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Visual object recognition in the real world is not performed in isolation, but 

is instead dependent on contextual information such as the visual scene an object 
is found in. And our perceptual experience is not just visual: objects generate 
specific and unique sounds which can readily predict which objects are outside of 
our field of view. Here, we test whether and how naturalistic sounds influence 
visual object processing and demonstrate that auditory information both 
accelerates visual information processing and modulates the perceptual 
representation of visual objects. Specifically, using a visual discrimination task 
and a novel set of ambiguous object stimuli, we find that naturalistic sounds shift 
visual representations towards the object features that match the sound (Exp. 1a-
1b). In a series of control experiments, we replicate the original effect and show 
that these effects are not driven by decision- or response biases (Exp. 2a-2b) and 
are not due to the high-level semantic content of sounds generating explicit 
expectations (Exp.3). Instead, these sound-induced effects on visual perception 
appear to be driven by the continuous integration of multisensory inputs during 
perception itself. Together, our results demonstrate that visual processing is 
shaped by auditory context which provides independent supplemental information 
about the entities we encounter in the world.  
 

When we look around the world, pertinent visual information is often ambiguous or 
indeterminate. To overcome this problem and to form meaningful representations, the 
visual system relies not only on the visual features of an object itself but also incorporates 
prior knowledge and concurrently available contextual information (1–7). This integration 
of available information is not exclusive to unimodal sources as available information from 
every sensory system is evaluated, weighed, and integrated to form a complete 
perceptual experience (8–16). However, the underlying mechanisms of how other 
sensory information affects visual processing—especially for complex and naturalistic 
stimuli—are not well understood. Here, we investigate whether and how naturalistic 
sounds alter our perceptual experience of visual objects. Specifically, we examine two 
questions: whether sounds that are related to visual objects speed the perceptual 
processing of them, and most importantly, whether these sounds alter visual 
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representations—shifting them away from the veridical visual features and towards those 
that are shared with the object that would generate that sound.  

Previous work has shown that sounds enhance visual processing (17–23), and 
alter perception of simple visual stimuli (24, 25) for example, when two sounds produce 
the perception of two visual flashes, despite the presence of only a single visual stimulus 
(26). And, while the bulk of this work has used fairly simple stimuli, such as noise bursts 
and light flashes, naturalistic sounds have also been found to affect visual processing of 
objects, often reflected in faster response times or higher accuracy in object recognition 
tasks when sight and sound are congruent relative to maximally incongruent (12, 27). 
However, in this work, it is unclear whether sounds simply speed perceptual processing—
leading to a more rapidly achieved but identical perception across conditions—or whether 
hearing particular sounds leads to changes in the visual representations themselves. For 
example, imagine you catch a glimpse of something rapidly flying by a window. It could 
be any number of things—and since you only saw it for a split second—auditory 
information could be incredibly useful at resolving this uncertainty: A constant buzzing 
would suggest it was likely a drone, whereas a stout caw would have you believe it was 
a crow. Does hearing the sound influence what you perceive? Does the sound of a drone 
make this dubious object appear more drone-like, whereas a caw makes the same object 
appear more crow-like? Or does a related sound simply accelerate object recognition 
without altering visual perception itself?  

We addressed these questions by investigating how naturalistic sounds modulate 
the visual processing of ambiguous, real-world objects. We used a visual discrimination 
task with a perceptual locus (27, 28), and designed a novel set of object stimuli that were 
paired at random with related or unrelated sounds. Since the influence of sound on vision 
seems particularly effective when visual information is noisy or dubious—where sounds 
provide independent and unequivocal clues about the visual environment (8, 25, 29, 30)—
we used ambiguous visual stimuli paired with clear and distinct sounds. Specifically, we 
created a set of ambiguous visual stimuli by morphing together the features of two visual 
objects (Objects A and B, e.g., a hammer and a seal, Fig 1a), and presented these stimuli 
with naturalistic sounds that were congruent with one of these progenitor objects. Visual 
objects and sounds were presented simultaneously, and participants looked for a target 
object in visual noise, after which they precisely reported that object using continuous 
report. We examined whether these sounds influenced how quickly participants 
recognized objects and, most importantly, whether the sounds—while not predictive of 
the target object in the visual discrimination phase—would alter the visuo-perceptual 
representation of a target object. 

Results 

Experiment 1: Incidental real-world sounds were paired with visual objects from a novel 
stimulus set that we created by morphing together the features of two distinct anchor 
objects (Object A and B, e.g., a hammer and a seal). By modulating the proportion of 
each anchor present in each object, we were able to create a series of novel, stepwise 
morphs that retained features from the original anchor objects (Fig 1A). The perceived  
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Figure 1. Stimuli and Task. (A) The four object-pairs used in the experiments. The leftmost 
column shows anchor-objects A while the rightmost column shows anchor-objects B (with 
anchor-object sounds in parentheses). Between each anchor object were 98 unique morphs 
that maintained features of both anchor objects. (B) General task design. Sounds played while a 
noisy object slowly faded into view (example of denoising process above visual discrimination 
task panel). Experiment 1a used a linear response slider while Experiment 1b used a circular 
response wheel. 

ambiguity across the different morph levels was validated in an independent study in 
which we measured psychophysical functions for each stimulus pair.  

On each trial, one of these morphs slowly faded into view from visual noise, while 
the sound of a real-world object played. Initially, the target morph was completely 
obscured by visual noise and as the trial progressed, this noise was continuously reduced 
such that participants were able to gather increasing amounts of visual information about 
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the target object. Participants were instructed to click with the mouse as soon as they 
were confident that they could accurately recreate the target morph using a continuous 
response interface that immediately followed the mouse click. Critically, the sounds could 
be either related or unrelated to the target morph: unrelated sounds were highly dissimilar 
from the target morph (e.g., a whistling train for the Hammer-Seal morphs) while related 
sounds matched the identity of one of the target morph’s anchor objects1. After the mouse 
click, participants used a continuous response interface to precisely recreate the target 
morph from the visual discrimination phase and received feedback on their error. 

Sounds influenced report error and response time (RT) on the visual discrimination 
and the continuous report phases, respectively. Specifically, we found that continuous 
report responses were influenced by which sound was played (sound A, B, or an 
unrelated sound; F(2,36) = 10.05, p < 0.001, h2 = 0.36). Of main interest was whether the 
related sounds A and B differentially affected the same visual stimulus; thus, we next 
compared the mean error for each related sound to the error on unrelated sound trials – 
which matched the complexity and naturalistic properties of the related sounds, thus 
effectively serving as a neutral condition. These subsequent pairwise comparisons 
revealed that the sounds corresponding to anchor Object A shifted responses towards 
that side of the object-morph continuum and away from neutral (t(18) = -2.16, p = 0.044; 
Cohen’s dz = 0.50), while sounds corresponding to Object B pulled responses in the 
opposite direction (t(18) = 2.57, p = 0.019; dz = 0.59; see Fig 2b). 

We next focused on RT during the visual discrimination task, which reflects the 
rate by which visual information is meaningfully integrated into a complete object. 
Participants were faster, on average, when they heard a related sound (1638ms) 
compared to an unrelated sound (1682ms; t(18) = 2.47, p = 0.023, dz = 0.39). This 
difference suggests that, on unrelated trials, participants required roughly 10% more 
visual evidence than on related trials to perform the task with roughly equal levels of 
accuracy (mean absolute error, 6.00 vs 6.07; t(18) = 0.39, p = 0.7, dz = 0.09, BF01 = 3.94). 
Thus, auditory information accelerated visual feature extraction from the noisy images 
and possibly increased observers’ confidence in their visual judgments as well (27).  

Experiment 1a used a linear response interface where the leftmost edge 
corresponded to anchor object A (morph step 1) and the rightmost edge corresponded to 
anchor object B (morph step 100). It is therefore possible that participants used these 
reliable positions along the response slider as a cue when responding—instead of 
focusing on the visual features of the response morph itself. To mitigate these concerns, 
and to replicate Experiment 1a, in Experiment 1b, we implemented a response wheel that 
was rotated randomly on every trial so that across trials there was no correspondence 
between positions on the wheel and the visual response morph (Fig 1b). Results from 
Experiment 1b replicated Experiment 1a: we found that sounds had a reliable effect on 
report error (F(2,78) = 11.23, p < 0.001, h2 = 0.22) and that related sounds pulled 
responses away from the average error on unrelated trials and towards the visual features 
of anchor Object A (t(39) = -2.58, p = 0.013, dz = 0.41) and Object B (t(29) = 2.77, p = 
0.011, dz = 0.43; Fig 2). RT in the visual discrimination task was again faster when sounds 

 
1 Note that the anchor objects were never targets, and the visual and auditory stimuli were presented 
concurrently to capitalize on the tight temporal integration window during multisensory integration (34, 
63). 
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Figure 2; Data from Experiments 1a (top row) and 1b (bottom row). Average report error 
(difference from neutral sounds) for Exp 1a (A) and Exp 1b (C) shows that related sounds 
influenced report error such that the response morph appeared more like the sound’s 
anchor-object identity. Right column demonstrates that, for both Exp 1a (B) and Exp 1b 
(D), sounds influenced response time such that participants were faster when they heard 
a related sound compared to an unrelated one. 
 
 
were related to the target morph (1840ms) compared to unrelated sounds (1881ms; t(39) 
= 2.55, p = 0.014; dz = 0.40) and, like before, this difference in RT did not result in a 
reliable difference in accuracy (6.83 vs 6.84; t(39) = 0.03, p = 0.98; dz = 0.004 BF01 = 
5.86). Taken together, the results from these experiments demonstrate that related 
auditory information speeds visual object processing, while also altering visual object 
representations by shifting them towards features that match the surrounding auditory 
context. This occurs even though the auditory information is non-predictive of the visual 
object. 
 

 
Experiment 2: Based on the results from Experiment 1, we hypothesize that 

sounds influence concurrent visual processing by pulling ambiguous visual inputs towards 
visual features that are congruent with the auditory object; thus, exerting an effect on the 
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visual representations themselves. However, one alternative account is that the sounds 
influence later, non-perceptual processing stages, such as decisional and response 
processes. While such a post-perceptual account seems incompatible with faster RT for 
related sounds, we directly tested this alternative in Experiments 2a-b by presenting 
sounds where they should have the greatest impact over decisional processes: during 
the continuous report phase. Each trial began with the same visual discrimination phase, 
except with no sound and, after a button press, the visual input stopped, a real-world 
sound began to play, and the continuous report interface was presented (Fig 3). If the 
effect is largely driven by a decisional process (such as response bias or low-confidence 
responses), we would expect a similar, or perhaps even larger, effect of sound on visual 
perception relative to Experiments 1a-b. If, however, real-world sounds primarily affect 
perceptual, and not decisional processes, then this manipulation should eliminate or 
reduce the effect since perceptual processing is likely complete by the time participants 
begin reporting the target item. 

In Experiment 2a, we found that sounds had little to no impact on report error 
(F(2,78) = 0.38, p = 0.69, h2 = 0.009) and, as expected, RT on related (1911ms) and 
unrelated trials (1906ms) was not significantly different (t(39) = 0.29, p = 0.77, dz = 0.04, 
BF01 = 5.63). A closer analysis of report error found no significant impact of sound: Error 
on unrelated trials was not significantly different than error on sound A trials (t(39) = 0.82, 
p = 0.42, dz = 0.12) nor sound B trials (t(39) = 0.24, p = 0.81, dz = 0.03) and we found 
compelling evidence to embrace these null findings (BF01 = 4.28 and 5.70, respectively).  

In Experiment 2b, we combined manipulations from Experiment 1b and 2a in a 
within-subject design and varied whether sounds were played during the continuous 
report phase (like Experiment 2a) or instead, were played during the visual discrimination 
phase (like Experiments 1a-b). We found a main effect of sound (F(2,84) = 11.31, p < 
0.001, h2

p = 0.12), no main effect of sound onset (during, or after, visual discrimination; 
F(2,84) = 0.16, p = 0.69, h2

p = 0.001) and a significant interaction (F(2,84) = 3.39, p = 
0.035, h2

p = 0.04). To explore the interaction, we compared the effect of sound on report 
error, and found that sounds produced a significantly larger effect when they were played 
during the visual discrimination phase compared to when they were played during the 
continuous report phase (t(84) = 2.34, p = 0.021, dz = 0.25; see Fig 3c). We next analyzed 
report error independently for each sound onset condition. When participants heard 
sounds during the visual discrimination task, we found that related sounds pulled 
responses away from neutral and towards anchor Object A (t(84) = 2.30, p = 0.024, dz = 
0.25) and Object B (t(84) = 2.96, p = 0.004, dz = 0.32). However, and in contrast to these 
findings, when participants heard sounds during the continuous report task (Fig 3d), we 
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Figure 3 Results and Task Design from Experiments 2a-b. (A) Task design: sounds were 
always played during the continuous report phase in Experiment 2a, and on half of all blocks in 
Experiment 2b. (B & C) Average report error (difference from neutral) for Experiment 2a 
and Experiment 2b (separated by when the sound onset began). These results show 
that related sounds influenced report error such that the response morph appeared 
more like the sound’s anchor-object when the sound was played during the visual 
discrimination phase (C, green bars) and not when played during the continuous report 
phase (B-C, orange bars). (D) RT for related and unrelated trials in Experiment 2a. (E) 
RT for related and unrelated trials in Experiment 2b, separated by when the sound was 
played: during continuous report (purple bars) or visual discrimination phases (blue 
bars). Results show that RT was only reliably affected when sounds were heard during 
the visual discrimination phase. 
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found that error on unrelated trials was not significantly different from error on sound A 
trials (t(84) = 1.56, p = 0.12, dz = 0.16, BF01 = 2.61) and sound B trials (t(84) =1.42, p = 
0.16, dz = 0.15, BF01 = 3.18). 

Participants were significantly faster on related (1779ms) compared to unrelated 
trials (1852ms; t(84) = 4.05, p < 0.001, dz = 0.44) when sounds played during the visual 
discrimination phase, and this difference in RT did not lead to differences in accuracy 
(7.76 vs 7.31; t(84) = 1.21, p = 0.23, dz = 0.13, BF01 = 4.13; see Fig 3e). As expected, we 
observed no significant difference in RT between related (1899ms) and unrelated 
(1903ms) conditions when sounds were played during the continuous report phase (t(84) 
= 0.25, p = 0.80, dz = 0.03, BF01 = 7.99). Overall, RT was on average slower when sounds 
were played during the continuous report task compared to the visual discrimination task 
but this difference in RT (i.e., having target images with lower levels of noise) did not lead 
to a significant difference in report error across sound onset conditions (7.38 vs 7.54, 
respectively; t(84) = 0.62, p = 0.54, dz = 0.07, BF01 = 6.94; Fig 3). These results replicate 
the previous experiments and demonstrate that sounds have their greatest influence 
when they are presented concurrently with visual information and can thus be integrated 
directly with incoming visual information. 

 
Experiment 3: Thus far, we have suggested that auditory and visual information 

are continuously integrated during sensory processing, and that biases at the decisional 
or response stages do not play a large role. However, another possibility is that the 
semantic content of these naturalistic sounds drives top-down influences on visual 
perception. Under this account, sounds may activate high-level semantic representations 
that subsequently influence sensory processing perhaps by biasing participants to 
voluntarily attend to or search specific parts of the visual object. To test for the contribution 
of such top-down effects, in Experiment 3, we presented the full length of a sound prior 
to the onset of the visual discrimination task (cf., 37, 38). Thus, this manipulation provides 
the same audio-semantic content as in previous experiments but should primarily induce 
pre-perceptual mechanisms that have been shown to require a longer delay between 
sound and target onset to exert effects on visual processing (31, 33–35).  

We found that sounds did not have a significant impact over report error (F(2,78) 
= 2.08, p = 0.13, h2 = 0.05) and we did not find a significant RT benefit for related sounds 
like we found in Experiments 1a-b and 2b (t(39) = 1.73, p = 0.09, dz = 0.27, BF01 = 1.50). 
Preplanned t-tests of report error further demonstrated that error on unrelated trials was 
not significantly different than sound A (t(39) = 1.19, p = 0.24, dz = 0.18, BF01 = 3.04) nor 
sound B trials (t(39) = 0.64, p = 0.53, dz = 0.10, BF01 = 4.84). These results suggest that 
the multisensory effects we observed in Exp. 1a-b and Exp. 2b are driven by the 
continuous integration of auditory and visual information as it enters the senses, and that 
temporal overlap of the incoming information is critical, as predicted by multisensory 
integration accounts (34, 36–38).  
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Figure 4 Results from Experiment 3: Sounds were played prior to the onset of the visual 
discrimination phase. (B) Report Error: we found a substantially reduced, non-
significant, effect (Cohen’s dz = 0.13) for sound A and sound B, suggesting that 
expectation and attention did not play a substantial role in the effects observed in 
Experiments 1a-b & 2b. (C) RT was also non-significant.  

Discussion 

Our results show that naturalistic auditory information hastens the accumulation of related 
visual information and alters the perceptual representation such that it is shifted towards 
visual features that are congruent with the auditory stimulus: the same ambiguous object 
(e.g., a morph of 50% seal and 50% hammer) is perceived as more hammer-like when 
paired with a hammer sound, and more seal-like when paired with the sound of seal 
barking. In a series of control experiments, we demonstrate that these cross-modal 
effects are not due to biases at decision- nor response stages (Exp. 2a-b), nor are they 
driven by top-down effects (e.g., a volitional search for specific features; Exp. 3). Instead, 
sounds exert a reliable effect on visual perception only when both stimuli overlap 
temporally; consistent with previous work demonstrating that multisensory processing 
requires a tight temporal integration window (11, 35–37).  

How might sounds exert influence over visual perception? In the natural world, 
sounds are causally predictive of the object that generated them—cats cannot bark, for 
example—and thus, sounds provide independent and informative cues about the visual 
world. This reliable and highly predictive relationship between audiovisual events can 
drive changes in early visual processing regions of the brain (18, 39) leading to selective 
processing of congruent compared to incongruent visual features. Previous work has 
shown a multitude of auditory effects on visual processing: that auditory information can 
rapidly affect the earliest stages of visual processing which results in downstream effects 
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on perception (18), that audition can dominate visual perception (8, 30, 40–43), that 
predictive relationships between stimuli lead to a selective reweighting of probabilistically 
relevant features (44–46), and that these effects are largely driven by prior knowledge 
(47, 48). For example, Kok and colleagues (2012) showed that when sensory information 
predicts an event, processing of probabilistically irrelevant features is suppressed relative 
to relevant features—those that are more likely to be observed—ultimately sharpening 
the processing of relevant sensory information. Taken together, these results lead us to 
hypothesize that the clear sounds presented in our study exerted a dominant influence 
over early visual processing which then led to a selective modulation of visual features 
that were inferred to come from the same generative object (i.e., ambiguous features are 
presumed dog-like when co-occurring with the sound of a barking dog). Additionally, 
within this framework, such sharpening of sensory processing can also lead to a 
facilitation of visual feature extraction for expected features, as evidenced by faster 
response times for related relative to unrelated sounds.  

Another possible source of this effect may be that high-level semantic knowledge 
influences visual perception (12, 49). For example, presenting linguistic labels prior to a 
visual object has been shown to boost perceptual processing (31). However, while it is 
possible that perception is facilitated by high-level semantics and top down influences 
(but see 67), the present results are inconsistent with the hypothesis that activating 
semantic knowledge underlies the perceptual changes we observed here. Since the 
semantic content of real-world sounds alone did not reliably shift perceptual 
representations (Experiment 3) our results support a more implicit and low-level process 
of probabilistic inference (45, 47) where the purported effects of semantics and top-down 
goals on visual perception operate through separate mechanisms (32, 51, 52). 
Furthermore, finding that audiovisual events need to overlap temporally to exert an effect 
is also in line with the notion that the learned structure from the world—here, that sounds 
are exclusively produced by appropriate objects and that audiovisual events co-occur in 
time—influences how we perceive novel sensory information (49, 53–55).  

What might be the functional role of sounds altering visual percepts? In real-world 
vision, where rapidly recognizing objects is imperative, where specific sounds are 
inextricably related to specific objects, and where sensory information is inherently noisy, 
it seems particularly beneficial to integrate cross-modal inputs with visual processing. 
Previous work has shown that prior knowledge and contextual information alter how we 
perceive novel sensory information and that this could be accomplished through 
probabilistic inference that is devoid of explicit top-down influences (1, 5, 47, 53, 56–58). 
If prior knowledge and context is used to interpret information as it enters the senses, as 
we propose here—and where the most likely cause of this sensory information is 
presumed as the source (59, 60)—it seems plausible that the resultant perceptual 
representation is shifted towards one that is congruent with these inferences (30, 42). 
Thus, the shifts in perceptual representations that we observed here represent inferences 
about impending sensory information: hearing a bark implies the presence of a dog and 
leads to perceptual inferences about certain dog-like visual features. And while an 
excessive shift of visual information might be maladaptive, our data demonstrate that 
these shifts are relatively small, at least when ample visual information is available, and 
that such small distortions likely represent an acceptable tradeoff between sensory 
processing demands and accuracy, especially considering that these inferences are 
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rarely wrong in the real world (61). Thus, in a world where sounds are causally predictive 
of visual objects and where preparing other sensory modalities for congruent experiences 
can lower the burden of sensory processing, integrating the auditory input with visual 
information might help to efficiently extract relevant features from noisy visual inputs, 
which ultimately aids object recognition. 

Our results broadly relate to work that has shown influences of auditory context on 
visual-perceptual processing for real-world objects. For example, Chen & Spence (2011) 
showed that visual stimuli are processed more rapidly and more accurately when sounds 
(a dog barking) are directly congruent with the visual stimulus (line drawing of a dog) and 
presented in close temporal proximity. This is consistent with our finding that participants 
also responded faster during the visual discrimination phase when the sounds were 
related to the visual object2: participants appeared to accumulate visual information more 
rapidly or felt more confident about their visual representation when the sound matched 
one of the anchor objects. However, in previous work, these effects were often observed 
after explicit familiarization or training with the audiovisual stimuli, often through a task 
that required participants to report whether the sound and image were congruent, and 
typically involved rapid presentation of the visual stimulus—where some trials represent 
uncertain or low-confidence perception, possibly resulting in biases or specific response 
strategies (12, 13, 35). Here, we avoided these potential limitations and designed a novel 
task with a unique stimulus set that allowed us to measure naturally occurring cross-
modal effects and directly assess the visual representations themselves. In particular: (1) 
Participants received no training and had no direct experience with the experimental 
stimuli prior to participating. (2) The task entailed accurately reporting the visual target, 
irrespective of the audiovisual relationship, thus avoiding any potential congruency 
biases. (3) Participants were in control over the amount of visual information they 
accumulated, thus allowing us to more confidently presume that participants had sufficient 
visual information to complete each trial accurately. Importantly, this demonstrates that 
this cross-modal effect is not limited to especially noisy perceptual representations, nor 
are they the product of uncertainty at response (especially since participants were 
encouraged on every trial to keep their error on the continuous report task as low as 
possible); suggesting that perceptual representations which participants feel confident in 
are nonetheless influenced by auditory context. 

Overall, our findings demonstrate that the ongoing perceptual processing of novel, 
noisy, and ambiguous stimuli is altered by related auditory context, such that the ultimate 
perceptual representation is pulled towards sound-congruent features. Our results favor 
a multisensory, rather than a decisional or strategic account, in which visual and auditory 
information are continuously integrated such that inputs from one modality—in our case 
audition—trigger inferences about the world that the visual system uses to interpret 
concurrent ambiguous information. Most broadly, our study demonstrates the importance 
of investigating visual processing as an integrative rather than an isolated process (10), 
and that multisensory integration plays a critical role in forming visual object 
representations. 

 
2 Note that in the present study, sounds and target objects were never directly congruent as they were in 
previous work. Instead, the sound of an object would be paired with a visually ambiguous object that was 
a morph of related and unrelated visual features. 
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Materials and Methods 

Participants 
 
All participants (1) were undergraduates from UC San Diego, (2) participated in these 
online studies in exchange for course credit, (3) gave informed consent and were 
recruited in accordance with the procedures approved by the Institutional Review Board 
at UC San Diego, (4) were between 18 and 34 years old, and (5) reported having normal 
hearing and normal or corrected-to-normal vision. For Experiment 1a: 25 undergraduates 
participated (14 women; mean age 20.6 years), and six were removed for failing to meet 
predetermined inclusion criteria (see analysis below); Experiment 1b: n = 49 (35 women; 
mean age 20.52 years; nine removed); Experiment 2a: n = 50 (38 women, mean age 
20.57 years; ten removed); Experiment 2b: n = 95 (75 women; mean age: 20.71 years; 
ten removed); Experiment 3: n = 47 (29 women; mean age 20.13 years; seven removed). 
 
Stimuli 
 
Eight real-world sounds were selected from online repositories and were edited to be two 
seconds in length and have equivalent amplitudes (when played at roughly 70dB SPL). 
For each sound, we collected or created a silhouette of a visual object that matched the 
object identity of the sound. Using each silhouette as the endpoints, we generated a set 
of 100 novel silhouettes by morphing between the two objects (Object A and Object B), 
using a morphing program to fuse objects together and create morph pairs (62).  

Since the morphing process creates relatively arbitrary, psychologically non-
uniform steps between 1 and 100, individual morph steps were rated in a separate online 
study to assess the psychometric functions for each of the morph pairs. From these data, 
we generated psychophysical curves and selected three morphs from each object-pair 
continuum that corresponded to the points where roughly 20, 50 and 80% of responses 
indicated the morph appeared more like Object A relative to Object B. Note that while we 
aimed to introduce variability in the stimulus set by selecting three different steps for each 
object-pair, we always chose morphs with some degree of ambiguity, and planned to 
collapse across these different morph levels for our main analysis to obtain enough trials 
in each condition of interest. In sum, the image set contained four unique object-pairs, 
each with three unique morphs (12 images total). For each object-pair, we collected and 
edited an additional unique sound that was unrelated to the object-pair and was selected 
to be as distinct as possible from the object-pair while related sounds were selected to 
closely match sounds made by either anchor-object A or B (see FIG 1A). 

Visual discrimination task: First, to create the initial noise mask, we overlaid all 12 
silhouette images, and completely randomized the phase of this averaged image. 
Second, we created a simple noise mask that consisted of random pixel flips and overlaid 
it above the initial phase-scrambled noise mask. Together, this resulted in a mask that 
effectively obscured the target morph silhouettes with both phased and random noise 
(see Fig 1B). Throughout each trial, as the mask slowly became more transparent, the 
randomized phase of the target image—which was initially randomized to 100%—slowly 
decreased until only 40% random phase remained. 
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General Procedure 
 
Every trial began with a real-world sound that could be related to Object A, Object B, or 
completely unrelated to either object (33% of trials for each condition). 500ms after sound 
onset, the visual discrimination task (400x400 pixels) appeared centrally as the sound 
continued to play. The visual target object started completely obscured by visual noise 
which decreased by 1% every 5ms for 3sec or until the participant pressed a button on 
the mouse (indicating that they were confident enough to accurately perform the 
subsequent continuous report task). If participants did not press the button within 3s they 
received feedback encouraging them to accumulate visual information more quickly 
(these “wait” trials were removed from further analysis). The button press stopped the 
visual discrimination task immediately and began the continuous report task where one 
of the ambiguous morphs (300x300 pixels) was randomly selected as the starting point. 
This task was unspeeded and, once participants locked their response by clicking a 
mouse button, they received feedback on their error: number of steps from the correct 
answer for 3sec and were encouraged to respond accurately (less than 10 steps). 
Participants then pressed a button to initiate the next trial. 
 
Procedure Experiment 1a 
 
Participants completed 240 trials and the continuous report task was implemented with a 
linear response slider (400x10 pixels) which ranged from Object A (morph 1), leftmost 
point, to Object B (morph 100), rightmost point. This slider was positioned centrally and 
placed below the response morph (300x300 pixels) which changed continuously as the 
mouse moved along the slider (Fig 1a). 
 
Procedure Experiment 1b 
 
(120 trials) Exp. 1b was identical to Exp. 1a, except the continuous report task used a 
response wheel that was rotated randomly on every trial so that there was no 
correspondence between positions on the response wheel and the response morph, 
across trials (see Fig 1b). When the response screen appeared, a black ring (400x400 
pixels) with a small position dot (50x50 pixels) appeared, surrounding the response morph 
(300x300 pixels).  
 
Procedure Experiment 2a 
 
(120 trials) The task was identical to Exp 1b except that sounds now started to play 
immediately following the visual discrimination phase and during continuous report; 
specifically, they started 500ms before the response interface appeared and continued to 
play as participants made their responses (up to 2s, or until a response was made).  
 
Procedure Experiment 2b 
 
(120 trials) In Exp. 2b, on half of all trials the sound started playing shortly before the 
visual discrimination task (as in Exp. 1a-b), and on the remaining half of the trials the 
sound was played after the visual discrimination task and during the continuous response 
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task (as in Exp. 2a). These sound-onset-conditions were blocked (30 trials per block), 
and the order of blocks was random and counterbalanced across participants. 
 
Procedure Experiment 3 
(120 trials) Each trial started with a real-world sound (2sec) and after a 3sec delay in 
which only the fixation point was shown to participants, the visual discrimination task 
began. 
 
Analysis 
 
For each sound condition we calculated median RT on the visual discrimination task and 
mean report error on the continuous report task. When comparing RT, we first checked 
to see whether RT differed between related conditions Sound A and Sound B and, across 
all experiments, we found no difference and thus collapsed RT estimates across Sound 
A and B. Report error, the number of morph steps between the correct response (target 
morph) and the provided response, could be negative, closer to morph 1 (Object A) than 
the correct response or positive, closer to morph 100 (Object B). We calculated a 
participant’s mean error per sound condition (Sound A, B, and Unrelated) and submitted 
these data to an ANOVA. Report error in each figure is represented as the difference in 
average error between Related and Unrelated conditions. 

Exclusion criteria were decided in advance based on pilot data. Data from 
participants were excluded if their average report error or average RT exceeded 3 
standard deviations from the group mean. For each individual participant, all trials where 
report error or RT exceeded 4 standard deviations from their mean were excluded. Lastly, 
any trials where participants did not respond in the visual discrimination task—instead, 
opting to wait the entire duration of the trial—were excluded. Participants were excluded 
from further analysis if greater than 10% of trials were missing from their data set.  
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