
6 COMMUNICATIONS OF THE ACM | OCTOBER 2021 | VOL. 64 | NO. 10

Follow us on Twitter at http://twitter.com/blogCACM

The Communications website, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

ternet of Things) are rapidly developing
and used in many areas. Their range is
an order of magnitude higher, but with
no generally accepted standard, they are
regulated by private companies. Yet un-
resolved issues remain, so attempts are
being made to develop new technolo-
gies to lay the foundation of the IoT.

Some older wireless technologies
are well studied but in low demand, as
interest in them has passed. We can try
to give such technologies a second life
in IoT, such as DECT (digital enhanced
cordless telecommunication), which
operates in the 1.9GHz band.

After the emergence of the GSM
standard, interest in DECT dropped. An
attempt to use DECT as a physical layer
for TCP/IP was unsuccessful, due to
low transmission rates. Emerging de-
mand for IoT technologies gives DECT
a chance for rebirth, as it can increase
the communication range between de-
vices up to several hundred meters and
achieve a data transfer rate of several

hundred kilobits per second, sufficient
for transmitting control and monitor-
ing information in real time.

Note the advantage of DECT in com-
parison with existing standards for the
IoT’s physical layer. The frequency band
in which it operates lacks many different
devices, compared to the 2.4GHz band
and the ISM (Industry, Science, Medi-
cine) bands. In 2020, the EU adopted the
DECT-2020-NR standards package to
support IoT applications1. Before that,
in 2017, the DECT ULE (Ultra Low En-
ergy) standard was adopted.

The advantages achieved when
using DECT technology include:

1.	 Increased action at a distance of
up to 600 meters.

2.	 Availability of ULE technology to
extend service life.

3.	 Technologies to protect data trans-
mission implemented at the physical
layer of the OSI model (radio path level).

4.	 The ability to build a network infra-
structure for mobile terminals without
losing communication during transi-
tions between base stations (handover).

5.	A large number of standards
approved by ETSI in 2020.

An IP over DECT data network should
be a key component of a full-fledged
family of IoT technologies. The ability to
transfer data over the IP protocol, and to
assign an IP address to a subscriber ter-
minal, are the basic elements of the pro-
posed concept. VoIP support has long
been included in the DECT standard.

In some implementations of DECT
phones, the subscriber device is an An-
droid device that supports the TCP/IP
protocol stack. The device is assigned an

Andrei
Sukhov
and Igor
Sorokin

A Chance for Rebirth
https://bit.ly/3lkg9lf
July 1, 2021
The Internet of Things (IoT) is a new
area of infocommunication technolo-
gies including not only home appli-
ances with an IP address and Internet
control, but also a variety of industrial
technologies. These technologies need
to be developed at all layers of the OSI
model, but the need for security mech-
anisms should be emphasized.

At the physical level, wireless tech-
nologies (Wi-Fi, Bluetooth) have signifi-
cant range limitations. The few tens of
meters these standards allow are not
enough. Alternative wireless technolo-
gies LPWAN (Low-power Wide-area
Network) and NB-IoT (Narrow-band In-

New Life for Cordless
Communication,
Old Regrets for
Software Projects
Andrei Sukhov and Igor Sorokin ponder the potential benefits
of DECT to the Internet of Things, while Doug Meil considers how
software engineers should reflect on their accomplishments.

DOI:10.1145/3479972 			 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3479972

OCTOBER 2021 | VOL. 64 | NO. 10 | COMMUNICATIONS OF THE ACM 7

blog@cacm

IP address and can use all the capabili-
ties of the IP protocol. There are many
IoT MQTT (Message Queue Telemetry
Transport2) implementations avail-
able for the Android platform, making
testing easier. A DECT base station can
be implemented based on a standard
Linux server with a specialized PCI card.

In the cases described here, there is
no need for high data transfer rates, and
the speed at which voice transmission is
organized is sufficient for IoT tasks.

The market presence of Android de-
vices with DECT support makes it easy
to assemble an experimental bench for
tests and measurements. The authors
anticipate the appearance of DECT sub-
scriber devices based on minicomputers
with a DECT module running Linux and
Android operating systems. The emer-
gence of such devices will mark the be-
ginning of development as full-fledged
technologies for IoT. The simplest smart
plug devices based on DECT are already
on the market, such as AVM’s FRITZ!
DECT technical product line.3

Our team plans to assemble a full-
fledged DECT over IP stand, and to start
developing and testing various IoT tech-
nologies. We are open to cooperating
with other research groups on this.

References
1.	 ETSI. DECT-2020 New Radio (NR); Part 1: Overview;

Release 1. European Telecommunications Standards
Institute, Technical Specification (TS) 103 636-1,
July 2020.

2.	 Boyd, B. et al. Building Real-time Mobile Solutions with
MQTT and IBM MessageSight. IBM Redbooks, 2014.

3.	 https://en.avm.de/products/fritzdect/

Doug Meil
Software Learning:
The Art
Of Design Regret
https://bit.ly/2TNkzFN
August 2, 2021

“What If?” is a question so fundamental to
human learning that it has infused genera-
tions of science fiction enthusiasts with
the possibilities of fixing our mistakes
through time travel; 19th-century writer
H.G. Wells’ The Time Machine and “Star
Trek”’s City on the Edge of Forever
episode come to mind. Given time ma-
chines are not on the horizon, the best
we can do is to look backward for in-
sight and apply lessons forward. This is
not as easy as it sounds, as there are two
equally unhelpful poles: the first is to
never to look to the past and question
what could have been improved, and

the second is to persistently ruminate in
the past. The goal is to live somewhere
in the middle. How should software en-
gineers try to classify their reflections?

Retrospectives have long been part
of software engineering practice. It can
be tempting to look at prior efforts and
label every decision a “flaw” or “bug” if
it doesn’t agree with one’s sensibilities.
This is not constructive; understanding
the context of decisions is critical, since
no effort exists in a vacuum. Factors
such as budget, resources (in quantity,
quality, experience, and personality),
technical options, and schedule all af-
fect the decision-making process. Only
by understanding design context can we
differentiate between the preventable
and the unavoidable, and understand
what we could reasonably beat ourselves
up about when we need to just let go.

Anachronistic Regret
This is where a framework or technol-
ogy options did not exist at the time of a
design decision, but regret is felt for not
having those options anyway. While this
can make for some interesting hypo-
thetical discussions, such as the effects
PCs could have had on the 1960s space
race, it can also be taken too far, such as
pondering how Abraham Lincoln could
have revolutionized space travel as Pres-
ident if he only had rockets and com-
puters during his administration. There
was no decision possible, because there
were no valid options at that time.

Actual Mistake Regret
It happens, where “it” can be everything
from fat-fingers, code-horrors, or bear-
traps, and Refactoring (Fowler). An ex-
ample I lived through was a colleague
enamored with the Inversion of Control
and mocked objects pattern; there were
unit tests, but of mocked objects instead
of the codebase. When the codebase was
deployed, it was a disaster, and I had to
clean it up. The issue was not that In-
version of Control and mocked objects
were not legitimate patterns; they were
taken too far, as adherence to patterns
became the goal, instead of the func-
tionality of the overall software effort.

Decision Regret
This is the regret of the “road not taken.”
In software efforts, there are design
choices that seem ever-pitted against
each other, such as natural vs. synthetic

keys for database design. Yet there are
plenty of other cases where multiple rea-
sonable options could exist for a situa-
tion that are not so doctrinally charged,
each valid and “appropriate enough.”
As long as each option was evaluated
honestly and thoroughly in terms of
strengths and weaknesses—and, ide-
ally, documented—this is really the best
we can expect any software engineer to
do. Decision regret is an inevitable out-
come of making decisions, and it is bet-
ter to make progress and live with Deci-
sion Regret than to be paralyzed by it.

Unknown Consequences Regret
This is the case of “I wish I would have
known that at the time,” where one
experiences an unanticipated side effect
or edge-case of a design, which often
pops up at the worst possible time.
These do not necessarily invalidate an
overall design, but expose extra condi-
tions that need to be addressed. The
Java programming language is filled
with these, particularly around memory
management and garbage collection.
Java has proven itself effective in a great
many cases, but it also contains some
surprises for designs that require oper-
ating under high memory load, where
software solutions tend to work … until
they don’t. This necessitates diving into
arcane Java Virtual Machine settings,
and sometimes redesigning some soft-
ware elements in response. In fairness
to Java, every programming language
and technology framework has sharp
edges lurking somewhere, and finding
those edges is the frequent consequence
of doing interesting work.

Missed Opportunity Regret
Who hasn’t exclaimed, “Why didn’t I
think of that?” Well, you didn’t, and
that’s life. Again, the best one can do
is to continually strive to expand one’s
knowledge horizons and look for oppor-
tunities to apply those lessons in the fu-
ture. Fortune favors the brave—and the
prepared. Iteration is equally important,
as the more one practices, the better one
can become at pattern recognition.

Andrei Sukhov is a professor and head of the Network
Security Research and Study Group of HSE University,
Moscow, Russia. Igor Sorokin is a postgraduate student
in the Department of Computer Engineering of HSE
University, Moscow, Russia. Doug Meil is a software
architect at Ontada.

© 2021 ACM 0001-0782/21/10 $15.00

