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1 Introduction

Bounded rationality have progressively permeated through most fields of economics in recent
years, and many areas are incorporating theories of bounded hierarchical reasoning to enhance
the realism and robustness of their models, including macroeconomic policy (Angeletos and
Lian, 2016), mechanism design (Crawford, 2016; Borgers and Li, 2019; De Clippel, Saran and
Serrano, 2019) and jury selection (Van der Linden, 2018), among many others. In monetary
policy, for instance, understanding whether individuals are capable of forming higher order
beliefs, whether such beliefs are bounded and, if so, what the actual bounds are, can lead the
same interest rate policy to have rather different economic implications (Garcia-Schmidt and
Woodford, 2019).

In general, the applicability and predictive power of theoretical models that assume bounded
hierarchical reasoning are strengthened by the ability to correctly identify the bounds in the
population of interest. Indeed, in any interaction between rational agents, optimal behavior
depends on the distribution of beliefs about whether others are rational, about whether others
believe others are rational, and so on. Typically, the identification of the relevant reasoning
bounds is crucial not only to guide economic modeling, but also for making empirical predictions
of economic outcomes.!

Among the multitude of identification methods employed, the central and most reliable one
has been to use the choices of experimental subjects in one or more games to identify the highest
possible order of rationality consistent with their choices.? Crucially, given that such choices
are made in a particular game, the structure of such game can influence and possibly bias the
identification exercise. This paper introduces an axiomatic approach to study this problem.

In fact, for such identification method to be externally valid, it seems natural to require
that the games used should ensure that (1) whenever a subject’s choices are consistent with
order k of rationality, those choices should be the outcome of a hierarchical reasoning process
with k steps, and (2) the associated k steps have not been induced by the game (or games)
being played, meaning that the structure of the games used does not in itself lead subjects to
forming the right hierarchy of beliefs.

To better motivate these two requirements, consider the 2/3 beauty contest game with

choices from {0,1,...,100}. A strategy consistent with a certain order of rationality k& may

IThis paper focuses on the identification of orders of rationality, but the analysis is also applicable to any
model of cognitive hierarchies, including level-k reasoning; see Germano, Weinstein and Zuazo-Garin (2020) for
a recent discussion of various models.

2See Beard and Beil (1994); Schotter, Weigelt and Wilson (1994); Nagel (1995); Costa-Gomes, Crawford
and Broseta (2001); Van Huyck, Wildenthal and Battalio (2002); Costa-Gomes and Weizsacker (2008); Rey-Biel
(2009); Healy (2011); Costa-Gomes, Crawford and Iriberri (2013); Burchardi and Penczynski (2014); Georganas,
Healy and Weber (2015); Kneeland (2015) among many others. Part of this literature has complemented choice
based methods with other methodologies such as eye-tracking or search patterns recorded on computer interfaces.
As discussed in Kneeland (2015), these methods are not always fully reliable, they may be difficult to implement
in certain contexts and they may influence the way subjects choose in such games.



be chosen for a variety of reasons, raising the possibility of an identification mistake. For
example, choosing 17 in such a beauty contest game is consistent with being of order k = 4.
Nevertheless, given that we do not observe a subject’s reasoning process, we cannot exclude
that such a choice has been taken for other reasons such as the number corresponding to the
subject’s birthdate or her most preferred number. However, if the structure of the game allows
for the observation of behavior at the different steps of the hierarchy of beliefs, the subject
would be classified as being of order k only if her behavior at each step is consistent with such
a classification, within the same game (that is, consistent at k and at each step from 1 to
k —1). This motivates requirement (1) above, which contributes to reducing the probability of
identification mistakes while maintaining a choice-based approach.® At the same time, games
that allow to test for behavior at each step of the hierarchy might themselves induce, or frame,
subjects into thinking hierarchically. Subjects might be pushed into making choices that are of
higher order £, or simply into thinking hierarchically, because the structure of the games makes
the iterated elimination steps, and hence the associated hierarchy of beliefs, apparent, thereby
making the identification flawed. This motivates requirement (2) above, capturing a novel and
intuitive notion of framing, which we formally define in the paper.

This paper addresses the highlighted identification problem both theoretically and empiri-
cally. On the theoretical side, we use for the first time an axiomatic approach to reduce the
potential misidentification of higher orders of rationality. We propose two intuitive properties
that pin down a unique and novel class of games we refer to as the e-ring games. To the best
of our knowledge, none of the games previously used in the literature fulfill both requirements.
On the empirical side, we test the validity of the two axioms proposed by comparing behavior
across the most prominent classes of games used to identify levels of rationality and the e-ring
games.

Regarding the theoretical contribution, we formalize the two requirements as follows. The
first one, lower order consistency, ensures that individual behavior can be tested at each step of
the hierarchy of beliefs, as in requirement (1) above. This property is satisfied by the ring games
used in Kneeland (2015) and introduced by Cubitt and Sugden (1994).% The second property,
absence of framing, formalizes requirement (2) above by imposing that the payoff structure
of the game should be such that each level of the hierarchy of beliefs has multiple payoff

interdependencies, and not just ones with lower levels. The property is formulated using the

3 Applied to the 2/3 beauty contest example, ideally, for a subject that chooses 17 (k = 4), we would like to
observe the same subject choose first a number between 44-66 (k = 1), second a number between 29-43 (k = 2),
then a number between 19-28 (k = 3), all in the same game, which is impossible. Another possibility would be
to make a subject play a series of (necessarily) different dominance solvable games. The problem with this is
that players’ beliefs and hence behavior may change because the games are changing, thereby invalidating the
excercise.

4The ring(-network) games used in Kneeland (2015) are finite dominance solvable static games, where player
1’s payoffs depend on player 1’s and player 2’s actions; player 2’s payoffs depend on player 2’s and player 3’s
actions and so on, until player k, whose payoffs depend on player k’s and player 1’s actions, but has a single
strictly dominant action that allows to initiate the dominance solvability procedure.



language of graphs and guarantees that the payoff dependencies of the game do not correspond
exactly with the “natural” hierarchy of beliefs, hence enabling players to contemplate alternative
hierarchies.?

Surprisingly enough, lower order consistency and absence of framing greatly narrow down
the set of available games. We show that the simplest class of games satisfying both properties,
and identifying up to four levels of rationality—the empirically relevant ones—is a specification
of a new class of games we present here, the e-ring games.® An e-ring game is a static game
with private values, where the incompleteness of information is structured by means of messages
automatically sent back and forth between players as in the email game of Rubinstein (1989).
This information structure generates a natural one-to-one correspondence between messages
and higher-order beliefs.

Our empirical contribution consists in testing experimentally the validity of lower order
consistency and absence of framing. We carry out an experiment where all subjects play games
from each of the following four classes: eight of our e-ring games, eight ring games as in Kneeland
(2015), two simple two-player 4x4 dominance solvable games, and three different versions of
the beauty contest game presented in Nagel (1995).7 We are left with games which satisfy both
properties (e-ring games), one of them (ring games) and none of them (4x4 and the beauty
contest games) and allowing us to test whether satisfying the properties is effective empirically
in addressing the theoretical concerns raised above.

By observing subjects’ choices in these games and following the revealed rationality approach
we categorize subjects within each class of games into five levels depending on the actions they
choose. An action is categorized as R0 if it is never a best response, as R1 if it is a best
response to some belief, as R2 if it a best response to the belief that the opponent is playing an
R1 action, and so on. A subject is thus classified as Rk if all her actions are Rk and at least one
is not Rk+1. That is, we assign players the maximal level of higher-order rationality consistent
with the choices made (Tan and Werlang, 1988; Lim and Xiong, 2016; Brandenburger, Danieli
and Friendenberg, 2017).

The experiment supports our theoretical approach. Indeed, we find evidence that the proper-
ties proposed are relevant in the following sense: (1) games that violate lower order consistency,
and hence do not test for consistent choices at steps 1 to k, tend to overestimate the distribution
of types for levels 2 or higher, compared to the ones that satisfy lower order consistency; (2)

the ring games, which satisfy lower order consistency but not absence of framing, appear to

5In what follows, we denote by natural hierarchy of beliefs the one that corresponds to the order of elimination
of dominated strategies implied by the game.

6See Section 3.2 for a justification of why simplicity of the games may be a desirable property in empirical
applications.

"To be more specific, subjects play versions of the beauty contest game where the average of all subjects’
responses is multiplied by 1/3, 2/3 and finally, in the p-beauty contest game, by an unspecified number (p)
strictly between 0 and 1 and assumed to be commonly known where all subjects have to specify how they would
play for any p in the interval.



frame subjects into hierarchical reasoning. In fact, we find that the distribution of types for
levels 2 or higher is biased towards the maximum level 4, as compared to the e-ring games that
satisfy both properties. Moreover, we find an order effect, whereby subjects having played the
ring games before the e-ring games tend to be identified with higher orders in the e-ring games
than when the e-ring games are played before the ring games.

The remainder of the paper is organized as follows. Section 2 presents the desirable prop-
erties a class of games should satisfy to reliably identify higher orders of rationality, Section 3
introduces the e-ring games and shows that they are characterized by the properties presented
in Section 2. Section 4 describes the experimental design and the experimental results. Sec-
tion 5 concludes. The Online Appendix contains an English translation of the experimental

instructions and the payoff matrices of all games used in the experiment.

2 Identification of Rationality Bounds

Despite the importance of understanding the extent to which agents engage in hierarchical
reasoning, no consensus has been reached about which games to use to identify individuals’
higher order rationality bounds.

In this section, we introduce a novel take on this problem by adopting an axiomatic approach.
We proceed as follows. Section 2.1 recalls standard game-theoretic tools that formalize the
notion of rationality bound as well as some basic notions concerning its identification. As
it is standard in the literature, our identification method relies on the choices observed in a
given game to identify the bounds hence making the features of the game crucial for their
reliability. Using these basic notions, Section 2.2 proposes two axioms, lower order consistency
and absence of framing, that, by shaping the structure of the game, strengthen the validity of

the identification.

2.1 Rationality Bounds and the Structure of Games

Games and Higher-Order Rationality

A game consists of a list G = (T}, A;, u;, mi)ier, where I is a finite set of players, and for
each player ¢ we have a finite set of types T;, a finite set of actions A;, a utility function
ui T x A — R, and a belief function m; : T; — A(T_;).8 A conjecture for player i is a
probability function p; € A(T_; x A_;) that represents player i’s subjective beliefs about her

opponents’ types and actions. Conjecture p; is admissible for type t; if its marginal on T_;

8The notation is standard. By T := [Lic; Ti and A := [],c; Ai we denote the set of type and action profiles,
respectively, and for each player i we write T_; := [[;; Tj and A_; := [[,,; 4;. A(T-; x A_;) denotes the
set of probability functions on T_; x A_;. Clearly, if sz| = 1 for every player i, then the game has complete
information.



coincides with m;(¢;), and it represents belief in event £ C T_; x A_; if it assigns probability
one to E. The set of best responses to conjecture p; (admissible for type t;) consists on the

actions that maximize the expected utility induced by ¢; and p;:

argmax Y Y pl(ts,a)] - wil(ti ), (ai; ;).

t_€T_;a_;€EA_;

With these ingredients it is easy to formalize the idea of iterated elimination of strictly
dominated actions which, as discussed in the following paragraph, enables us to rely on observed

behavior to identify the rationality bounds:®

e Action a; is (1st order) rational for type t; if a; is a best response to some admissible,
arbitrary conjecture for t;. This is equivalent to action a; not being strictly dominated
for ¢;. Thus, a subject choosing a strictly dominated action cannot be classified as (1st

order) rational.

e For order k£ > 2, proceeding recursively, action a; is k-th order rational for type t; if a; is a
best response to some admissible conjecture for type t; that represents belief in opponents
playing (k — 1)-th order rational actions.!® Similarly as above, this is equivalent to action
a; surviving k rounds of iterated elimination of strictly dominated actions for #;. Hence, a
subject choosing an action that does not survive k£ rounds of iterated elimination cannot

be classified as k-th order rational.

Finally, a game G is dominance solvable if the iterated elimination of strictly dominated
actions eventually yields a unique action for every type; that is, if there exists some k£ > 1 such
that for every player ¢ and every type t; only one action is k-th order rational. The conceptual
link between higher-order belief in rationality and the iterated elimination of strictly dominated
actions is what allows for the identification of a subject’s higher-order rationality bounds by

observing her behavior in the underlying game.

Identification of Bounds

The procedure, based on inference via observed choices, consists of the following three steps:
(1) a game is fixed, (2) a subject is asked to make choices in the role of every type of each

player, and (3) this subject’s rationality bound is identified as the highest k > 0 such that every

9To keep our results easily comparable, here we follow the terminology in Kneeland (2015) and employ the
expression ‘k-th order rational’ instead of ‘k-th order rationalizable’. Nevertheless, notice that an action a; is
k-th order rational for type t; if and only if it is k-th order interim correlated rationalizable for t;, as defined
by Dekel, Fudenberg and Morris (2007) and Battigalli, Di Tillio, Grillo and Penta (2011). For further details
about the solution concept, the reader is referred to these two papers.

19That is, such that u;[{(t—;,a—;) : a; is (k — 1)-th order rational for ¢; for every j # i}] = 1. For the link
between higher-order rationality and iterated elimination see Pearce (1984) and Tan and Werlang (1988).



choice of the subject is k-th order rational and at least one is not (k + 1), if such k exists, and
oo otherwise.!! This idea is formalized in the following definition and discussed in more detail

further below.

Definition 1 (Revealed Rationality Bound) Let G be a game. Then:

(1) A player type is a pair (i,t;), where i is a player and t; is a type for player i. We denote
the set of all player types in the game by Xg := U,c; ({1} x T;).

(it) A choice vector is an indexed list (a;)zcx, that ascribes an action a, € A; to each player

type © = (i,t;).

(ii7) The revealed rationality bound k that corresponds to choice vector (az)zex, 5 given by:
k = min {max {k¥’ > 0: a, is not (K’ + 1)-th order rational for ¢;} : x = (i,t;) € Xg},
if k is a well-defined integer, and k = oo otherwise.

Thus the set of player types Xg represents the different roles that a subject can be asked
to play in a game. Notice that, for games with complete information, the set of player types
coincides with the set of players of the game. The choice vector (a;)zex, is a description of the
actions the subject is observed to have played in each of the roles.

The intuition behind the revealed rationality bound k has already been hinted at. If a subject
is observed to choose an action that survives k but not (k+ 1) rounds of iterated elimination of
strictly dominated actions, then her rationality bound cannot be higher than k. In the opposite
case, a subject consistently choosing at the highest possible level that the game allows for,
cannot be excluded to have unbounded hierarchical reasoning, that is, k£ = oo.

Building on these notions, the following definitions will be convenient for discussing the

axioms in Section 2.2 and the characterization result in Section 3.2.

Definition 2 (Testing for Bounds) Let G be a game. Then, we say that:

(1) Player type x = (i,t;) can test for bound k > 1 if every action of player i except one fails

to be k-th order rational for t;, and in such case we denote x by xy.

1 An alternative identification method is the one of exclusion restriction used in Kneeland (2015). We do
not use this method for three reasons. First, using this identification strategy would eliminate the standard
classes of 4 x 4 and BC games, thereby severely limiting our between games comparisons. Second, a main
criticism to this approach is that it rules out that subjects may change strategies even when not responding to
changes in the payoffs of high-order opponents. To test this, Lim and Xiong (2016) have subjects play the ring
games of Kneeland (2015) multiple times (as well as other games), and find up to 77% non-compliance with the
assumption in the ring games, meaning that 77% of the experimental subjects chose different actions at least
once. Third, there are influential theoretical frameworks for which a subject satisfying lower-order rationality
might respond to changes in higher order payoffs (see Alaoui and Penta, 2016, 2018a,b).



(71i) Game G can test for bound k > 1 if Xg contains some player type xy that can test for
bound k.

The interpretation of a player type x; as a test to discard whether bound k is reached is
straightforward: A subject who fails to choose a k-th order rational action for this type fails
the test and her bound is concluded to be strictly below k.!2 In this sense, a game that includes

x), can test for bound k.

Structure of Games

To better visualize the player types and their payoff dependencies resulting from the payoff
structure of the game, we introduce some basic notions from the language of graphs. Player
types are represented as nodes and payoff dependencies are represented as directed links. A

path in a given graph can be seen as mapping a hierarchy of beliefs.

Definition 3 (Graph of a Game) Let G be a game. The graph of G consists of the pair
(Xg, Lg), where the player types Xg are nodes, and Lg is the set of directed links, i.e., pairs
of nodes (z,x') € Xg x Xg such that the following two conditions hold:

(1) = has no strictly dominant action.
(1i) x’s expected payoff depends on the actions of z'.

Definition 4 (Path) Let G be a game with graph (Xg, Lg). A path is a finite sequence of

nodes (z™M, 2. . ,x(")), where the following two conditions hold:
(i) (29, 2V) € Lg for every £ =1,...,n— 1.
(13) All the nodes except possibly = and ™ are pairwise distinct.

Thus, the graph of a game G summarizes the first-order payoff dependencies in the game.
The existence of a directed link from player type x to player type =’ ((x,2') € Lg) represents
the fact that a rational type z should try to anticipate the choice by ' when evaluating what
is optimal for her to do. If z has a strictly dominant action, this is of course not the case, and
neither is it if the choice of 2’ does not affect the expected payoff of x. Higher-order payoff
dependencies are captured by paths, which represent different possible hierarchies that the first
player type in the path (z)) can conceive when thinking strategically.

Let us now use an example to review these concepts.

Example: Bimatrix Games vs Ring Games. Consider the following two-player bimatrix
game where the left matrix describes the payoffs of Player 1 (who has strategies A, B or ()
while the right matrix describes the payoff of Player 2 (who has strategies a,b or ¢).

12There is a unique k-th order rational action for each type in order to minimize the probability that a subject
playing randomly accidentally chooses such an action.



a b c A B C

A 80 | 20 | 140 a | 120 | 20 | 200

B | 60 | 160 | 20 b| 20 | 40 | 60

C | 100 | 200 | 40 c | 100 | 120 | 80
Player 1 Player 2

There are two player types that correspond to the two players of the game. Using Definition
2, Player 2 can test for bound 3, since a is the only strategy surviving three rounds of elimination
of strictly dominated strategies. That is, Player 2 is x3 in our notation. Player 1 can test up
to bound 4 since C is the only strategy surviving four rounds of elimination of dominated
strategies. That is, Player 1 is z4. Notice that there are no further player types. In fact, even if
the game is dominance solvable (with solution (C,a)), it cannot have a player type to test for
each bound in the same game. This is a general problem with bimatrix games. This means that
a subject capable of forming only first order beliefs, playing as Player 1 and choosing randomly
over A and C, has high chances of being classified as if capable of forming higher order beliefs
by playing C' for example. The structure of the game is captured by the following graph.

The previous problem does not arise in the following game, which is a four-player ring game as
used in Kneeland (2015).

d e [ 9 h i ik a b ¢
a | 80 | 200 | 120 d | 140 | 180 | 40 g | 200 | 140 | 80 J | 120 | 160 | 140
b| O 80 | 160 e | 200 | 80 | 140 h | 160 | 20 | 180 k| 80 | 120 | 100
c| 180 | 120 | 60 fl 0 160 | 180 1] 0 160 | 160 | 60 | 100 | 80
Player 1 Player 2 Player 3 Player 4

A defining feature of such a four-player ring game is that Player k’s payoffs depend only
on her own choice and on that of Player £ + 1, up to Player 4 whose payoffs depend on her
own choice and on that of Player 1. Notice that each player corresponds to a different player
type, hence allowing the game in the example to also test up to bound 4. In fact, following
our notation, we have Player 4 being player type x1, Player 3 being x5, Player 2 being x3 and
finally Player 1 being x4. That is, ring games allow to test for the whole hierarchy of beliefs
within the same game. In fact, it is enough to make a subject play in each role to test for

each bound, ceteris paribus. A subject incapable of forming beliefs of order higher than the



first, for example, would eventually make a mistake when playing in the role of Player 2 or
1. Nevertheless, the very structure of the game that corresponds to the iterative reasoning
necessary to solve the game, might make the hierarchy of beliefs more evident to a (rational)
subject that would otherwise be incapable of constructing one. This problem becomes more

apparent from the graph of the game that, for each player type x;, admits a unique path of

length k& — 1.

The above discussion further underscores the importance of putting conditions on the structure
of the game in order to adequately identify subjects’ higher order reasoning bounds. We address
this formally in the next section.

2.2 The Two Main Axioms

We here introduce our two main axioms, lower order consistency and absence of framing.

Lower Order Consistency

The example in the previous section shows that while some games that can test for a bound
k > 1 can also test for all lower bounds ¢ = 1,..., k—1, others are more limited and can only test
for a subset of these bounds. In particular, some classes of games often used for identification,
such as bimatrix games or p-beauty contest games, fail to test for all bounds. In such games, a
subject who chooses randomly or non-rationally is likely to be wrongly interpreted as possessing
a high rationality bound, as previously hinted.

At a conceptual level, a game that can test for bound k£ and, when doing so, can also test
for bounds ¢ = 1,...,k—1, makes it harder for subjects with bound strictly below k& to pass all
these tests, but it should not affect the behavior of a subject with bound & or above. In fact,
a subject whose rationality bound is k£ or above should be expected to pass all the tests that
correspond to bounds ¢ = 1,..., k. By contrast, a subject whose rationality bound is k' < k
should be expected to fail at least one of the tests for bounds £ = k' + 1, ..., k.

Consequently, the explicit verification of every step of the reasoning hierarchy imposes addi-
tional challenges only to relatively unsophisticated subjects, but remains innocuous for sophis-
ticated ones. Implementing such a verification significantly reduces the risk of overestimating a
subject’s rationality bound and, as a result, seems an obvious requirement if the identification

is expected to have any external validity. Our first axiom formalizes this intuition.

Property 1 (Lower Order Consistency) Game G is lower order consistent if whenever it

can test for bound k > 2 it also can also test for bounds ¢ =1,...,k — 1.

10



Lower order consistency formalizes a property that has been implicitly used in the literature
on identification of rationality bounds (see Kneeland, 2015, or Lim and Xiong, 2016). In terms
of the graph of the game this property implies that the structure of a game testing up to bound
k, has to contain the nodes x; to ;. The following simple observation shows that, in addition

to its intuitive appeal, lower order consistency also pins down a rather narrow class of games.

Lemma 1 Let G be a game that satisfies lower order consistency. Then, for any k > 1,

(1) If G can test for bound k, then it has at least k distinct player types, of which one has a

strictly dominant action.

(ii) If G can test for bound k but not for bound k+ 1, then it is dominance solvable in exactly

k rounds.

Proof. Part (i) follows from the definition of lower order consistency. To see this notice that,
if G can test for bound k, it can also test for bounds ¢ = 1,...,k — 1, and hence Xz contains
player type x, for each ¢ = 1,... k, where, by definition, x; has a strictly dominant action.

Part (i7) follows from Definition 2 and from the definition of lower order consistency. =

Absence of Framing

Mounting evidence from behavioral economics shows that individual behavior can be influenced
by the context in which decisions are taken. Applied to the identification of rationality bounds,
this suggests that the game employed may shape the actual reasoning process and frame the
subjects (i.e., influence their reasoning process) in a way that induces the form of hierarchical
thinking that is the object of the identification. Obviously, such a phenomenon would compro-
mise the external validity of the identification by giving rise to the following two issues. First,
subjects who would not normally engage in hierarchical thinking may be induced to do so by
the game. Second, subjects with some order of hierarchical thinking may be induced to think
in higher orders. To further illustrate this specific notion of framing, consider the following two

situations:

G1. A ring-like game with three players. The game is dominance solvable. Player 1’s payoffs
only depend on her own choices, Player 2’s payoffs depend on her choices and those of
Player 1, and Player 3’s payoffs depend on her own and those of Player 2. Furthermore,
for each k = 1,2, 3, Player k£ has a unique k-order rational action, so that each Player k
can be identified with player type x;. Figure 1 illustrates the graph of game G1. Notice
that Player 3’s second order belief has only one possible ordering that is consistent with
the payoff dependency of the game: her first order belief is about Player 2’s choices and

her second order belief, about Player 2’s first order belief about Player 1’s choices.

11



Figure 1: Game G1.

G2. A wvariation of G1. Take G1 and introduce an additional action ag for Player 3 satisfying
the following features: (i) ag is strictly dominated for Player 3, (ii) Player 1’s payoffs
are independent of agz, and (zi¢) if Player 3 chooses ag Player 2’s worst possible option
is to play her unique 2-nd order rational action of G'1, independent of Player 1’s choice.
Obviously, the game is still dominance solvable, and, for each £ = 1,2, 3, Player k has a
unique k-th order rational action and can thus be identified with player type x,. However,
the payoff dependency becomes slightly (though minimally) more intricate, as depicted in
Figure 2. Notice that now Player 3’s second order belief has two possible orderings that
are consistent with the payoff dependencies represented in the graph: (1) her first order
belief is about Player 2’s choices and the second, about Player 2’s first order belief about
Player 1’s choices; (2) her first order belief is about Player 2’s choices and her second

order beliefs, about Player 2’s first order belief about Player 3’s choices.

OEBONCO

Figure 2: Game G2.

The comparison between the two scenarios is insightful. The multiplicity of orderings that
can be used to construct the belief hierarchy in G2 leaves it open to the subject which hierarchy,
if any, to follow. By contrast, the absence of multiplicity in the payoff dependency of G1 frames
subjects to reason hierarchically.!®> Notice that this concern gains particular salience if the game
is assumed to satisfy lower order consistency. In fact, the property requires the existence of a
different player type to test for each bound. This can influence the subjects’ reasoning process
by exposing the belief hierarchy that represents the inductive structure of the game (i.e., the

exact ordering of iterated elimination that solves the game).'

130f course, the distinction above deals with subjects that, unlike what the standard model of higher-order
reasoning admits, do not form joint beliefs about their opponents’ behavior and higher-order beliefs (i.e., Player
2 may have a joint belief about Players 1 and 3’s behavior in G2). However, this is immaterial for the argument:
ideally, we want to avoid that players having difficulties in forming these joint conjectures are categorized as if
they were able to form them.

14The intuition is well conveyed in Kneeland (2015), whose ring games provide a major step forward towards
the identification of rationality bounds by implicitly requiring lower order consistency: “A particularly salient
effect of ring games (relative to standard normal form games) is that they may make iterative reasoning more
natural. This might happen if the ring game highlights the higher-order dependencies between the players or
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To minimize this notion of framing, a game used to identify higher orders of rationality
should allow each player type to be able to construct belief hierarchies about other players types’
behavior that are alternative to the one associated with the inductive structure of the game.
This can be achieved by enriching the payoff dependencies so that, for player types that test
for bound 2 and above, payoff dependencies do not only refer to player types that test for lower
bounds. Given this, it is easy to formalize a minimum requirement of the payoff dependencies

of the game which prevents making the inductive structure of the game immediately apparent.

Property 2 (Absence of Framing) A lower order consistent game G that can test for bound

k > 2 1s framing-free if there exist:
(1) For any 0 =2,...,k, two distinct paths of length ¢ — 1 that start at x,.

(1) For any € =3,...,k, two distinct paths of length ¢ — 2 that start at xy.

Let us provide some further intuition for the axiom. First, requiring G to be lower order
consistent ensures that, if the game contains a player type xj, then it also contains player
types x1,...,x,_1. Second, condition (i) says that a player type z, that tests for bound /¢ is
considered to be framed if no distinct paths of length ¢ — 1 that start at z, exist (by definition,
one always exists). The interpretation is simple and visually intuitive in Figure 1. There, the
payoff dependencies allow for a single path of length 1 departing from x5, making it immediately
apparent for zs that it is x; the type whose choice she cares about. This implies that a subject
not capable of forming a hierarchy of beliefs might be helped by the structure of the game to
behave as if she could. On the contrary, the presence of two distinct paths departing from x5
in the graph in Figure 2, one towards a player who has no strictly dominant action, makes the
inductive structure of the game less apparent.

The same intuition, visually represented in the left graph in Figure 3, where x4 is interpreted
as being partially framed, explains why we also require condition (i) for player types that test
for bounds above 2. Here, the fact that there are not two distinct strategic paths of length 3
departing from x4 results in the inductive structure of the game being easily recognizable for

xy4, if she excludes herself from the belief hierarchy.

OWOROROBEOIO SO

Figure 3: Games with some framing.

if it induces backward induction reasoning because of the presentation of the game. Here we face a catch-22:
we must depart from typical games to achieve reliable choice based inference, but doing so unavoidably raises
concerns of this sort.”
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In addition to condition (), condition (i¢) is also required for types that test for bounds 3 or
above, in order to avoid situations such as the one in the right graph in Figure 3, where, again
x4 would be considered to be partially framed. The reason is that the fact that there is a
unique path of length 2 that departs from z4 results in the necessity of her first-order beliefs
only pertaining player type x5 immediately apparent to z4.'®> This implies that a subject that
can form up to second order beliefs, when playing as player type x4, would immediately see the
inductive structure of the game, hence behaving as if capable of forming third order beliefs.
Finally, Figure 4 displays two different games in which no player type is framed. In the next
section, we show that the game on the left is a particular specification of the new class of games

to be introduced.

OWOPOMO

Figure 4: Games that are framing-free.

3 From the Axioms to the Structure of Games

In this section, we first present a new class of games, the e-ring games, and show that the
simplest dominance solvable specification of this class is characterized lower order consistency

and absence of framing.

3.1 E-Ring Games

An e-ring game is a two-player static game with private values in which players automatically
receive a finite number of messages, and where each player’s own payoffs depend on the number
of messages that the player received as well as on the actions chosen by both players. Nature
chooses the number of messages received by each player, whereby player 2 either has the same
number of messages as player 1 or she has one more message than player 1.

The following example illustrates an e-ring game with three actions that is similar to the

ones used in our experiments. It also shows that such specification can test for bounds up to 4.

Example: E-Ring Game of Depth 4. There are two players, Player 1 (the sender) who
chooses rows, and Player 2 (the receiver) who chooses columns. Each player is initially informed

about the number of messages she receives, and the payoffs depend only on the number of

15The requirement in Property 2 could be made more stringent and ask for every x, to have two distinct paths
of length j for every j = 1,...¢—1. It is important to emphasize that, while this may be a theoretically compelling
alternative, it would be unnecessarily demanding for the characterization result we present in Proposition 1; it
would not add any extra bite to the already narrow taxonomy we obtain there.
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messages a player receives as well as on the actions chosen by both players. Each player either
gets 1 or 2 messages, whereby Player 2 either has the same number or one more message than
Player 1. To figure out the payoffs of the opponent, players can compute the number of messages
received by the opponent as follows. Player 1 with 1 message knows her opponent has either 1
or 2 messages, each event with equal probability (p; = 1/2); Player 1 with 2 messages knows
for sure the other player also has 2 messages. Similarly, Player 2 with 1 message knows for sure
that her opponent also has 1 message; while Player 2 with 2 messages knows her opponent has
either 1 or 2 messages, each event with equal probability (p, = 1/2).

Consider the following payoff matrices, where, respectively, A, B,C are the actions of
Player 1 and a, b, ¢ the actions of Player 2, and where u;(t;) are the payoffs of Player 1 when

she receives t; messages, and us(t2) the payoffs of Player 2 when she receives t5 messages.

Player 1 Player 2
a b c A B c
Al 8 | 60 | 80 a| 8 | 40 | 60
B | 200 | 120 | 140 b | 160 | 140 | 100
C | 120 | 100 | 180 ¢ | 180 | 80 | 140
t1 =1 to=1
a b c A B C
Al 60 | 80 | 40 a| 20 | 40 | 80
B | 8 | 20 | 20 b | 180 | 160 | 120
C | 160 | 120 | 180 ¢ | 100 | 140 | 200
t) =2 to =2

The above payoff structure has a unique (interim correlated) rationalizable action for all players
and number of messages. Player 1 with 2 messages (payoff matrix u1(2)) has a strictly dominant
action C. Player 2 with 2 messages (payoff matrix us(2)), seeing this and the fact that Player
1 with 1 message (payoff matrix (1)) has A as strictly dominated action, (and knowing that
she faces Player 1 with ¢; = 1,¢; = 2 with equal probability), has a unique strict best reply c.
Player 1 with 1 message, given the above and seeing that Player 2 with 1 message has a as a
strictly dominated action (and again knowing that she faces Player 2 with t, = 1, t5 = 2 with
equal probability) has a unique strict best reply C. Finally, Player 2 with 1 message (payoff
matrix us(1)), knowing that for sure she faces Player 1 with 1 message and that she plays C'
as unique best reply, also has a unique strict best reply c¢. Thus ((C,C); (¢, ¢)) is the unique

rationalizable strategy profile.

Now, we show that this particular game can test up to bound 4. According to Definition 1
we have the set of player types Xg = {(1,1), (1,2),(2,1),(2,2)} so that the payoff matrix that
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corresponds to each player type (i, ;) is u;(¢;). Moreover, notice that according to Definition 2,
we have that 1 = (1,2), 2 = (2,2), 23 = (1,1), and x4 = (2,1), where each player type
x is the unique one used to test for rationality bound k. This is easy to see: C'is the only
rational action for (1,2), ¢ is the only 2nd order rational action for (2,2), C' is the only 3rd
order rational action for (1,1) and ¢ is the only 4th order rational action for (2,1). Thus the

revealed rationality method yields the classification given in Table 1.

Ty T2 €3 T4

R4 C ¢ C c
R3 C ¢ C b
R2 C ¢ B b
Rl C b B,C bec

Table 1: Choice vectors and revealed rationality bounds.

In addition, a subject playing a dominated action would be classified as R0 (A or B in the case

of 1, and A or a in the case of the remaining player types).® O

The next definition formalizes the general class of e-ring games.

Definition 5 (E-Ring Game) An e-ring game of depth k (even) is a list G = (T, Ai, i, i) iz1 .2,

where, for each player i:
1. T, ={1,2,...,k/2} is a set of types.
2. A; is a finite set of actions.
3. u; - Ty x Ay X Ay = R is a payoff function.

4. 7 T, — A(T-;) is a belief-map such that, for fixed p1,ps € (0,1),

if ty =t D it =ty — 1
mi(t)[te] = b Lo mo(ta)[t1] = 2 L
1—p1 1ft2:t1—|—1 1—p2 lftlztg

for 1 <ty <k/2 and 1 <ty <k/2, and otherwise m(k/2)[k/2] = 1 and m(1)[1] = 1.

Notice that the type structure of the e-ring games builds on the communication structure of
the email games of Rubinstein (1989) with two important differences. First, in the email games
players can receive any arbitrary number of messages, and, second, they face the same 2 x 2

payoff matrices for essentially any number of messages received. To further clarify the relation

16In this example, we explain our identification strategy as if subjects switched roles. In the experiment
detailed in Section 4, we achieve this by reassigning Player 1’s matrix with 2 messages to Player 2 with 1
message while reallocating the other matrices to maintain the dominant solvability structure.
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between types in an e-ring game, consider player ¢ who has received ¢ messages. By Definition 5,
this player’s type is t; = ¢ and the payoff she obtains from action profile (a;,as) is given by
u;(¢, a1, as). However, Player i is uncertain about the number of messages received by the other
player and hence also about the latter’s type and payoff function. In particular, Player 1 of
type t; = £ knows that, with probability p;, Player 2 is of type to = £ and that, with probability
1—p1, Player 2 is of type to = £+ 1 (with the exception of type t; = k/2, who knows that Player
2 is of type to = k/2 for sure). Similarly, Player 2 of type to = ¢ knows that, with probability
pa, Player 1 is of type t; = ¢ — 1 and that, with probability 1 — p,, Player 1 is of type t; = /¢
(with the exception of type to = 1, who knows that Player 1 is of type ¢t; = 1 for sure).

3.2 Simplest Lower Order Consistent and Framing-Free Games

The theoretical appeal of lower order consistency and absence of framing for the identification
of rationality bounds has been discussed in Section 2. We now turn to the question of the
implementation of both axioms, and, more specifically, to the characterization of games sat-
isfying the axioms and the complexity they entail. As previously mentioned, standard games
used in the literature such as bimatrix games and the beauty contest games do not satisfy,
in general, lower order consistency. This creates potential overestimation concerns related to
subjects choosing randomly (or not following any hierarchical reasoning procedure) being easily
identified as having high rationality bounds. A different family of benchmark games, the ring
games, while satisfying lower consistency, do not satisfy absence of framing. Again, this causes
potential overestimation concerns, related this time to the identification procedure altering the
object of identification itself due to framing.

Besides our two axioms, and attending to simplicity of implementability, we will focus on
the characterization of games satisfying two additional requirements. First, we restrict our
attention to games that can test for bound up to 4, since from the experimental literature the
first four levels seem to be the empirically relevant ones. Second, we order games following
manimality criteria according to which, all things equal, we favor the lowest possible number of
players, player types, actions per player and directed links. Minimality may be important for
resources-saving empirical implementations but also to minimize the complexity of the game to
avoid as much as possible artificially generating noise in the data.

The following proposition shows that the only games enhancing the external validity of
the identification (according to lower order consistency and absence of framing) that satisfy
the aforementioned simplicity criteria are dominance solvable e-ring games with depth 4 and 2

actions per player:

Proposition 1 Let G be a game. Then, G is minimal within the class of games that can test
for bound 4 and satisfy lower order consistency and absence of framing if and only if G is a

dominance solvable e-ring game of depth 4 with 2 actions per player.
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Proof. The ‘if’ part is immediate (simply notice that such e-ring games have a graph as the
one depicted on the left of Figure 4 and are clearly minimal) so we focus on the ‘only if’ one.
Lemma 1 implies that G is dominance solvable, contains player types xi, x2, 3 and x4 and
has a set of links containing (x4, x3), (23, x2) and (x,21). Also, by definition, there is no link
starting from x;. Minimality allows for excluding the presence of further player types and
ensures that there are only two players, so that x; and x3 must belong to one player and x,
and x4, to the other—the directed links whose existence we previously concluded precludes any
other configuration. This excludes the presence of links (x3, 1), (z2,24) and (24, x3). Given
this, absence of framing implies the presence of links (z3,x4) and (29, x3). Finally, minimality
excludes the presence of link (z4,x1). We are thus left with the graph depicted on the left of

Figure 4, which corresponds to the graph of a dominance solvable e-ring game of depth 4. m

The next section shows how these games were implemented in the experiment to test the

properties proposed.

4 Experiment

4.1 Experimental Design

The experiment consisted of four tasks and a non-incentivized questionnaire. In the first task,
subjects chose an action in a pair of standard two player 4x4 dominance solvable games. In
each of the subsequent two tasks, subjects chose actions in a set of eight ring games and eight
e-ring games. The set of eight ring games and the set of eight e-ring games were presented in
different random orders to each of the subjects, respectively. In the final task, subjects were
presented with the beauty contest game as in Nagel (1995) and had to choose a number for two
different versions of the game (one where the average of all players’ numbers was multiplied by
2/3 to determine the winner, and another where the average was multiplied by 1/3) and a more
general version, where subjects were asked to explain a general strategy about how they would
choose for any (unspecified) commonly known number p between 0 and 1 (both not included)
that could be announced publicly in the beauty contest game. For this final task, subjects were
told that they could either choose a number, a mathematical formula or provide any text which
would show their reasoning process.

Our experimental design intends to compare the distribution of orders of rationality iden-
tified by the e-ring games with the ones identified by benchmark games used in the literature
(ring games, dominance solvable games such as our 4x4 games and the p-beauty contest games)
to empirically classify individuals according to the revealed rationality approach and hence test
the importance of the properties proposed. We chose these classes of games as they are the

ones most frequently used in the literature for the identification of the empirical distribution
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of higher orders of rationality. Moreover, they are particularly convenient to test the empirical
validity of the two axioms proposed in Section 2.2, since the 4 x4 dominance solvable games and
the beauty contest games do not satisfy lower order consistency, while the ring games satisfy
lower order consistency but not absence of framing.

In both the e-ring and the ring games, each subject can play four possible actions in each of
the eight games for a total of 65,536 possible action profiles.!” In both the e-ring and the ring
games, there are 801 action profiles that do not violate any of the predicted action profiles of
types R1-R4, independently of subjects’ role following the revealed rationality approach. Thus,
it is unlikely for a subject to be classified as a rational type by random chance since there is
1.2% probability of being identified as R1-R4 while playing randomly in either game.'®

We designed eight treatments, differing in three aspects: (i) whether the ring game was
played before or after the e-ring game; (ii) whether the payoff matrices used in the ring and e-
ring games remained constant (non-permuted) across decisions, while either varying the player’s
position (ring game) or the number of messages received (e-ring game), or whether the actions
in such matrices were reshuffled (permuted); and (i7i) whether the 1/3 version of the beauty
contest game was played before or after the 2/3 one. A translation of the original Spanish
instructions as well as the actual games used for each of the tasks can be found in the Online

Appendix.

4.2 Laboratory Implementation

The experiment was conducted at the Engineering School of Universidad Carlos IIT in Madrid
(Spain) in April, 2018. This particular school was selected due to being one of the most presti-
gious universities in the country. Accordingly, the average grade in the entrance to university
exam of our pool of participants is 12 (out of 14 possible points). The importance of this
decision is twofold. First, very sophisticated subjects should be [ess influenced by the structure
of the game in their reasoning process, hence making the test of the axioms stricter. Second, if
such a particular pool of subjects showed bounds in their hierarchical reasoning, then this would
cast a stronger doubt on the underlying assumption in economic modeling that individuals are

unbounded in their reasoning process.

In the implementation we decided to have 4 actions for each player type in both classes of games for the
following two reasons. The first one is that with only two actions per player type in the e-ring games, the unique
action of level [ for each player type x; would be risk dominant, thus bringing new potential concerns in the
identification. This means that at least three actions were needed. The second one is that, to avoid assuming
that the subjects maximize expected utility in the e-ring games, we needed to have strict dominance to test for
each bound, hence making it necessary to have at least one dominated action for each player type. However,
to ensure comparability of the choice data, given that the ring games have three undominated actions for each
player type, we added a strictly dominated action to the ring games and an undominated to e-ring games. Thus,
all games have 4 actions.

180f the 801 possible rational action profiles, 720 would be identified as R1 (89.8%), 72 as R2 (8.9%), 8 as
R3 (0.9%) and 1 as R4 (0.1%).
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All undergraduate engineering students from the school were sent an email message an-
nouncing two experimental sessions and they were confirmed on a first-come first-served basis.
229 students participated. No subject participated in more than one session. Subjects made
all decisions using a booklet including all instructions stapled in the order determined by their
treatment assignment and the randomization of the order of eight ring and e-ring games, the
answer sheets and a post-experimental questionnaire. Sessions were closely monitored resem-
bling exam-like conditions in order to ensure independence across participants’ responses and
compliance with our instructions.

Instructions were read aloud and included examples of the payoff consequences of several
actions in each of the tasks. Participants answered a demanding comprehension test prior to
each of the tasks. A majority of subjects (71%) answered all 13 questions correctly. We made
sure that all remaining issues were clarified before proceeding to the actual experiment.’

Participants received no feedback, neither after playing each of the games nor after finishing
each of the tasks, and were monitored such that they would not move from one task to another
unless instructed. Once all four tasks were completed, subjects filled up a questionnaire, which
included non-incentivized questions about the reasoning process used to choose in each of the
tasks, as well as questions about knowledge of game theory and demographics. Subjects were
given 4 minutes to complete the first task, 20 minutes each for the second and third tasks, and
9 minutes for the final task. The two experimental sessions lasted around 110 minutes each.

We provided high monetary incentives for 10 randomly selected participants, instead of
paying all subjects a lower amount of money.?’ One of the twenty decisions was randomly
selected for payment at the end of the experiment for each of these 10 participants. Subjects
were randomly and anonymously matched into groups of 2-players (e-ring and 4 x 4 games), 4-
players (ring games) or all players (p-BC games) depending on the game selected, and were paid
based on their choice and the choices of their group members in the selected game. Subjects
received €100 plus the euro value of their payoff in the selected game. Average payments for

these selected participants were €174.

4.3 Experimental Results

We start with the revealed rationality approach, whereby the choices made by the individual
in a given class of games determine an upper bound for the level of higher-order rationality
of that individual. The key question we address is whether that upper bound is also a good
lower bound for the level of rationality of the individual. We claim that both Property 1 and

Property 2, each contribute in different ways towards reducing the gap between the upper and

19 Although our analysis uses the full sample of participants, results are robust to using the subsample of
subjects who made no mistakes in the tests.

208ee Alaoui and Penta (2018a) for a theoretical justification of this design choice that should give higher
incentives to achieve higher levels in the hierarchy of beliefs.
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the lower bound. Next we provide some evidence in favor of such a claim.

Experimental Evidence for Property 1 (Lower Order Consistency). Games that satisfy
lower order comnsistency and identify an individual as being of level £ > 2 ensure that such
individual makes choices that are consistent with level k£ also in decisions that test for levels

=1,...,k—1 within the same game. In other words, games satisfying lower order consistency
allow for the application of the revealed rationality principle at each step of the hierarchy of
beliefs from level 1 up to level k£ within the same game.

To check that the requirement has bite, we compare the classification of individuals’ levels
of rationality obtained using the e-ring and ring games, which do satisfy lower order consistency
(LOC games), with the levels obtained with the 4x4 and the beauty contest games that do
not satisfy lower order consistency (non-LOC games). To see that the 4x4 and the two beauty
contest games are not as good at accurately identifying higher order levels R2, R3, and R4

when identifying individuals as such, we look at two tests.

Test 1.1. First, we take the identification of subjects as being RO or R1 by LOC games as
valid, and look at how many of these subjects are misclassified as being R2, R3, or R4 by the
non-LOC games. Second, we take the identification of subjects as being R0 or R1 by non-LOC
games as valid, and look at how many of these subjects are misclassified as being R2, R3, or
R4 by the LOC games.

Consider first all subjects that are identified as being of level RO or R1 in the e-ring and ring
games (52 subjects). The share of these subjects that are also identified as being of levels R2,
R3 or R4 in the 4x4 and in the two beauty contest games are as follows (where the numbers in
parenthesis give the shares out of all the 73 subjects that have been revealed as being of level

at most RO or R1 at least twice in the e-ring and ring games):
4 x 4: 63.5% (57.5%) 2/3-BC: 84.6% (89.0%) 1/3-BC: 38.5%(43.8%).

Next, for comparison, consider all subjects that are identified as being of level R0 or R1 in at

2L We calculate

least two games of the 4x4 and the two beauty contest games (48 subjects).
the share of these subjects who are also identified as being of levels R2, R3 or R4 in e-ring or
ring games. This leads to the following shares (the numbers in parenthesis give the shares out
of all subjects that have been revealed being of level at most R0 or R1 at least twice, that is
in at least two decisions among all relevant decisions in the 4x4 and the two beauty contest

games (50 subjects)):

E-ring games: 35.4% (38.0%) Ring games: 43.8% (44.9%).

21'We do not consider all three games because the number of subjects satisfying this very strict condition is
too small to make statistically significant comparisons.
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The numbers show that for individuals that have been classified as not having higher order
beliefs, the non-LOC games, with the exception 1/3-BC games, are significantly more likely to
misclassify those individuals as having higher order beliefs, than the e-ring and ring games that

are LOC games.

Test 1.2. First, we take subjects identified as being R2, R3 or R4 in each of the non-LOC
games, and look at how many of these subjects are classified as being R0 or R1 by the LOC
games. Second, we take subjects identified as being R2, R3 or R4 in each of the LOC games,
and look at how many of these subjects are classified as being R0 or R1 by the non-LOC games.

Consider all subjects that are identified as being of level R2, R3 or R4 in the 4x4 and in
the two beauty contest games (respectively, 164, 207 and 118 subjects). For each of these three
populations separately, we calculate the share of individuals who are also identified as being
of level RO or R1 in the e-ring and ring games. We obtain the following shares (where the
numbers in parenthesis give the shares of subjects that have been revealed as being of level at

most R0 or R1 at least twice in the e-ring and ring games):
4 x 4: 20.1% (25.6%) 2/3-BC: 21.3% (31.4%) 1/3-BC: 16.9% (27.1%).

Next, for comparison, consider all subjects that are identified as being of level R2, R3 or R4 in
the e-ring game and then in the ring games (respectively, 139 and 116 subjects). For each of
these two populations separately, we calculate the share of individuals who are also identified
as being of level RO or R1 in at least two games of the 4x4 and the two beauty contest games.
We obtain the following shares (where the numbers in parenthesis give the shares out of all
subjects revealed as being of level at most R0 or R1 at least twice in the 4x4 and the two

beauty contest games):
E-ring games: 12.2% (13.7%) Ring games: 18.1% (15.8%).

The numbers show that for individuals that have been classified as having higher order beliefs
by non-LOC games, there are significantly more that are then classified as not having higher
order beliefs by LOC games than the other way around. Again, the 1/3-BC seems to be an

exception.

In both tests we observe that games that do not satisfy Property 1 tend to be nosier in the
identification of higher orders of rationality, potentially reducing the external validity of the
identified distribution.

Experimental Evidence for Property 2 (Absence of Framing). Next, we build on the
established empirical relevance of Property 1 to check the importance of requiring absence of

framing (Property 2). Again, we consider two tests.

Test 2.1. We consider all subjects that are identified as being of level RO or R1 in at
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R4 R3 R2

E-ring game  8.3% (10.0% ) 16.7% (18.0%) 35.4% (38.0%)

Ring game 20.8% (22.0%) 25.0% (26.0%) 43.8% (44.0%)

Table 2: Cumulative distribution of higher-order rationality levels for e-ring and
ring games for subjects identified as being of level RO or R1 in at least two games
of the 4x4 and the two beauty contest games (48 subjects) (in parenthesis for
subjects revealed as being of level at most RO or R1 at least twice in the 4x4 and

the two beauty contest games (50 subjects)).

least two games of the 4x4 and the two beauty contest games (48 subjects) (or alternatively,
revealed as being of level at most R0 or R1 at least twice in the 4x4 and the two beauty contest
games). Such individuals that do not show higher order beliefs in any of these games have a
higher probability of not having been misidentified. We focus on this particular population
because the strongest effects of framing (from the e-ring and ring games), if present, should
be highlighted within a population that shows otherwise no evidence of higher order beliefs.
Table 2 presents the cumulative distribution function of the rationality levels as classified by
the e-ring and ring games. We find that the ring games consistently classify subjects in higher
categories than the e-ring games. In fact, as is clear from Table 2, the distribution of levels
identified by the ring games first order stochastically dominates the one identified by the e-ring

games (significant at the 1% level using the Kolmogorov-Smirnov test in both cases).

Test 2.2. We find further evidence of the relevance of Property 2 when comparing treat-
ments in which the ring games and the e-ring games were presented in different orders to
subjects, we find generally higher levels of rationality in the e-ring games when they are played
after having played the ring games (126 subjects), than when played in the opposite order (103
subjects). We find the average identified level by the e-ring game increases by 9.8%. Also, the
Kolmogorov-Smirnov test is significant at the 1% level.??

Both tests suggest that Property 2 reduces misclassification of subjects as satisfying higher

order rationality.

Finally, we report the empirical correlation between the orders of rationality identified by
the various games and the results of the standardized tests used for admittance to university
in Spain. We find that it is highest for the e-ring games among all the classes of games used.

We view this as potential further evidence that e-ring games, as the only games satisfying both

22When looking at the levels identified by the ring games, we find slightly lower levels of rationality when the
ring games are played after having played the e-ring games, than when they are played beforehand. The average
level identified by the ring game decreases by 3.5% when the ring games are played after the e-ring games.
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properties, are less noisy in identifying higher order rationality. These correlations are:
E-ring games: 0.24 Ring games: 0.12 4 x 4: 0.06 2/3-BC: 0.16 1/3-BC: 0.08.

Notice that while, statistically, e-ring games may tendentially outperform the 4x4 and the
beauty contest games, due to the higher number of choices and hence the higher informative
content of the classification, there should be no difference between e-ring games and ring games

in terms of informativeness of the classification as they both have 8 choices.

5 Conclusion

The identification of a reliable distribution of orders of rationality in the population is a cru-
cial prerequisite for predicting behavior in many applications, including price formation and
oligopolistic competition, mechanism and institutional design or monetary policy. This identi-
fication is a highly problematic exercise. A fundamental issue, addressed here for the first time,
is that standard games used so far do not allow for the observation of behavior at the different
steps of the hierarchy of beliefs and, when they do, they might frame individuals into thinking
in levels, thereby compromising the very exercise.

This paper tackles this apparent contradiction by taking an axiomatic approach. Two
intuitive properties are introduced that, at a practical level, narrow down the class of games
that can be used for identification to a single class: the e-ring games. The empirical evidence
presented suggests that both properties are relevant in reducing the misidentification. As a
result, e-ring games might constitute a useful starting point for the study of higher order
rationality.

The introduction of the axiomatic approach in this literature might be important per se,
by enabling a more transparent discussion of what features of the game enhance the external
validity of the identification. On one hand, the axioms make explicit what is required of the
games to be used. On the other, by being stated explicitly, the axioms can be tested, discarded,
and alternatives can be thought of, thus pushing the discussion in the literature forward in a

more structured way.
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