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Our paper deals with the stabilization of a class of time-dependent linear autonomous complex systems
with a switched structure. The initially given switched dynamic system is assumed to be controlled by
a specific state feedback strategy associated with the linear quadratic regulator (LQR) type control.
The proposed control design guarantees stabilization of the closed-loop system for all of the possible
location transitions. In the solution procedure of the Algebraic Riccati Equation related to the LQR
control strategy, only the knowledge of the algebraic structure related to the switched system are needed.
We prove that the proposed optimal LQR type state feedback control design stabilizes the closed-loop
switched system for every possible active location. The theoretical approach proposed in this paper is
finally applied to a model of the Single Wing Quadrotor Aircraft, when changing from its Quadrotor
Flight Envelope to its Airplane Flight Envelope.
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2 M. BONILLA ET AL.

1. Introduction

General switched dynamic systems (SDSs) belong to a wide family of the complex systems studied
by many authors (see e.g. (Karcanias & Livada, 2020)). Because SDSs constitute a useful modelling
approach for various engineering systems and processes, many useful control strategies for these
dynamics have been developed. For example, in (Bonilla et al., 2015a), it was shown that a wide class
of time-dependent autonomous systems with a switched structure (as defined in (Liberzon, 2003)) can
be adequately represented by the formal state space representation of the type

d

dt
x = Aqx + Bu. (1.1)

Here B ∈ R
n×m is an injective matrix and Aq has the common structure (see e.g. (Narendra &

Balakrishnan, 1994)):

Aq = A0 + A1D(q), (1.2)

where A0 ∈ R
n×n, A1 ∈ R

n×n̂ is an injective matrix and D(q) ∈ R
n̂×n are surjective matrices.1 Let us

denote n = n + n̂.
Because of the usual dynamics of a SDS, it remains in a specific location

q ∈ Q �
{

q1, . . . , qη

∣∣ qi ∈ R
μ, i ∈ {1, . . . , η} ⊂ Z

+} , (1.3)

for all time instants t ∈ Ii. Here Ii � [ti−1, ti), ti ∈ R
+, t0 = 0, ti−1 < ti, for all i ∈ Z

+, lim
i→∞ Ti = ∞,

and s : {Ii ⊂ R
+ ∪ {0}, i ∈ Z

+} → Q, s(Ii) = qj, j ∈ {1, . . . , η}.
We now assume that the locations set has a specific structure described by the following basic

Hypothesis.

Hypothesis 1.1. (Bonilla et al., 2015b) Given q0, q1, . . . , q� ∈R
μ, the locations qj ∈ Q, j ∈ {1, . . . , η},

belong to the set described as follows

qj ∈ Qq0
�
{

qj ∈ Q
∣∣ qj = q0 + [ q1 · · · q�

]
γ j, γ j ∈ R

�, j ∈ {1, . . . , η}
}

, (1.4)

and additionally for each Ii ∈ s−1(qj), γ j = [
γ

j,1
· · · γ

j,�

]T take constant values in R
�; i ∈ N, j ∈

{1, . . . , η}.

1 Recall that the celebrated rank-nullity theorem defines the concept of a surjective and an injective matrix. In the case of a
r1 × r2 matrix with a rank r3, this fundamental theorem establishes that

dim ker A = r2 − r3,

where A denotes the linear map associated with the given matrix. Injectivity of the matrix is defined as

dim ker A = 0 ⇒ r2 = r3

and the surjectivity is equivalent to r3 = r1.
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STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 3

Hypothesis 1.2. (Bonilla et al., 2015b) There exist Δ0, Δγ j
∈ R

n̂×n, j ∈ {1, . . . , η}, such that

D(q) = Δ0 −
∑
i∈N

1
Ii

(t)Δ
s(Ii)

, (1.5)

where 1
Ii

(t) is the characteristic function of the time interval Ii, and s : {Ii ⊂ R
+ ∪ {0}, i ∈ Z

+} →
{γ 1, . . . , γ �}, s(Ii) = γ j, j ∈ {1, . . . , η}. s(Ii) and s(Ii) follow the same index assignation rule, i 	→
j.

We also assume
Hypothesis 1.3. The pair (A0 + A1Δ0, B) is controllable.

In (Bonilla et al., 2015b), authors additionally propose a specific variable structure decoupling
control strategy based on the ideal proportional and derivative (PD) feedback control strategy. As next
a proper practical approximation of the above ideal PD feedback is developed. Such feedback control
strategies reject the initially given ‘variable structure’ of the resulting system and make it possible to
establish the required stability property for control strategies under consideration.

In this paper, we consider the stabilizing problem for a class of time-dependent switched dynamic
systems equipped with a relative simple static state feedback. Our paper is organized as follows: in
Section 2, we give a formal description of the LQR-based stabilization of switched systems. The initial
system description is proposed in (Ortiz Castillo et al., 2020). We next follow the more formal approach
discussed in Bonilla et al. (2015a). In Section 3, we apply the celebrated Riccati stabilizing state
feedback (see also Section 2) for a control design that stabilizes a Single Wing Quadrotor Aircraft in
the case when changing from its Quadrotor Flight Envelope to its Airplane Flight Envelope. Section 4
summarizes our paper.

2. Riccati Equation-Based Approach to the Stabilization Problem

Let us formulate the following problem.

Problem 2.1 Find a constant state feedback that stabilizes system (1.1) and (1.2),

d

dt
x = (A0 + A1D(q)

)
x + Bu.

We next assume that the locations (1.3) are unknown

q ∈ Q �
{

q1, . . . , qη

∣∣ qi ∈ R
μ, i ∈ {1, . . . , η} ⊂ Z

+} .

We also assume the full knowledge of the essential parameters of constant system structure, (1.2) and
(1.5), determined by the following triplet (A0, A1, Δ0).

Solution of this problem involves the proposed state feedback with the linear quadratic regulator
structure

F∗0 = R−1BTP0, u = −F∗0 x, (2.1)
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4 M. BONILLA ET AL.

where R is a selected positive definite matrix and P0 is a solution of the algebraic Riccati equation
(ARE) (recall Assumption 1.3)

(A0 + A1Δ0)
TP0 + P0 (A0 + A1Δ0) − P0BR−1BTP0 + Q0 = 0, (2.2)

and Q0 is a selected positive semidefinite matrix. The above ARE is determined by the essential
parameters of system (1.1) and (1.2), namely (A0, A1, Δ0) (recall that (1.2) and (1.5)).

Applying the state feedback (2.1) to the switched system representation (1.1), we next obtain the
closed-loop state space form

d

dt
x = (Aqi − BR−1BTP0) x (2.3)

Taking into consideration the previously derived formulae (1.2) and (1.5) in (2.3), we also get

d

dt
x =

(
A0 + A1

(
Δ0 −

∑
i∈N

1
Ii

(t)Δ
s(Ii)

)
− BR−1BTP0

)
x, (2.4)

In the same way as in Narendra & Balakrishnan (1994), let us define the following Lyapunov
function

V(x) = x(t)TP0 x(t). (2.5)

The usual Lie derivative of (2.5) (the derivative along the trajectories of system (2.4)) can be calculated
as follows

dV(t)/dt = dxT/dt P0 x + xT P0 dx/dt

= xT
((

A0 + A1Δ0

)T
P0 − ∑

i∈N
1
Ii

(t)
(

A1Δs(Ii)

)T
P0 − (BR−1BTP0

)T
P0

)
x

+ xT
(

P0

(
A0 + A1Δ0

)− ∑
i∈N

1
Ii

(t) P0

(
A1Δs(Ii)

)
− P0

(
BR−1BTP0

))
x

dV(t)/dt = xT
( (

A0 + A1Δ0

)T
P0 + P0

(
A0 + A1Δ0

)− P0BR−1BTP0

−∑
i∈N

1
Ii

(t)

((
A1Δs(Ii)

)T
P0 + P0

(
A1Δs(Ii)

))
− P0BR−1BTP0

)
x.
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STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 5

From (2.2) and (2.1) we next deduce

dV(t)/dt = −xT

(
Q0 +

∑
i∈N

1
Ii

(t)

((
A1Δs(Ii)

)T
P0 + P0

(
A1Δs(Ii)

))
+ FT∗0RF∗0

)
x,

dV(t)/dt = −xT

(
Q0 +

∑
i∈N

1
Ii

(t)

((
A1Δs(Ii)

)T
P0 + P0

(
A1Δs(Ii)

)))
x,

dV(t)/dt = −xT

(
Q0 +

∑
i∈N

1
Ii

(t) Q
s(Ii)

)
x, (2.6)

where

Q
s(Ii)

=
(

A1Δs(Ii)

)T
P0 + P0

(
A1Δs(Ii)

)
, i ∈ {1, . . . , η}, (2.7)

Q0 =
[ (√

Q0

)T

FT∗0

] [
I 0
0 R

] [ √
Q0

F∗0

]
, and Q0 =

(√
Q0

)T (√
Q0

)
.

The analytic relations obtained above constitute in fact a formal proof of our main stability result

Theorem 2.2. Assume that all the technical assumptions of this section are fulfilled. Then the system
(2.3) is stable in the sense of Lyapunov if one of the two following conditions is satisfied

λmin

{
Q0 + (A0 + A1Δ0 − Aqj

)T
P0 + P0

(
A0 + A1Δ0 − Aqj

)}
> 0, ∀ j ∈ {1, . . . , η}, (2.8)

or if the pair

(√
Q0, (A0 + A1Δ0)

)
is observable and moreover,

λmin

{
Q0 + (A0 + A1Δ0 − Aqj

)TP0 + P0

(
A0 + A1Δ0 − Aqj

)} ≥ 0, ∀ j ∈ {1, . . . , η}, (2.9)

Proof. Let us first note that (1.5), (1.2) and (2.7), imply:

Qγ j
= (A1Δγ j

)T P0 + P0
(

A1Δγ j

) = (A0 + A1Δ0 − Aqj

)T P0 + P0
(

A0 + A1Δ0 − Aqj

)
, j ∈ {1, . . . , η}.

(2.10)

Application of Theorem 5.10 from Chapter 6, Section 5 of Stewart (1973), and Corollary 2.6-2 of Kailath
(1980)) concludes the proof. �
Remark 2.1. The obtained result provides a stability criterion for the switched systems in the absence
of the exact (a priori given) information about a concrete switching mechanism.

Starting from a model given in the form (1.1), the feedback design procedure can next be summarized
as follows.

1. Identify the essential parameters of the constant system structure, (1.2) and (1.5), (A0, A1, Δ0).

2. Choose matrices R and Q0 and solve the Riccatti equation (2.2).
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6 M. BONILLA ET AL.

Fig. 1. Single wing quadrotor aircraft. (a) Perspective view. (b) Tangential variables, Γ : flight path angle, Θ: pitch angle, α: angle
of attack, V: longitudinal flight speed.

3. If one of the two conditions of Theorem 2.2, (2.8) or (2.9), are satisfied go to next item, otherwise
return to the previous item.

4. Define the specific feedback control law by (2.1).

3. A Practical Example

Let us consider the Single Wing Quadrotor Aircraft (SWQA) as shown in Fig. 1. The mechanical motion
of the SWQA is studied in a fixed orthogonal axis set (earth axes) (OXYZ), where OZ is a vertical axis,
along the gravity vector

[
0 0 g

]T .
Let Φ, Θ and Ψ be the conventional Euler angles, roll, pitch and yaw, measured with respect to the

axis OBXB, OBYB and OBZB. Here (OBXBYBZB) is the body axis system with its origin OB fixed at
the centre of gravity of the SWQA (Cook, 2013). The total mass of the quadrotor of the SWQA is equal
to m = 1.6 [kg] and the moments of inertia with respect to the axis OBXB, OBYB and axis OBZB are
Ixx = 0.058 [kg m2], Iyy = 0.048 [kg m2] and Izz = 0.052 [kg m2], respectively. We consider here some

concrete values: for the gravity g = 9.81 [m s−2] and the air density parameter ρ = 1.2 [kg/m3].
Moreover, we assume that the single wing has a S5010 low-speed airfoil for flying wings (Selig

et al., 1996), with the aspect ratio: AR = 6, span b = 1.35 [m] and mean aerodynamic chord c =
0.165. Let [m] be a distance of the c.g. along c: h = 0.1 and location of the aerodynamic centre
h0 ≈ 0.25.

3.1. Description of the longitudinal directional behaviour

We next assume that the lateral directional dynamics (X–Y plane) has been already asymptotically
stabilized. Thus, we only need to consider the longitudinal directional movement (X–Z plane). The

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
ci/advance-article/doi/10.1093/im

am
ci/dnab022/6350887 by U

niversitaet der Bundesw
ehr M

uenchen user on 16 August 2021



STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 7

SWQA is represented by the following differential equations:

[
d2X/dt2

d2Z/dt2

]
=
[

0
g

]
− (1/m)

[
cos Γ sin Γ

− sin Γ cos Γ

] [
D(V , α)

L(V , α)

]
+ (F/m)

[
cos Θ

− sin Θ

]
,

d2Θ/dt2 = (1/Iyy)(Tq + M(V , α) + c(h − h0)L(V , α)),

(3.1)

where the lift, drag and pitching moment equations of the wing are given by the following relations (see
(Cook, 2013) for details):

L(V , α) = 1

2
ρ

b2

AR
V2CL(α), D(V , α) = 1

2
ρ

b2

AR
V2CD(α), M(V , α) = c

1

2
ρ

b2

AR
V2CM(α). (3.2)

Here V is the flying speed calculated by

V =
√

(dX/dt)2 + (dZ/dt)2. (3.3)

Assuming now the absence of wind and denote by α the angle of attack, defined as the angle between
the chord line of the airfoil and the velocity vector. Clearly, it is related to the pitch angle Θ

Θ = α + Γ , Γ = arctan

(−dZ/dt

dX/dt

)
, (3.4)

where Γ is called the flight path angle and defined as the angle between the velocity vector and the
horizontal plane (Cook, 2013, p. 18) (c.f Fig. 1). The dimensionless aerodynamic coefficients CL, CD,
CM in (3.2) have the classic expressions:

CL(α) = CL0
+ CL1

α, CD(α) = CD0
+ CD1

α + CD2
α2, CM(α) = CM0

+ CM1
α, (3.5)

where (CL0
, CL1

) = (0.1875, 0660), (CD0
, CD1

, CD2
) = (0.0212, 0.0014, 0.0004) and (CM0

, CM1
, ) =

(−0.0134, 0.0092).
The input forces and moments in the body frame are obtained from the angular velocities of the

existing four rotors: ωi, i = 1, . . . 4 according to

⎡⎢⎢⎣
F
Tp
Tq
Tr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
kf kf kf kf
kτ kτ −kτ −kτ−kq kq kq −kq

−kr kr −kr kr

⎤⎥⎥⎦
⎡⎢⎢⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤⎥⎥⎦ (3.6)

where F is the input thrust, Tp, Tq and Tr are the input torques of the rotors along the body axes and
kf , kτ are the force and torque coefficients of the rotors, respectively. Additionally, kq and kr are torque
coefficients derived from the rotor configuration shown in Fig. 1 (Powers et al., 2014).
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8 M. BONILLA ET AL.

3.2. Problem statement

Consider the SWQA equipped with the four rotors vertically oriented in a hover flight Θ = 90◦ (as shown
in Fig. 1b). In fact, we are dealing with the Quadrotor Flight Envelope (QFE) and want to change the
quadrotor mode into Airplane Flight Envelope (AFE). That means the SWQA has to fly as an airplane in
a horizontal flying path Γ = 0◦ with a positive angle of attack α. This angle needs to be not larger than
10◦ and the flying speed V is predefined to be not larger than 5 [m/s]. The required change between
these two flight modes guarantees that the SWQA will continue the flight and not fall down.

To solve the problem described above, we have to track a take-off path in terms of its nominal
tangential velocity. Given a desired flying speed, V and a required flight path angle Γ , the SWQA has to
track a prescribed trajectory (X, Z) such that

dX/dt = V cos(Γ ), dZ/dt = −V sin(Γ ). (3.7)

In the QFE, the thrust F of the rotors is the main lift force, and in the AFE, these are the wing
aerodynamic forces. By L and D, we denote the main lift forces. During the transition phase between
two flight envelopes mentioned above, the importance between two different types of forces changes
gradually.

The nominal values of F and L are obtained from (3.1), (3.3), (3.4) and (3.7) as

[
F
L

]
=
[

D(V , α)/ cos(α)

−D(V , α) tan(α)

]
+ (m g)

[
sin(Γ )/ cos(α)

cos(Γ ) − sin(Γ ) tan(α)

]

− m

[ −(dV/dt)
/

cos(α)

(dV/dt) tan(α) − V (dΓ /dt)

]
, (3.8)

where: V =
√

(dX/dt)2 + (dZ/dt)2 and (cos(α) ≈ 1 and sin(α) ≈ α):

α ≈ (m g) cos(Γ ) + m V dΓ /dt − (1/2)ρ(b2/AR) V
2

CL0

(1/2)ρ(b2/AR) V
2 (

CL1
+ CD0

)+ (m g) sin(Γ ) + m dV/dt
. (3.9)

Note that the nominal value of the pitching moment Tq is given by

Tq = Iyy d2Γ /dt2 − M(V , α) − c (h − h0) L(V , α). (3.10)

Using these predetermined nominal values we are able to define the longitudinal incremental
variables given as follows

x = X − X, z = Z − Z, θ = Θ − Θ , f = F − F, τq = Tq − Tq. (3.11)
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STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 9

Fig. 2. Take-off path (3.12) and (3.7); V0=1 [m/s], VN=15 [m/s], tN=5 [m/s]. (a) V[m/s] v.s. X[m]. (b) Γ [rad] v.s. X[m]. (c)
−Z[m] v.s. X[m].

3.3. Problem solution method

In order to use the constructive treatment of the problem established in the previous section, let us first
define the following smooth take-off path

V = V0 + VN − V0

2

(
1 − cos

(
π

t

tN

))
[m/s], Γ = π

2
− π

4

(
1 − cos

(
π

t

tN

))
[rad], (3.12)

where tN is the transition time, V0 is the initial speed and VN denotes the desired cruise speed (see
Fig. 2).

We next consider a necessary time partition: P10 = {I1, . . . , IN}, Ik = [tk−1, tk), t0 = 0, tk−1 <

tk, k ∈ {1, . . . , N}, and introduce the specific change of variable:

[
x̂
ẑ

]
= P

[
x
z

]
, P =

[
cos
(
Θ̂(t)

) − sin
(
Θ̂(t)

)
sin
(
Θ̂(t)

)
cos
(
Θ̂(t)

) ] ; Θ̂(t) =
N∑

k=1

1
Ik

(t)Θ(tk). (3.13)
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10 M. BONILLA ET AL.

From (3.1), (3.11) and (3.13), we can deduce the useful state space description for the input and
state vectors

d

dt
x = Aq x + B u + S q(x), (3.14)

u = [ f τq
]T

x = [ xT
x xT

z xT
θ

]T
. Here: xx = [ x̂ dx̂/dt

]T , xz = [ ẑ dẑ/dt
]T and xθ = [ θ dθ/dt

]T ;

q(x) = [ q
xk

q
zk

q
θk

]T
is the uncertainty vector (nonlinear perturbation signal) (Bonilla et al., 2020).

This vector describes the terms that are neglected when a linearization around the equilibrium points
(x, u) = (0, 0) is implemented. Moreover, we need to introduce matrices Aq, B and S

(3.15)

The åijk, i, j ∈ {x̂, ẑ, θ} are constant coefficients determined over the intervals Ik for k ∈ {1, . . . , N}.
These coefficients are results of the linearizing procedure (3.1), (3.11) and (3.13) realized over the take-
off path (3.12) and (3.7). This linearization is considered at the time instants {t1, . . . , tN} as shown in
Fig. 2. Let us note that Appendix A contains the concrete necessary algebraic expressions we applied
here.

3.4. Riccati stabilization

In order to tackle the Riccati Stabilization of (3.14) and (3.15), we first define the locations set (cf. (1.3))

QN �
{

q1, . . . , qN

∣∣ qk = [ ◦ax̂x̂k
◦ax̂ẑk

◦ax̂θk
◦aẑx̂k

◦aẑẑk
◦aẑθk

◦aθ x̂k
◦aθ ẑk

◦aθθk

]T , k ∈ {1, . . . , N}
}

. (3.16)

Thus, matrix Aq takes the following form (cf. (1.2a)):

Aq = A0 + A1 D(q), D(q) =
N∑

k=1

1
Ik

(t) D(qk), Aqk
= A0 + A1 D(qk),

A0 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , A1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.17)
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STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 11

Table 1 Numerical values of the components ◦aijk, i, j∈{x̂, ẑ, θ}, of the locations qk∈Q10,

k∈{1, . . . , 10} (cf. (3.16); see also Appendix A). The column (X, −Z) was rounded to hundredth and
the columns of the ◦aijk were rounded to thousandth.

(X, −Z)[m] k − ◦ax̂x̂k
◦ax̂ẑk − ◦ax̂θk − ◦aẑx̂k − ◦aẑẑk − ◦aẑθk − ◦aθ x̂k − ◦aθ ẑk − ◦aθθk

(5.79, 9.67) 1 0.041 0.279 0.435 0.525 4.049 48.149 0.429 2.221 2.207
(10.68, 12.32) 2 0.052 0.274 0.846 0.592 4.969 64.947 0.538 3.345 3.333
(14.80, 13.64) 3 0.058 0.292 1.071 0.647 5.499 76.010 0.592 4.097 4.085
(18.36, 14.35) 4 0.061 0.325 1.161 0.698 5.842 83.623 0.616 4.622 4.608
(21.48, 14.74) 5 0.063 0.367 1.157 0.748 6.075 88.890 0.621 4.994 4.977
(24.26, 14.94) 6 0.064 0.414 1.088 0.796 6.233 92.458 0.612 5.253 5.232
(26.77, 15.04) 7 0.064 0.463 0.974 0.842 6.340 94.756 0.594 5.429 5.405
(29.05, 15.09) 8 0.064 0.515 0.829 0.887 6.409 96.079 0.571 5.540 5.512
(31.14, 15.10) 9 0.063 0.567 0.664 0.929 6.449 96.644 0.544 5.600 5.569
(33.07, 15.10) 10 0.062 0.619 0.486 0.969 6.467 96.614 0.515 5.621 5.586

D(qk) =
⎡⎣ ◦ax̂x̂k

◦ax̂ẑk
◦ax̂θk

◦aẑx̂k
◦aẑẑk

◦aẑθk
◦aθ x̂k

◦aθ ẑk
◦aθθk

⎤⎦⎡⎣ 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤⎦ .

We next define the time partition (N = 10 and tN = 5 [s]) as

P10 �
{
Ik = [tk−1, tk)

∣∣∣ t0 = 0, tk = 5 (k/10)(475/1918), k ∈ {1, . . . , 10}
}

. (3.18)

Using the introduced time partition, we get the locations shown in Table 1 (cf. (3.16). We also refer to
Appendix A for the necessary technical details.

From (3.17) and Table 1, we next obtain the spectra of the matrix Aqk
:

σ(Aqk
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 : {0, 0, 3.4869, −0.099159, −3.7391 + 3.7709 ı, −3.7391 − 3.7709 ı}
q2 : {0, 0, 4.4614, −0.099919, −4.6913 + 4.8079 ı, −4.6913 − 4.8079 ı}
q3 : {0, 0, 5.0611, −0.10296, −5.2577 + 5.4413 ı, −5.2577 − 5.4413 ı}
q4 : {0, 0, 5.4595, −0.10605, −5.6286 + 5.8614 ı, −5.6286 − 5.8614 ı}
q5 : {0, 0, 5.7299, −0.10869, −5.8795 + 6.1473 ı, −5.8795 − 6.1473 ı}
q6 : {0, 0, 5.9117, −0.11077, −6.0491 + 6.3408 ı, −6.0491 − 6.3408 ı}
q7 : {0, 0, 6.0291, −0.11231, −6.1606 + 6.4674 ı, −6.1606 − 6.4674 ı}
q8 : {0, 0, 6.0979, −0.11332, −6.2287 + 6.544 ı, −6.2287 − 6.544 ı}
q9 : {0, 0, 6.1292, −0.11386, −6.2636 + 6.582 ı, −6.2636 − 6.582 ı}
q10 : {0, 0, 6.1312, −0.11397, −6.2728 + 6.59 ı, −6.2728 − 6.59 ı}

(3.19)

We now consider the concrete solution procedure for ARE (2.2). In order to solve this ARE, we put

q0 = q10 ⇒ Δ0 = D(q10), (3.20)
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12 M. BONILLA ET AL.

and choose

Q0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎦ and R =
[

1/20 0
0 1

]
. (3.21)

From (3.17), (3.20) and taking into consideration Table 1 and (3.21), we can deduce that the solution
of (2.2) has the following explicit form:

P0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1.3097 0.35454 0.0033206 0.019828 −0.25039 −0.0064344
0.35454 0.45562 −0.047959 0.015024 −0.12392 −0.0035059

0.0033206 −0.047959 1.2772 0.13327 −1.778 −0.047567
0.019828 0.015024 0.13327 0.092803 −0.8661 −0.031908
−0.25039 −0.12392 −1.778 −0.8661 20.29 0.61192

−0.0064344 −0.0035059 −0.047567 −0.031908 0.61192 0.086183

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.22)

The control feedback (2.1) can now be defined and has the following expression

F∗0 = R−1BTP0 =
[

4.4318 5.6952 −0.59949 0.1878 −1.5491 −0.043824
−0.13405 −0.07304 −0.99097 −0.66474 12.748 1.7955

]
,

u = −F∗0 x.
(3.23)

Moreover, we have

Q0 = Q0 + FT∗0RF∗0 ⇒ λmin

(
Q0

) = λmin

(
Q0

) = 1
(
λmin

(
FT∗0RF∗0

)
= 0
)

. (3.24)

Note that Table 2 includes the computation of the spectra of matrices Xk = (A0 +A1Δ0 −Aqk

)T
P0 +

P0

(
A0 + A1Δ0 − Aqk

)
. Additionally, we test the condition (2.8) for the values of k ∈ {1, . . . , 10}.

3.5. Simulation results

This section includes the simulation results involving the proposed stabilizing feedback control. In
Fig. 3, we present some simulation results when applying the LQR state feedback (3.23) to the given
SWQA system represented by (3.1) – (3.5). We have followed here the smooth take-off path (3.12) and
(3.7) with V0 = 1 [m/s], VN = 15 [m/s] and tN = 5 [m/s]. Moreover, the state components are given as

follows: x = [ xT
x xT

z xT
θ

]T
, xx = [ x̂ dx̂/dt

]T , xz = [ ẑ dẑ/dt
]T , xθ = [ θ dθ/dt

]T , and the control
actions, f and τq, are obtained from (3.11), (3.13) and (3.8) – (3.11).

From the information presented on Fig. 3 we can conclude that the SWQA tracks correctly the
smooth take-off path (3.12) and (3.7) and has a stable behaviour.
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STABILIZATION OF A CLASS OF SWITCHED DYNAMIC SYSTEMS 13

Table 2 Spectra σ(Xk), Xk = (A0 + A1Δ0 − Aqk

)T
P0 + P0

(
A0 + A1Δ0 − Aqk

)
, and condition (2.8)

for k∈{1, . . . , 10}; values rounded to ten thousandth

k σ(Xk) 1 + λmin

(
Xk

)
1 {−0.9998, −0.2296, −0.0172, 0.0030, 0.2252, 80.593} 0.0002
2 {−0.6573, −0.1834, −0.0031, 0.0007, 0.1882, 52.519} 0.3427
3 {−0.4519, −0.1427, −0.0008, 0.0026, 0.16481, 34.05} 0.5481
4 {−0.3221, −0.1040, −0.0016, 0.0042, 0.1449, 21.364} 0.6779
5 {−0.2380, −0.0689, −0.0019, 0.0040, 0.12401, 12.617} 0.7620
6 {−0.1812, −0.0407, −0.0018, 0.0031, 0.1000, 6.7195} 0.8188
7 {−0.1425, −0.0215, −0.0012, 0.0018, 0.0713, 2.9591} 0.8575
8 {−0.1296, −0.0117, −0.0002, 0.0002, 0.0367, 0.852} 0.8704
9 {−0.2192, −0.01162, −0.0006, 0.0006, 0.0074, 0.1055} 0.7808
10 {0, 0, 0, 0, 0, 0} 1

Fig. 3. Simulation results. (a) ‖xθ‖. (b) ‖xz‖. (c) ‖xx‖. (d) Dotted line: F, dashed line: F = F + f , solid line: 10 f . (e) Dotted line:
Tq, dashed line: Tq = Tq + τq, solid line: 10 τq.

4. Concluding Remarks

In this paper, we have proposed a Riccati-equation-based stabilizing state feedback for a wide class
of switched dynamic models of the flying objects type. The obtained matrices of the main state space
representation (1.1) associated with the class of switched system possess a useful structure similar to
(Narendra & Balakrishnan, 1994). Moreover, the admissible switching mechanisms have a generic
hybrid nature studied in Azhmyakov (2019). These switched dynamic models make it possible to
consider the useful formal state space representation (1.1)–(1.2), where the essential parameters of
constant system structure is given by the simple model (1.2). Moreover, (1.5) is determined by the
triplet (A0, A1, Δ0). Note that the combinatorial structure of the locations set in switched systems we
examined is in fact represented by the matrix D(qi) (cf. (1.5)).
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14 M. BONILLA ET AL.

In our contribution, we have developed a kind of ‘robustness’ result. This robustness is understood
with respect to a possible (admissible) switching mechanism such that the Riccati-equation-based
stabilization feedback (2.1) and (2.2) stabilize the initially given dynamic system (1.1)–(1.3). This
stabilization is implemented under the assumption of an unknown dynamic location q ∈ Q. We only
assumed the knowledge of the essential parameters associated with the constant system structure (1.2)
and (1.5), which was determined by the triple (A0, A1, Δ0).

The formal proof of Theorem 2.2 we presented involves some recent results from (Bonilla et al.,
2015b). Finally note that the proposed Riccati-equation-based stabilization feedback we developed not
only guarantees the stability property of the Single Wing Quadrotor Aircraft in a concrete flying mode
but also implies the stability during the mode change, namely, during the change from the QFE mode to
the AFE.
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A. Coefficients of (3.15)

◦ax̂x̂k ≈ (
m V(tk)

)−1
(

− ◦
DV , k V(tk) + ( ◦

Dα, k − Lk + ◦
LV , k V(tk)

)
α(tk)

)
,

◦ax̂ẑk ≈ (
m V(tk)

)−1
(

Lk − ◦
Dα, k +

(
Dk + ◦

Lα, k − ◦
DV , k V(tk)

)
α(tk)

)
,

◦ax̂θk ≈ m−1
(
− ◦

Dα, k + ◦
Lα, k α(tk)

)
,

◦aẑx̂k ≈ (
m V(tk)

)−1
( ◦

Dα, k − ◦
LV , k V(tk) +

(
Dk + ◦

Lα, k − ◦
DV , k V(tk)

)
α(tk)

)
,

◦aẑẑk ≈ (
2 m V(tk)

)−1
(

− Dk − ◦
Lα, k + 2

( ◦
Dα, k − Lk + ◦

LV , k V(tk)
)

α(tk)
)

,

◦aẑθk ≈ −m−1
(

F(tk) + ◦
Lα, k + ◦

Dα, k α(tk)
)

,

◦aθ x̂k ≈ I−1
yy

( ◦
MV , k + c(h − h0)

◦
LV , k

)
− ◦aθθk α(tk),

◦aθ ẑk ≈ ◦aθθk + I−1
yy

( ◦
MV , k + c(h − h0)

◦
LV , k

)
α(tk),

◦aθθk = I−1
yy

( ◦
Mα, k + c(h − h0)

◦
Lα, k

)
,

where:

Lk = L(V(tk), α(tk)),
◦
Lα, k = ∂L(V(tk), α(tk))/∂α,

◦
LV , k = ∂L(V(tk), α(tk))/∂V ,

Dk = D(V(tk), α(tk)),
◦

Dα, k = ∂D(V(tk), α(tk))/∂α,
◦

DV , k = ∂D(V(tk), α(tk))/∂V ,

Mk = M(V(tk), α(tk)),
◦

Mα, k = ∂M(V(tk), α(tk))/∂α,
◦

MV , k = ∂M(V(tk), α(tk))/∂V .
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