\{\mathscr{I}_{1}, \ldots, \mathscr{I}_{N}\right\}, \mathscr{I}_{k}=\left[t_{k-1}, t_{k}\right), t_{0}=0, t_{k-1}<$ $t_{k}, k \in\{1, \ldots, N\}$, and introduce the specific change of variable:

$$
\left[\begin{array}{l}
\hat{\mathbf{x}} \tag{3.13}\\
\hat{\mathbf{z}}
\end{array}\right]=P\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{z}
\end{array}\right], \quad P=\left[\begin{array}{cc}
\cos (\widehat{\Theta}(t)) & -\sin (\widehat{\Theta}(t)) \\
\sin (\widehat{\Theta}(t)) & \cos (\widehat{\Theta}(t))
\end{array}\right] ; \quad \widehat{\Theta}(t)=\sum_{k=1}^{N}{ }^{1} \mathscr{I}_{k}(t) \bar{\Theta}\left(t_{k}\right) .
$$

From (3.1), (3.11) and (3.13), we can deduce the useful state space description for the input and state vectors

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x=A_{q} x+B u+S \mathrm{q}(x), \tag{3.14}
\end{equation*}
$$

$u=\left[\begin{array}{ll}f & \tau_{q}\end{array}\right]^{T} x=\left[\begin{array}{lll}x_{\mathbf{x}}^{T} & x_{\mathbf{z}}^{T} & x_{\theta}^{T}\end{array}\right]^{T}$. Here: $x_{\mathbf{x}}=\left[\begin{array}{ll}\hat{\mathbf{x}} & \mathrm{d} \hat{\mathbf{x}} / \mathrm{d} t\end{array}\right]^{T}, x_{\mathbf{z}}=\left[\begin{array}{ll}\hat{\mathbf{z}} & \mathrm{d} \hat{\mathbf{z}} / \mathrm{d} t\end{array}\right]^{T}$ and $x_{\theta}=\left[\begin{array}{ll}\theta & \mathrm{d} \theta / \mathrm{d} t\end{array}\right]^{T} ;$ $\mathrm{q}(x)=\left[\begin{array}{lll}\mathrm{q}_{\mathrm{x} k} & \mathrm{q}_{z k} & \mathrm{q}_{\theta k}\end{array}\right]^{T}$ is the uncertainty vector (nonlinear perturbation signal) (Bonilla et al., 2020). This vector describes the terms that are neglected when a linearization around the equilibrium points $(x, u)=(0,0)$ is implemented. Moreover, we need to introduce matrices A_{q}, B and S

The $\stackrel{\circ}{i j k}, i, j \in\{\hat{\mathbf{x}}, \hat{\mathbf{z}}, \theta\}$ are constant coefficients determined over the intervals \mathscr{I}_{k} for $k \in\{1, \ldots, N\}$. These coefficients are results of the linearizing procedure (3.1), (3.11) and (3.13) realized over the takeoff path (3.12) and (3.7). This linearization is considered at the time instants $\left\{t_{1}, \ldots, t_{N}\right\}$ as shown in Fig. 2. Let us note that Appendix A contains the concrete necessary algebraic expressions we applied here.

3.4. Riccati stabilization

In order to tackle the Riccati Stabilization of (3.14) and (3.15), we first define the locations set (cf. (1.3))

Thus, matrix A_{q} takes the following form ($c f$. (1.2a)):

$$
\begin{gather*}
A_{q}=\bar{A}_{0}+\bar{A}_{1} \bar{D}(q), \quad \bar{D}(q)=\sum_{k=1}^{N}{ }_{\mathscr{I}_{k}}(t) \bar{D}\left(q_{k}\right), \quad A_{q_{k}}=\bar{A}_{0}+\bar{A}_{1} \bar{D}\left(q_{k}\right), \\
\bar{A}_{0}=\left[\begin{array}{cc|cc|cc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \bar{A}_{1}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
\hline 0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \tag{3.17}
\end{gather*}
$$

Table 1 Numerical values of the components $\dot{a}_{i j k}, i, j \in\{\hat{\mathbf{x}}, \hat{\mathbf{z}}, \theta\}$, of the locations $q_{k} \in \mathscr{Q}_{10}$, $k \in\{1, \ldots, 10\}$ (cf. (3.16); see also Appendix A). The column ($\mathbf{X},-\mathbf{Z}$) was rounded to hundredth and the columns of the $\stackrel{\circ}{i j k}$ were rounded to thousandth.

$\underline{(\overline{\mathbf{X}},-\overline{\mathbf{Z}})[\mathrm{m}]}$	k	$-\stackrel{\circ}{a} \hat{\mathbf{x}} \hat{\mathbf{x}} k$	$a_{\hat{\mathbf{x}} \mathbf{~} \mathbf{z} k}$		$-\stackrel{a}{\hat{\mathbf{z}}} \mathbf{~} \hat{k} k$	$-\stackrel{\circ}{a}_{\hat{\mathbf{z}} \hat{\mathbf{z}} \hat{}}$	$-\grave{a}_{\hat{\mathbf{z}} \text { ¢ }}{ }^{\text {a }}$	$-\stackrel{\circ}{a}_{\theta \hat{\mathbf{x}} k}$	$-\stackrel{\circ}{a}_{\theta \hat{\mathbf{z}} \mathrm{k}}$	a_{θ}
(5.79, 9.67)	1	0.041	0.279	0.435	0.525	4.049	48.149	0.429	2.221	2.207
(10.68, 12.32)	2	0.052	0.274	0.846	0.592	4.969	64.947	0.538	3.345	3.333
(14.80, 13.64)	3	0.058	0.292	1.071	0.647	5.499	76.010	0.592	4.097	4.085
(18.36, 14.35)	4	0.061	0.325	1.161	0.698	5.842	83.623	0.616	4.622	4.608
(21.48, 14.74)	5	0.063	0.367	1.157	0.748	6.075	88.890	0.621	4.994	4.977
(24.26, 14.94)	6	0.064	0.414	1.088	0.796	6.233	92.458	0.612	5.253	5.232
(26.77, 15.04)	7	0.064	0.463	0.974	0.842	6.340	94.756	0.594	5.429	5.405
(29.05, 15.09)	8	0.064	0.515	0.829	0.887	6.409	96.079	0.571	5.540	5.512
(31.14, 15.10)	9	0.063	0.567	0.664	0.929	6.449	96.644	0.544	5.600	5.569
(33.07, 15.10)	10	0.062	0.619	0.486	0.969	6.467	96.614	0.515	5.621	5.586

We next define the time partition ($N=10$ and $t_{N}=5[\mathrm{~s}]$) as

$$
\begin{equation*}
\mathscr{P}_{10} \triangleq\left\{\mathscr{I}_{k}=\left[t_{k-1}, t_{k}\right) \mid t_{0}=0, t_{k}=5(k / 10)^{(475 / 1918)}, k \in\{1, \ldots, 10\}\right\} . \tag{3.18}
\end{equation*}
$$

Using the introduced time partition, we get the locations shown in Table 1 (cf. (3.16). We also refer to Appendix A for the necessary technical details.

From (3.17) and Table 1, we next obtain the spectra of the matrix $A_{q_{k}}$:

We now consider the concrete solution procedure for ARE (2.2). In order to solve this ARE, we put

$$
\begin{equation*}
q_{0}=q_{10} \quad \Rightarrow \quad \bar{\Delta}_{0}=\bar{D}\left(q_{10}\right) \tag{3.20}
\end{equation*}
$$

and choose

$$
\bar{Q}_{0}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \tag{3.21}\\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2
\end{array}\right] \text { and } R=\left[\begin{array}{cc}
1 / 20 & 0 \\
0 & 1
\end{array}\right]
$$

From (3.17), (3.20) and taking into consideration Table 1 and (3.21), we can deduce that the solution of (2.2) has the following explicit form:

$$
P_{0}=\left[\begin{array}{cccccc}
1.3097 & 0.35454 & 0.0033206 & 0.019828 & -0.25039 & -0.0064344 \tag{3.22}\\
0.35454 & 0.45562 & -0.047959 & 0.015024 & -0.12392 & -0.0035059 \\
0.0033206 & -0.047959 & 1.2772 & 0.13327 & -1.778 & -0.047567 \\
0.019828 & 0.015024 & 0.13327 & 0.092803 & -0.8661 & -0.031908 \\
-0.25039 & -0.12392 & -1.778 & -0.8661 & 20.29 & 0.61192 \\
-0.0064344 & -0.0035059 & -0.047567 & -0.031908 & 0.61192 & 0.086183
\end{array}\right] .
$$

The control feedback (2.1) can now be defined and has the following expression

$$
\begin{align*}
& F_{* 0}=R^{-1} B^{T} P_{0}=\left[\begin{array}{rrrrrc}
4.4318 & 5.6952 & -0.59949 & 0.1878 & -1.5491 & -0.043824 \\
-0.13405 & -0.07304 & -0.99097 & -0.66474 & 12.748 & 1.7955
\end{array}\right], \tag{3.23}\\
& u=-F_{* 0} x .
\end{align*}
$$

Moreover, we have

$$
\begin{equation*}
Q_{0}=\bar{Q}_{0}+F_{* 0}^{T} R F_{* 0} \quad \Rightarrow \quad \lambda_{\text {min }}\left(Q_{0}\right)=\lambda_{\text {min }}\left(\bar{Q}_{0}\right)=1 \quad\left(\lambda_{\text {min }}\left(F_{* 0}^{T} R F_{* 0}\right)=0\right) \tag{3.24}
\end{equation*}
$$

Note that Table 2 includes the computation of the spectra of matrices $X_{k}=\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{k}}\right)^{T} P_{0}+$ $P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{k}}\right)$. Additionally, we test the condition (2.8) for the values of $k \in\{1, \ldots, 10\}$.

3.5. Simulation results

This section includes the simulation results involving the proposed stabilizing feedback control. In Fig. 3, we present some simulation results when applying the LQR state feedback (3.23) to the given SWQA system represented by (3.1) - (3.5). We have followed here the smooth take-off path (3.12) and (3.7) with $\bar{V}_{0}=1[\mathrm{~m} / \mathrm{s}], \bar{V}_{N}=15[\mathrm{~m} / \mathrm{s}]$ and $t_{N}=5[\mathrm{~m} / \mathrm{s}]$. Moreover, the state components are given as follows: $x=\left[\begin{array}{lll}x_{\mathbf{x}}^{T} & x_{\mathbf{z}}^{T} & x_{\theta}^{T}\end{array}\right]^{T}, x_{\mathbf{x}}=\left[\begin{array}{ll}\hat{\mathbf{x}} & \mathrm{d} \hat{\mathbf{x}} / \mathrm{d} t\end{array}\right]^{T}, x_{\mathbf{z}}=\left[\begin{array}{ll}\hat{\mathbf{z}} & \mathrm{d} \hat{\mathbf{z}} / \mathrm{d} t\end{array}\right]^{T}, x_{\theta}=\left[\begin{array}{ll}\theta & \mathrm{d} \theta / \mathrm{d} t\end{array}\right]^{T}$, and the control actions, f and τ_{q}, are obtained from (3.11), (3.13) and (3.8) - (3.11).

From the information presented on Fig. 3 we can conclude that the SWQA tracks correctly the smooth take-off path (3.12) and (3.7) and has a stable behaviour.

Table 2 Spectra $\sigma\left(X_{k}\right), X_{k}=\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{k}}\right)^{T} P_{0}+P_{0}\left(\bar{A}_{0}+\bar{A}_{1} \bar{\Delta}_{0}-A_{q_{k}}\right)$, and condition (2.8) for $k \in\{1, \ldots, 10\}$; values rounded to ten thousandth

k	$\sigma\left(X_{k}\right)$	$1+\lambda_{\text {min }}\left(X_{k}\right)$
1	$\{-0.9998,-0.2296,-0.0172,0.0030,0.2252,80.593\}$	0.0002
2	$\{-0.6573,-0.1834,-0.0031,0.0007,0.1882,52.519\}$	0.3427
3	$\{-0.4519,-0.1427,-0.0008,0.0026,0.16481,34.05\}$	0.5481
4	$\{-0.3221,-0.1040,-0.0016,0.0042,0.1449,21.364\}$	0.6779
5	$\{-0.2380,-0.0689,-0.0019,0.0040,0.12401,12.617\}$	0.7620
6	$\{-0.1812,-0.0407,-0.0018,0.0031,0.1000,6.7195\}$	0.8188
7	$\{-0.1425,-0.0215,-0.0012,0.0018,0.0713,2.9591\}$	0.8575
8	$\{-0.1296,-0.0117,-0.0002,0.0002,0.0367,0.852\}$	0.8704
9	$\{-0.2192,-0.01162,-0.0006,0.0006,0.0074,0.1055\}$	0.7808
10	$\{0,0,0,0,0,0\}$	1

Fig. 3. Simulation results. (a) $\left\|x_{\theta}\right\|$. (b) $\left\|x_{\mathbf{z}}\right\|$. (c) $\left\|x_{\mathbf{x}}\right\|$. (d) Dotted line: \bar{F}, dashed line: $F=\bar{F}+f$, solid line: $10 f$. (e) Dotted line: \bar{T}_{q}, dashed line: $T_{q}=\bar{T}_{q}+\tau_{q}$, solid line: $10 \tau_{q}$.

4. Concluding Remarks

In this paper, we have proposed a Riccati-equation-based stabilizing state feedback for a wide class of switched dynamic models of the flying objects type. The obtained matrices of the main state space representation (1.1) associated with the class of switched system possess a useful structure similar to (Narendra \& Balakrishnan, 1994). Moreover, the admissible switching mechanisms have a generic hybrid nature studied in Azhmyakov (2019). These switched dynamic models make it possible to consider the useful formal state space representation (1.1)-(1.2), where the essential parameters of constant system structure is given by the simple model (1.2). Moreover, (1.5) is determined by the triplet $\left(\bar{A}_{0}, \bar{A}_{1}, \bar{\Delta}_{0}\right)$. Note that the combinatorial structure of the locations set in switched systems we examined is in fact represented by the matrix $\bar{D}\left(q_{i}\right)(c f$. (1.5)).

In our contribution, we have developed a kind of 'robustness' result. This robustness is understood with respect to a possible (admissible) switching mechanism such that the Riccati-equation-based stabilization feedback (2.1) and (2.2) stabilize the initially given dynamic system (1.1)-(1.3). This stabilization is implemented under the assumption of an unknown dynamic location $q \in \mathscr{Q}$. We only assumed the knowledge of the essential parameters associated with the constant system structure (1.2) and (1.5), which was determined by the triple ($\bar{A}_{0}, \bar{A}_{1}, \bar{\Delta}_{0}$).

The formal proof of Theorem 2.2 we presented involves some recent results from (Bonilla et al., 2015b). Finally note that the proposed Riccati-equation-based stabilization feedback we developed not only guarantees the stability property of the Single Wing Quadrotor Aircraft in a concrete flying mode but also implies the stability during the mode change, namely, during the change from the QFE mode to the $A F E$.

Acknowledgement

Ortiz Castillo thanks the french ambassy in México, which permitted a stay at 'Laboratoire des Sciences du Numérique de Nantes (LS2N)', France, during his master at 'Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional', México, in the framework of the programme 'Discover Science in France'.

References

Azhmyakov, V. (2019) A Relaxation Approach to Optimal Control of Hybrid and Switched Systems. Oxford: Elsevier.
Bonilla, M., Malabre, M. \& Azhmyakov, V. (2015a) An implicit systems characterization of a class of impulsive linear switched control processes. Part 1: modeling. Nonlinear Anal. Hybri. Sys., 15, 157-170.
Bonilla, M., Malabre, M. \& Azhmyakov, V. (2015b) An implicit systems characterization of a class of impulsive linear switched control processes. Part 2: control. Nonlinear Anal. Hybri. Sys., 18, 15-32.
Bonilla, M., Blas, L. A., Azhmyakov, V., Malabre, M. \& Salazar, S. (2020) Robust structural feedback linearization based on the nonlinearities rejection. J. Franklin Inst. B, 357, 2232-2262.
Соoк, M. V. (2013) Flight Dynamics Principles. A Linear Systems Approach to Aircraft Stability and Control. London: Elsevier.
Kailath, T. (1980) Linear systems. New Jersey: Prentice-Hall.
Karcanias, N. \& Livada, M. (2020) Complex systems and control: the paradigms of structure evolving systems and system of systems. Structural Methods in the Study of Complex Systems. Lecture Notes in Control and Information Sciences (E. Zattoni, A. Perdon \& G. Conte eds), vol. 482. Switzerland AG: Springer Nature, pp. 3-55. ISBN 978-3-030-18571-8, ISBN 978-3-030-18572-5 (eBook).
Liberzon, D. (2003) Switching in Systems and Control. New York: Springer Science.
Narendra, K.S. and Balakrishnan, J. (1994). A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE-TAC, 39, 2469-2471.
Ortiz Castillo, M. A., Bonilla, M., Loiseau, J. J., Malabre, M. \& Azhmyakov, V. (2020) On the LQ Based Stabilization for a Class of Switched Dynamic Systems. Preprints of the $1^{\text {st }}$ Virtual IFAC World Congress IFAC-V 2020. Berlin: Deutschland, p. 6, July 11-17, 2020.
Powers, C., Mellinger, D. \& Kumar, V. (2014) Quadrotor kinematics and dynamics. Chapter 16 of Handbook of unmanned aerial vehicles (K. P. Valavanis \& G. J. Vachtsevanos eds). New York: Springer Publishing Company, Incorporated.
Selig, M. S., Lyon, C. A., Gigure, P., Ninham, C. N. \& Guglielmo, J. J. (1996) Summary of Low-Speed Airfoil Data, vol. 2. USA: SoarTech Publications, Virginia Beach, VA.
Stewart, G. W. (1973) Introduction to Matrix Computation. New York: Academic Press.

A. Coefficients of (3.15)

$$
\begin{aligned}
& \dot{a}_{\hat{\mathbf{x}} \hat{\mathbf{x}} k} \approx\left(m \bar{V}\left(t_{k}\right)\right)^{-1}\left(-\dot{D}_{V, k} \bar{V}\left(t_{k}\right)+\left(\dot{D}_{\alpha, k}-L_{k}+\dot{L}_{V, k} \bar{V}\left(t_{k}\right)\right) \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), \\
& \stackrel{\circ}{\hat{\mathbf{x}}} \hat{\mathbf{z}} k \approx\left(m \bar{V}\left(t_{k}\right)\right)^{-1}\left(L_{k}-\stackrel{\circ}{D}_{\alpha, k}+\left(D_{k}+\stackrel{\circ}{L}_{\alpha, k}-\dot{D}_{V, k} \bar{V}\left(t_{k}\right)\right) \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), \\
& \stackrel{\circ}{\hat{\mathbf{x}}} \hat{} \text { } \approx m^{-1}\left(-\dot{D}_{\alpha, k}+\dot{L}_{\alpha, k} \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), \\
& {\stackrel{\circ}{a_{\hat{\mathbf{z}}} \hat{\mathbf{x}}}} \approx\left(m \bar{V}\left(t_{k}\right)\right)^{-1}\left(\dot{D}_{\alpha, k}-\stackrel{\circ}{L}_{V, k} \bar{V}\left(t_{k}\right)+\left(D_{k}+\stackrel{\circ}{L}_{\alpha, k}-\stackrel{\circ}{D}_{V, k} \bar{V}\left(t_{k}\right)\right) \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) \text {, } \\
& {\stackrel{\circ}{a_{\hat{\mathbf{z}} \hat{\mathbf{z}}}}} \approx\left(2 m \bar{V}\left(t_{k}\right)\right)^{-1}\left(-D_{k}-\stackrel{\circ}{L}_{\alpha, k}+2\left(\stackrel{\circ}{D}_{\alpha, k}-L_{k}+\dot{L}_{V, k} \bar{V}\left(t_{k}\right)\right) \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) \text {, } \\
& \dot{a}_{\hat{\mathbf{z}} \theta k} \approx-m^{-1}\left(\bar{F}\left(t_{k}\right)+\stackrel{\circ}{L}_{\alpha, k}+\dot{D}_{\alpha, k} \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), \\
& \stackrel{\circ}{a}_{\theta \hat{\mathbf{x}} k} \approx \mathrm{I}_{y y}^{-1}\left(\dot{M}_{V, k}+\overline{\bar{c}}\left(h-h_{0}\right) \dot{L}_{V, k}\right)-\stackrel{\circ}{a}_{\theta \theta k} \overline{\boldsymbol{\alpha}}\left(t_{k}\right) \text {, } \\
& \stackrel{\circ}{a}_{\theta \hat{\mathbf{z}} k} \approx \stackrel{\circ}{a}_{\theta \theta k}+\mathrm{I}_{y y}^{-1}\left(\dot{\circ}_{V, k}+\overline{\bar{c}}\left(h-h_{0}\right) \stackrel{\circ}{L}_{V, k}\right) \bar{\alpha}\left(t_{k}\right) \text {, } \\
& \stackrel{\circ}{a}_{\theta \theta k}=\mathrm{I}_{y y}^{-1}\left(\dot{M}_{\alpha, k}+\overline{\bar{c}}\left(h-h_{0}\right) \dot{L}_{\alpha, k}\right) \text {, }
\end{aligned}
$$

where:

$$
\begin{array}{lll}
L_{k}=L\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), & \dot{L}_{\alpha, k}=\partial L\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial \boldsymbol{\alpha}, & \dot{L}_{V, k}=\partial L\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial V \\
D_{k}=D\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), & \stackrel{D}{\alpha, k}^{\alpha}=\partial D\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial \boldsymbol{\alpha}, & \stackrel{D}{V V, k}=\partial D\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial V \\
M_{k}=M\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right), & \dot{M}_{\alpha, k}=\partial M\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial \boldsymbol{\alpha}, & \dot{M}_{V, k}=\partial M\left(\bar{V}\left(t_{k}\right), \overline{\boldsymbol{\alpha}}\left(t_{k}\right)\right) / \partial V
\end{array}
$$

[^0]: ${ }^{1}$ Recall that the celebrated rank-nullity theorem defines the concept of a surjective and an injective matrix. In the case of a $r_{1} \times r_{2}$ matrix with a rank r_{3}, this fundamental theorem establishes that

