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REPRESENTATIONS OF FINITE-DIMENSIONAL QUOTIENT

ALGEBRAS OF THE 3-STRING BRAID GROUP

PAVEL PYATOV AND ANASTASIA TROFIMOVA

Abstract. We consider quotients of the group algebra of the 3-string
braid group B3 by p-th order generic polynomial relations on the elem-
entary braids. If p = 2, 3, 4, 5, these quotient algebras are finite dimen-
sional. We give semisimplicity criteria for these algebras and present
explicit formulas for all their irreducible representations.
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Introduction

A classical theorem by H. S. M. Coxeter states that the quotient of the n-string
braid group Bn by the p-th order relation σp = 1 on its elementary braid generator
σ is finite if and only if

1/n+ 1/p > 1/2. (0.1)

In case of B3 we obtain finite quotient groups of orders 6, 24, 96, and 600, for
p = 2, 3, 4, and 5, respectively [9]. Generalizing this setting one can consider
quotients of the group algebra C[Bn] obtained by imposing a p-th order monic
polynomial relation on the elementary braids. Under condition (0.1) the resulting
quotient algebras are finite dimensional and, by Tits deformation theorem (see [10,
Section 68] or [13, Section 5]) in the generic situation these algebras are isomorphic
to the group algebras of the corresponding Coxeter’s quotient groupsso they are
semisimple. As a next step it would be interesting to find semisimplicity conditions
and to describe explicitly irreducible representations of these finite dimensional
quotients.

A significant progress in this direction was made by I. Tuba and H. Wenzl. In
the paper [23] they classified all the irreducible representations of B3 in dimensions
d 6 5. Their classification scheme in dimensions d 6 4 yields all the irreducible
representations for the quotients in cases n = 3, p = 2, 3, 4, and describes their
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semisimplicity conditions. However, for p = 5 the above-mentioned quotients of
C[B3] admit irreducible representations of dimensions up to 6 and the classification
in [23] does not cover them. In this note we construct all the irreducible representa-
tions of these algebras of dimension d 6 6 and find criteria for their semisimplicity.
In dimensions d 6 5 we reproduce the classification of irreducible representations
of B3 from [23]. In dimension d = 6 our list gives all the irreducible representations
of B3 that factor through representations of the quotients of C[B3] that we denote
QX (their definition is given in the next section, see (1.7)). The latter factorization
means that the spectrum of the elementary braid in these representations contains
5 different eigenvalues, one of them with multiplicity 2. We are working in the
diagonal basis for the first elementary braid generator g1, and we restrict our con-
siderations to the case where all p roots of its minimal polynomial are distinct. For
the sake of completeness we present formulas for representations from I. Tuba and
H. Wenzl list in this basis too.

Our paper is organized as follows. In the next section we fix notation and derive
preliminary results on possible values of the central element of B3 in low dimensional
irreducible representations (d 6 6). Section 2 contains our main results: criteria
of semisimplicity of the p = 2, 3, 4, 5 quotients of C[B3](Theorem 4) and explicit
formulae for all their irreducible representations(Proposition 2).

Let us describe briefly some related approaches and results. In [24] B. Westbury
suggested an approach to representation theory of B3 that uses representations of
a particular quiver. It was subsequently used by L. Le Bruyn to construct Zariski
dense rational parameterizations of the irreducible representations of B3 of any
dimension [15], [14]. This approach proved to be effective in treating a problem of
braid reversion (see [15]). However it does not provide semisimplicity criteria for the
representations constructed. A 5-dimensional variety of irreducible 6-dimensional
representations of B3 constructed below is contained in an 8-dimensional family of
B3-representations of type 6b (see Fig. 1 in [15]).

For the more general case of Bn, n > 3, series of irreducible representations
related to Iwahori–Hecke algebras (the p = 2 case) and Birman–Murakami–Wenzl
algebras (the p = 3 case, with additional restrictions) are well investigated (for a
review, see [16]). Some other particular families of the Bn-representations were
found in [12], [1].

In another line of research M. Broué, C. Malle and R. Rouquier [3], [4] generalized
the notions of the braid group and of the Hecke algebra associated not only to
Coxeter group, but to an arbitrary finite complex reflection group W . Their generic
Hecke algebra is defined over certain polynomial ring R = Z[{ui}]. Broué, Malle
and Rouquer conjectured that generic Hecke algebra is a free module of rank |W |
over its ring of definition. This conjecture is now proved (see [18], [20], [21], [11] and
the list of references to Theorem 3.5 in [2]). The algebras QX (1.7) we are dealing
with in this work are specializations of generic Hecke algebras of the groups S3

and G4, G8, G16 (in Shephard and Todd’s notations) under homomorphism R→ C
that assigns certain complex values to the variables ui. The freeness conjecture in
these cases is proved in [17], [5], [6], so the dimensions of the algebras QX coincide
with the cardinalities of their corresponding Coxeter groups.
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1. Braid Group B3 and its Quotients:
Spectrum of Elementary Braids

The 3-string braid group B3 is generated by a pair of elementary braids — g1 and
g2 — satisfying the braid relation

g1g2g1 = g2g1g2. (1.1)

Alternatively it can be given in terms of generators

a = g1g2, b = g1g2g1, (1.2)

and relations
a3 = b2 = c, (1.3)

where c = (g1g2)3 = (g1g2g1)2 is a central element of B3 which generates the
center Z(B3) [8]. Thus, the quotient group B3/Z(B3) = 〈a, b|a3 = b2 = 1〉 is
the free product Z3 ∗ Z2 of two cyclic groups, which is known to be isomorphic to
PSL(2, Z).

Let X be a finite set of pairwise different nonzero complex numbers:

X = {x1, x2, . . . , xn}, xi ∈ C \ {0}, xi 6= xj ∀i 6= j. (1.4)

We set

PX(g) :=

n=|X|∏
i=1

(g − xi1), where g ∈ {g1, g2}. (1.5)

In this paper we consider finite dimensional quotient algebras of the group al-
gebra C[B3] obtained by imposing the following polynomial conditions on the ele-
mentary braids:1

PX(g) = 0. (1.6)

As was already mentioned in the introduction the quotient algebras

QX := C[B3]/〈PX(g)〉 (1.7)

are finite dimensional if and only if |X| = n < 6. With a particular choice of
polynomials PX(g) = gn − 1 they are the group algebras of the quotient groups
B3/〈gn〉 and, by the Tits deformation argument, QX ' C[B3/〈gn〉] for n < 6 and
for generic choice of xi ∈ X and, therefore, in a generic situation QX is semisimple.

In the next section we will construct irreducible representations of these algebras.
We use the Artin–Wedderburn theorem to prove that for quotient algebras QX we
obtained the complete classification of the irreducible representations. It turns out
that their dimensions do not exceed 6. In the rest of this section we will show that
in these irreducible representations the spectra of the central element c (1.1) and
of generators a and b (1.2) are, up to a discrete factor, defined by the eigenvalues
xi of the elementary braids.

Let V be a finite dimensional linear space, with dimV = d and let ρX,V : QX →
End(V ) be an irreducible representation of QX . We will assume that the charac-
ter of ρX,V is a continuous function of parameters xi ∈ X.2 We recall |X| = n.

1In the braid group elementary braids g1 and g2 are conjugate to each other and, hence,
conditions on them are identical.

2All representations constructed in the next section satisfy the continuity condition.
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Without loss of generality we can assume that the minimal polynomial of ρX,V (g),
where g ∈ {g1, g2} is PX . Indeed, from equation (1.6) we obtain PX(ρX,V (g)) = 0.
Therefore, the minimal polynomial of ρX,V (g) divides PX and, hence, the eigenval-
ues of ρX,V (g) belong to X. Let X ′ ⊂ X be the set of these eigenvalues. We can
consider the irreducible representation of QX′ , by removing from X all the elements
which do not belong to X ′.

By the assumption that the minimal polynomial of ρX,V (g) is PX , the definition
of PX and the fact that the elements of X are distinct we also have that d > n.
The characteristic polynomial of elementary braids g1, g2 in representation ρX,V (g)
then has the form

Πρ(g) :=

n=|X|∏
i=1

(g − xi)mi , where mi ∈ N+ such that

n∑
i=1

mi = d. (1.8)

In particular, det ρX,V (g) =
∏n
i=1 x

mi
i .

We recall that a = g1g2, b = g1g2g1, and c = (g1g2)3. Since c is central, we apply
Schur’s lemma and we have that c acts in the irreducible representation ρX,V as a
scalar operator. We denote

A := ρX,V (a), B := ρX,V (b), ρX,V (c) := CρIdV . (1.9)

By the definition of c we have det ρX,V (c) = (det ρX,V (g1))3(det ρX,V (g2))3 =
(
∏n
i=1 x

mi
i )6. Hence, we obtain the following relation:

(
∏n
i=1 x

mi
i )

6
= (Cρ)

d
. (1.10)

By (1.3) operators A and B satisfy equalities

A3 = B2 = CρIdV . (1.11)

Notice that A and B cannot be scalar, otherwise the matrices ρX,V (g1) and
ρX,V (g2) would have common eigenvectors, meaning that the representation ρX,V
would be reducible. Thus, A and B should have at least two different eigenvalues,
lying in the sets

SpecA ⊂ C1/3
ρ · {1, ν, ν−1}, ν := e2π i/3, SpecB ⊂ C1/2

ρ · {1, −1}. (1.12)

The following proposition describes explicitly the spectrum of operators A and B
in low dimensional representations, where λ#k denotes the multiplicity k of the
eigenvalue λ.

Proposition 1. Let ρX,V : QX → End(V ) be a family of irreducible representations
of algebras QX (1.7) such that

a) their characters are continuous functions of parameters xi ∈ X;
b) the characteristic and minimal polynomials of the matrices ρX,V (g1) and

ρX,V (g1) are given by Πρ (1.8) and PX (1.5), respectively.

Let A, B, Cρ be as defined in (1.9). Denote ν := e2π i/3, and introduce no-
tation ek(X) for k-th elementary symmetric polynomial in the set of variables
X = {xi}i=1,...,n.

Then for n = |X| 6 5 and d = dimV 6 6 the coefficient Cρ and eigenvalues of
operators A and B can take the following values.
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If d = n = 2, then Cρ = −e2(X)3,

SpecA = −e2(X) · {ν, ν−1}, SpecB = i e2(X)
3
2 · {1, −1}; (1.13)

If d = n = 3, then Cρ = e3(X)2,

SpecA = e3(X)
2
3 · {1, ν, ν−1}, SpecB = e3(X) · {1, −1#2}, (1.14)

where the symbol m#n means that element m appears n times in the set ;
If d = n = 4, then for any root h(X) := 2

√
e4(X), Cρ = h(X)3,

SpecA = h(X) · {1#2, ν, ν−1}, SpecB = h(X)
3
2 · {1#2, −1#2}; (1.15)

If d = n = 5, then for any root f(X) := 5
√
e5(X), Cρ = f(X)6,

SpecA = f(X)2 · {1, ν#2, (ν−1)#2}, SpecB = f(X)3 · {1#3, −1#2}; (1.16)

If d = 6, n = 5, mi = 2, 1 6 i 6 5, then Cρ = −xie5(X),

SpecA = − 3
√
xie5(X)·{1#2, ν#2, (ν−1)#2},

SpecB = i 2
√
xie5(X) · {1#3, −1#3}.

(1.17)

Proof. Denote TrV (respectively, Tr) an operation of taking trace in representation
ρX,V (respectively, taking traces of matrices A, B and of their powers). To prove
assertions of the proposition we calculate functions TrV (gk1g2), for k = 2, . . . , 5, in
two different ways. The first way is to apply cyclic property of the trace, the braid
relation and to take into account scalarity of the central element ρX,V (c). The
second way is to use minimal and characteristic polynomials of elementary braids
g1 and g2. For illustration purposes the simplest case d = n = 2 is considered in
detail.

Case d = n = 2. First of all, we apply cyclic property of the trace to notice
that TrV (g2

1g2) = TrB. From the other side we have PX(g1) = 0. Therefore,
g2

1 = (x1 + x2)g1 − x1x21. Hence,

TrV (g2
1g2) = TrV

(
(x1 + x2)g1g2 − x1x2g2

)
= (x1 + x2) TrA− x1x2(x1 + x2) = e1(X)

(
TrA− e2(X)

)
.

Noticing that spectral condition (1.12) for the non-scalar 2 × 2 matrix B assumes
TrB = 0 and taking into account e1(X) 6= 0 and the continuity of TrA as a function
of x1,2, we conclude that TrA = e2(X). From (1.10) we have Cρ = ±e2(X)3, which
together with spectral condition on A (1.12) leaves us the only possibility to fulfill
relations for the traces of A and B, namely the one presented in (1.13).

Case d = n = 3. Acting similarly, we shall evaluate TrV
(
g3

1g2

)
in two different

ways. First, we use cyclic property of the trace and the braid relation (1.1):

TrV (g3
1g2) = TrV (g2

1g2g1) = TrV (g1g2)2 = TrA2. (1.18)

Second, we apply minimal polynomial for g1 and characteristic polynomial for g2:

TrV (g3
1g2) = e1(X) TrB − e2(X) TrA+ e3(X)e1(X).

Comparing the results of these calculations and taking into account that, by (1.12)
and (1.10), traces of powers of A and B can be expressed in terms of (roots of)
e3(X) and, hence, are algebraically independent from e1(X) and e2(X) we find
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that TrA = TrA2 = 0, TrB = −e3(X). On the other hand from (1.10) one finds

Cρ = 3
√

1e3(X)2, which, together with the spectral conditions (1.12), gives (1.14)
as the only possibility to satisfy the above relations for traces.

Case d = n = 4. Similarly to the case d = n = 3 we calculate TrV (g4
1g2) in two

ways:

TrV (g4
1g2) = TrV

(
(g1g2)2g1

)
= Cρ TrV

(
(g1g2)−1g1

)
= Cρe3(X)/e4(X),

TrV (g4
1g2) = e1(X) TrA2 − e2(X) TrB + e3(X) TrA− e4(X)e1(X),

(1.19)

where in the last line we take additionally into account Equation (1.18). Hence,
using an algebraic independence of Cρ and thus of TrA, TrA2 and TrB from
the elementary symmetric polynomials ei(X), i = 1, 2, 3, one concludes: TrA =
Cρ/e4(X), TrA2 = e4(X), TrB = 0. The latter conditions are only compatible
with equations (1.10) and (1.12) in two cases given in (1.15).

Case d = n = 5. Here we calculate TrV (g5
1g2):

TrV (g5
1g2)Cρ TrV

(
(g1g2)−1g2

1

)
= Cρ TrV (g−1

1 g2)

=
Cρ

e5(X)

(
Cρ
e4(X)

e5(X)
− e1(X) TrA2 + e2(X) TrB − e3(X) TrA+ e4(X)e1(X)

)
,

where passing to the second line we expressed g−1
1 in terms of positive powers of g1

using its minimal polynomial and then used d = 5 analogue of formula (1.19).
Calculating TrV (g5

1g2) in another way we obtain

TrV (g5
1g2) = e1(X)

(
Cρ
e4(X)

e5(X)

)
− e2(X) TrA2 + e3(X) TrB − e4(X) TrA

+ e5(X)e1(X).

Now collecting coefficients in the independent polynomials ei(X), i = 1, 2, 3, 4, and
taking into account Equation (1.10) we find Cρ = e5(X)6/5, TrA = −e5(X)2/5,

TrA2 = −e5(X)4/5, TrB = e5(X)3/5, which in combination with (1.12) finally
leads to conditions (1.16).

Case d = 6, n = 5: We calculate TrV (g5
1g2) in two ways similarly to the previ-

ous case, but using now different expressions TrV (g1) = e1(X) + xi, TrV (g−1
1 ) =

e4(X)/e5(X) + x−1
i , following from the characteristic polynomial (1.8). Collecting

then coefficients in independent polynomials we derive Cρ = −xie5(X), TrA =
TrA2 = TrB = 0, which in combination with (1.12) proves (1.17). �

2. Low Dimensional Representations of qx and Semisimplicity

In this section we construct explicitly representations of algebras QX whose data
coincide with those given in Proposition 1. Investigating reducibility conditions for
these representations we obtain semisimplicity criteria for algebras QX and classify
their irreducible representations. We derive formulas for the representations in the
basis of eigenvectors of g1.

Proposition 2. The algebras QX in cases |X| 6 5 have the following representa-
tions of dimensions dimV 6 6.
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If |X| = dimV = 1, there exists a unique representation,

ρ
(1)
X (g1) = ρ

(1)
X (g2) = x1. (2.1)

If |X| = dimV = 2, there exists a unique representation,

ρ
(2)
X (g1) = diag{x1, x2}, ρ

(2)
X (g2) =

1

x1 − x2

(
−x2

2 −x1x2

x2
1 − x1x2 + x2

2 x2
1

)
. (2.2)

If |X| = dimV = 3, there exists a unique representation,

ρ
(3)
X (g1) = diag{x1, x2, x3}, ρ

(3)
X (g2) =


x2x3(x2+x3)

∆1(X)
x3(x2

1+x2x3)
∆1(X)

x2(x2
1+x2x3)

∆1(X)

x3(x2
2+x1x3)

∆2(X)
x1x3(x1+x3)

∆2(X)
x1(x2

2+x1x3)
∆2(X)

x2(x2
3+x1x2)

∆3(X)
x1(x2

3+x1x2)
∆3(X)

x1x2(x1+x2)
∆3(X)

,
(2.3)

where

∆i(X) :=

|X|∏
j=1, j 6=i

(xj − xi). (2.4)

If |X| = dimV = 4, there exist two inequivalent representations depending on

the choice of the square root h =
√
e4(X):

ρ
(4)
h,X(g1) = diag{x1, x2, x3, x4},

ρ
(4)
h,X(g2) =


α1

∆1(X)
β1γ3γ4
∆1(X)

β1γ2γ4
∆1(X)

β1γ2γ3
∆1(X)

β2

∆2(X)
α2

∆2(X)
β2γ2

∆2(X)
β2γ2

∆2(X)

β3

∆3(X)
β3γ3

∆3(X)
α3

∆3(X)
β3γ3

∆3(X)

β4

∆4(X)
β4γ4

∆4(X)
β4γ4

∆4(X)
α4

∆4(X)

 .
(2.5)

Here

αi(h, X) := e3(X\i)e1(X\i)− he2(X\i), X\i := X \ {xi},
βi(h, X) := e4(X)/x2

i − h, i = 1, 2, 3, 4, (2.6)

γa(h, X) := x1xa + xbxc − h, a, b, c ∈ {x2, x3, x4} are pairwise distinct.

If |X| = dimV = 5, there exist five inequivalent representations corresponding

to different values of the root f(X) := 5
√
e5(X):

ρ
(5)
f,X(g1) = diag{x1, x2, x3, x4, x5}, ρ

(5)
f,X(g2) = ‖mij‖16i,j65, (2.7)

mii(f, X) :=
e4(X\i)e1(X\i) + fxie3(X\i) + f

∏ 5
k=1,k 6=i(f + xk)

∆i(X)
, (2.8)

mij(f, X) :=
(x2
i + fxi + f2)

∏ 5
k=1,k 6=i,j(f

2 + xixk)

fxixj∆i(X)
, ∀i 6= j. (2.9)
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If |X| = 5, dimV = 6, there exist five inequivalent representations ρ
(6)
i,X , i =

1, . . . , 5, corresponding to all admissible values Cρ = −xie5(X) of the central ele-

ment c. Formulas for ρ
(6)
5,X are given in Table 1. Formulas for the other represen-

tations can be obtained by the transposition of the eigenvalues x5 and xi, that is,

ρ
(6)
i,X = σi5 ◦ ρ(6)

5,X , i = 1, . . . , 4.

Table 1. 6-dimensional representation of QX , |X|= 5

ρ
(6)
5,X(g1) = diag{x1, x2, x3, x4, x5, x5}, ρ

(6)
5,X(g2) = ‖gij‖i6i,j66,

G := ‖gij‖16i,j64

gii =
e4(X\i)e1(X\i)−xix5e3(X\i)

∆i(X)
, X\i :=X \{xi}, i= 1, . . . , 4;

g1a =
paqbqc

x21∆a(X)
, ga1 =

p1
x2a∆1(X)

, gab =
qapb

x2a∆b(X)
,

where indices a, b, c∈{2, 3, 4} are pairwise distinct, and

qa(X) :=x1xa+xbxc, pi(X) := e5(X)−x3ix25

G31 :=

(
g51 g52
g61 g62

)
diag

{ 1

∆1(X)
,

1

∆2(X)

}

G32 :=

(
g53 g54
g63 g64

) (
q4r q3(σ34 ◦r)

(σ12 ◦r) (σ12σ34 ◦r)

)
, where r(X) :=

x3
x1(x2−x1)∆3(X\2)

,

and σij ◦f(. . . xi . . . xj . . . ) := f(. . . xj . . . xi . . .) for any f(X)

G33 :=

(
g55 g56
g65 g66

) (
u q3q4v

(σ12 ◦v) (σ12 ◦u)

)
, where v(X) :=

p2(X)

x1x5(x2−x1)∆5(X\2)
, and

u(X) :=
x1x2(x3 +x4)(x3x4−x1x5)+x3x4(x2−x1)(x21 +x2x5)

(x2−x1)∆5(X\2)

G23 :=

(
g35 g36
g45 g46

) 1

x5∆5(X)

 w
x23

q3(σ12◦w)

x23
(σ34◦w)

x24

q4(σ12σ34◦w)

x24

,

w(X) := p1(X)
(
x1x2x3x4{x1x3 +x5(x2 +x4)}

−x35{x1x3(x2 +x4)+x5x2x4}
)

G13 :=

(
g15 g16
g25 g26

)
1

∆5(X)

 z
x1

q3q4(σ12σ23◦w)

x21x5
(σ23◦w)

x22x5

(σ12◦z)
x2

,

z(X) := (e1e3−x21e2)(x1e1e3−e2x35)x1x5

+e3(x1−x5)
(
x21(e1−x1){e3(x1−x5)−e1x35}

+(x1e2−e3){x1e2 +(x1−x5)x25}x5
)
,

where ei are elementary symmetric polynomials in variables
x2, x3, x4.

Remark 1. As it is noticed in Section 1 a representation of QX is also a represen-
tation of QX′ if X ⊂ X ′.
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Remark 2. Irreducible representations of B3 of dimensions d 6 5 were classified
by Imre Tuba and Hans Wenzl in [23]. We reproduce their table of representations
in the basis where g1 takes a diagonal form. In their approach I. Tuba and H. Wenzl
used a different basis, in which matrices of the braids g1 and g2 assume a special
‘ordered’ triangular from. This allows them analyzing also algebras whose minimal
polynomials PX have multiple roots and, hence, matrices of the braids g1,2 are
not diagonalizable. These cases are missed in our approach. Instead, our method
is suitable for construction of the 6-dimensional representations for algebras QX ,
|X| = 5 and, thus, allows us classifying irreducible representations for these algebras
and studying their semisimplicity.

Note also that formulas for representations of dimensions d 6 5 have been re-
constructed in [5] using different methods with the help of the CHEVIE package of
GAP3 (see [18], [22]).

Proof. By our initial assumptions matrices of braids g1,2 in any representation are
diagonalizable. We choose a basis where ρX,V (g1) := Dg is diagonal. By (1.8) the
diagonal components of Dg are xi taken with multiplicities mi.

Keeping in mind that in an irreducible representation matrices A and B of braids
a and b are also diagonalizable (see Equation (1.11)) we use for them parameteri-
zation

A = U−1DaU, B = V DbV
−1. (2.10)

Here Da and Db are diagonal matrices whose diagonal components are elements of
SpecA and SpecB. For irreducible representations of dimensions 6 6 they were
defined in Proposition 1. Due to relation g1 = a−1b matrices U and V have to
satisfy condition

UDgV = D−1
a UV Db. (2.11)

We solve this matrix equality for U and V in cases where diagonal matrices Dg,
Da and Db are as described in Proposition 1. Formulae for representations given
in Proposition 2 follow then, e.g., from relation g2 = g−1

1 a: ρX,V (g2) = D−1
g A.

Solving (2.11) is straightforward but rather tedious computation. For an inter-
ested reader we give few details of it in cases d = 2, 3, 4.

Case d = 2. We choose

Dg = diag{x1, x2}, Da = −e2(X) diag{ν, ν−1}, Db = ie2(X)
3
2 diag{1, −1}.

Noticing that matrices U/V are defined up to left/right multiplication by a diagonal
matrix we use for them the following ansatzes

U =

(
1 ∗
∗ 1

)
, V =

(
1 ∗
∗ 1

)
,

where stars stand for unknown components. With this settings Equation (2.11)
defines U and V up to conjugation by a diagonal matrix. We choose a solution

which gives a nice expression (2.2) for ρ
(2)
X (g2),

U =

(
1 − x1

ν−1x1+νx2

−νx1+ν−1x2

x1
1

)
, V =

(
1 − i

√
e2

x1−x2+i
√
e2

x1−x2−i
√
e2

i
√
e2

1

)
.
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Note that, unlike U and V , resulting expression for ρ
(2)
X (g2) is defined with the only

restriction x1 6= x2 and does not depend on a choice of root
√
e2.

Case d = 3. We choose

Dg = diag{x1, x2, x3}, Da = e3(X)
2
3 diag{1, ν−1, ν},

Db = e3(X) diag{1, −1, −1},
and use ansatzes

U =

1 ∗ ∗
∗ 1 ∗
∗ ∗ 1

 , V =

1 ∗ ∗
∗ 1 0
∗ 0 1

 .

The solution of Equation (2.11) which gives formula (2.3) for ρ
(3)
X (g2) reads

U =

 1 x1+h
x2+h

x1+h
x3+h

x2+νh
x1+νh 1 x2+νh

x3+νh

x3+ν−1h
x1+ν−1h

x3+ν−1h
x2+ν−1h 1

 , V =


1 −1 −1

− (x1−x3)(x2
2+x1x3)

(x2−x3)(x2
1+x2x3)

1 0

− (x1−x2)(x2
3+x1x2)

(x3−x2)(x2
1+x2x3)

0 1

 .

Case d = 4. We choose Dg = diag{x1, x2, x3, x4},

Da = h(X) diag{1, 1, ν, ν−1}, Db = h(X)
3
2 diag{1, 1, −1, −1},

and ansatzes for U , V :

U =

(
I Ψ+

Ψ− Φ

)
, V =

(
I Λ+

Λ− I

)
,

where I is 2 × 2 unit matrix, Φ± and Λ± are arbitrary 2 × 2 matrices, and 2 × 2
matrix Φ has unit diagonal components. A particular solution of Equation (2.11)

which gives expression (2.5) for ρ
(4)
h,X(g2) reads

Ψ+ =

(x1(x3−x2)β1γ4
x3(x1−x2)β3

x1(x4−x2)β1γ3
x4(x1−x2)β4

x2(x3−x1)β2

x3(x2−x1)β3

x2(x4−x1)β2

x4(x2−x1)β4

)
,

Ψ− =

 x1x2

(x1x2+ν−1h)(x2x3+νh)
x2x4+νh
x3x4+νh

x1x2

(x1x2+νh)(x2x4+ν−1h)
x2x3+ν−1h
x3x4+ν−1h

 ,

Φ =

 1 x2x4+νh
x2x3+νh

x2x3+ν−1h
x2x4+ν−1h 1

 ,

Λ+ = −

x3(x3−x2)(x1−
√
h)γ4

x1(x1−x2)(x3−
√
h)

x4(x4−x2)(x1−
√
h)γ3

x1(x1−x2)(x4−
√
h)

x3(x3−x1)(x2−
√
h)

x2(x2−x1)(x3−
√
h)

x4(x4−x1)(x2−
√
h)

x2(x2−x1)(x4−
√
h)

 ,

Λ− = − 1

γ2

x1(x4−x1)(x3+
√
h)

x3(x4−x3)(x1+
√
h)

x2(x4−x2)(x3+
√
h)γ3

x3(x4−x3)(x2+
√
h)

x1(x3−x1)(x4+
√
h)

x4(x3−x4)(x1+
√
h)

x2(x3−x2)(x4+
√
h)γ4

x4(x3−x4)(x2+
√
h)

 .
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To get it we exclude consecutively matrices Λ±, Ψ−, Φ from Equations (2.11)
expressing them finally in terms of Ψ+. The only condition imposed by Equation
(2.11) on the components of Ψ+ is

(Ψ+)11(Ψ+)22

(Ψ+)12(Ψ+)21
=

(x3 − x2)(x4 − x1)γ4

(x4 − x2)(x3 − x1)γ3
.

The three remaining degrees of freedom are due to arbitrariness in conjugation of

U and V by a diagonal matrix. We fix it to get the expression for ρ
(4)
X (g2) in the

most suitable form.
Solving Equation (2.11) in cases d = 5, dimV = 5, 6, is more lengthy. We skip it

presenting final results of the calculations in equations (2.7)–(2.9) and in Table 1.
For them the braid relation (1.1) can be checked directly. �

Proposition 3. For the algebras QX (1.7) defined by the set of data X (1.4), the
representations ρ(d)

... , d 6 5, described in Proposition 2 are irreducible if and only if
the following conditions on their parameters are satisfied.

If |X| = 2, ρ
(2)
X is irreducible if

I
(2)
ij := x2

i − xixj + x2
j 6= 0, (2.12)

where indices i, j ∈ {1, 2} are distinct.

If |X| = 3, ρ
(3)
X is irreducible if

I
(3)
ijk := x2

i + xjxk 6= 0, (2.13)

where i, j, k ∈ {1, 2, 3} are pairwise distinct.

If |X| = 4, ρ
(4)
h,X is irreducible if

I
(4)
h,i := x2

i − h 6= 0, J
(4)
h,ijkl := xixj + xkxl − h 6= 0, (2.14)

where i, j, k, l ∈ {1, 2, 3, 4} are pairwise distinct.

If |X| = 5, ρ
(5)
f,X is irreducible if

I
(5)
f,i := x2

i + xif + f2 6= 0, J
(5)
f,ij := xixj + f2 6= 0, (2.15)

where i, j ∈ {1, 2, 3, 4, 5} are pairwise distinct.
Otherwise, they are reducible but indecomposable.

For representations ρ
(6)
s,X , s = 1, . . . , 5, also given in Proposition 2, we present

a less detailed statement, which describes conditions under which all of them are
irreducible.

If |X| = 5, ρ
(6)
s,X , 1 6 s 6 5, are irreducible if

I
(6)
i := e5(X)+x5

i 6= 0, J
(6)
ij := e5(X)−x3

ix
2
j 6= 0, K

(6)
i,jklm := xjxk+xlxm 6= 0,

(2.16)
where i, j, k, l, m ∈ {1, 2, 3, 4, 5} are pairwise distinct.

Otherwise, among them there are reducible but indecomposable representations.

Proof. We will search for invariant subspaces in representations ρ(d)
... of Proposi-

tion 2. Note that for any y ∈ QX such that Spec ρX,V (y) is multiplicity free an
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invariant subspace in V should be a linear span of some subset of a basis of eigen-
vectors of ρX,V (y).

Consider representations ρ(d)
... of dimension d = dimV 6 5. Here the spectrum

of ρ(d)
... (g1) is simple. Choose a basis of eigenvectors of ρ(d)

... (g1): {vk := δki, 1 6 i 6
d}k=1,...d. Denote

VY := Span{vk : k ∈ Y }, where Y ⊂ {1, 2, 3, 4, 5}. (2.17)

Obviously, any invariant subspace in the representation space V , if exists, should
be of the form VY . Furthermore, if the representation is decomposable then the
decomposition is

V = VY ⊕ VȲ , where Ȳ := {1, 2, 3, 4, 5} \ Y . (2.18)

Correspondingly, the matrix ρ(d)
... (g2) is block-triangular (respectively, block-diago-

nal) with blocks labelled by indices from subsets Y and Ȳ if and only if the represen-
tation is reducible (respectively, decomposable). Let us analyze the block structure
of ρ(d)

... (g2) in cases d = 3, 4, 5 (case d = 2 is trivial).

Case d = 3. Representation ρ
(3)
X (2.3) has 2-dimensional invariant subspace V{1,2}

if and only if I
(3)
312 = 0. Its complementary 1-dimensional subspace V{3} exists under

conditions I
(3)
123 = I

(3)
231 = 0. Altogether conditions I

(3)
312 = I

(3)
123 = I

(3)
231 = 0 lead to

x1 = x2 = x3 = 0 and, hence, they are incompatible. Invariance conditions in
two other cases —V{2,3}, V{1}, and V{1,3}, V{2}— differ from the above by a cyclic

permutation of the subscript indices. It follows that ρ
(3)
X is irreducible if and only

if inequalities (2.13) are fulfilled, and otherwise it is indecomposable.

Case d = 4. Conditions for existence of invariant subspaces in ρ
(4)
h,X are

V{1,2,3} : I
(4)
h,4 = 0; V{4} : I

(4)
h,3 = J

(4)
h,1234 = 0 or I

(4)
h,2 = J

(4)
h,1324 = 0; (2.19)

V{1,2} : I
(4)
h,3 = I

(4)
h,4 = 0; V{3,4} : J

(4)
h,1234 = 0 or I

(4)
h,1 = I

(4)
h,2 = 0. (2.20)

For the rest of invariant subspaces their existence conditions can be obtained by
a cyclic permutations of subscripts 1, 2, 3, 4 in (2.19) 3, or of subscripts 2, 3, 4 in
(2.20). Altogether these conditions justify irreducibility criterium (2.14). Decom-
posability, e.g., V = V{1,2,3} ⊕ V{4} or V = V{1,2} ⊕ V{3,4}, demands

I
(4)
h,1 = I

(4)
h,2 = I

(4)
h,3 = I

(4)
h,4 = 0 or I

(4)
h,3 = I

(4)
h,4 = J

(4)
h,1234 = 0

or similar sets of relations with permuted subscripts 2, 3, 4. One can check that
these conditions are incompatible with initial settings for X (1.4).

3The only exception is subspace V{1}, which cannot be invariant in this representation.
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Case d = 5. Invariant subspaces in ρ
(5)
f,X exist under conditions:

V{1,2,3,4} : I
(5)
f,5 = 0;

V{5} : J
(5)
f,12 = J

(5)
f,34 = 0 (or any permutation of subscripts 2, 3, 4)

or J
(5)
f,12 = I

(5)
f,3 = I

(5)
f,4 = 0 (or any permutation of subscripts 1, 2, 3, 4);

(2.21)

V{1,2,3} : J
(5)
f,45 = 0 or I

(5)
f,4 = I

(5)
f,5 = 0;

V{4,5} : I
(5)
f,3 = J

(5)
f,12 = 0 (or any permutation of subscripts 1, 2, 3).

(2.22)

For the rest of invariant subspaces the existence conditions can be obtained by
permutation of indices in formulas above. Taken together these conditions prove
irreducibility criterium (2.15). On the other hand, an attempt to find decomposition
into invariant subspaces, like V = V{1,2,3,4} ⊕ V{5} or V = V{1,2,3} ⊕ V{4,5}, results
in a set of conditions

I
(5)
f,1 = J

(5)
f,23 = J

(5)
f,45 = 0 or I

(5)
f,1 = I

(5)
f,2 = I

(5)
f,3 = J

(5)
f,45 = 0

(or any permutation of subscripts 1, 2, 3, 4, 5),

which are incompatible with (1.4). Thus, representations ρ
(5)
f,X are always indecom-

posable.

Case d = 6 is more sophisticated. We carry out considerations for representation

ρ
(6)
5,X (see Table 1). For the other 6-dimensional representations results follow then

by transpositions of arguments xi.

Take a basis of eigenvectors of ρ
(6)
5,X(g1): {vk := δki, 1 6 i 6 6}k=1,...6. Assume

there exists an invariant subspace Vinv ( V and consider its subspace

W := Vinv ∪ V{1,2,3,4}.

Spectrum of ρ
(6)
5,X(g1) in this subspace is simple, so W has a form W = VY (2.17)

for some subset Y ⊂ {1, 2, 3, 4}. We consider separately cases with different Y .

Case W = V{1,2,3,4}. Consider action of matrix ρ
(6)
5,X(g2) on W . Since compo-

nents g51 and g62 of this matrix are always nonzero we conclude that vectors v5

and v6 belong to Vinv and hence, Vinv = V , which is a contradiction.

Case W = V{1}. Considering action of ρ
(6)
5,X(g2) on v1 ∈ W ⊂ Vinv we obtain

v5 ∈ Vinv. Now let us assume that Vinv = V{1,5}. Then the matrix ρ
(6)
5,X(g2) should

take block-diagonal form with vanishing components g21 = g31 = g41 = g61 =

g25 = g35 = g45 = g65 = 0. This happens if and ony if p1(X) ≡ J
(6)
15 = 0. Thus,

we conclude that representation ρ
(6)
5,X under condition J

(6)
15 = 0 has the invariant

subspace V{1,5}. This subspace is not further reducible.

Case W = V{2,3}. From the action of ρ
(6)
5,X(g2) on v2 ∈ Vinv we get v6 ∈ Vinv,

as g26 6= 0. Assuming then Vinv = V{2,3,6} and checking block-triangularity of

ρ
(6)
5,X(g2): g12 = g13 = g16 = g42 = g43 = g46 = g52 = g53 = g56 = 0, we find
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that this case is realized under condition q4(X) ≡ K
(6)
5,1423 = 0. Thus, V{2,3,6} is a

minimal invariant subspace containing W = V{2,3}.

Two cases considered above illustrate appearance of conditions like J (6)
... 6= 0

and K(6)
... 6= 0 in formulation of the proposition. Permuting arguments xi, that

is, considering all representations ρ(6)
... one can obtain all polynomials J (6)

... , K(6)
... in

the conditions of their reducibility. Consideration of the other cases with W 6= ∅
is similar. It does not result in any other independent reducibility conditions. In

particular, for representation ρ
(6)
5,X one obtains:

– in case W = V{2,3,4} minimal possible invariant subspace Vinv = V{2,3,4,5,6};
– in case W = V{1,4} minimal possible invariant subspace Vinv = V{1,4,5,6}.

In searching for a decomposition of ρ
(6)
5,X into a direct sum these invariant subspaces

could be complements, respectively, for the subspaces Vinv = V{1,2} (case W = V{1})
and Vinv = V{2,3,6} (case W = V{2,3}). As we see, this does not happen. In all other

reducible regimes with W 6= ∅ representations ρ(6)
... turn to be indecomposable.

It remains to consider the case W = ∅. Assuming that Vinv is 2-dimensional,
i.e., Vinv = V{5,6}, we get a contradiction since block-triangularity conditions for

ρ
(6)
5,X : G13 = G23 = 0 do not have any solution.

Still, there is a possibility to find 1-dimensional space Vinv. This happens if
2× 2 matrices G13, G23 and G33 for certain values of parameters xi have common
eigenspace Vinv, which is a null space for G13 and G23. Calculating determinants
of G13 and G23:

detG13 ∼ K(6)
5,1234J

(6)
35 J

(6)
45 (e5(X) + x5

5), detG23 ∼ J (6)
15 J

(6)
25 (e5(X) + x5

5),

we see that the only new possible regime where one observes nontrivial invariant

subspace is given by condition I
(6)
5 = 0. Indeed, in this case one finds common

eigenvector

{(x2
5 + x2x3)(x2

5 − x1x3)(x2
2 − x2x5 + x2

5), x1x3(x2
1 − x1x5 + x2

5)},
with eigenvalues 0, 0 and x5, respectively, for G13, G23 and G33. The invariant
subspace generated by this vector does not have an invariant direct summand, as
there is no invariant subspace containing V{1,2,3,4}. �

Our main result follows as a direct consequence of Propositions 2 and 3:

Theorem 4. For |X| 6 5 the algebra QX (1.7) defined by a set of data X (1.4) is
semisimple if and only if one of the following conditions hold.

|X| = 2, I
(2)
12 6= 0; (2.23)

|X| = 3, {I(2)
ij , I

(3)
ijk} ∩ {0} = ∅ (2.24)

for all pairwise distinct indices i, j, k ∈ {1, 2, 3};

|X| = 4, {I(2)
ij , I

(3)
ijk, I

(4)
h,i , J

(4)
h,ijkl} ∩ {0} = ∅ (2.25)

for any h such that h2 = e4(X) and for all pairwise distinct indices i, j, k, l ∈
{1, 2, 3, 4};
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|X| = 5, {I(2)
ij , I

(3)
ijk, I

(4)
h,i , J

(4)
h,ijkl, I

(5)
f,i , J

(5)
f,ij , I

(6)
i , J

(6)
ij , K

(6)
i,jklm} ∩ {0} = ∅ (2.26)

for any f such that f5 = e5(X), for any h such that h2 = e4(X\i), and for all
pairwise distinct indices i, j, k, l, m ∈ {1, 2, 3, 4, 5}.

In the semisimple case all irreducible representations of these algebras are de-
scribed in Proposition 2.

Remark 3. For the algebras QX , |X| = 2, 3, 4, the statement of theorem was first
proved in [23] (see Theorem 2.9 there). For the algebras QX , |X| = 5, polynomial

conditions of the form I
(6)
i = 0, J

(6)
ij = 0, K

(6)
i,jklm = 0 have appeared recently in

the investigations of the algebra decomposition matrices (see [7, Section 3.15]).

Proof. The existence of reducible but indecomposable representations serves as a
criterion of nonsemisimplicity of an algebra. Proposition 3 provides such represen-
tations for all algebras QX which the theorem above declares to be nonsemisimple.

On the other hand, by the Artin–Wedderburn theorem an algebra over an alge-
braically closed field is semisimple if and only if sum of squares of dimensions of its
inequivalent irreducible representations equals dimension of the algebra. Dimen-
sions of the algebras QX for |X| = 2, 3, 4, and 5 are, respectively, 6, 24, 96, and
600 (see [19, Theorem 3.2(3)] and [5, Corollaries 3.4 and 4.11]). Then, Propositions
2 and 3 provide enough irreducible representations for algebras QX to guarantee
their semisimplicity under conditions (2.23)–(2.26). For instance in case |X| = 5
the algebra QX under conditions (2.26) has the following inequivalent irreducible
representations (see Proposition 2 and Remark 1):

(
5
1

)
= 5 times 1-dimensional,(

5
2

)
= 10 times 2-dimensional,

(
5
3

)
= 10 times 3-dimensional, 2 ×

(
5
4

)
= 10 times

4-dimensional, 5 times 5-dimensional, and 5 times 6-dimensional. Altogether:
5 ∗ 12 + 10 ∗ 22 + 10 ∗ 32 + 10 ∗ 42 + 5 ∗ 52 + 5 ∗ 62 = 600, which fits the dimension
of the algebra and proves its semisimplicity. �
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