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Abstract. This study investigates possibilities for extension and improvement of algorithms
for generation of libration point orbits in the framework of the circular restricted three body
problem. Two algorithms for orbit generation based on bisection approach using different ways
for evaluation of unstable component of motion are considered. The spacecraft’s state vector is
periodically adjusted in such a way that unstable component of motion is neutralized and the
trajectory corresponding to the corrected state vector belongs to the central manifold associated
with libration point. The first algorithm uses expression for unstable component derived from
linearized equations of motion. The second one is based on the procedure of reduction to
central manifold, utilizing canonical coordinate transformations to nullify high order monomials
in the expansion of Hamiltonian of the system in terms of Legendre polynomials. This allows
expressing unstable component as one of generalized coordinates of Hamiltonian system obtained
as the result of aforementioned transformation. Evaluation of these techniques proved their
applicability for orbit generation. However, the second approach allows generating orbits in
greater vicinity of libration point.

1. Introduction

The circular restricted three-body problem (CRTBP) allows approximating the dynamics of the
motion of bodies in the Solar System. This problem considers two massive bodies moving along
circular paths around their center of mass. A third massless body moves in the gravitational
field of two primaries. There are 5 Lagrange points (libration points) in the scope of CRTBP.
Those are points in space where combined gravitational forces of primaries and centrifugal force
felt by smaller body are in equilibrium. There are trajectories around libration points, which
allow a spacecraft to remain on them for extended periods of time, spending limited amount of
energy for corrections. This fact may motivate space missions to libration points. Sun-Earth
libration point orbits (LPO) were successfully used in several space missions [1-4].

Full analytic solution of equations of motion in CRTBP is not known. To construct orbits
that maintain the spacecraft in the vicinity of the libration point, methods for correcting
the spacecraft’s state vector are required. Numerous scientific works investigate methods for
constructing LPO. Recent works utilize separation properties of stable and unstable manifolds
associated with libration point. Study [4] introduced a bisection method, which allows separating
trajectories belonging to positive and negative branches of unstable manifold, thus, localizing
the state vector corresponding to the central manifold. This idea was further investigated in
the work [5]. This work proposed using spheres as boundary surfaces for bisection method.
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The intersection of the trajectory with one of the spherical surfaces indicates belonging to the
certain branch of unstable manifold. The halo orbit, vertical Lyapunov orbit and the quasi-
periodic orbits close to them cannot be obtained by using this method. Study [6] introduced a
generalized version of bisection method, which could handle the computations of various types
of LPOs in a unified manner. This approach uses Lyapunov’s horizontal orbit rotation body
separated by zero velocity surfaces as boundary surfaces. Study [7] proposed using planar
surfaces as boundaries for bisection. The main difficulty of approach is the choice of location for
boundaries. All aforementioned techniques use geometrical criterion defined in 3-dimensional
space to separate branches of unstable manifold. The goal of this study is to create simple
alternative for this criterion defined in 6-dimensional phase space of CRTBP problem.

2. Equations of motion

Let the bodies P, P» with masses My, My (M; > My) rotate along circular paths around
the barycenter. Consider a rotating coordinate system defined by axes x,y, z centered at the
barycenter of the system. The z-axis is directed from P; to P5. The z axis is directed along the
angular momentum vector. The y axis compliments the coordinate system in such a way that
it satisfies right-hand rule. The system rotates with a constant angular velocity @ = (0,0,7n)7,
where n is the value of the mean motion. Using this coordinate system, the equations of motion
for a spacecraft may be expressed in the following form:

. . - M-
T =2y = m+1r§” =)+ (1 - p—a) F= 0 +2M

1 2
y+2z=y (ri” +T§ Y 7“12\/(154-#)2—1—:1;2—1—22 (1)
. [ 1=p s
°= (5 +4)- ro=/(z =T+ p)2+2+ 22

The complete analytical solution of system (1) is unknown, the generation of trajectories in
the scope of this problem requires the use of numerical integration. Upon linearization in the
vicinity of the libration point, the equations of motion take the form:

Z—29—(142c2)z=0
J+2t—(1—co)y=0 (2)
Z+cz=0

Coefficient co depends on the ratio of the masses of the Sun and the Earth and on the coordinates

of the libration point used as the center of linearization. Solution of system (2) may be written
as:

z(t) = ArkgeM 4+ Askoe ™ 4 Agkycos(wt) + Agkysin(wt)

y(t) = —Arkge™ + Agkge ™ + Askssin(wt) — Agkzcos(wt) (3)

2(t) = Askssin(vt) — Agkscos(vt)
Ay — Ag continuously depend on the initial conditions, while ki1 — k5, A\, w, v depend only on the
constant ca. The solution (3) indicates the existence of center manifold (A; = Az = 0) containing
periodical and quasi-periodical solutions as well as asymptotic stable (A; = 0, A2 # 0) and

unstable (A; # 0, A2 = 0) manifolds. Nonlinear dynamics described by the equations (1) has a
similar structure in the vicinity of libration point [8].

3. Modified bisection method
We propose using an estimate for unstable component of motion to create boundary surfaces
for bisection method. We utilized the Hamiltonian normalization technique and canonical
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transformations, previously used in [9] for semi-analytical construction of LPOs, to obtain an
expression for the unstable component. Hamiltonian corresponding to nonlinear system (1) may

be written as:

1 1—p u
H=-p2+p+p? — apy —
B (P2 + Dy +pZ) + Yps — TPy " T (4)

Pe=T—Y;Py=yY+aT;p;=2

Hamiltonian (4) can be expressed as an expansion in terms of Legendre polynomials around a
libration point:

H = Hy =3 calw)p"Pal’)
n>2 (5)

Hy = 5 (c2(=22% +y* + 2%) + 2yp, — 2up, + P + pj + 13)

N | —

Where
n+1

_ 1 n n(l B lu’)ly
cn(p) = . ((il) pt(=1) W) (for Ly, L) (6)

P, - degree n Legendre polynomial, y - distance between libration point and closest massive body,

p*> = a® +y* + 2% By applying transformation (z,y, 2,pz,py,p2)" = Cla1, 42,93, p1,02,03)",
where C' - 6 X 6 symplectic matrix, Hamiltonian Hy can be transformed to it’s real normal form:

Hy = Mgip1 + 2 (J2 +p3) + (Q3 +p3)

(7)
-2 \/9 -8 -2 9 -8
A = \/ Co + CQ C2 \/ C2 Cg 2 Wy = /G

Where A1, wi,ws - positive real numbers. Hamiltonian system corresponding to H> and it’s
solution may be expressed as:

qi(t) = Aqi(t); q1(0) = qu, a1 (t) = qr e’

G2(t) = wipa(t); 2(0) = ga, q2(t) = qaocos(wit) + pa,sin(wit)

qg3(t) = waps(t); g3(0) = g3, q3(t) = p3,sin(wat) (8)
p1(t) = =Aip1(t); p1(0) = py, p1(t) = proe M

P2(t) = —w1q2(t); p2(0) = pa, p2(t) = p2cos(wit) — qi sin(wit)
(D3(t) = —w2q3(t); p3(0) = p3, [ p3(t) = p3,cos(wat)

The form of components of solution in (8) indicates that ¢; corresponds to hyperbolic motion.
Component ¢q; can be expressed through generalized coordinates of Hamiltonian (5) in the
following way:

u1/2M1((4 + 3c2)A? + 4 + 5cy — 6¢3)
4N (14 2¢2) (A2 + w?) 9)
w1 = (2(1 4 2¢2)py + (1 + 2¢2 + WH (14 2¢2)x + Aipe) + A1 (14 2¢5 — w?)y)

Q1 (%, Pz, Yy, Dy) =

In course of this work we established possibility of construction LPO generation method using (9)
as an expression for unstable component. However, this approach only allows generation orbits
with small amplitudes (see section 4). Therefore, alternative expression for unstable component
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is required. It is convenient to introduce the following complex change of coordinates to simplify
further computations:

@ = q Q2—>7q2$p2, Q3—>q3\+/%p3 (10)
pP1— p1,p2 — p2\-&/-%q2’ p3 — p3\—;%q3
After applying change (10) Hamiltonian takes form:
H = Hy(q,p) + »_ Hu(g,p)
n>3 (11)

Hy(q,p) = Miq1p1 + iwigapa + iw2qsps; Hn(q,p) = hiy jy in jovis s @3 P 4205 4515
At this point we can utilize Birkhoff normalization method [10]. To exclude monomials of order
3 from expression for Hamiltonian (11) we apply the following canonical transformation:

H® = H + {H,G3} + *{{H Gs}, G3}+ {{{H Gs},Gs},Gst+ .. (12)

Where H? is transformed Hamiltonian, G5 - generation function of transformation and {-,-}
denotes Poisson bracket. Given that P, () are homogeneous polynomials of degrees r, s,
respectively, { P, @} is a homogeneous polynomial of degree r+ s —2. Therefore the Hamiltonian
H? satisfies the relations:

Hg’ :HQ; H3 H3+{H2,G3} H4 = H4+{H37G3}+ {{H27G3} GS} (13)

Where Hf is a homogeneous polynomial of degree i in the expansion of the Hamiltonian H?3.
G3 must satisfy equation Hs + {H2,Gs} = 0 for H§ to be equal zero after transformation.
Therefore, GG3 takes form:

T )
Gg(q, p) — Z : : ?1,314’2,J2,13,J3 : : qilpil qé"’pf qéspg (14)
iy i ga—s U1 T AT (J2 = d2)wi + (j3 — i3 )w

Continuing the above process, we get transformed Hamiltonian HY = Hy (¢, p™)+ Ry (¢, pV),
where Ry (¢V,p") - degree N + 1 polynomial, ¢"¥ = (¢}, ¢, qév) Note that N in qlN indicates
the step of normalization process and does not have meaning of exponentiation. Transformation
of form (12) yields recurrent formula which allows expressing generalized coordinates of
transformed Hamiltonian through coordinates of Hamiltonian before transformation:

i =™ avd e g {{a e e o

¢ = q + {q1,Gs} 5 {{QLG?)} Gs} t3 {{{QLG?)} Gs},Gs} +. (16)

In the scope of this study we stopped Hamlltoman normalization process after nullifying
monomials of order 3. By applying change inverse to (10) and using (9) we can express ¢}
as a function of coordinates of initial Hamiltoninan (5):

qzl% :q%(xayazapmapyapz) (17)

Given expressions for unstable component, we can formulate LPO generation technique.
Consider spacecraft’s initial state vector sy = (xo, Yo, 20, UxO,UyO,UZO)T and velocity correction
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vector vz = Av(0,0,0,ve,,Vc,,vc.), |[Ve|] = Av. By the means of numerical integration of
nonlinear system (1) with initial conditions:

(x(0),y(0), 2(0), 2(0),y(0), z'(O))T = (20, Y0, 20, Vag + AV, , Vyy + AV, V2 + Avvcz)T (18)

we obtain discrete trajectory § = (i, Yi, 2iy Vg, » Uy;s V2) L 40 € [1, M]. To correct initial state
vector so that it corresponds to motion along LPO we need to find the value of Av which acts
as a point of discontinuity of the following function:

17 di e [17 M] : (Cj(gl) - Qmax)(qA(gifl) - Qmax) <0
_17 di e [17M] : (Cj(gl) - Qmm)((j(gl—l) - Qmin) <0

Where ¢min, @maz - are chosen boundary values and ¢ - is an estimate for unstable component
either defined by expression (9) or expressions (16)-(17). After the value of Av is obtained, an
orbit can be generated by numerical integration of nonlinear system. Since the orbits around
the collinear libration points (L1, Lo, L3) are unstable, the above corrections must be performed
periodically to calculate the orbits over a long time interval.

F(Av) = { (19)

4. Results and discussion

In the course of this work, we tested technique described in section 3 for calculating orbits
around the L; point of the Sun-Earth system. Examples of generated orbits are shown in
Figures 1, 2. To calculate these orbits, the boundary values ¢;in = —1, ¢mae = 1 were chosen.
Evaluation of this approach showed that both expressions for unstable component can be used to
generate orbits, however, expression (16)-(17), obtained by applying Hamiltonian normalization
technique, allows generating orbits in greater vicinity of libration point than expression (9).
Bisection procedure did not converge with expression (9) when trying to calculate orbit shown
in Figure 2. In this case, the impossibility of convergence is due to the fact that function (19)
has multiple points of discontinuity. Precise determination of the area of applicability of this
method is the goal of further research.
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Figure 2. An example of a generated orbit

Figure 1. An example of a generated orbit belonging to the quasi-halo family

belonging to the Lissajous family

Figure 3 illustrates a comparison of the graphs of the unstable motion component corresponding
to a small amplitude Lissajous orbit (Figure 1). Unstable component ¢§ grows exponentially
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between corrections and drops to zero at the moments of correction while ¢; has significant
fluctuations. This comparison indicates that expression (17) keeps properties of unstable
component in greater vicinity of libration point.

le—8 le—10
1.5 15
1.0 A 1.0
0.5 0.2
_ F0.0
g ooy 3
< L—-0.5
—0.5
Fr—1.0
—1.0 A L _15
—1.54 Correction moments | 2.0
0 10 20 30 40 50 60 70 80
t

Figure 3. Comparison of plots of the unstable component q; (expression (17)) and ¢}
(expressions (16)-(17))

5. Summary

This work proposes a method for LPO generation based on bisection using approximation for
unstable component of motion. Two estimates of the unstable component of motion were
obtained. The first is expressed from the solution of the linearized system, and the second
is obtained by using Hamiltonian normalization procedure. Both estimates allow generating
orbits, but the second is applicable in greater vicinity of libration point.
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