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Preface

The 32nd International Workshop on Combinatorial Algorithms (IWOCA 2021) was
originally scheduled to take place at the University of Ottawa, Canada. Due to the
COVID-19 pandemic, it was decided, a few months before the paper submission
deadline, that the conference would move online. The conference took place during
July 5–7, 2021, organized and coordinated from Ottawa by the IWOCA 2021
Organizing Committee, with online logistics support by The Fields Institute for
Research in Mathematical Sciences.

IWOCA is an annual conference series that started in 1989 as AWOCA
(Australasian Workshop on Combinatorial Algorithms) and became an international
conference in 2007, having been held in Australia, Canada, Czech Republic, Finland,
France, Indonesia, India, Italy, Japan, Singapore, South Korea, UK, and USA. The
conference brings together researchers on diverse topics related to combinatorial
algorithms, such as algorithms and data structures; algorithmic game theory; approx-
imation algorithms; complexity theory; combinatorics and graph theory; combinatorial
generation and enumeration; combinatorial optimization; combinatorics of words and
strings; computational geometry; computational biology; cryptography and information
security; graph algorithms; graph drawing and labelling; decompositions and combi-
natorial designs; distributed and network algorithms; dynamic and evolving networks;
mobile agents; new paradigms of computation; online algorithms; parallel algorithms;
parameterized and exact algorithms; probabilistic and randomized algorithms; and
streaming algorithms.

The Program Committee (PC) of IWOCA 2021 received 107 submissions. Each
submission was reviewed by at least three PC members and some trusted external
referees, and evaluated on its quality, originality, and relevance to the conference. The
PC selected 38 papers for presentation at the conference and inclusion in the
proceedings.

Four invited talks were given at IWOCA 2021, by Maria Chudnovsky (Princeton
University, USA), Anna Lubiw (University of Waterloo, Canada), David Peleg
(Weizmann Institute of Science, Israel), and Alfred Wassermann (University of
Bayreuth, Germany). This volume contains the abstracts of the four invited talks and
the paper versions of two of those invited talks.

The PC selected two contributions for the best paper and the best student paper
awards. The best paper award was given to Benjamin Merlin Bumpus and Kitty Meeks
for their paper “Edge Exploration of Temporal Graphs”. The best student paper award
was given to Stefan Lendl, Gerhard J. Woeginger, and Lasse Wulf for their paper
“Non-preemptive Tree Packing”.

IWOCA 2021 was held more than a year after a global pandemic was declared in
March 2020, a period that has been a trying time for everyone around the world.
During this period, computer scientists and mathematicians have quickly learned how
to teach, research, and collaborate remotely. In the midst of these uncertain times, the



response to our call for papers was a record number of submissions, for which we are
very grateful. While we long for a time when we will be sharing knowledge in the same
geographical location, we are also very thankful to many individuals and organizations
who worked together to build a successful online conference.

We would like to thank all the authors who responded to the call for papers, the
invited speakers, the members of the PC, the external referees, and the members of the
Organizing Committee.

We also thank Springer for publishing the proceedings of IWOCA 2021 in their
ARCoSS/LNCS series and for their financial support towards the best paper and the
best student paper awards.

We gratefully acknowledge the financial and logistics support from the following
institutions: The Fields Institute for Research in Mathematical Sciences, the Faculty of
Engineering at uOttawa, and the University of Ottawa.

Finally, we thank the Steering Committee for giving us the opportunity to serve as
program chairs of IWOCA 2021 and for their continuous support.

July 2021 Paola Flocchini
Lucia Moura
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Abstracts of Invited Talks



Induced Subgraphs and Tree Decompositions

Maria Chudnovsky

Princeton University, USA
mchudnov@math.princeton.edu

Tree decompositions are a powerful tool in structural graph theory, that is traditionally
used in the context of forbidden graph minors. Connecting tree decompositions and
forbidden induced subgraphs has so far remained out of reach. Recently we obtained
several results in this direction: the talk will be a survey of these results.



Token Swapping

Anna Lubiw

University of Waterloo, Canada
alubiw@uwaterloo.ca

Given a graph where every vertex has exactly one labeled token, a swap exchanges the
tokens at the two endpoints of an edge. The situation can be modelled as an expo-
nentially large Cayley graph with a vertex for each permutation of the labels and an
edge for each swap.

It is easy to see that the Cayley graph is connected (every permutation of labels can
be realized by a sequence of swaps). Of interest are the diameter of the Cayley graph
(the worst case length of a sequence of swaps) and the complexity of computing the
minimum length sequence of swaps to realize a given permutation.

These token swapping problems have been studied by disparate groups of
researchers in discrete mathematics, theoretical computer science, robot motion plan-
ning, game theory, and engineering.

I will survey this work and talk about hardness and approximation algorithms for
token swapping on trees.



New Directions in Network Realization

David Peleg

Weizmann Institute of Science, Israel
david.peleg@weizmann.ac.il

Network realization problems concern situations where given a specification S,
detailing the desired values of a certain network parameter, it is required to construct a
network adhering to S, or decide that no such network exists. A variety of network
realization problems have been studied over the past 70 years, focusing mainly on the
parameters of vertex degrees and inter-vertex distances. The talk will present some
recent developments in the area of network realization.



Search for Combinatorial Objects Using
Lattice Algorithms - Revisited

Alfred Wassermann

University of Bayreuth, Germany
Alfred.Wassermann@uni-bayreuth.de

In 1986, Kreher and Radziszowski first used the famous LLL algorithm to construct
combinatorial designs. Subsequently, lattice algorithms have been applied to construct
a large variety of objects in design theory, coding theory and finite geometry. Unfor-
tunately, the use of lattice algorithms in combinatorial search is still not well estab-
lished. Recently, a new enumeration strategy based on “limited discrepancy search”
was used to further improve the power of this method. In this talk, we will describe the
search strategy based on lattice basis reduction, compare it to widely used backtracking
algorithms and integer linear programming algorithms, and will outline the recent
progress.
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Relaxed and Approximate Graph
Realizations

Amotz Bar-Noy1, Toni Böhnlein2, David Peleg2(B), Mor Perry2,
and Dror Rawitz3

1 City University of New York (CUNY), New York, USA
amotz@sci.brooklyn.cuny.edu

2 Weizmann Institute of Science, Rehovot, Israel
{toni.bohnlein,david.peleg,mor.perry}@weizmann.ac.il

3 Bar Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract. A network realization problem involves a given specification
π for some network parameters (such as vertex degrees or inter-vertex
distances), and requires constructing a network G that satisfies π, if pos-
sible. In many settings, it may be difficult or impossible to come up with
a precise realization (e.g., the specification data might be inaccurate, or
the reconstruction problem might be computationally infeasible). In this
expository paper, we review various alternative approaches for coping
with these difficulties by relaxing the requirements, discuss the resulting
problems and illustrate some (precise or approximate) solutions.

1 Introduction

1.1 Background: Precise (pure) Network Realization Problems

Network realization problems are fundamental questions pertaining to the ability
to construct a network conforming to pre-defined requirements. Given a specifica-
tion (or information profile) detailing constraints on some network parameters,
such as the vertex degrees, distances or connectivity, it is required to construct
a network abiding by the specified profile, i.e., satisfying the requirements, or to
determine that no such network exists.

Realization problems may arise in two general types of contexts. In scientific
contexts, the information profile may consist of the outcomes of some measure-
ments obtained from observing some real world network (e.g., social networks
and information networks) whose full structure is unknown. In such a setting, our
goal is to construct a model that may possibly explain the empirical observations.
Many of the studies in the field of phylogenetics and evolutionary trees (see, e.g.,
[16,23,41,42,51,63,68,84,88]) as well as in the field of discrete tomography and
microscopic image reconstruction (see, e.g., [3–5,11,15,46,47,52,64,77]) belong
to this class.

Supported in part by a US-Israel BSF grant (2018043).

c© Springer Nature Switzerland AG 2021
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A second, engineering-related context where realization problems come up is
network design. Here, the profile may be defined based on a specification dic-
tated by the future users of the network, and the goal is to construct a network
that obeys the specification. For example, the profile may specify the required
connectivity, flow capacities, or distances between vertex pairs in the network. In
particular, network realization techniques may be useful in the area of software
defined networks (SDN). For example, in service chain placement, the specifi-
cation can define a directed acyclic graph (DAG) of virtual network functions
(VNF), and the realization must determine the placement of one of the paths of
the DAG in the physical network [38,39,72].

Two of the most well-studied families of realization problems concern vertex
degrees and inter-vertex distances. The following is a brief review of the literature
on these two problems.

Degree Profile. The degree sequence of a simple (no parallel edges or self-loops)
and undirected graph G = (V,E) with the vertex set V = {1, . . . , n} is an integer
sequence DEG(G) = (d1, . . . , dn), where di = degG,i is the degree of vertex i in
G. The degree sequence occurs as a central and natural parameter in many
network applications, and provides information on the significance, centrality,
connectedness, and influence of each vertex in the network, contributing to the
understanding of the network structure and some of its important properties.
Given a sequence D of n non-negative integers, the degree realization problem
asks to decide whether there exists a graph G whose degree sequence DEG(G)
equals D. A sequence admitting such a realization is called graphic (or graphical).

The two key questions studied extensively in the past concern identifying
characterizations (or, necessary and sufficient conditions) for a sequence to be
graphic, and developing effective and efficient algorithms for finding a realiz-
ing graph for a given sequence if exists. A necessary and sufficient condition
for a given sequence of integers to be graphic (also implying an O(n) decision
algorithm) was presented by Erdös and Gallai in [36]. (For alternative proofs
see [2,27,32,90–92].) Havel [60] and Hakimi [55] (independently) described an
algorithm that given a sequence of integers computes in O(m) time an m-edge
graph realizing it, or proves that the given sequence is not graphic.

A number of related questions were considered in the literature, including the
following: (a) Given a degree sequence D, find all the (non-isomorphic) graphs
that realize it. (b) Given D, count all its (non-isomorphic) realizing graphs. (c)
Given D, sample a random realization as uniformly as possible. (d) Determine
the conditions under which a given D defines a unique realizing graph (a.k.a. the
graph reconstruction problem). These questions are well-studied, cf. [27,36,55,
60,67,78,85,90,94,99,101], and have found several interesting applications, most
notably in network design, randomized algorithms, and recently in the study
of social networks [17,30,35,75] and chemical networks [89]. Degree realization
with given constraints on some vertex was studied in [69]. For surveys on graphic
sequences see [95–97].

The subgraph realization problem adds the restriction that the realizing graph
must be a subgraph (or factor) of some fixed input graph. Subgraph realization
problems are generally harder. For instance, it is easy to construct an n-vertex
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connected graph whose degrees are all 2, but the same problem for subgraph-
realization is NP-hard (being essentially the Hamiltonian cycle problem). For
more on this interesting line of work see, e.g., [8,53,61,74,93]. Here we focus on
the case where the host graph is the complete graph.

Graphic sequences were studied also on specific graph families. The problem
is straightforward on trees (see [54] for an elegant proof) but of interest on more
complex classes. For example, characterizations were given to sequence pairs that
can be realized as the degree sequences of a bipartite graph [21,49,82,102]. The
family of planar graphs was studied to some extent, but the degree realization
problem in this setting is still far from being resolved, and existing results are
restricted to characterizing planar graphic k-sequences (in which the difference
between max di and min di is at most k) for k = 0, 1, 2 [1,83]. Split graphs and
difference graphs are considered in [58,98] and in [57], respectively. Chordal,
interval, and perfect graphs were studies in [25]. Degree realization in directed
graphs was studied in [7,24,37,48,71], and the NP-hardness of degree realization
by directed acyclic graphs was proved in [59].

Distance Profile. In a graph G, define the distance distG(u, v) between two
vertices u and v as the length of the shortest path connecting them in G. In
the distance realization problem, the input DIST-profile consists of a matrix
D ∈ (N ∪ {∞})n×n, which specifies the required distance between every two
vertices i �= j in the graph. Di,j = ∞ represents the case where i and j are in
different disconnected components. The goal is to compute a realizing graph G
(if exists), such that any two vertices i, j in G satisfy distG(i, j) = Di,j .

In the unweighted distance realization problem it is assumed that each edge
is of length 1. It follows that the graph is fully determined by D: there is an edge
(i, j) in the graph if and only if Di,j = 1. It follows that there is only one graph
that may serve as a realization. This was observed by Hakimi and Yau [56], who
provided a characterization for distance specifications realizable by unweighted
graphs, implying also a polynomial-time algorithm for distance realization.

In the weighted distance realization problem the edges of the realizing graph
may have arbitrary integral weights. (We assume that the minimum edge weight
is 1.) Hakimi and Yau [56] also studied the weighted problem. They proved that
the necessary and sufficient condition for the realizability of a given martix D
is that D is a metric. Furthermore, they gave a polynomial-time algorithm that
given a distance specification D, which is a metric, computes a realization. More
specifically, their algorithm constructs a unique realizing graph which contains
edges that are necessary in every possible realization of D.

Patrinos and Hakimi [81] considered the case where weights can be negative.
They showed that any symmetric matrix with zero diagonal is a distance matrix
of some graph G. They gave necessary and sufficient conditions for realizing such
a matrix as a tree, and they showed that the tree realization is unique.

Precise distance realization by weighted trees were considered in [9], which
presented a characterization for realizability. (For unweighted trees, there is a
straightforward realization algorithm, based on the algorithm of [56] for general
unweighted graphs, and on the fact that the realization, if exists, is unique.)
Precise distance realization restricted to bipartite graphs was studied in [14],
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where it was observed that it is sufficient to check the unique realization in the
unweighted case or the minimal realization in the weighted case.

1.2 Limitations of Precise Realizations

Most of the research activity on realizations dealt with precise realizations in
which the specification must be met exactly, in terms of the graph size and the
attributes of each vertex in the realizing graph. We refer to such realizations
as pure realizations because they forbid any deviation or relaxation from the
specifications. Unfortunately, pure realizations suffer from certain limitations,
making them hard to utilize, and motivating the use of relaxed versions of net-
work realization. We now discuss several of these limitations.

Hardness of Pure Realization. Our ability to solve a specific realization prob-
lem, i.e., construct networks satisfying a given specification, depends heavily on
the attributes considered. While some profile types are handled easily, for other
certain profile types it turns out to be very hard to derive characterizations for
realizability or construction algorithms for pure realizations. For example, the
realizability of vertex connectivity profiles is to date poorly understood. More-
over, for certain types of information profiles, it may be feasible to find charac-
terizations or construction algorithms for general graphs, but hard to do so for
some specific graph classes. For example, degree realizability is well understood
on general graphs, but not on planar graphs. In such cases, it makes sense to
resort to various relaxations, or to realizations that well-approximate the given
specification. Specifically, efficient approximation algorithms for various hard to
realize profiles may turn out to have practical significance in the context of net-
work design, as it may provide designers with tools for constructing networks
that obey a detailed pre-specified behavior in terms of the attributes most rele-
vant to the purposes for which the network is designed.

Flexibility of Imprecise Realizations. When solutions are restricted to pre-
cise realizations, it could be the case that the space of all possible realizations
may be too small or even empty. As a result, there is very little freedom in
selecting a realization that optimizes some objective functions. By relaxing the
specifications the space of all feasible realizations might become large enough
to produce optimal or near optimal realizations in regard to predefined opti-
mization goal. Consider for example the precise degree realization problem. By
allowing the degrees of vertices to deviate by a constant number from the precise
degree, one could find a realizing graph with a smaller diameter and/or higher
connectivity. Now consider the precise distance realization problem. By allowing
the actual distances to be larger by some factor, one could find a realizing graph
with fewer edges and smaller degrees.

Imperfect Data. In certain cases, the input specification data is imprecise
(e.g., describing the results of inaccurate measurements on a real-life network
with unknown parameters), or ill-chosen (e.g., based on the unrealistic expecta-
tions of clients describing their “dream network”). In such cases, it might well
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happen that the specification is infeasible with no network conforming to it. As
a result, characterization tests and construction algorithms will simply return
“non-realizable” and halt. This might be an unsatisfactory outcome in the prac-
tical world. As an alternative, we could aim for a more positive outcome, in the
form of an actual realizing graph, if only approximate.

Hardness of Composition. In some settings we may be given a composed pro-
file, combining two or more profiles that must be realized simultaneously (see [13]
in these proceedings). As one might suspect, handling profile compositions may
sometimes be significantly harder, especially when insisting on pure realizations.
Hence for such composed profiles, finding relaxed or approximate realizations
might often be our only recourse.

In short, the above discussion makes it evident that in many situations one
may be interested in considering some alternative approaches as a substitute
for pure realizations. In this expository paper we review and illustrate various
alternative approaches to network realization, based on relaxed or approximate
network realizations. Specifically, Sect. 2 gives an overview of relaxed realiza-
tions, Sect. 3 illustrates the notion of minimum deviation distance realizations
and some related results, and Sect. 4 discusses multigraph realizations of degree
profiles with minimum multiplicity.

2 Relaxed and Approximate Realizations

We next overview a number of variations studied in the literature, which intro-
duce flexibility in one way or another. For simplicity, we focus only on attributes
of vertices or vertex pairs.

Bounding Specifications. The specifications considered so far were precise,
i.e., they specified the exact value of the attribute required for every vertex (or
vertex pair). In contrast, a lower-bounding specification φ for an information
profile f (f -profile) provides lower bounds on the required attributes. Such φ is
realizable if there is a graph G whose f -profile satisfies f(G) ≥ φ. More explicitly,
when φ and f concern vertex attributes of n-vertex graphs, G satisfies φ if
fi ≥ φi for every 1 ≤ i ≤ n (a similar definition applies for attributes of vertex
pairs). An analogue notion can be defined for upper-bounding specifications, as
well as range specifications, specifying both lower and upper bounds on each
attribute. Clearly, bounding specifications are more flexible than precise ones;
whereas precise specifications sometimes (although certainly not always) force
a unique realization, bounding specifications are more likely to admit many
realizing graphs.

As an example, a natural generalization of the graphic sequence problem is
the degree range profile. In this variant we are given a range sequence consisting
of n ranges, S = ([a1, b1], . . . , [an, bn]) such that 0 ≤ ai ≤ bi ≤ n − 1 for every i,
which is said to be realizable if there exists a graphic sequence D = (d1, . . . , dn)
falling within the specified ranges, namely, such that ai ≤ di ≤ bi for 1 ≤ i ≤ n.
(cf. [12,22,50,53] and the references therein). Two natural questions are to find
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an efficient algorithm for verifying the realizability of a given range sequence S,
and to compute a certificate (that is, a suitable graphic sequence D) for a given
realizable range sequence S. (Given D, one can readily construct a graph whose
degrees realize D, as discussed earlier.) An easy to verify characterization for
realizable range sequences is provided in [22], crucially using the (g, f)-Factor
Theorem of [74]. A constructive proof of this characterisation is given in [50].
Another algorithm for computing a graph whose degrees realize a given range
sequence (if exists), based on [55,60], is presented in [62].

As another example, range variants of the distance realization problem, where
we are given a range [D−

i,j ,D
+
i,j ] for every i, j and the realizing G must satisfy

D−
i,j ≤ distG(i, j) ≤ D+

i,j , were studied in [14], and the resulting problems were
classified as polynomial or NP hard.

Handling Unrealizable Specifications. When faced with a given unrealizable
specification φ for some f -profile, a natural question that presents itself is to find
a graph G that “resembles the specification most,” namely, whose f -profile f(G)
“minimally deviates” from φ. This requirement is rather broad, and may lead
to different optimization problems, depending on the setting. For our canonical
example of degree realizations in general graphs, an interesting instantiation
of this problem is the minimum total discrepancy degree realization problem
[62,75], a.k.a. the graphic deviation problem [19]. It requires one to find, for a
given non-graphic sequence D, a graph G whose degree sequence is closest to D.

Several measurements for closeness or the quality of an approximation are
possible. As an example consider the unrealizable sequence D0 = (4, 4, 1, 1, 1).
We may look for a realizing graph G that minimizes the sum of the deviations at
all the vertices

∑
i |degG,i −di|, i.e., with respect to the L1-norm. The realizable

sequence (4, 4, 2, 2, 2) approximates D0 with minimum total deviation 3.
Naturally, other norms may be of interest as well. In particular, the problem

can be solved for the L∞ norm (see Sect. 4) where the deviation measure to be
minimized is maxi |degG,i −di|. A solution for D0 is the sequence (3, 3, 2, 1, 1),
which is graphic and has maximum deviation 1. Beyond being a natural extension
of the degree sequence problem, a practical motivation for this problem is raised
and studied in [18,20], in the context of probabilistic and game-theoretic analyses
of population models.

Another approach is to minimize the number of vertices that do not con-
form to their specification (are mismatches), that is, to find a realizing graph G
minimizing the number of vertices i such that degG,i �= di. A possible solution
for the example D0 is the sequence (4, 1, 1, 1, 1), which is graphic (the realizing
graph being the 4-star) and has one mismatch.

Returning to the example of degree range profiles, for a non-realizable range
sequence S, the algorithm of [62] computes a graph whose deviation with respect
to L1-norm is minimum. The time complexity of the algorithm is O(

∑n
i=1 bi),

where bi is the upper limit of the ith range, which can be as high as Θ(n2). In
[12] we presented an O(n log n) time algorithm for computing a graphic certifi-
cate (if exists) for any given range sequence. In addition, given a range sequence S,
our algorithm can obtain (in the same time) a degree-certificate corresponding to
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graphs with minimum (resp. maximum) possible edges. We also gave an O(n log n)
time algorithm for efficiently computing graphic sequences having the least pos-
sible L1-deviation when the input range sequence is non-realizable. Again, the
problem can be solved also for the L∞ norm, i.e., where the deviation measure to
be minimized is maxi{0,degG,i −bi, ai − degG,i}. These tools allow also studying
other interesting applications, such as computing a minimum extension of non-
graphic sequences to graphic ones.

Super-Realizations. It is sometimes acceptable to allow the realizing graph G
to be larger than indicated by the specification (i.e., have more than n vertices).
We refer to such a realizing graph as an super-realization of the given specifica-
tion. The flexibility of adding new vertices is useful in tackling problems that are
otherwise intractable. Consequently, super-realizations were extensively studied
for various profile types.

As an example let us consider distance profiles. The optimal distance real-
ization problem was introduced in [56]. In this problem, a distance matrix D is
given over a set S of n terminal vertices, and the goal is to find a graph G includ-
ing S, with possibly additional vertices, that realizes the given distance matrix
for S. Necessary and sufficient conditions are given for a symmetric matrix with
nonnegative entries to be realizable by a weighted or an unweighted graph. It
is also shown that if G is an n-vertex realization of D without redundant edges
(i.e., no edge can be removed without violating the distance matrix), then G
is unique. It is shown in [34] that an optimal realization can have at most n4

vertices (recall that the number of terminal vertices is n), and therefore, there
is a finite (but exponential) time algorithm to find an optimal realization. In [6]
it is shown that finding optimal realizations of distance matrices with integral
entries is NP-complete, and evidence to the difficulties in approximating the opti-
mal realization is provided in [28]. Over the years, various heuristics for optimal
realizations are discussed in many papers [76,86,87,100].

Since optimal realization seems hard even to approximate, special cases and
other variations have been studied. In [28], a weak realization is defined, where
the distance matrix is a bounding specification that sets lower bounds on the
required distances. it is shown that this weak realization problem is also NP-
complete, but its optimum solution can be 2-approximated. In [40], an opti-
mizing variant is defined to be the one with minimum number of edges. It is
shown therein that if additional vertices are not allowed, then an edge-minimal
graph can be found in polynomial time. On the other hand, in a setting allowing
additional vertices, if the distance matrix has to be realized by an unweighted
graph, then the problem is essentially as hard to approximate as graph color-
ing and maximum clique. In addition, polynomial approximation algorithms are
presented for specific cases.

Special attention has been given to the optimal distance realization problem
where the realizing graph is a tree. In [56], a procedure is given for finding a tree
realization of D if exists. It is also shown therein that a tree realization, if exists,
is unique and is the optimum realization of D. Necessary and sufficient conditions
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for a distance matrix to be realizable by a tree were given in [10,33,87]. Finally,
an O(n2) time algorithm for optimal tree-realization is given in [31].

For degree realizations, we may look for a realizing graph G having a subset
of n vertices whose parameters conform precisely to the given profile. The typical
goal would be to minimize the number of additional vertices, i.e., |V (G)| − n.
This type of relaxation may be useful, e.g., when each component fi of the
specification f represents a vertex that must exist in the constructed network,
and cannot be omitted, whereas extra vertices imply extra cost but are not
prohibitive. For the above example of D = (4, 4, 1, 1, 1), one can obtain a super-
realization with n′ = 7 = n + 2 by realizing the sequence D′ = (4, 4, 2, 1, 1, 1, 1),
which is graphic. In general graphs, this type of approximate degree realization
problem can be solved efficiently, using algorithms for degree range profiles.

Another option is to allow a realizing graph G that is smaller than indicated
by the specification, namely, has fewer than n vertices. We call such a graph an
sub-realization of the given specification. For example, for the profile DEG, the
specification D = (4, 3, 1, 1, 1) cannot be realized, but by removing one vertex we
obtain D′ = (3, 1, 1, 1) that can be realized using a star. The natural goal in such
a setting is to compute a sub-realization with maximum number of vertices, i.e.,
with minimum number of vertex deletions. This type of relaxation may arise,
e.g., when external constraints or physical resource bounds limit the size of the
constructed network to no more than n vertices, and it is desired to utilize the
available resources to the extent possible.

Yet another interesting variant of super-realizations is obtained if we allow
only splitting vertices. For example, D = (4, 3, 1, 1, 1) cannot be realized, but
(3, 2, 2, 1, 1, 1), obtained by splitting the requirement 4 into 2 and 2, is realizable.

Optimizing Realizations. Optimization goals may be of interest also for realiz-
able profiles. It is often the case that the given profile has many possible realizing
graphs, and it may be of interest to seek a realizing graph that also optimizes
some desirable quality measure. This type of optimization problem often arises
in contexts where the specification is bounding rather than precise, since the
flexibility of bounding specifications, resulting in the larger variety of realizing
graphs, makes it attractive to select the most suitable realizing graph for the
quality measure at hand.

For example, in the context of connectivity realization, a natural problem to
consider is minimum edge connectivity threshold realization. The input for this
problem is an n × n connectivity threshold matrix CT e serving as a bounding,
rather than precise, specification, namely, specifying the required minimum edge
connectivity CT e(i, j) between every two vertices i �= j in the graph. Hence a
graph G satisfies the specification if e-connG(i, j) ≥ CT e(i, j) for any two vertices
i, j. Note that for any connectivity threshold matrix CT e, the complete graph on
V is always a legal realization (provided that CT e(i, j) ≤ n−1 for every i and j).
However, the minimum edge connectivity threshold realization problem imposes
an additional desirable goal, i.e., to find the sparsest possible realizing graph G.
In [45], this problem was studied in the context of survivable network design,
and a 2-approximate solution is provided for this problem, guaranteeing that the
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number of edges is at most twice the minimum possible. See also [26,43,44,66]
for related studies.

Another approach to relax the the degree realization problem is to ask for a
multigraph (with parallel edges and self-loops) instead of a simple graph. Then it
is natural to try to maximize (or minimize) the number of edges in the underlying
graph, i.e., to try to minimize the number of mismatches which are parallel edges
or self-loops in this case. We take a closer look at these variants in Sect. 4.

We note that all the above deviations also have two one-sized (i.e., bounding)
variants. For example, in the case of minimizing the number of mismatches, a
subclass of possible bounding realizations arises when we allow only degG,i ≥ di,
or only degG,i ≤ di, depending on the application at hand.

3 Minimum Deviation Distance Realization

If a given distance matrix D is unrealizable, one may want to find a graph
G whose distance matrix is closest to D, say, with respect to the L1-norm, i.e.,
such that the sum of deviations of all matrix entries is minimized, or with respect
to the L∞-norm, i.e., the maximum deviation of a matrix entry is minimized.
Note that here we allow both downwards deviation, where the actual distance
satisfies distG(i, j) < Di,j , and upwards deviation, where distG(i, j) > Di,j .
Other deviation functions can be considered, for example, the number of matrix
entries for which there is a deviation. For each of the above deviation functions
(which allow both downwards and upwards deviation) we may consider also two
more variants: one allowing only downward deviations, and one allowing only
upward deviations.

In this section we focus on the version of only downward deviations, which is
particularly interesting for distance realizations, since in system design, we would
like to get as close as possible to the specification matrix, but never exceed the
specified distances.

There are several variants of the distance realization problem, depending on
whether the distance matrix specifies exact values or ranges at each entry, and
whether the realizing graph is required to be unweighted or weighted. For all
three deviation functions mentioned above, it turns out that finding a graph G
whose distance matrix is closest to D is NP-hard when G must be unweighted,
and is polynomial for weighted graphs. This holds for both types of distance
matrix, namely, precise distances and distance range.

As a first illustration we show a polynomial algorithm for the weighted case.

Theorem 1 ([14]). For every deviation function and every distance matrix D,
there is a polynomial time algorithm that finds a weighted graph G with minimum
downward deviation from D.

The theorem is established by presenting a polynomial time algorithm for
the most general case of a distance-range matrix (a precise-distance matrix
is a special case, for which our algorithm applies as well). Given a distance-
range matrix D, construct a weighted clique graph G by assigning the weight
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ω(i, j) = D+
i,j for every edge (i, j). We now sketch the argument showing that G

is a minimum downward deviation graph. First, observe that by construction,
distG(i, j) ≤ D+

i,j for every i and j, since there exists an edge of weight D+
i,j

connecting i and j, so there are no upward deviations in G. Next, we argue that
for every pair (i, j), and for every graph whose distance matrix deviates only
downwards from D, the deviation of (i, j) is at least D−

i,j − distG(i, j), i.e., G is
a minimum deviation graph. To see this, consider a path i = v0, . . . , v� = j in G
for which the total weight is distG(i, j). This path implies a set of requirements
Dvk,vk+1 , for k = 0, . . . , � − 1, such that the distance between vk and vk+1 is at
most D+

vk,vk+1
= ω(vk, vk+1). Since every realizing graph G′ is not allowed to

deviate upwards, the distance between i and j in G′ is at most distG(i, j), i.e.,
D−

i,j − distG′(i, j) ≥ D−
i,j − distG(i, j).

Our second complementary example is an NP-hardness result for the
unweighted case.

Theorem 2 ([14]). The problem of finding an unweighted graph G with mini-
mum sum of downward deviations from D, is NP-hard.

The hardness of this problem is established for the case of a precise-distance
matrix, implying also the hardness of the distance-range case. Hardness is estab-
lished by reducing the diameter-2 augmentation problem, which is known to be
NP-hard [73], to our deviation problem. Given a graph G = (V,E), input to the
diameter-2 augmentation problem, the goal is to find the minimal set of edges E′

such that the diameter of the graph G′ = (V,E ∪E′) is at most 2. This instance
is reduced to an instance D of the minimum sum of downward deviations prob-
lem by setting Di,j to be 0 if i = j, 1 if (i, j) ∈ E(G), and 2 otherwise, yielding a
distance matrix for n vertices. It then remains to verify that D has a realization
with minimum sum of downwards deviations k if and only if G has a diameter-2
augmentation of k edges, establishing the theorem.

The same reduction actually proves also the hardness of minimum number of
downward deviations problem. Moreover, one can prove that the problem min-
max downward deviation is NP-hard by a reduction from the k-coloring problem.
A systematic study of these types of minimum-deviation realizations for distance
profiles, and their classification into polynomial and NP-hard cases, can be found
in [14], where we also consider other deviation functions, such as multiplicative
deviation, two-sided deviation and only upward deviation.

4 Optimizing Multigraph Realizations of Degree Profiles

In this section, we consider degree profiles where the realization must satisfy
the given specification, but it is allowed to use parallel edges. Namely, we allow
realizations by loopless multigraphs rather than by only simple graphs. The goal
is to find a realization which is as “close” to a simple graph as possible.

Let H = (V,E) be a (loopless) multigraph. That is, E is a multiset.
Denote by EH(v, w) the multiset of edges connecting v and w in H, and let
#H(v, w) = |EH(v, w)|. Given a vertex u, let N(u) be the neighborhood of u,
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namely N(u) = {v : (u, v) ∈ E}. Also, let E(u) = {(u, v) ∈ E : v ∈ V } be the
multiset containing edges that are adjacent to u. Observe that deg(u) = |E(u)|,
while it could be that deg(u) > |N(u)|. Finally, let P(H) = {(v, w) | E(v, w) �= ∅}.
Observe that (V,P(H)) is the underlying simple graph of the multigraph H.

Define the total multiplicity as the number of parallel edges |E| − |P(H)|. It
follows that

TotMult(H) =
∑

(v,w)∈P(H)(#H(v, w) − 1).

Observe that in a simple graph TotMult(H) = 0.
A realization minimizing the total multiplicity can be computed efficiently

(see [70,79,80]). In [79] this problem is also solved when only loops and loops
and parallel edges are allowed. Interestingly, finding a multigraph realization
that maximizes the number of parallel edges is NP-hard [65].

Define the maximum multiplicity as

MaxMult(H) = max
(v,w)∈P(H)

(#H(v, w)).

Observe that in a simple graph MaxMult(H) = 1.

Theorem 3 (Chungphaisan [29]). Consider a sequence d = (d1, . . . , dn)
where

∑n
i=1 di is even and an integer r ≥ 1. There is a multigraph H where

MaxMult(H) ≤ r if and only if for k = 1, . . . , n we have

∑k
i=1 di ≤ rk(k − 1) +

∑n
i=k+1 min{rk, di} .

We conclude the discussion by illustrating how the generalized variant of the
Havel-Hakimi algorithm outlined in [29] can be used to compute a multigraph
H where MaxMult(H) ≤ r. The algorithm receives as input a sequence d and a
parameter r and looks for a realization of d which uses at most r copies of each
edge. An explicit description of the algorithm is given below. Each recursive call
of this algorithm connects an arbitrary vertex � to at most d� vertices with the
highest degrees (not including itself) while using at most r copies per edge. The
initial call is MaxMult(d, r).

Algorithm 1: MaxMult(d, r)

1 if d = 0 then return ∅
2 Let � be an arbitrary vertex such that d� > 0
3 V� ← V \ {�}; E� ← ∅
4 while d� > 0 do
5 j ← argmaxq∈V�

dq

6 if dj ≤ 0 then ABORT � d is not r-graphic
7 Add (�, j) to E�

8 d� ← d� − 1; dj ← dj − 1
9 if #E�

(j, �) = r then V� ← V� \ {j}
10 return E� ∪ MaxMult(d, r)
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For completeness, we include an analysis of the algorithm, starting with the
running time. There are O(n) recursive calls, and each can be implemented to
run in O(n) time, yielding a total of O(n2) time. A more careful implementation
yields a running time of O(

∑
i di).

For correctness, the next lemma proves that if the algorithm terminates suc-
cessfully, then the computed edge multiset induces a realization.

Lemma 1. Let d be a nonincreasing sequence and r be a positive integer. If
the Algorithm MaxMult terminates without aborting, then the computed multiset
induces a realization of d that contains at most r copies per edge.

Proof. By induction on the number of recursive calls. In the base case, d = 0,
and thus E = ∅ is a realization. For the induction step, let d′ denote the value
of d in Line 10, and let E′ be the multiset of edges returned by the recursive
call in Step 10. By the inductive hypothesis, E′ induces a realization of d′ that
contains at most r copies per edge. The while loop realizes d − d′ and Line 9
makes sure that the number of copies per edge is bounded by r. Also, observe
that E′ does not contain edges adjacent to �, since d′

� = 0 Hence E′ ∪E� induces
a realization of d that contains at most r copies per edge. 
�

The following lemma shows that if d admits a realization, then the algorithm
will terminate successfully.

Lemma 2. Let d be a nonincreasing sequence and r be a positive integer. If d
has a realization that contains at most r copies per edge, then the algorithm will
terminate successfully.

Proof. By induction on the number of recursive calls. In the base case, d = 0, and
in this case an H = (V, ∅) is the only realization. For the induction step, let H
be a realization of d that contains at most r copies per edge. First, observe that
since there is a realization of d, the while loop would terminate successfully. If E�

is contained in H, then we are done. Otherwise, we show that there is another
realization H ′ of d that contains E�. Transform H into H ′ using edge-swaps.
Let v ∈ V such that #H(�, v) < #E�

(�, v), where #E�
(�, v) is the multiplicity

of the edge (�, v) in E�. It follows that there is a vertex u such that #H(�, u) >
#E�

(�, u). Since the last copy of (�, v) was chosen over (�, u), it must be that

dv − #H(�, v) ≥ dv − (#E�
(�, v) − 1) ≥ du − #E�

(�, u) > du − #H(�, u) .

Consequently, there must be a vertex w �= �, v, u such that #H(v, w) > 0 and
#H(u,w) < r. Modify H by applying the following edge swap: remove the edges
(�, u), (v, w) and add the edges (�, v), (u,w). It is not hard to verify that the
resulting multigraph is a realization d that contains at most r copies per edge.
Moreover, #H(�, v) is increased by 1. Continue with edge swaps in this manner
until H contains E�. 
�

The best r can be obtained with Algorithm 1 using binary search on r.

Lemma 3. There exist a polynomial time algorithm that, given a sequence d,
computes a realization H of d such that MaxMult(H) = MaxMult(d).



Relaxed and Approximate Graph Realizations 15

References

1. Adams, P., Nikolayevsky, Y.: Planar bipartite biregular degree sequences. Discr.
Math. 342, 433–440 (2019)

2. Aigner, M., Triesch, E.: Realizability and uniqueness in graphs. Discr. Math. 136,
3–20 (1994)

3. Alpers, A., Gritzmann, P.: Reconstructing binary matrices under window con-
straints from their row and column sums. Fundamenta Informaticae 155(4), 321–
340 (2017)

4. Alpers, A., Gritzmann, P.: Dynamic discrete tomography. Inverse Probl. 34(3),
034003 (2018)

5. Alpers, A., Gritzmann, P.: On double-resolution imaging and discrete tomogra-
phy. SIAM J. Discr. Math. 32, 1369–1399 (2018)
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11. Bar-Noy, A., Böhnlein, T., Lotker, Z., Peleg, D., Rawitz, D.: The generalized

microscopic image reconstruction problem. In: 30th ISAAC, volume 149 of LIPIcs,
pp. 42:1–42:15 (2019)

12. Bar-Noy, A., Choudhary, K., Peleg, D., Rawitz, D.: Efficiently realizing interval
sequences. SIAM J. Discr. Math. 34(4), 2318–2337 (2020)

13. Bar-Noy, A., Peleg, D., Perry, M., Rawitz, D.: Composed degree-distance realiza-
tions of graphs. In: 32nd IWOCA (2021)

14. Bar-Noy, A., Peleg, D., Perry, M., Rawitz, D., Schwartz, N. L.: Distance realiza-
tion approximations. In: preparation (2021)

15. Battaglino, D., Frosini, A., Rinaldi, S.: A decomposition theorem for homogeneous
sets with respect to diamond probes. Comput. Vis. Image Underst. 117, 319–325
(2013)

16. Baum, D.A., Smith, S.D.: Tree Thinking: an Introduction to Phylogenetic Biology.
Roberts and Company, Greenwood Village, CO (2013)

17. Blitzstein, J.K., Diaconis, P.: A sequential importance sampling algorithm for
generating random graphs with prescribed degrees. Internet Math. 6(4), 489–522
(2011)

18. Broom, M., Cannings, C.: A dynamic network population model with strategic
link formation governed by individual preferences. J. Theoret. Biol. 335, 160–168
(2013)

19. Broom, M., Cannings, C.: Graphic deviation. Discr. Math. 338, 701–711 (2015)
20. Broom, M., Cannings, C.: Game theoretical modelling of a dynamically evolving

network i: general target sequences. J. Dyn. Games 335, 285–318 (2017)
21. Burstein, D., Rubin, J.: Sufficient conditions for graphicality of bidegree

sequences. SIAM J. Discr. Math. 31, 50–62 (2017)
22. Cai, M.-C., Deng, X., Zang, W.: Solution to a problem on degree sequences of

graphs. Discr. Math. 219(1–3), 253–257 (2000)
23. Camin, J.H., Sokal, R.R.: A method for deducing branching sequences in phy-

logeny. Evolution 19, 311–326 (1965)



16 A. Bar-Noy et al.

24. Chen, W.-K.: On the realization of a (p, s)-digraph with prescribed degrees. J.
Franklin Inst. 281(5), 406–422 (1966)

25. Chernyak, A.A., Chernyak, Z.A., Tyshkevich, R.I.: On forcibly hereditary p-
graphical sequences. Discr. Math. 64, 111–128 (1987)

26. W. Chou and H. Frank. Survivable communication networks and the terminal
capacity matrix. IEEE Trans. Circ. Theory, CT-17, 192–197 (1970)

27. Choudum, S.A.: A simple proof of the Erdös-Gallai theorem on graph sequences.
Bull. Austral. Math. Soc. 33(1), 67–70 (1991)

28. Chung, F.R.K., Garrett, M.W., Graham, R.L., Shallcross, D.: Distance realization
problems with applications to internet tomography. J. Comput. Syst. Sci. 63,
432–448 (2001)

29. Chungphaisan, V.: Conditions for sequences to be r-graphic. Discr. Math. 7(1–2),
31–39 (1974)

30. Cloteaux, B.: Fast sequential creation of random realizations of degree sequences.
Internet Math. 12(3), 205–219 (2016)

31. Culberson, J.C., Rudnicki, P.: A fast algorithm for constructing trees from dis-
tance matrices. Inf. Process. Lett. 30(4), 215–220 (1989)

32. Dahl, G., Flatberg, T.: A remark concerning graphical sequences. Discr. Math.
304(1–3), 62–64 (2005)

33. Dahlhaus, E.: Fast parallel recognition of ultrametrics and tree metrics. SIAM J.
Discr. Math. 6(4), 523–532 (1993)

34. Dress, A.W.M.: Trees, tight extensions of metric spaces, and the cohomological
dimension of certain groups: a note on combinatorial properties of metric spaces.
Adv. Math. 53, 321–402 (1984)

35. Erdös, D., Gemulla, R., Terzi, E.: Reconstructing graphs from neighborhood data.
ACM Trans. Knowl. Discov. Data 8(4), 23:1–23:22 (2014)

36. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [Hungarian].
Matematikai Lapok 11, 264–274 (1960)

37. Erdös, P.L., Miklós, I., Toroczkai, Z.: A simple Havel-Hakimi type algorithm to
realize graphical degree sequences of directed graphs. Electr. J. Comb. 17(1)
(2010)

38. Even, G., Medina, M., Patt-Shamir, B.: On-line path computation and function
placement in SDNs. Theory Comput. Syst. 63(2), 306–325 (2019)

39. Even, G., Rost, M., Schmid, S.: An approximation algorithm for path computation
and function placement in SDNs. In: Suomela, J. (ed.) SIROCCO 2016. LNCS,
vol. 9988, pp. 374–390. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-48314-6 24

40. Feder, T., Meyerson, A., Motwani, R., O’Callaghan, L., Panigrahy, R.: Represent-
ing graph metrics with fewest edges. In: Alt, H., Habib, M. (eds.) STACS 2003.
LNCS, vol. 2607, pp. 355–366. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36494-3 32

41. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368–376 (1981)

42. Fitch, W.M.: Toward defining the course of evolution: Minimum change for a
specific tree topology. Syst. Biol. 20, 406–416 (1971)

43. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J.
Discr. Math. 5, 25–43 (1992)

44. Frank, A.: Connectivity augmentation problems in network design. In: Mathe-
matical programming: state of the art, pp. 34–63. Univ. Michigan (1994)

45. Frank, H., Chou, W.: Connectivity considerations in the design of survivable
networks. IEEE Trans. Circuit Theory, CT-17, 486–490 (1970)

https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/978-3-319-48314-6_24
https://doi.org/10.1007/3-540-36494-3_32
https://doi.org/10.1007/3-540-36494-3_32


Relaxed and Approximate Graph Realizations 17

46. Frosini, A., Nivat, M.: Binary matrices under the microscope: a tomographical
problem. Theor. Comput. Sci. 370(1–3), 201–217 (2007)

47. Frosini, A., Nivat, M., Rinaldi, S.: Scanning integer matrices by means of two
rectangular windows. Theor. Comput. Sci. 406(1–2), 90–96 (2008)

48. Fulkerson, D.: Zero-one matrices with zero trace. Pacific J. Math. 12, 831–836
(1960)

49. Gale, D.: A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)
50. Garg, A., Goel, A., Tripathi, A.: Constructive extensions of two results on graphic

sequences. Discr. Appl. Math. 159(17), 2170–2174 (2011)
51. Gontier, N.: Depicting the tree of life: the philosophical and historical roots of

evolutionary tree diagrams. Evol. Educ. Outreach 4, 515–538 (2011)
52. Gritzmann, P., Langfeld, B., Wiegelmann, M.: Uniqueness in discrete tomogra-

phy: three remarks and a corollary. SIAM J. Discr. Math. 25, 1589–1599 (2011)
53. Guo, J., Yin, J.: A variant of Niessen’s problem on degree sequences of graphs.

Discr. Math. Theor. Comput. Sci. 16, 287–292 (2014)
54. Gupta, G., Joshi, P., Tripathi, A.: Graphic sequences of trees and a problem of

Frobenius. Czechoslovak Math. J. 57, 49–52 (2007)
55. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a

linear graph -I. SIAM J. Appl. Math. 10(3), 496–506 (1962)
56. Hakimi, S.L., Yau, S.S.: Distance matrix of a graph and its realizability. Quart.

Appl. Math. 22, 305–317 (1965)
57. Hammer, P.L., Ibaraki, T., Simeone, B.: Threshold sequences. SIAM J. Algebra.

Discr. 2(1), 39–49 (1981)
58. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1, 275–284

(1981)
59. Hartung, S., Nichterlein, A.: Np-hardness and fixed-parameter tractability of real-

izing degree sequences with directed acyclic graphs. SIAM J. Discr. Math. 29,
1931–1960 (2015)

60. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest.
Mat. 80, 477–480 (1955)

61. Heinrich, K., Hell, P., Kirkpatrick, D.G., Liu, G.: A simple existence criterion for
(g < f)-factors. Discr. Math. 85, 313–317 (1990)

62. Hell, P., Kirkpatrick, D.: Linear-time certifying algorithms for near-graphical
sequences. Discr. Math. 309(18), 5703–5713 (2009)

63. Hennig, W.: Phylogenetic Systematics. Illinois University Press, Champaign
(1966)

64. Herman, G.T., Kuba, A.: Discrete Tomography: Foundations, Algorithms, and
Applications. Springer Science & Business Media (2012)

65. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree
sequences: maximization is easy, minimization is hard. Oper. Res. Lett. 36(5),
594–596 (2008)

66. Jayadev, S.P., Narasimhan, S., Bhatt, N.: Learning conserved networks from flows.
Technical report, CoRR (2019). http://arxiv.org/abs/1905.08716

67. Kelly, P.: A congruence theorem for trees. Pacific J. Math. 7, 961–968 (1957)
68. Kidd, K.K., Sgaramella-Zonta, L.: Phylogenetic analysis: Concepts and methods.

American J. Hum. Gen. 23, 235–252 (1971)
69. Kim, H., Toroczkai, Z., Erdos, P.L., Miklos, I., Szekely, L.A.: Degree-based graph

construction. J. Phys. Math. Theor. 42, 1–10 (2009)
70. Kleitman, D.J.: Minimal number of multiple edges in realization of an incidence

sequence without loops. SIAM J. Appl. Math. 18(1), 25–28 (1970)



18 A. Bar-Noy et al.

71. Kleitman, D.J., Wang, D.L.: Algorithms for constructing graphs and digraphs
with given valences and factors. Discr. Math. 6, 79–88 (1973)

72. Kutiel, G., Rawitz, D.: Service chain placement in SDNs. Discr. Appl. Math. 270,
168–180 (2019)

73. Li, C., McCormick, S., Simchi-Levi, D.: On the minimum-cardinality-bounded-
diameter and the bounded-cardinality-minimum-diameter edge addition prob-
lems. Oper. Res. Lett. 11, 303–308 (1992)

74. Lovász, L.: Subgraphs with prescribed valencies. J. Comb. Theory 8, 391–416
(1970)

75. Mihail, M., Vishnoi, N.: On generating graphs with prescribed degree sequences
for complex network modeling applications. In: 3rd ARACNE (2002)

76. Nieminen, J.: Realizing the distance matrix of a graph. J. Inf. Process. Cybern.
12(1/2), 29–31 (1976)
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Abstract. In 1986, Kreher and Radziszowski were the first who used
the famous LLL algorithm to construct combinatorial designs. Subse-
quently, lattice algorithms have been applied to construct a large variety
of objects in design theory, coding theory and finite geometry. Unfor-
tunately, the use of lattice algorithms in combinatorial search is still
not well established. Here, we provide a list of problems which could
be tackled with this approach and give an overview on exhaustive search
using lattice basis reduction. Finally, we describe a different enumeration
strategy which might improve the power of this method even further.

Keywords: Lattice enumeration · Combinatorial search

1 Introduction

In 1982, Lenstra, Lenstra and Lovász published the groundbreaking LLL algo-
rithm, which finds in polynomial time “short” vectors in a lattice. As soon as in
1983, Lagarias and Odlyzko [44] applied the LLL algorithm successfully to break
certain cryptosystems based on the subset sum problem.

It seems that in the field of constructive combinatorics, Kreher and Radzis-
zowski were the first who used the LLL algorithm. In [40,41] they used it to con-
struct a 6-(14, 7, 4) design. Subsequently, lattice basis reduction was used by the
author and collaborators to find the first combinatorial designs for t = 7, 8, and
9 with small parameters and other variants of designs, see e.g. [2–4,14,42,43,45]
(see [16] for a comprehensive overview on combinatorial design theory). The
same program has been used successfully in the search for large sets of
designs [5,46,47], in coding theory (linear codes, codes over rings, two-weight
codes, covering codes) [6,12,32,34,37,54,62], subspace designs and their variants
[8–11,13,33], as well as in finite geometry [7] and other problems.

All of these combinatorial search problems can be reduced to the solution of
a Diophantine linear system which is a generalization of the subset sum problem
studied by Lagarias and Odlyzko [44] and has the following form.

Let A ∈ Z
m×n, d ∈ Z

m, and l, r ∈ Z
n. Determine all vectors x ∈ Z

n such
that

A · x = d and l ≤ x ≤ r , (1)

where l ≤ r for vectors l, r ∈ Z
n is defined as li ≤ ri for all 0 ≤ i < n.

c© Springer Nature Switzerland AG 2021
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With the substitution x := x − l, d := d − A · l and r := r − l, it suffices to
consider l = 0 as a lower bound on the variables.

Kramer and Mesner [39] reduced the search for combinatorial designs with
prescribed automorphism group to such a problem.

Solving equation (1) is a special instance of the multi-dimensional subset
sum problem which is known to be NP-complete [22]. Since problem (1) can be
reduced to many other NP-hard problems it is no surprise that there are many
solving algorithms available. See [23,31,49] for a survey.

In case the right hand side vector d in (1) is the all-one vector, the problem is
also called exact cover problem and the fastest algorithm seems to be the dancing
links algorithm1 by Knuth [35] or – in special cases – maximum clique search,
see e.g. [53]. In case there is a “≤” instead of “=” in (1), it seems that typical
integer linear programming algorithms [24,27] are most promising.

However, in the special case that there is “=” in (1), and d is much larger
than the all-one vector, and r is the all-one vector (i.e. solution vectors x are
{0, 1} vectors), reduction of the problem to a lattice point enumeration problem
has been very successful as shown in the above references. The algorithm has
been described in detail in [60,61] but unfortunately there are not many other
implementations if any. This may be due to the widespread misconception that
lattice basis reduction is only able to find random solutions which was the case
in the implementation of [41]. It has been overlooked that lattice basis reduction
can be followed by an exhaustive enumeration of all solutions of (1) with a
backtracking algorithm.

In the sequel we will give an overview to exhaustive enumeration of all solu-
tions of (1) using lattice point enumeration and also hint to a different enumera-
tion scheme (limited discrepancy search) which allows to find the first solutions
sometimes much more quickly.

2 Lattices

Let R
n denote the real Euclidean n-dimensional space. Its elements v ∈ R

n are
written as column vectors v = (v0, v1, . . . , vn−1)�. Let 〈v,w〉 =

∑
i∈n vi · wi be

the standard bilinear form for v,w ∈ R
n. For q ∈ R, q ≥ 1, the �q-norm is

defined by
‖−‖q : Rn → R : v 	→ (∑

i∈n

|vi|q
)1/q

,

and the �∞-norm is defined as:

‖−‖∞ : Rn → R : v 	→ max
i∈n

|vi| .

Let b(0),b(1), . . . ,b(m−1) be m linearly independent vectors in R
n. The discrete

additive subgroup of Rn

1 Updated versions available at https://www-cs-faculty.stanford.edu/∼knuth/progr
ams.html.

https://www-cs-faculty.stanford.edu/~knuth/programs.html
https://www-cs-faculty.stanford.edu/~knuth/programs.html
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L(b(0),b(1), . . . ,b(m−1)) = {
m−1∑

i=0

ui · b(i) | ui ∈ Z, i ∈ m } ⊂ R
n

is called lattice with basis b(0),b(1), . . . ,b(m−1).
The rank m of a lattice L with basis b(0),b(1), . . . ,b(m−1) is the dimension

of the R-subspace 〈b(0),b(1), . . . ,b(m−1)〉 which is spanned by the basis. The
corresponding n × m-matrix

B =
(
b(0) | . . . | b(m−1)

)

is called a generator matrix of L if L = L(b(0),b(1), . . . ,b(m−1)).
For a lattice L ⊂ R

n, the most important algorithmic problems are:

– Shortest vector problem (SVP): Find an �q-shortest vector in L, i.e. find an
element w in L such that

‖w‖q = min{‖w′‖q | w′ ∈ L \ {0}}.

This question is most interesting for the Euclidean norm �2, the �1-norm, and
the �∞-norm.

– Closest vector problem (CVP): Given a vector v ∈ R
n, find a lattice vector

w ∈ L which is closest to v in the �q-norm, i.e. such that

‖v − w‖q = min{‖v − w′‖q | w′ ∈ L} .

– Lattice basis reduction: Given a basis b(0),b(1), . . . ,b(m−1) of the lattice L
compute a new basis b′(0),b′(1), . . . ,b′(m−1) of L consisting of “shortest”
vectors. Here, the meaning of short will have to be made precise, compare
Fig. 1.

Fig. 1. Two different bases for b(0),b(1) and b(0)′
,b(1)′

of the same lattice
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For an overview on the algorithmic complexity of the above problems we refer
e.g. to [50] and the literature cited there.

Concerning the last of the mentioned problems, we remark that the problem
of finding a basis consisting of shortest vectors is not exactly defined provided
the dimension is at least three. In fact, many different versions of the concept
of a shortest basis exist. Two classical concepts are the reduced bases in the
sense of Minkowski [51] and the reduced quadratic forms in the sense of Korkine
and Zolotarev [38] which rely on the computation of shortest lattice vectors in
sublattices and related lattices. Therefore, the problem of computing a reduced
lattice basis in the sense of Minkowski or Korkine and Zolotarev is at least as
hard as the shortest vector problem.

Let B = (b(0) | . . . | b(m−1)) be a generator matrix of a lattice L. The
matrix G(B) = (〈b(i),b(j)〉)i,j∈m ∈ R

m×m is called Gram matrix of the lattice
basis. The volume of the lattice L is defined as Vol(L) = det(L) =

√
det(G(B)),

it does not depend on the choice of the basis. Further invariants of a lattice –
independent from the choice of the basis – are the successive minima of Min-
kowski [51].

Let L ⊂ R
n be a lattice of rank m. For an integer i ∈ m let λi(L) be the

least positive real number for which there exist i+1 linearly independent lattice
vectors v ∈ L \ {0} with ‖v‖2 ≤ λi(L). The numbers λ0(L), λ1(L), . . . , λm−1(L)
are the successive minima of the lattice L. From the definition it follows that
λ0(L) ≤ λ1(L) ≤ . . . ≤ λm−1(L). A classical result due to Hermite [26] gives an
upper bound for the �2-shortest vector of a lattice L ⊂ Z

n, namely L contains a
nonzero vector v such that

‖v‖22 ≤ (4/3)(m−1)/2 · det(L)2/m .

3 Lattice Basis Reduction

Let b(0),b(1), . . . ,b(m−1) be a set of linearly independent vectors ∈ R
n.

Gram–Schmidt orthogonalization (GSO) is the orthogonal family defined for
0 ≤ i < m by

b̂(i) = b(i) −
i−1∑

j=0

μij · b̂(j) ,

where

μij =
〈b(i), b̂(j)〉
〈b̂(j), b̂(j)〉 . (2)

For 0 ≤ t < m and v ∈ R
n the orthogonal projection πt(v) is defined by

πt : Rn → 〈b(0),b(1), . . . ,b(t−1)〉⊥, v 	→
m−1∑

j=t

〈v, b̂(j)〉
〈b̂(j), b̂(j)〉 · b̂(j)

and b̂(t) = πt(b(t)). The orthogonal projection of a lattice L is the lattice Lt

defined by
Lt = L(πt(b(t)), πt(b(t+1)), . . . , πt(b(m−1))) .
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A basis b(0),b(1), . . . ,b(m−1) of a lattice L ⊂ R
n is reduced in the sense of

Korkine and Zolotarev [38] if

1. b(0) is an �2-shortest vector in L and
2. for 0 ≤ t < m, b̂(t) is an �2-shortest vector in the lattice Lt(b(t), . . . ,b(m−1)).

However, no polynomial time algorithm to compute a Korkine–Zolotarev-
reduced basis is known. A major breakthrough was achieved by Lenstra, Lenstra,
and Lovász in their seminal work [48]. They compute a different type of reduced
basis, which is now called an LLL-reduced basis, see the original paper [48] or
textbooks like [15,52].

The LLL algorithm computes an LLL-reduced basis. The input is a basis
b(0), . . . ,b(m−1) of the lattice L of rank m.

(1) Let δ ∈ R with 1
4 < δ < 1.

(2) Set k := 0.
(3) do

(4) 1. for j = 0, . . . , k − 1
(5) replace b(k) by b(k) − �μkj�b(j),
(6) where μkj is the Gram-Schmidt coefficient (2).
(7) 2. if δ‖πk(b(k))‖2 > ‖πk(b(k+1))‖2 then

(8) swap b(k+1) and b(k)

(9) update b̂(k+1), b̂(k) and μ
(10) set k := max(k − 1, 0)
(11) else

(12) set k := k + 1
(13) until k = m − 1. �
The output b(0),b(1), . . . ,b(m−1) of the LLL-algorithm with 1

4 < δ < 1 is called
δ-reduced basis of the lattice L.

The LLL algorithm runs in polynomial time in m, n, and the size of the
entries of the basis vectors. In [52, Chapters 4 and 5] recent developments are
described, e.g. how to approximate the LLL algorithm by using floating point
numbers.

The LLL algorithms can not be expected to compute shortest vectors in a
lattice. Let b(0),b(1), . . . ,b(m−1) be a δ-reduced basis of the lattice L ⊂ Q

n.
Then, the following bounds can be proved [48].

‖b(j)‖2 ≤ (
4

4δ − 1
)i · ‖b̂(i)‖2 for 0 ≤ j ≤ i < m . (3)

det(L) ≤
m−1∏

i=0

‖b(i)‖ ≤ (
4

4δ − 1
)m(m−1)/4 · det(L) . (4)

‖b(0)‖ ≤ (
4

4δ − 1
)(m−1)/4 · det(L)1/m . (5)

The fascinating mystery behind the LLL algorithm is that in many cases it
produces a much better approximation to the shortest vector of the lattice than
the proven bounds guarantee.
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Nevertheless, a full reduction in the sense of Korkine and Zolotarev would
require exponential complexity. In [56,57] blockwise Korkine–Zolotarev reduction
(BKZ) was introduced which restricts enumeration in the sense of Korkine and
Zolotarev to blocks of a fixed size β of basis vectors, i.e. searches by exhaustive
enumeration for nontrivial integer linear combinations

ukb(k) + uk+1b(k+1) + . . . + uk+β−1b(k+β−1)

which minimize the Euclidean length of

πk(ukb(k) + uk+1b(k+1) + . . . + uk+β−1b(k+β−1)) .

The original LLL algorithm can be interpreted as blockwise Korkine–Zolotarev
reduction for β = 2. For a further description of improved practical versions and
recent developments, e.g. sieving methods, we refer to [52,57,58]. In a blockwise
Korkine–Zolotarev-reduced basis of a lattice of rank m the factor ( 4

4δ−1 )(m−1)/2

can be replaced by (1 + ε)m for any fixed ε > 0. Of course, the time complexity
increases exponentially as ε approaches 0.

4 Lattice Embedding of Diophantine Linear Systems

In [44], Lagarias and Odlyzko described the reduction of problem (1) for {0, 1}
vectors x, i.e. r = 1. In [17,18] their embedding of (1) into a lattice problem was
be improved. In turn, the following generalization to arbitrary upper bounds r
has been given in [61].

The basis of the lattice to which the LLL algorithm is applied consists of the
columns of the following generator matrix of size (m + n + 1) × (n + 1):

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−N · d N · A
−rmax 2c1 0 · · · 0
−rmax 0 2c2 · · · 0

...
...

. . .
...

−rmax 0 · · · · · · 2cn

rmax 0 · · · · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)

where N ∈ Z>0 is a large constant and

rmax = lcm{r1, . . . , rn} and ci =
rmax

ri
, 1 ≤ i ≤ n .

If N is large enough, see [1], the reduced basis will consist of n − m + 1 vectors
with only zeroes in the first m rows and m vectors which contain at least one
nonzero entry in the first m rows. The latter vectors can be removed from the
basis. From the remaining n−m+1 vectors we can delete the first m rows which
contain only zeroes. This gives a basis b(0), b(1), . . ., b(n−m) ∈ Z

n+1.
In the second step of the algorithm, see Sect. 5, all integer linear combina-

tions of the basis vectors b(0), b(1), . . ., b(n−m) ∈ Z
n+1 are enumerated which

correspond to solutions of (1).
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Theorem 1 ([61]). Let

w = u0 · b(0) + u1 · b(1) + . . . + un−m · b(n−m) (7)

be an integer linear combination of the basis vectors with w0 = rmax.
w is a solution of the system (1) if and only if

w ∈ Z
n+1 where − rmax ≤ wi ≤ rmax, 1 ≤ i ≤ n .

5 Lattice Point Enumeration

Usually, we are interested in finding all solutions to problem (1), or to conclude
that there are none. In terms of the associated lattice (6), this mean that we wish
to enumerate all lattice points which are subject to a certain set of constraints.
Such an approach has first been described by Ritter [55] for {0, 1} problems.
Here we solve the general problem with arbitrary bounds on the variables.

A priori, a lattice L = {∑i∈m uib(i) | ui ∈ Z} of rank m contains infinitely
many elements. However, it will turn out that there are bounds on the integers
|ui|, i ∈ m, which depend solely on the lattice basis b(0),b(1), . . . ,b(m−1). These
bounds reduce the problem of finding solution vectors to a finite set of lattice
vectors. Each solution vector v has the upper bounds

‖v‖22 ≤ (n + 1) · r2max and ‖v‖∞ ≤ rmax .

The exhaustive enumeration is arranged as backtracking algorithm. Starting
from un−m ∈ Z, successively all possible ut ∈ Z for t = n−m,n−m−1, . . . , 1, 0
are tested. The enumeration can be pruned at stage t if certain conditions are
violated. These pruning tests have quite a long history and are based on the
work of [19–21,28,29,36,55].

In each level t of the backtracking algorithm, w(t) = πt(
∑n−m

j=t ujb(j)) is
the projection of the linear combination of the already fixed variables ut, ut+1,
. . ., un−m into the subspace of R

n+1 which is orthogonal to the linear span
〈b0, . . . , bt−1〉.

Starting from w(n−m+1) = 0, w(t) can be computed iteratively from w(t+1)

by

w(t) = (
n−m∑

i=t

uiμit)b̂(t) + w(t+1)

with Gram-Schmidt coefficients μit. In each level t, n − m ≥ t ≥ 0, all possible
integer values for the variable ut are tested. The following two main tests allow
to restrict the possible values of ut.

First pruning condition. For all j ≤ t the vectors b̂(j) are orthogonal to w(t+1)

and therefore

‖w(t)‖22 = (
n−m∑

i=t

uiμit)2‖b̂(t)‖22 + ‖w(t+1)‖22 .
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We notice that w(0) =
∑n−m

j=0 ujb(j) . Using ‖w(j)‖2 ≥ ‖w(t)‖2 for j ≤ t we can
backtrack as soon as

‖w(t)‖22 > c := (n + 1) · r2max .

For fixed ut+1, . . ., un−m, this gives a bound for ut:

(ut +
n−m∑

i=t+1

uiμit)2 ≤ c − ‖w(t+1)‖22
‖b̂(t)‖22

.

Second pruning condition. The second test is an adaption to the special situation
that we are searching for an integer linear combination of the basis vectors
which consists solely of components whose absolute value is bounded by rmax.
It is based on the following theorem by Ritter [55].

Theorem 2 ([55]). If the given sequence of integers ut, ut+1, . . ., un−m ∈ Z

can be extended to u0, . . ., ut, . . ., un−m ∈ Z such that
∑n−m

i=0 uib(i) is a solution
of (1), then for all yt, yt+1, . . ., yn−m ∈ R:

|
n−m∑

i=t

yi‖w(i)‖22| ≤ rmax · ‖
n−m∑

i=t

yiw(i)‖1 .

We use this theorem in the enumeration algorithm in the following way. Taking
(yt, yt+1, . . . , yn−m) = (1, 0, . . . , 0) results in the test

|w(t)‖22 ≤ rmax‖w(t)‖1 .

If this inequality is violated for some vector w(t) = xb̂(t) + w(t+1), then it will
also fail for all vectors of the form (x + r)b̂(t) + w(t+1) with r ∈ Z and xr > 0.

Summarizing, a high level description of the algorithm to solve (1) is as
follows.

Lattice point enumeration

Given the generator matrix (6) of the lattice L ⊂ R
m+n+1 of rank n + 1 of

problem (1) all nonzero vectors v ∈ L such that ‖v‖∞ ≤ rmax are determined.

– Compute an LLL/BKZ-reduced basis b(0),b(1), . . . ,b(n) of the lattice L.
– Delete the unnecessary columns and rows of the generator matrix. The

remaining basis b(0),b(1), . . . ,b(n−m) ⊂ R
n+1 has rank n − m + 1.

– Compute the Gram–Schmidt vectors b̂(0), b̂(1), . . . , b̂(n−m) together with the
Gram–Schmidt coefficients μij .

– Set R := (n + 1) · r2max.
– The recursive backtracking algorithm enum() is initiated with the call of

enum(n − m,0).

(1) function enum(t, w′)
(2) begin

(3) onedirection := false
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(4) yt :=
∑n−m

i=t+1 uiμit

(5) ut := �−yt�
(6) while true
(7) w := (

∑n−m
i=t uiμit)b̂(t) + w′

(8) if ‖w‖22 > R then return /* step back */
(9) if t > 0 then

(10) if ‖w‖22 > rmax · ‖w‖1 then

(11) if onedirection then return /* step back */
(12) else

(13) next(ut)
(14) onedirection := true
(15) goto line (7)
(16) end if

(17) else

(18) enum(t − 1, w) /* step forward */
(19) else /* t = 0 → solution */
(20) output solution w
(21) next(ut)
(22) end while

(23) end

The procedure next() in lines (13) and (21) determines the next possible integer
value of the variable ut. Initially, when entering a new level t, in line (5) ut is set to
be the closest integer value of −yt := −∑n−m

i=t+1 uiμit, say u1
t . The next value u2

t of
ut is the second closest integer to −yt followed by u3

t and so forth. In other words,
the values of ut alternate with increasing distance around −yt.

If the condition in line (10) is true then we do one more regular call of the
procedure next() in line (13), i.e. ut is set to be the next closest integer to −yt. In
Fig. 2 this happens while u4

t is determined. After that, the enumeration proceeds
only in this remaining direction, see the computation of u5

t in Fig. 2. Finally, the
second time when the condition in line (10) is true, the algorithm steps back and
increases the enumeration level, see line (11).

6 Limited Discrepancy Search

For some problems of the form (1) it might be not interesting or may be impossi-
ble to enumerate all solutions. But nevertheless one is interested to find at least
one solution as quick as possible. It turns out that in this situation, the enumer-
ation algorithm in the previous section might not be optimal. In the following
we will try to motivate a different enumeration algorithm.

The enumeration algorithm in Sect. 5 performs depth first search. In particu-
lar, when entering enumeration level t, ut is chosen for w := (

∑n−m
i=t uiμit)b̂(t)+

w′ in line (7) such that ‖w‖2 is minimal among all choices for ut. In other words,
the depth first search is organized using the heuristic that choosing in each level



Search for Combinatorial Objects Using Lattice Algorithms – Revisited 29

Fig. 2. Enumeration in level t and pruning after u3
t

the vector w such that ‖w‖2 is minimal will most probably lead to a solution
vector. However, it may be that this choice for ut in one of the first levels might
lead to no solution, but nevertheless the algorithm will enumerate a huge search
tree below ut.

This is a general problem of depth first search algorithm. In 1995, Harvey
and Ginsberg [25] described a simple, novel enumeration scheme called limited
discrepancy search which aims to overcome this weakness of depth first search.

Assume that a backtrack algorithm has to examine a search tree. Each level
corresponds to a variable and the algorithm has to assign a value to that variable,
followed by a test if this assignment might lead to a solution. If yes, we can
proceed to the next level, otherwise we have to assign a different value. If we
have tested all values, we have to step back to the previous level. If values could
be assigned to all variables, a solution has been found.

We assume that variable ordering is fixed and in each level of the backtrack-
ing there exists a heuristic which determines the order in which the values are
assigned to the variable corresponding to that enumeration level. A discrepancy
is defined as an deviation from the heuristic.

Harvey and Ginsberg suggest to enumerate the search tree in increasing num-
ber of discrepancies. In the first step, only the optimal choice in each level of
enumeration in Sect. 5 is assigned to the variables until there is a contradiction
or a solution is found. In the next step, all possible paths in the search tree with
exactly one deviation (i.e. discrepancy) from the heuristic are examined. After
that, all paths in the search tree with two deviations from the optimal choice
are enumerated, and so forth.

In [25], the algorithm is given for binary search trees. In [30], the algorithm
is described for general search trees, also a stop condition is given which allows
to use the algorithm for exhaustive enumeration. The latter is mostly interesting
to show the non-existence of solutions. There are other variants, see e.g. [59] for
an overview.

Limited discrepancy search requires higher book keeping efforts than depth
first search. Therefore, enumerating the whole search tree with limited discrep-
ancy search will always be slower than with depth first search. But first tests with
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the lattice point enumeration algorithm and its value order heuristic in Sect. 5
show sometimes dramatic improvements for finding the first solution in hard
combinatorial search problems mentioned in the introduction. A more detailed
comparison of the two enumeration algorithms is in preparation.

It may be remarked that limited discrepancy search can also be useful for
the enumeration algorithm in blockwise Korkine–Zolotarev reduction.
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Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 229–242. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-69346-7 18

2. Betten, A., Kerber, A., Laue, R., Wassermann, A.: Simple 8-designs with small
parameters. Des. Codes Crypt. 15, 5–27 (1998)

3. Betten, A., Kerber, A., Kohnert, A., Laue, R., Wassermann, A.: The discovery of
simple 7-designs with automorphism group PΓL(2, 32). In: Cohen, G., Giusti, M.,
Mora, T. (eds.) AAECC 1995. LNCS, vol. 948, pp. 131–145. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60114-7 10

4. Betten, A., Klin, M., Laue, R., Wassermann, A.: Graphical t-designs. Discrete
Math. 197(198), 111–121 (1999)

5. Betten, A., Laue, R., Wassermann, A.: New t-designs and large sets of t-designs.
Discrete Math. 197(198), 83–109 (1999)

6. Bouyukliev, I., Bouyuklieva, S., Kurz, S.: Computer classification of linear codes.
CoRR abs/2002.07826 (2020). https://arxiv.org/abs/2002.07826

7. Braun, M., Kohnert, A., Wassermann, A.: Construction of (n, r)-arcs in PG(2, q).
Innovations Incidence Geom. 1, 133–141 (2005)

8. Braun, M., Kerber, A., Laue, R.: Systematic construction of q-analogs of t-(v, k, λ)-
designs. Des. Codes Crypt. 34(1), 55–70 (2005). https://doi.org/10.1007/s10623-
003-4194-z

9. Braun, M., Kiermaier, M., Kohnert, A., Laue, R.: Large sets of subspace designs.
J. Comb. Theory Ser. A 147, 155–185 (2017). https://doi.org/10.1016/j.jcta.2016.
11.004

10. Braun, M., Kiermaier, M., Wassermann, A.: Computational methods in subspace
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(eds.) Network Coding and Subspace Designs. SCT, pp. 213–244. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-70293-3 9
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Abstract. In the k red (blue) domination problem for a bipartite graph
G = (X,Y,E), we seek a subset D ⊆ X (respectively D ⊆ Y ) of car-
dinality at most k that dominates vertices of Y (respectively X). The
decision version of this problem is NP-complete for perfect elimination
bipartite graphs but solvable in polynomial time for chordal bipartite
graphs. We present a linear time algorithm to solve the minimum car-
dinality red domination problem for convex bipartite graphs. The algo-
rithm presented is faster and simpler than that in the literature. Due
to the asymmetry in convex bipartite graphs, the algorithm does not
extend to k blue domination. We present a linear time algorithm to solve
the minimum cardinality blue domination problem for convex bipartite
graphs.

Keywords: Convex bipartite graph · Red dominating set · Blue
dominating set

1 Introduction

A k red (blue) dominating set in a bipartite graph G = (X,Y,E) is a subset
D ⊆ X (respectively D ⊆ Y ) of cardinality at most k that dominates vertices of
Y (respectively X). The name originates from the view of a graph as having par-
titions Red and Blue (or X and Y as in this paper). The problem is NP-complete
for perfect elimination bipartite graphs [1], but solvable in polynomial time for
chordal bipartite graphs [2] which are a proper subset of perfect elimination
bipartite graphs. In [2], the authors present an O(n · min(|E| · log n, n2)) delay
enumeration algorithm for minimum cardinality red dominating sets in chordal
bipartite graphs. In [1], a linear space linear delay algorithm is presented for enu-
merating minimum cardinality red dominating sets in convex bipartite graphs,
a proper subset of chordal bipartite graphs. The first output of that algorithm
needs O(n + |E|) time. Because convex bipartite graphs are not symmetric, the
algorithms in [1] do not extend to blue domination. The aim of this paper is to
further study the red and blue domination problem for convex bipartite graphs.
We present linear time algorithms for both blue and red domination in con-
vex bipartite graphs. The algorithm presented for red domination is faster and
simpler than that presented in [1].
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To the best of the author’s knowledge red and blue domination has not been
studied for convex bipartite graphs, apart from the work in [1] and in [2]. The
problem has been studied for general graphs in [3] where the authors develop
an exact exponential time algorithm for connected red dominating set. Other
domination problems have been studied for convex bipartite graphs and classes
of bipartite graphs that include them. In [4], the authors show that various
domination problems are solvable in polynomial time for convex bipartite graphs.
A linear time algorithm for paired domination in convex bipartite graphs is
developed in [5]. Minimum paired domination is studied for chordal bipartite
and perfect elimination bipartite graphs in [6]. Conditions for the tractability
of independent domination for tree convex bipartite graphs are presented in [7].
The minimum dominating set problem for generalizations of convex bipartite
graphs is studied in [8].

The next section contains definitions that will be used throughout the paper,
and preliminary propositions that will be needed by all algorithms. Other defi-
nitions will be introduced as needed. Following that, we present the algorithm
for computing a minimum cardinality blue dominating set in convex bipartite
graphs. We then present the algorithm for computing a minimum cardinality red
dominating set in convex bipartite graphs. We then conclude the paper.

2 Definitions and Preliminaries

A graph G = (V,E) in this paper is finite, connected, undirected, with no loops
and no parallel edges. We will use n to denote |V |. The neighbourhood set of
vertex v is N(v) = {u : uv ∈ E}. The degree of v is deg(v) = |N(v)|. The graph
induced by a subset D ⊆ V is denoted by G[D]. G[D] (or D) is an independent
set if it induces a graph that has no edges. A set of vertices D ⊆ V dominates
another set U ⊆ V if ∀u ∈ U , there is a v ∈ D such that u = v or uv ∈ E. When
U is a single vertex u, we say that D dominates u. A set D ⊆ V is dominating
if it dominates V . A path of length k, or a k-path, in G is a sequence of distinct
vertices (u1, . . . , uk+1) such that ujuj+1 ∈ E, ∀j = 1, . . . , k. A connected graph is
one that has a path between each pair in its vertex set. A cycle of length k in G is
a sequence of distinct vertices (u1, . . . , uk) such that ujuj+1 ∈ E ∀j = 1, . . . , k−1
and u1uk ∈ E. A chord in a cycle is an edge joining non-consecutive vertices.

A bipartite graph G = (X,Y,E) is one whose vertex set X ∪ Y can be parti-
tioned into two independent sets X and Y . We will denote |X| by nX and |Y |
by nY . A complete bipartite graph contains all possible edges between its two
partitions. An edge xy is bisimplicial if N(x)∪N(y) induces a complete bipartite
graph. Let σ = (ei, . . . , ep), where ei = xiyi, be an ordering of pairwise disjoint
edges of G, Sj = {x1, x2, . . . , xj} ∪ {y1, y2, . . . , yj}, and S0 = ∅. σ is said to be
a perfect edge elimination scheme if ej+1 is bisimplicial in G[(X ∪ Y ) \ Sj ], for
j = 0, . . . , p−1, and G[(X ∪Y )\Sp] has no edges. A bipartite graph that admits
a perfect edge elimination scheme is called a perfect elimination bipartite graph.
A bipartite graph G = (X,Y,E) is said to be chordal bipartite if each cycle of
length greater than 4 has a chord.
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A bipartite graph G = (X,Y,E) is said to be Y-convex if vertices of Y can
be ordered so that for each x ∈ X neighbours of x appear consecutively in Y . We
will simply refer to that graph as convex bipartite. Such an ordering is called a
convex ordering and can be computed in linear time [9]. Figure 1 shows a convex
bipartite graph. Convex bipartite graphs are a proper subset of chordal bipartite
graphs [10] which in turn are properly contained in perfect elimination bipartite
graphs [11].

A convex bipartite graph G = (X,Y,E) is proper if there is no vertex pair
x, x′ ∈ X where N(x) ⊆ N(x′), i.e., its X vertices have no neighbourhood
containment.

Let the neighbourhood set of some vertex x ∈ X in the convex bipartite graph
G = (X,Y,E) be N(x) = {ya, ya+1, . . . , ya+b}, ya < . . . < ya+b. Then left(x) =
ya is the leftmost neighbour of x, and right(x) = ya+b is the rightmost neighbour
of x. The neighbourhood array N stores the two values left(x) and right(x) for
each vertex x ∈ X, i.e., N [i] = (left(xi), right(xi)). The next proposition shows
that we can populate N in linear time. We will use N as the data structure to
represent a convex bipartite graph in our algorithms.

Proposition 1. Let G = (X,Y,E) be a convex bipartite graph whose vertices
are in convex ordering. Entries in the array N can be calculated in O(n + |E|)
time.

Proof. A simple procedure that starts at y = y1, moves sequentially in Y , and
assigns the smallest value to left(x) for all x ∈ N(y) can be used to calculate
left(x). A similar procedure can be used for right(x). Each such procedure needs
O(nX) time to initialize the values of left(x) or right(x), and O(|E|) time to go
through neighbours of vertices in Y . ��

A lexicographic convex ordering (lex-convex) is a convex ordering for the
vertices of G, and for xi, xj , i < j if left(xi) < left(xj), or left(xi) = left(xj) and
right(xi) < right(xj). Cases where left(xi) = left(xj) and right(xi) = right(xj),
i.e., N(xi) = N(xj), can be numbered sequentially without disturbing other
vertices’ order. The ordering of the vertices in the graph in Fig. 1 is lex-convex.
The proposition below shows that such an ordering can be computed in linear
time. It is worth noting that lex-convex ordering has been used in other papers
such as [5]. We assume that vertices are in lex-convex ordering for all convex
bipartite graphs in this paper.

Proposition 2. Let G = (X,Y,E) be a convex bipartite graph whose vertices
are in convex ordering. Given the array N , a lex-convex ordering of the vertices
of X can be calculated in O(n) time.

Proof. We may assign the label left(x) right(x) to each vertex x ∈ X. We may
then use the set of those labels as keys for radix sort. The first pass sorts vertices
based on right, and the second pass sorts vertices based on left. Since there are
at most n values for each of right and left, the keys to be sorted can be regarded
as base-n integers that are 2 digits long. Therefore the sorting may be completed
in O(n) time. ��
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The reader is referred to [12] and [11] for any missing graph theory definitions
or notations.

We formally define the k BLUE DOMINATION and the k RED DOMINA-
TION decision problems and the minimum cardinality versions.

Definition 1. k BLUE DOMINATION: Given a bipartite graph G = (X,Y,E)
and integer k, 1 ≤ k ≤ |Y |, is there a subset D ⊆ Y of cardinality at most k that
dominates X, i.e., ∀x ∈ X does there exist some y ∈ D, s.t. xy ∈ E?

Definition 2. MCBD (Minimum Cardinality Blue Domination): Given a bipar-
tite graph G = (X,Y,E), find a minimum cardinality blue dominating set in G.

The problems k RED DOMINATION and MCRD are analogously defined.

x1 x7x2 x3 x4 x6

y1 y2 y3 y7 y8 y9 y11y4

x8

y5 y6 y10

x5 x9

Fig. 1. A convex bipartite graph.

3 MCBD for Convex Bipartite Graphs

In this section we present a linear time algorithm to compute an MCBD set in
a convex bipartite graph. The next two lemmas present an algorithmic property
of particular MCBD sets that we will use in the algorithm.

Lemma 1. Let G = (X,Y,E) be a convex bipartite graph. There is an MCBD
set for G, D = {v1, . . . , vk} ⊆ Y , v1 < v2 < . . . < vk, such that for all i,
1 ≤ i ≤ k, vi = right(x), for some x ∈ X.

Proof. Let G = (X,Y,E) be a convex bipartite graph and D be an MCBD
set for G, D = {v1, . . . , vk} ⊆ Y , v1 < v2 < · · · < vk. Suppose for some
va ∈ D there is no x ∈ X such that va = right(x). Let ua ∈ N(va) be the
vertex with the smallest right among all neighbours of va, i.e., va < right(ua) ≤
right(uj), for all uj ∈ N(va). Since left(uj) ≤ va for all uj ∈ N(va), therefore
left(uj) < right(ua) ≤ right(uj) for all uj ∈ N(va), and right(ua) is adjacent
to all neighbours of va and may replace va in D. This can be repeated for all
vertices in D that are not the right of some vertex in X to generate an MCBD
that satisfies the lemma. ��
Lemma 2. Let G = (X,Y,E) be a convex bipartite graph and D =
{v1, . . . , vk} ⊆ Y , v1 < v2 < . . . < vk, be an MCBD set for G that satisfies
Lemma 1, i.e., for all vi, vi = right(x), for some x ∈ X. Let ui = x : vi =
right(x), 1 ≤ i ≤ k. Then there is such an MCBD where u1 < u2 < . . . < uk.
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Proof. Let G = (X,Y,E) be a convex bipartite graph and D be an MCBD set
for G that satisfies Lemma 1, D = {v1, . . . , vk} ⊆ Y , v1 < v2 < . . . < vk.
Suppose for some pair va, va+1, ua > ua+1, ui < ui+1,∀i, 1 ≤ i < a. Let D
have the largest such index a among all MCBD sets that satisfy Lemma 1.
Then by the lex-convex ordering left(ua+1) < left(ua), and by our supposition
right(ua) = va < right(ua+1) = va+1 . Let N(va+1) = {w1, . . . , ua+1, . . . , wb}.
va is adjacent to all wi ≤ ua because right(w) ≥ va+1 > va for all w ∈ N(va+1),
and left(w) ≤ left(ua) for all w ∈ N(va+1), w ≤ ua. Among all vertices w ∈
N(va+1), w > ua, let w′ be the vertex with the smallest right, i.e., w′ ∈ N(va+1),
w′ > ua, right(w′) ≤ right(w) for all w ∈ N(va+1), w > ua. right(w′) is adjacent
to all neighbours of va+1, w, w > ua and may replace va+1 in D. This will
result in an MCBD set that satisfies Lemma 1 and that has a longer sequence
of vertices ui where u1 < u2 < . . . < ua < w′ < . . . < uk, a contradiction to our
choice of D. ��
Definition 3. Proper MCBD set: D = {v1, . . . , vk}, v1 < v1 < . . . < vk is
a proper MCBD set for the bipartite convex graph G = (X,Y,E) if D is an
MCBD set for G, vi = right(x) for some x ∈ X, and if ui = x : vi = right(x)
then ui < uj ,∀1 ≤ i < j ≤ k.

The lemmas above say that we can choose the innermost right in the MCBD
set and we can traverse vertices of X sequentially. We apply this result in the
algorithm we present next. The algorithm computes a proper MCBD set for a
convex bipartite graph in linear time. We assume that |X| > 1.

Applying the algorithm to the graph in Fig. 1 results in the MCBD set
{y2, y6, y8, y11}.

Theorem 1. Algorithm 1 outputs a proper MCBD set and runs in O(nX) time.

Proof. We first prove the correctness of the algorithm. Let D = {v1, . . . , vk}, v1 <
v2 < . . . < vk be the output of the algorithm. We start by showing that the
following observations about the output of the algorithm are true.

(a) Each vi = right(x) for some x ∈ X: To see that we observe that line 15 is
the only line where vertices are added to D.

(b) Let ui = x : vi = right(x), 1 ≤ i ≤ k. u1 < u2 < . . . < uk: This is clear
because xp goes in non-decreasing order from one iteration of the outer loop
to the next.

Define ui as in observation (b). Define wi to equal the value of xp set in line 16
immediately after vi is added to the set D, 1 ≤ i ≤ k. Let w0 = x1 and
assume it is set to that value before the first iteration of the outer loop. Let
Di = {v1, . . . , vi}. We use induction to prove that Di is an MCBD set in the
subgraph Hi induced by {x : x < wi} ∪ {y : y < left(wi)}. Then we show that
Hk = G thereby proving the correctness of the algorithm. We start with the
following claim.

Claim. vi is adjacent to all vertices {x : wi−1 ≤ x < wi}, 1 ≤ i ≤ k.
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Algorithm 1. MCBD set for convex bipartite graph.
Input: The neighbourhood array N for convex bipartite graph G = (X,Y,E)
Output: MCBD set D for G

1: D ← ∅;
2: xp ← x1;
3: x ← xp + 1;
4: while x ≤ xnX do
5: // the next loop skips vertices x dominated by right(xp) and whose neighbour-

hood set is not contained in N(xp)
6: while x ≤ xnX and left(xp) ≤ left(x) ≤ right(xp) < right(x) do
7: x ← x + 1;
8: end while
9: // the next loop updates xp so that it is the largest indexed vertex that has the

innermost right, i.e., right(xp) ≤ right(x) for N(xp) ⊆ N(x)
10: while x ≤ xnX and left(xp) ≤ left(x) ≤ right(x) ≤ right(xp) do
11: xp ← x;
12: x ← xp + 1;
13: end while

// check if we have reached an x that is not dominated by right(xp) or the end
of the graph

14: if left(x) > right(xp) or x > xnX then
15: D ← D ∪ {right(xp)};
16: xp ← x;
17: x ← xp + 1;
18: end if
19: end while

Proof. xp = wi−1 at the start of the loop in line 4 immediately after wi−1 was
set in the if statement or when i − 1 = 0. The value of xp does not change
until the loop in line 10. Vertices in {x : wi−1 ≤ x < wi} are the vertices
skipped in both inner loops from when wi−1 is set and until the condition of
the if statement becomes true. ui is the value of xp used in line 15. For vertices
x skipped in the loop in line 6, either x < ui (i.e., x is skipped then xp is
updated in the loop in line 10) and left(x) ≤ left(ui) ≤ right(ui) ≤ right(x),
or x > ui (i.e., x is skipped and xp is not updated in the loop in line 10) and
left(ui) ≤ left(x) ≤ right(ui) < right(x). In either case, right(ui) = vi is adjacent
to each skipped vertex x in that loop. Each vertex x skipped in the loop in line 10,
satisfies N(ui) ⊆ N(x), x < ui. Therefore left(x) ≤ right(ui) ≤ right(x) for all
those vertices, and right(ui) = vi is adjacent to all those vertices as well. This
proves the claim. ��
By the above claim, v1 is adjacent to all x, where w0 = x1 ≤ x < w1. D1 = {v1}
is a blue dominating set in H1 and it has minimum cardinality. Therefore, the
hypothesis is true for i = 1.

Assume the hypothesis is true for all i < a ≤ 1. Da = Da−1 ∪ {va}. Da−1 is
an MCBD set in Ha−1 by the induction hypothesis. By the above claim, va is
adjacent to all x, wa−1 ≤ x < wa. Therefore, Da is a blue dominating set in Ha.
We must now show that it has minimum cardinality. Since left(wa−1) > va−1 =
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right(ua−1) by the condition of the if statement, then wa−1 has no neighbours in
Da−1. Since as well Da−1 is an MCBD set in Ha−1 by the induction hypothesis,
therefore an MCBD set in Ha must have cardinality ≥ a. Therefore, Da is an
MCBD set in Ha.

By the principle of mathematical induction, the output of the algorithm
D = Dk is an MCBD set in Hk. D is a proper MCBD set by observations (a)
and (b).

To see that Hk = G, we note that the last iteration of the outer while loop
will take place when the if statement condition becomes true because x > xnX

.
Thus, Hk = G and Dk = D is a proper MCBD set in G.

To prove the time cost, we note that the operations inside the loops take
constant time, and the order of the inner loops ensures that no vertex in X is
visited more than once. Hence the number of iterations of the outer while loop
is O(nX). ��

4 MCRD for Convex Bipartite Graphs

In this section we present a linear time algorithm to compute an MCRD set.
We show that it suffices to consider a particular maximal subgraph of a convex
bipartite graph to obtain an MCRD set. The following lemma was proved in [1].
We include the proof here for completeness.

Lemma 3. Let D = {u1, u2, . . . , uk}, u1 < u2 < . . . < uk, be an MCRD set of
cardinality k for the convex bipartite graph G = (X,Y,E). The following is true.

• For distinct vertices u, v ∈ D, it cannot be the case that left(u) ≤ left(v) ≤
right(v) ≤ right(u), i.e., N(v) �⊆ N(u),∀u, v ∈ D, u �= v.

• For all consecutive pairs u, v, u < v in D, left(u) < left(v) ≤ right(u) + 1 ≤
right(v), i.e., N(u) ∪ N(v) consists of consecutive vertices in Y .

• For each vertex u ∈ D, D cannot contain more than one vertex v > u such
that left(u) < left(v) ≤ right(u) + 1 ≤ right(v).

Proof. Let D be an MCRD set of cardinality k for the convex bipartite graph
G = (X,Y,E). N(v) ⊆ N(u) for some pair u, v ∈ D, i.e. left(u) ≤ left(v) ≤
right(v) ≤ right(u), implies D − {v} is a red dominating set of cardinality k − 1,
which contradicts the minimality of D.

Note that this implies that for all vertices u, v ∈ D, u �= v, left(u) �= left(v)
and right(u) �= right(v).

The union of the neighbourhood sets, N(u)∪N(v), of two consecutive vertices
u, v, u < v in a red dominating set in a convex bipartite graph whose vertices are
in lex-convex ordering must consist of consecutive vertices in Y ,i.e., right(u) +
1 ∈ N(v), for otherwise some vertices in Y would not be dominated. Therefore
left(u) < left(v) ≤ right(u) + 1 ≤ right(v) by the above paragraph.

Suppose there are vertices u < v < w ∈ D such that left(u) < left(v) ≤
right(u) + 1 ≤ right(v) and left(u) < left(w) ≤ right(u) + 1 ≤ right(w). Then
N(u) ∪ N(v) ⊆ N(u) ∪ N(w) if right(v) < right(w), and N(u) ∪ N(w) ⊆ N(u) ∪
N(v) otherwise. In either case one of v or w may be removed from D to produce
a k − 1 red dominating set, contradicting the minimality of D. ��
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Definition 4. A maximal proper subgraph: H(XH , Y, EH) is a maximal proper
subgraph of the convex bipartite graph G = (X,Y,E) if H is a proper convex
graph, H = G[XH ], and for all x ∈ X − XH ,∃x′ ∈ XH , s.t.N(x) ⊆ N(x′).

If we remove {x1, x5, x6, x8, x9} from the vertex set of the graph in Fig. 1, we
obtain its maximal proper subgraph. We can obtain such a subgraph in linear
time as shown next.

Lemma 4. Given an arbitrary convex bipartite graph G = (X,Y,E), a maximal
proper subgraph of G can be obtained in O(nX) time.

Proof. We present Algorithm 2 that takes as input the neighbourhood array N
for an arbitrary convex bipartite graph G = (X,Y,E) whose vertices are in lex-
convex ordering and outputs a subset Xp of X that induces a maximal proper
subgraph of G. An invariant of the algorithm is that the set Xp contains only
vertices that belong to a maximal proper subgraph of G. The value of i increases
from one iteration to the next which ensures that each vertex is visited once.
The operations inside each loop take constant time. Therefore, the algorithm
runs in O(nX) time. ��

Algorithm 2. Maximal Proper Subgraph.
Input: The neighbourhood array N for the convex bipartite graph G = (X,Y,E)

whose vertices are in lex-convex ordering
Output: Xp ⊆ X, Xp induces a maximal proper convex bipartite subgraph of

G

1: Xp ← ∅;
2: i ← 1;
3: j ← 2;
4: while xi ≤ xnX do
5: // the next loop finds the last vertex xi adjacent to left(xi)
6: // each skipped vertex xi has N(xi) ⊆ N(xj)
7: while xj ≤ xnX and left(xj) = left(xi) and right(xj) ≥ right(xi) do
8: i ← j;
9: j ← j + 1;

10: end while
11: Xp ← Xp ∪ {xi};

// the next loop skips vertices xj whose N(xj) is contained in N(xi)
12: while xj ≤ xnX and right(xj) ≤ right(xi) do
13: j ← j + 1;
14: end while
15: // at this point left(xj) > left(xi) and right(xj) > right(xi), i.e., N(xi) �⊆ N(xj)

and N(xj) �⊆ N(xi)
16: i ← j;
17: end while
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Corollary 1. Let G = (X,Y,E) be an arbitrary convex bipartite graph and D
be a subset of X. D is an MCRD set in G if and only if D is an MCRD in its
maximal proper subgraph.

Proof. The proof follows directly from Lemma 3 and the definition of a maximal
proper subgraph. ��
Proposition 3. Let D = {u1, u2, . . . , uk}, u1 < u2 < . . . < uk be a k red
dominating set for the proper convex bipartite graph G = (X,Y,E), where X =
{x1, x2, . . . , xnX

}. Both x1 and xnX
are in D, i.e., u1 = x1 and uk = xnX

.

Proof. Because G is proper and by the lex-convex ordering, x1 is the only vertex
in X adjacent to y1, and xnX

is the only vertex in X adjacent to ynY
. Therefore

both x1 and xnX
must be in any red dominating set. ��

Corollary 1 allows us to focus on a maximal proper subgraph of an arbitrary
convex bipartite graph. This will be done in a preprocessing step that takes
linear time as was shown in Lemma 4. We will next see that there is an MCRD
set whose vertices are the largest indexed neighbour of vertices in Y .

Definition 5. nR(y): The neighbour of y, y ∈ Y with the most right-reach nR(y)
is defined as nR(y) = xj : xj ∈ N(y), right(xj) ≥ right(xj′) ∀xj′ ∈ N(y).

Proposition 4. If G = (X,Y,E) is a proper convex bipartite graph then
nR(y) = xj : xj ≥ xj′ ,∀xj , xj′ ∈ N(y), i.e., it is the largest-indexed vertex
among all neighbours of y.

Proof. Suppose not, let nR(y) = xj , such that ∃xj′ ∈ N(y), xj′ > xj . By the
definition of nR(y), right(xj) ≥ right(xj′). By the lex-convex ordering, left(xj′) >
left(xj) or left(xj′) = left(xj) and right(xj′) ≥ right(xj). The first case implies
N(xj′) ⊂ N(xj). The second case implies N(xj) = N(xj′). Both cases contradict
that G is proper. ��

To achieve linear time for the algorithm that computes MCRD, we calculate
nR(y) for all y ∈ Y beforehand.

Lemma 5. Given the neighbourhood array N of a proper convex bipartite graph
G = (X,Y,E), nR(y) for all y ∈ Y can be calculated in O(nY ) time.

Proof. We present Algorithm 3 to calculate nR(y) for all y ∈ Y given the array
N of a proper convex bipartite graph G = (X,Y,E).
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Algorithm 3. nR(y) for all y ∈ Y for the proper convex bipartite graph G =
(X,Y,E).

Input: N for proper convex bipartite graph G = (X,Y,E)
Output: nR(y) for all y ∈ Y

1: right ← ynY ;
2: i ← nX ;
3: while right ≥ y1 do
4: // note that because G is connected and proper, right is adjacent to xi

5: for all y such that left(xi) ≤ y ≤ right do
6: nR(y) ← xi;
7: end for
8: right ← left(xi) − 1;
9: i ← i − 1;

10: end while

The loop in line 3 stops once all vertices of Y are assigned a value for nR

visiting each exactly once. Therefore Algorithm 3 calculates nR(y) for all y ∈ Y
in O(nY ) time. ��

The algorithm that computes an MCRD set for a proper convex bipartite
graph G = (X,Y,E) follows. It starts with an empty set D. In each iteration of
the loop, it adds the vertex x that is adjacent to vertices of Y not dominated
thus far and that has the most right-reach, i.e., D will consist of select vertices
nR(y). Applying the algorithm to the maximal proper subgraph of the graph in
Fig. 1 results in the set D = {x2, x4, x7}.

Algorithm 4. MCRD set for proper convex bipartite graph.
Input: The neighbourhood array N for the convex bipartite graph G = (X,Y,E),

nR(y) for all y ∈ Y
Output: MCRD set D for G

1: D ← ∅;
2: y ← y1;
3: while y ≤ ynY do
4: x ← nR(y);
5: D ← D ∪ {x};
6: y ← right(x) + 1;// y is the first thus-far un-dominated vertex in Y
7: end while

Theorem 2. Algorithm 4 correctly computes an MCRD set for a proper convex
bipartite graph G = (X,Y,E) in O(nY ) time.

Proof. Let G = (X,Y,E) be a proper convex bipartite graph and D be the
output of Algorithm 4. It is easy to see that D is a red dominating set since,
by Lemma 3, the loop does not skip any un-dominated vertices in Y . We will
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prove that the algorithm computes a minimum cardinality red dominating set
by contradiction. Suppose to the contrary that there is a smaller cardinality red
dominating set for G, T , |T | = p < k = |D|. We assume that elements in T are
in lex-convex ordering. By Proposition 3, T = {x1, t1, . . . , tp−1, xn}. Note that
x1 will be the first vertex added by the algorithm to D because G is proper.
Let D = {x1, d1, . . . , dk−1, dk}. Suppose ta, a > 1, is the first vertex in T that
is not in D, i.e., dj = tj , 1 ≤ j < a. Assume T is chosen so that no other
MCRD set agrees more with D on the number of vertices after x1, i.e., a is
the largest such index. Let yb be the last vertex in Y to be dominated by the
vertices {x1, . . . , ta−1} = {x1, . . . , da−1}. By our choice of da in the algorithm,
da = nR(yb+1). Therefore {da, ta} ⊆ N(yb+1) and right(da) ≥ right(ta). This
implies that da is adjacent to all neighbours of ta that are larger than or equal
to yb, and da may replace ta in T . This will result in an MCRD set T −{ta}∪{da}
that agrees more with D, which contradicts our choice of T .

Since the loop goes nY iterations, the algorithm runs in O(nY ) time. ��
Corollary 2. MCRD is solvable in O(max(nX , nY )) time for an arbitrary con-
vex bipartite graph G = (X,Y,E).

Proof. To prove the time cost we notice that obtaining right(x) for any x ∈ X,
for the purpose of Algorithm 4, can be done in constant time given the array N .
The corollary then follows from Lemma 5, Lemma 4, and Theorem 2. ��

5 Conclusion

We have presented an algorithm to find a minimum cardinality red dominating
set in convex bipartite graphs in O(n) time. This algorithm is faster than the
known algorithm for this problem. Because convex graphs are not symmetric,
the algorithm cannot be used to find a minimum cardinality blue dominating set.
We have presented an algorithm to find a minimum cardinality blue dominating
set in convex bipartite graphs in O(n) time. The enumeration of minimum car-
dinality red dominating sets in convex bipartite graphs has been studied in the
literature and it has been shown that it can be done in linear delay and linear
space. It would be interesting to study the enumeration of minimum cardinality
blue dominating sets in convex bipartite graphs and find if similar efficiency can
be achieved. One of the challenges in this case is proving properties that apply to
all minimum cardinality blue dominating sets, as opposed to proving properties
for particular minimum cardinality blue dominating sets.
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Abstract. The class of quasi-chain graphs is an extension of the well-
studied class of chain graphs. The latter class enjoys many nice and
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chain graphs is substantially more complex. In particular, this class is
not well-quasi-ordered by induced subgraphs, and the clique-width is not
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establishing a bijection between the class of all permutations and a sub-
class of quasi-chain graphs. This implies, in particular, that the induced
subgraph isomorphism problem is NP-complete for quasi-chain graphs.
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graphs that implies an implicit representation for graphs in this class
and efficient solutions for some algorithmic problems that are generally
intractable.
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as difference graphs [8] or half-graphs [5]. In model theory, half-graphs appear
as an instance of the order property [17]. The class of chain graphs is closely
related to one more well-studied class of graphs, known as threshold graphs, and
together they share many nice and important properties. In particular,

– chain graphs have bounded clique-width (and even linear clique-width), which
implies polynomial-time solutions for a variety of algorithmic problems that
are generally NP-hard;

– chain graphs are well- (and even better-) quasi-ordered under induced sub-
graphs. This is because another important parameter, graph lettericity, is
bounded for chain graphs [22];

– chain graphs admit an implicit representation, which in turn implies a small
induced-universal graph for the class. More specifically, there is a chain graph
with 2n vertices containing all n-vertex chain graphs as induced subgraphs
[14].

In the terminology of forbidden induced subgraphs, the class of chain graphs
is precisely the class of 2P2-free bipartite graphs, i.e., bipartite graphs that do
not contain the disjoint union of two copies of P2 as an induced subgraph (Pn

denotes the chordless path on n vertices).
In the present paper, we study a class of bipartite graphs that forms an exten-

sion of chain graphs defined by relaxing the chain property of the neighbourhoods
in the following way. We say that a linear ordering (a1, . . . , a�) of vertices is good
if for all i < j, the neighbourhood of aj contains at most 1 non-neighbour of
ai. We call a bipartite graph G a quasi-chain graph if the vertices in each part
of its bipartition admit a good ordering. Alternatively, quasi-chain graphs are
bipartite graphs that do not contain an “unbalanced” induced copy of 2P3. To
explain what we mean by this, we observe that 2P3 admits two bipartitions: one
with parts of equal size (balanced) and the other with parts of different sizes
(unbalanced). In the unbalanced bipartition, one of the parts does not admit a
good ordering and hence quasi-chain graphs are free of unbalanced 2P3. On the
other hand, if a bipartite graph G does not contain an unbalanced induced copy
of 2P3, then by ordering the vertices in each part in a non-increasing order of
their degrees we obtain a good ordering, i.e., G is a quasi-chain graph.

The class of quasi-chain graphs is substantially richer and more complex
than the class of chain graphs. In particular, it is not well-quasi-ordered by
induced subgraphs [13] and the clique-width is not bounded in this class [15].
To emphasize the complex nature of this class, in Sect. 2 we establish a bijection
f between the class of all permutations and a subclass of quasi-chain graphs
such that a permutation π contains a permutation ρ as a pattern if and only if
the graph f(π) contains the graph f(ρ) as an induced subgraph. Together with
the NP-completeness of the pattern matching problem for permutations this
implies the NP-completeness of the induced subgraph isomorphism problem
for quasi-chain graphs.

In spite of the more complex structure, the quasi-chain graphs inherit some
attractive properties of chain graphs. To show this, in Sect. 3 we propose a struc-
tural characterisation that describes any quasi-chain graph as the symmetric
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difference of two graphs Z and H, where Z is a chain graph and H is a graph
of vertex degree at most 2. This characterisation allows us to prove that quasi-
chain graphs admit an implicit representation (Sect. 4) and that some algorithmic
problems that are NP-complete for general bipartite graphs admit polynomial-
time solutions when restricted to quasi-chain graphs (Sect. 5).

All graphs in this paper are simple, i.e., undirected, with neither loops nor
multiple edges. The vertex set and the edge set of a graph G are denoted V (G)
and E(G), respectively. The neighbourhood of a vertex v ∈ V (G) is the set of
vertices adjacent to v. We denote the neighbourhood of v in the graph G by
NG(v) and omit the subscript if it is clear from the context. The subgraph of G
induced by a set U ⊆ V (G) is denoted G[U ].

A bipartite graph G = (V,E) given together with a bipartition V = A∪B is
denoted G = (A,B,E). Once such a bipartition has been fixed, we may define the
bipartite complement ˜G = (A,B,E′) of G, in which two vertices a ∈ A and b ∈ B
are adjacent if and only if they are not adjacent in G (that is, E′ = (A×B)−E).

2 Quasi-chain Graphs and Permutations

Given two permutations π = (π(1), . . . , π(n)) and ρ = (ρ(1), . . . , ρ(m)), we will
write π ⊆ ρ to indicate that π is contained in ρ as a pattern, i.e., there is an
order-preserving injection e : {1, 2, . . . , n} → {1, 2, . . . ,m} such that π(i) < π(j)
if and only if ρ(e(i)) < ρ(e(j)) for all 1 ≤ i < j ≤ n. The pattern containment
relation on permutations is the subject of a vast literature, see, e.g., the book
[12] and the references therein. By mapping each permutation to its permutation
graph, we transform the pattern containment relation on permutations into the
induced subgraph relation on graphs. This mapping, however, is not injective,
as it can map different permutations to the same (up to an isomorphism) graph.
In the present section we propose an alternative mapping from permutation
to graphs: we map permutations to quasi-chain graphs, in such a way that two
permutations are comparable if and only if their images are comparable. To make
this mapping injective, we require the quasi-chain graphs to be coloured. That
is, we will assume that every quasi-chain graph is given together with a partition
of its vertex set into an independent set A of white vertices and an independent
set B of black vertices and we will write G ⊆ H to indicate that G is a coloured
induced subgraph of H, i.e., there is an induced subgraph embedding of G into
H that respects the colours. The distinction between coloured and uncoloured
graphs matters, for instance, in the assignment problem.

We denote our mapping from permutations to graphs by f and define it as
follows. If π = (π(1), π(2), . . . , π(n)) is an n-entry permutation, then f(π) is a
bipartite graph with parts A = {a1, a2, . . . , a2n} and B = {b1, b2, . . . , b2n} and
the following edges:

(i) For any 1 ≤ i ≤ j ≤ 2n, we have aibj ∈ E(G).
(ii) For any 1 ≤ i ≤ n, we have an+ibπ(i) ∈ E(G).
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We write Gπ := f(π) and say that Gπ is the quasi-permutation graph of π. Any
graph G isomorphic to Gπ for some π will be called a quasi-permutation graph.
It follows easily from the definition that f is order-preserving, in that π ⊆ ρ
implies f(π) ⊆ f(ρ).

Claim. Any quasi-permutation graph G is a quasi-chain graph.

Proof. We observe that the edges of type (i) define a chain subgraph of G in
which N(aj) ⊆ N(ai) for all 1 ≤ i < j ≤ 2n. The edges of type (ii) form a
matching and therefore in the graph G we have |N(aj) − N(ai)| ≤ 1 for all
1 ≤ i < j ≤ 2n. Similarly, |N(bi) − N(bj)| ≤ 1 for all 1 ≤ i < j ≤ 2n in G. This
shows that A and B have good orderings, and so any quasi-permutation graph
G is a quasi-chain graph. ��
Claim. f is a bijection from the class of all permutations to the (non-hereditary)
class of quasi-permutation graphs.

Proof. f is surjective by the definition of quasi-permutation graphs. Now notice
that in the graph f(π) the degree sequence of vertices in both A and B is
(2, 3, 4, . . . , n + 1, n + 1, n + 2, . . . , 2n). In particular, f(π) uniquely determines
the size of π.

The unique vertex of A with degree 2 is adjacent to vertices b2n and bπ(n)

in part B. Vertex b2n has degree 2n and vertex bπ(n) has degree k, for some
k ≤ n + 1. Inspecting the value of k allows us to determine the value of π(n),
which is k − 1. Similarly, the unique vertex of degree 3 has three neighbours:
b2n, b2n−1 and bπ(n−1), which allows us to determine the value of π(n − 1). In
this way, we see that f(π) uniquely determines π(i) for all 2 ≤ i ≤ n. But two
permutations with the same number of elements cannot disagree in exactly one
entry, hence the graph f(π) uniquely determines the permutation π. Therefore
f is injective. ��
Lemma 1. Let π and ρ be two permutations with n and m entries, respectively,
with n ≤ m and π(1) 	= n. If f(π) ⊆ f(ρ), then π ⊆ ρ.

Proof. Assume f(π) ⊆ f(ρ). We denote the vertices of f(ρ) as A = {a1, . . . , a2m}
and B = {b1, . . . , b2m} and edges aibj if either 1 ≤ i ≤ j ≤ 2m or m+1 ≤ i ≤ 2m
and j = ρ(i − m). Also, we denote the vertices of f(π) as A′ = (a′

1, a
′
2, . . . , a

′
2n),

and B′ = (b′
1, b

′
2, . . . , b

′
2n) with edges a′

ib
′
j if either 1 ≤ i ≤ j ≤ 2n or n + 1 ≤ i ≤

2n and j = π(i − n). The mapping that embeds f(π) into f(ρ) as an induced
subgraph will be denoted by a′

i 
→ ae(i), b′
i 
→ bw(i).

Firstly, observe that all but at most one entry from the set {w(1), . . . , w(n)}
are less than or equal to m. Indeed, the vertices b′

1, b
′
2, . . . , b

′
n have pairwise

incomparable neighbourhoods, and this must also be the case for their images;
however, if i, j > m, the neighbourhoods of bi and bj are comparable. Moreover,
since b′

i+1 has two private neighbours with respect to b′
i for any i ≤ n − 1,

we must have w(i) < w(i + 1) for any i ≤ n − 1, and hence we must have
w(1) < w(2) < . . . < w(n − 1) ≤ m and w(n − 1) < w(n). Similarly, we can
deduce that m+1 ≤ e(n+2) < e(n+3) < . . . < e(2n) with e(n+1) < e(n+2).
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Now, a′
1, a

′
2, . . . , a

′
n−2 are adjacent to two vertices b′

n−2, b
′
n−1 with w(n−2) <

w(n− 1) ≤ m. Therefore, we conclude that {e(1), e(2), . . . , e(n− 2)} must all be
smaller than or equal to m. As a1, a2, . . . , am form a chain graph together with
the vertices in B, in order to have N(ae(i)) � N(ae(j)) for 1 ≤ i < j ≤ n − 2, we
conclude that we must have 1 ≤ e(1) < e(2) < . . . < e(n − 2) ≤ m. To preserve
correct adjacencies between {a′

1, . . . , a
′
n−2} and {b′

1, . . . , b
′
n−1} we must have

e(1) ≤ w(1) < e(2) ≤ w(2) < . . . < e(n − 2) ≤ w(n − 2) < w(n − 1) ≤ m.

Now bw(n−1) is already adjacent to ae(1), ae(2), . . . , ae(n−2), but it has to be adja-
cent to two more vertices, ae(n−1) and ae(n+π−1(n−1)). Clearly, at least one of
e(n + π−1(n − 1)) and e(n − 1) must be at most w(n − 1). Hence there are two
cases: either both e(n+π−1(n− 1)) and e(n− 1) are at most w(n− 1), or one of
them is at most w(n − 1) and the other is at least m + 1, in which case e(n − 1)
is the one that is at most w(n−1), as a′

n−1 has a private neighbour with respect
to a′

n+π−1(n−1). In either case, we must have e(n − 1) ≤ w(n − 1). As a′
n−1 is

non-adjacent to b′
n−2, we must also have w(n − 2) < e(n − 1), implying that

e(1) ≤ w(1) < e(2) ≤ w(2) < . . . < e(n − 2) ≤ w(n − 2) < e(n − 1) ≤ w(n − 1) ≤ m.

By symmetry, we derive that

m + 1 ≤ e(n + 2) ≤ w(n + 2) < e(n + 3) ≤ . . . < e(2n) ≤ w(2n).

We are only left with determining the location of the embeddings of the four
vertices a′

n, b′
n, a′

n+1, b′
n+1. Since π(1) 	= n, we have that a′

n+1 is not connected
to b′

n, but connected to b′
π(1) (with π(1) < n). It follows that e(n + 1) ≥ m + 1.

Clearly, for a′
n+1 to have two private neighbours with respect to a′

n+2 we must
also have e(n + 1) < e(n + 2). The two private neighbours of a′

n+1 are b′
π(1) and

b′
n+1; since ae(n+1) only has one neighbour bi with i < e(n+1) (namely bπ(1)), the

embedding of b′
n+1 must satisfy e(n+1) ≤ w(n+1) < e(n+2). Now b′

n, which is
not adjacent to a′

n+1 but adjacent to a′
n+π−1(n) (note e(n+π−1(n)) ≥ m+1 since

π−1(n) > 1) must therefore satisfy w(n) ≤ m. As b′
n has two private neighbours

with respect to b′
n−1, we must have w(n − 1) < w(n), and as above, the private

neighbour a′
n of b′

n must satisfy w(n − 1) < e(n) ≤ w(n).
Summarizing, we conclude that

e(1) ≤ w(1) < . . . < e(n) ≤ w(n) ≤ m < m + 1
≤ e(n + 1) ≤ w(n + 1) < . . . < e(2n) ≤ w(2n).

We may now alter this embedding of f(π) into f(ρ) if necessary to guarantee that
e(i) = w(i) for all i = 1, 2, . . . , 2n. Indeed, it follows from the above inequalities
that, for 1 ≤ i ≤ n, ae(i) and aw(i) have the same set of neighbours among the
embedded b-vertices, and similarly, for n + 1 ≤ i ≤ 2n, bw(i) and be(i) have the
same set of neighbours among the embedded a-vertices. We may thus keep the
embeddings of b′

1, . . . , b
′
n, a′

n+1, . . . , a
′
2n where they are, and move the embeddings

of the remaining vertices as appropriate to ensure e(i) = w(i) for 1 ≤ i ≤ 2n.
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From this altered embedding, it is easy to see that π ⊆ ρ as claimed (for instance,
interpret the matching between b1, . . . , bm and am+1, . . . , a2m as a line segment
intersection model for ρ, and note that the intersection of this matching with
the embedded graph f(π) gives a line segment intersection model for π). ��

Lemma 1 cannot, in general, be extended to permutations π with π(1) = n
(except trivially, when n = 1 or m = n). For example, if π = (2, 1) and ρ =
(1, 2, 3, 4), then one can easily see that f(ρ) ⊇ f(π), but ρ does not contain π. One
underlying reason for this phenomenon is that whenever π(1) = n, the vertices
an and an+1 have exactly the same neighbourhoods, which makes it possible
for the graphs to be embedded with more flexibility, not necessarily forcing
embedding of permutations. For this reason, we introduce a slight modification
of the embedding, which allows us to always avoid the case π(1) = n.

Definition 1. Given a permutation π = (π(1), π(2), . . . , π(n)), define π∗ =
(1, π(1) + 1, π(2) + 1, . . . , π(n) + 1). Define f∗(π) = f(π∗), where f is the map
from permutations to quasi-permutation graphs.

Theorem 1. f∗ is an injection from the class of permutations to the class of
quasi-permutation graphs such that for any two permutations π and ρ we have
f∗(π) ⊆ f∗(ρ) if and only if π ⊆ ρ.

Proof. f∗ is a composition of two injective maps π 
→ π∗ and π∗ 
→ f(π∗), with
the image of the second map being a quasi-permutation graph. Therefore, f∗

is an injection from the class of permutations to the class of quasi-permutation
graphs. Further, f∗(π) ⊆ f∗(ρ) means, by definition, that f(π∗) ⊆ f(ρ∗), which
happens if and only if π∗ ⊆ ρ∗ (this follows from Lemma 1 as π∗(1) = 1 	= n).
Finally, it is easy to see that π∗ ⊆ ρ∗ if and only if π ⊆ ρ, from which the second
part of the theorem follows. ��

3 The Structure of Quasi-chain Graphs

For two graphs G1 = (V,E1) and G2 = (V,E2) on the same vertex set we
denote by G1 ⊗G2 the graph G = (V,E1 ⊗E2), where ⊗ denotes the symmetric
difference of two sets. The main result in this section is the following theorem.

Theorem 2. If a bipartite graph G = (A,B,E) is a quasi-chain graph, then
G = Z ⊗ H for a chain graph Z and a graph H of vertex degree at most two
such that E(H) ∩ E(Z) and E(H) − E(Z) are matchings. Such a decomposition
G = Z ⊗ H can be obtained in polynomial time.

In the proof of this result, we use a word representation for our graphs, which
builds on a special case of letter graph representations, introduced in [22]. The
starting point is as follows: there is a bijective, order-preserving mapping between
words over the alphabet {a, b} (under the subword relation) and coloured chain
graphs (under the coloured induced subgraph relation). This mapping sends a
word w to the graph whose vertices are the entries of w, and we have edges
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a1 a2

b1

a3

b2 b3

a4

b4

Fig. 1. The graph corresponding to the word w = aababbab

between each a and each b appearing after it in w. See Fig. 1 for an example (the
indices of the letters indicate the order of their appearance in w).

We would like to extend this representation to graphs with the structure
claimed in Theorem 2. To do so, we enhance the letter representation described
above by allowing bottom edges between pairs a, b with the a appearing before
the b in w and top edges between pairs a, b with the a appearing after the b in w.
We require, in addition, that the set of top edges forms a matching and the set of
bottom edges forms a matching, and interpret the bottom edges as an instruction
to remove the corresponding matching from the chain graph represented by w,
and the top edges as an instruction to add the corresponding matching. We call
such a word an enhanced word. For instance, w′ = aababbab is an enhanced word
obtained from w = aababbab by adding the bottom edge connecting the first a
to the first b and the top edge connecting the second b to the last a.

If G is the graph described by an enhanced word w, we say that w is an
enhanced letter representation for G. In particular, w′ = aababbab is an enhanced
letter representation of the graph obtained from the graph in Fig. 1 by removing
the edge a1b1 and adding the edge b2a4. It is immediate from our discussion that
Theorem 2 can be restated as follows.

Theorem 3. Any quasi-chain graph admits an enhanced letter representation
that can be found in polynomial time.

The proof is by induction on the number of vertices of a quasi-chain graph G,
noting that either G or ˜G has a vertex of degree at most 1. By considering various
cases, we show that such a vertex can always be added to an enhanced letter
representation obtained inductively. The case analysis can be made algorithmic,
yielding a polynomial bound.

4 Implicit Representation of Quasi-chain Graphs

The idea of implicit representation of graphs (also known in the literature as
adjacency labelling scheme) was introduced in [11] and can be described as
follows. A representation of an n-vertex graph G is said to be implicit if it assigns
to each vertex of G a binary code of length O(log n) so that the adjacency of
two vertices is a function of their codes.

Not every class of graphs admits an implicit representation, since a bound on
the length of a vertex code implies a bound on the number of graphs admitting
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such a representation. More precisely, only classes containing 2O(n log n) labelled
graphs with n vertices can admit an implicit representation. In the terminology
of [3], hereditary classes containing 2O(n log n) labelled graphs on n vertices are
at most factorial, i.e., they have at most factorial speed of growth. Whether all
hereditary classes with at most factorial speed admit an implicit representation
is a big open question known as the implicit representation conjecture [23]. The
conjecture holds for a variety of factorial classes such as interval graphs, per-
mutation graphs (which include chain graphs), line graphs, planar graphs, etc.
It also holds for all graph classes of bounded vertex degree, of bounded clique-
width, of bounded arboricity (including all proper minor-closed classes), etc.; see
[2] and the references therein for more information on this topic.

The class of quasi-chain graphs is known to be factorial, which was shown in
[1]. However, the question whether this class admits an implicit representation
remains open. In this section, we answer this question in the affirmative. To this
end, we introduce the following general tool.

For a graph G = (V,E), let AG denote the adjacency matrix of G, and
for two vertices x, y ∈ V , let AG(x, y) be the element of the matrix corre-
sponding to x and y. Given a Boolean function f of k variables and graphs
H1 = (V,E1), . . . , Hk = (V,Ek), we will write G = f(H1, . . . , Hk) if

AG(x, y) = f(AH1(x, y), . . . , AHk
(x, y))

for all distinct vertices x, y ∈ V . If G = f(H1, . . . , Hk), we say that G is an
f -function of H1, . . . , Hk.

Theorem 4. Let X be a class of graphs, k a natural number, f a Boolean func-
tion of k variables, and Y1, . . . , Yk classes of graphs admitting an implicit repre-
sentation. If every graph in X is an f-function of graphs H1 ∈ Y1, . . . , Hk ∈ Yk,
then X also admits an implicit representation.

Proof. To represent a graph G = f(H1, . . . , Hk) in X implicitly, we assign to
each vertex of G k labels, each of which represents this vertex in one of the graphs
H1, . . . , Hk. Given the labels of two vertices x, y ∈ V (G), we can compute the
adjacency of these vertices in each of the k graphs and hence, using the function
f (which we may encode in each label with a constant number of bits), we can
compute the adjacency of x and y in the graph G. ��

According to Theorem 2, any quasi-chain graph is a ⊕-function of a chain
graph and a graph of vertex degree at most 2, where ⊕ is addition modulo 2. As
we mentioned earlier, chain graphs and graphs of vertex degree at most 2 admit
an implicit representation. Together with Theorem 4 this implies the following
conclusion.

Corollary 1. The class of quasi-chain graphs admits an implicit representation.

The same conclusion can be derived in an alternative way, which is of inde-
pendent interest, because it deals with a parameter motivated by some biological
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applications. This parameter was introduced in [7] under the name contiguity
and it can be defined as follows.

Graphs of contiguity 1 are graphs that admit a linear order of the vertices
in which the neighbourhood of each vertex forms an interval. Not every graph
admits such an ordering, in which case one can relax this requirement by looking
for an ordering in which the neighbourhood of each vertex can be split into
at most k intervals. The minimum value of k which allows a graph G to be
represented in this way is the contiguity of G.

Theorem 5. Contiguity of quasi-chain graphs is at most 3.

Proof. It is not difficult to see that chain graphs have contiguity 1. Let G be a
quasi-chain graph, and use Theorem 2 to obtain a decomposition G = Z ⊗ H.
Consider a linear order of the vertices of G such that their neighbourhoods in Z
are intervals. Z can be transformed into G by adding at most one edge and at
most one non-edge incident to each vertex. By adding a non-edge, we split the
interval of neighbours of v into at most two intervals, and by adding a neighbour
to v, its neighbourhood spans at most one additional interval consisting of a
single vertex. ��

It is routine to check that graphs of bounded contiguity admit an implicit
representation. Therefore, Corollary 1 follows from Theorem 5 as well.

5 Optimisation in Quasi-chain Graphs

Many algorithmic problems that are NP-complete for general graphs remain
computationally intractable for bipartite graphs, which is the case, for instance,
for hamiltonian cycle [20], maximum induced matching [16], alternat-
ing cycle-free matching [19], balanced biclique [10], maximum edge
biclique [21], dominating set, steiner tree [18], independent domina-
tion [6], induced subgraph isomorphism [9].

The simple structure of chain graphs implies bounded clique-width and there-
fore polynomial-time solvability of all these and many other problems. How-
ever, in quasi-chain graphs the clique-width is unbounded and hence no solu-
tion comes for free in this class. Moreover, induced subgraph isomorphism
remains intractable, as we show in Sect. 5.1 based on the relationship between
quasi-chain graphs and permutations revealed in Theorem 1.

On the other hand, the structure of quasi-chain graphs revealed in Theorem 2
allows us to prove polynomial-time solvability of three problems in the above list,
which we do in Sect. 5.2.

5.1 NP-completeness of Induced Subgraph Isomorphism
in Quasi-chain Graphs

The induced subgraph isomorphism problem can be stated as follows: given
two graphs H and G, decide whether H is an induced subgraph of G or not.
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This problem is known to be NP-complete even when both graphs are bipartite
permutation graphs [9]. A related problem on permutations is known as pattern
matching: given two permutations π and ρ, it asks whether π contains ρ as a
pattern. This problem is also NP-complete [4]. Together with Theorem 1 this
immediately implies that coloured induced subgraph isomorphism is NP-
complete for quasi-chain graphs. Below we extend this conclusion to uncoloured
graphs.

Theorem 6. The induced subgraph isomorphism problem is NP-complete
for quasi-chain graphs.

Proof. Let H and G be two coloured connected quasi-chain graphs. The NP-
completeness of pattern matching together with Theorem 1 imply that deter-
mining whether there is an embedding of H into G as an induced subgraph
that respects the colours is an NP-complete problem. To reduce the problem to
uncoloured graphs, we modify the instance of the problem as follows.

Let p be a natural number greater than the maximum vertex degree in G,
and let K1,p be a star with the center x. We add this star to G, connect x to all
the black vertices of G and denote the resulting graph by G∗. Similarly, we add
this star to H, connect x to all the black vertices of H and denote the resulting
graph by H∗. Clearly, G∗ and H∗ are quasi-chain graphs.

Now we ignore the colours and ask whether G∗ contains H∗ as an induced
subgraph. If G∗ contains H∗, then vertex x in H∗ must map to vertex x in G∗

(due to the degree condition), and the vertices of H in H∗ are mapped to the
vertices of G in G∗ in a colour-preserving way (due to the connectedness of G
and H). Therefore, G contains H as a coloured induced subgraph if and only if
G∗ contains H∗ as an induced subgraph. Since G∗ and H∗ are quasi-chain graphs
and these graphs can be obtained from G and H in polynomial time, we conclude
that induced subgraph isomorphism is NP-complete for quasi-chain graphs.

��

5.2 Polynomial-Time Algorithms for Quasi-chain Graphs

In this section, we use Theorem 2 to prove polynomial-time solvability of the
following problems in quasi-chain graphs: balanced biclique, maximum edge
biclique, and independent domination. We emphasize that Theorem 2 not
only provides a structural characterisation of quasi-chain graphs, it also proves
that a quasi-chain graph can be transformed into a chain graph by removing
a matching and adding a matching in polynomial time, which is an important
ingredient in all three solutions. We start with an auxiliary lemma.

Lemma 2. A quasi-chain graph G with n vertices contains a collection I of
O(n) subsets of vertices that can be found in polynomial time such that every
subset I ∈ I induces a graph of vertex degree at most 1, and every independent
set in G is contained in one of these subsets.
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Proof. First, we observe that there are O(n) inclusion-wise maximal independent
sets in a chain graph, and that all of them can be found in polynomial time.

Now let G = Z ⊗ H be a quasi-chain graph and let S be an independent set
in G. Then in the graph Z, the vertices of S either form an independent set,
or induce some bottom edges, i.e., some edges of E(H) ∩ E(Z). Since bottom
edges form a matching and Z is 2P2-free, we conclude that S contains at most
one bottom edge in the graph Z.

If S is an independent set in Z, then it is contained in a maximal independent
set I in Z. For each maximal independent set I in the graph Z, the vertices of
I induce in G a subgraph G[I] of vertex degree at most 1, because all edges of
G[I] are top edges and therefore they form a matching.

Assume now that S contains an edge aibj in the graph Z. We denote the set
of non-neighbours of ai in G by Ai and the set of non-neighbours of bj in G by
Bj , and let I = Ai ∪ Bj . In particular, S ⊆ I. In Z, the vertices of I induce a
subgraph Z[I] containing exactly one edge aibj . Indeed, no edge e 	= aibj in Z[I]
can be incident to ai or bj , because otherwise both e and aibj are bottom edges,
which is impossible, and if e is not incident to ai and bj , then e and aibj create
an induced 2P2 in Z, which is not possible either. Since aibj is the only edge in
Z[I] and this edge is not present in G[I], we conclude that all edges of G[I] are
top edges and hence G[I] is a graph of vertex degree at most one.

Putting everything together, our collection I consists of two types of sets:
the maximal independent sets from Z, and the sets constructed as above from
each of the bottom edges. This collection thus has O(n) sets, and can be found
in polynomial time as claimed. ��

Bicliques in Quasi-chain Bipartite Graphs. A biclique is a complete bipar-
tite graph Kp,q for some p and q. In a bipartite graph, the problem of finding a
biclique with the maximum number of vertices can be solved in polynomial time.
However, the problem of finding a biclique with the maximum number of edges,
known as the maximum edge biclique problem, is NP-complete for bipartite
graphs [21]. Additionally, the problem of finding a biclique Kp,p with the maxi-
mum value of p, known as the balanced biclique problem, is NP-complete for
bipartite graphs [10]. We show that both problems can be solved in polynomial
time when restricted to quasi-chain graphs.

Theorem 7. The maximum edge biclique and balanced biclique prob-
lems can be solved in polynomial time for quasi-chain graphs.

Proof. Let G = (A,B,E) be a quasi-chain graph. A biclique in G becomes an
independent set in the bipartite complement ˜G of G. Since an unbalanced 2P3 is
self-complementary in the bipartite sense, we note that ˜G is a quasi-chain graph
too.

Let I be as in Lemma 2 for ˜G. Every independent set in ˜G is contained in a
maximal independent set, which in turn is contained in one of the subsets of I. In
G, those subsets induce almost complete bipartite graphs, i.e., graphs in which
every vertex has at most one non-neighbour in the opposite part. Therefore, to
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solve both problems for G, it suffices to solve them for this collection of O(n)
almost complete bipartite graphs.

But those problems are both easy for almost complete bipartite graphs: sup-
pose a graph is obtained from Ks,t by deleting a matching of size m ≤ s ≤ t.
It is not difficult to see that the number of edges in a maximum edge biclique
in this graph equals max

0≤i≤m
(t − m + i) · (s − i). As for the balanced biclique

problem, the optimal solution is given by p = s if t − s ≥ m, and by
⌊

t−m+s
2

⌋

if
t − s < m. ��

Independent Domination in Quasi-chain Graphs. The independent
dominating set problem asks to find in a graph G an inclusion-wise maxi-
mal independent set of minimum cardinality. This problem is NP-complete for
general graphs and remains intractable in many restricted graph families. In par-
ticular, it is NP-complete both for 2P3-free graphs [24] and for bipartite graphs
[6]. In the following theorem, we prove polynomial-time solvability of the problem
for quasi-chain graphs.

Theorem 8. The independent dominating set problem can be solved for
quasi-chain graphs in polynomial time.

Proof. Let G = (A,B,E) be a quasi-chain graph and S an optimal solution to
the problem in G, and let I be as in Lemma 2. Note that S is contained in at
least one of the elements of I. Moreover, crucially, for any I ∈ I, all maximal
independent sets in G[I] have the same size. This suggests the following way of
finding an optimal solution:

1. For each I ∈ I, determine if I contains an independent set that dominates
G, and if yes, find such a set.

2. Among the sets we found, pick one with minimum size.

We claim that this produces an optimal solution to the problem. Indeed,
this procedure is guaranteed to produce a set S, since any optimal solution to
the problem dominates G and is contained in some I ∈ I. Moreover, since all
maximal independent sets in G[I] have the same size (and S dominates G, so it
is maximal in both G and G[I]), S must be an optimal solution.

It thus suffices to show that Step 1 can be done efficiently. To do this, let
I ∈ I. Let I ′ ⊆ I be the subset of I of vertices that have degree 1 in G[I], and
put I ′′ := I − I ′. We note that any independent subset of I dominating G must
contain all vertices of I ′′, and exactly one vertex from each edge of G[I ′]. Let
A′′ and B′′ be the sets of vertices in A, respectively B that have at least one
neighbour in I ′′. We also denote I ′

A := I ′ ∩ A and I ′
B := I ′ ∩ B, and let A′ and

B′ be the sets of vertices in A− (A′′ ∪ I ′
A), respectively B − (B′′ ∪ I ′

B) that have
at least one neighbour in I ′.

If I does not dominate G, then no subset of I dominates G; we may thus
assume I dominates G, that is, A − I = A′ ∪ A′′ and B − I = B′ ∪ B′′. Since
G does not contain an unbalanced 2P3, the graphs G[I ′

A ∪ B′] and G[I ′
B ∪ A′]
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are 2P2-free, i.e., chain graphs. It follows that I ′
A and I ′

B each have vertices that
dominate B′ and A′ respectively. If there exists such a pair x ∈ I ′

A and y ∈ I ′
B

that is non-adjacent, then we are done: we pick x and y in their respective
edges, and arbitrarily choose vertices from each other edge of I ′ to complete our
independent dominating set. Otherwise, the unique vertices x ∈ I ′

A and y ∈ I ′
B

that dominate B′ and A′ respectively belong to the same edge of I ′. In this
case, no independent set of I dominates G, since vertices A′ and B′ have no
neighbours in I ′′ by construction, and (using 2P2-freeness) I ′

A − {x} does not
dominate A′, and I ′

B − {y} does not dominate B′. This proves the theorem. ��
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Abstract. Network realization problems require, given a specification π
for some network parameter (such as degrees, distances or connectivity),
to construct a network G conforming to π, or to determine that no such
network exists. In this paper we study composed profile realization, where
the given instance consists of two or more profile specifications that need
to be realized simultaneously. To gain some understanding of the prob-
lem, we focus on two classical profile types, namely, degrees and distances,
which were (separately) studied extensively in the past. We investigate a
wide spectrum of variants of the composed distance & degree realization
problem. For each variant we either give a polynomial-time realization
algorithm or establish NP hardness. In particular:

– We consider both precise specifications and range specifications,
which specify a range of permissible values for each entry of the
profile.

– We consider realizations by both weighted and unweighted graphs.
– We also study settings where the realizing graph is restricted to

specific graph classes, including trees and bipartite graphs.

1 Introduction

This paper considers the family of network realization problems. A Π-realization
problem concerns some type of network parameter Π on networks, such as the
vertex degrees, inter-vertex distances, centrality, connectivity, and so on. With
every network G one can associate its Π-profile, Π(G), giving1 the values of
Π on G. An instance of the Π-realization problem consists of a specification π,
detailing the requirements on Π. Given such a specification π, it is necessary to
construct a network G conforming to it, i.e., satisfying Π(G) = π, or to determine
that no such network exists. The motivation for network realization problems
stems from both “exploratory” contexts where one attempts to reconstruct an
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1 We consider profile types for which Π(G) is polynomial-time computable given G.
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existing network of unknown structure based on the outcomes of experimental
measurements, and engineering contexts related to network design.

Two cannonical examples of profile types are vertex degrees and distances.

Degree Realization. The most well-studied family of realization problems con-
cerns vertex degrees. The degree profile of a (simple undirected) graph G = (V,E)
with vertex set V = {v1, . . . , vn} is an integer sequence DEG(G) = (δ1, . . . , δn),
where δi = degG,i is the degree of vertex i in G. The degree realization prob-
lem asks to decide, given a sequence of n non-negative integers δ̄ = (δ1, . . . , δn),
whether there exists a graph G whose degree sequence DEG(G) equals δ̄. A
sequence that admits such a realization is called graphic. The main questions
studied in the past concerned characterizations for a sequence to be graphic
and algorithms for finding a realizing graph for a given sequence if exists. For a
brief review and some references to previous work on degree realization see, e.g.,
[6] in these proceedings. Graphic sequences were studied also on specific graph
families, such as trees and bipartite graphs [14,24,26,34,43].

Rather than precise degree requirements, some studies concerned degree-
range specifications, which define a range of allowable degrees for each vertex.
An entry in the specification δ̄ consists of a pair [δ−

i , δ+i ], and the realizing graph
G must satisfy δ−

i ≤ degG(i) ≤ δ+i . Again see [6] for references to prior work.

Distance Realization. In a graph G, the distance distG(u, v) between two
nodes u and v is the length of the shortest path connecting them in G. (The
length of a path is the sum of its edge weights; in an unweighted graph, the weight
of each edge is taken to be 1.) The distance profile of an n-vertex graph G =
(V,E) with vertex set V = {v1, . . . , vn} consists of an n×n matrix DIST(G) = D,
where Di,j ∈ N ∪ {∞} for every 1 ≤ i < j ≤ n, which specifies the required
distance between every two nodes i �= j in the graph (Di,j = ∞ when i and j
are in different disconnected components).

The unweighted distance realization problem is defined as follows. An instance
consists of an n×n matrix D, where Di,j is a nonnegative integer or ∞, for every
1 ≤ i < j ≤ n. The goal is to compute an n-vertex unweighted undirected graph
G = (V,E) realizing D, i.e., such that V = {1, . . . , n} and distG(i, j) = Di,j for
every 1 ≤ i < j ≤ n, or to decide that no such realizing graph exists. In the
weighted distance realization problem the edges of the realizing graph may have
arbitrary integral weights. (We assume that the minimum edge weight is 1.)

Distance realization problems were introduced and studied in a seminal paper
of Hakimi and Yau [27] (see [6] for a review). Precise distance realizations by
trees and bipartite graphs were considered as well [4,11]. The distance realization
problem was studied also for distance ranges, i.e., where an entry in the given
distance matrix D consists of a pair [D−

i,j ,D
+
i,j ], and the realizing graph G must

satisfy D−
i,j ≤ distG(i, j) ≤ D+

i,j , for every 1 ≤ i < j ≤ n [33,39].

Profile Composition. In reality, it is often required to address multiple net-
work parameters simultaneously. In particular, one may be given specifications
for two or more different profile types, and be requested to find a realizing graph
conforming to all of these specifications simultaneously. We refer to the input as



Composed Degree-Distance Realizations of Graphs 65

a “composed” profile specification. Profile composition is one of the fundamen-
tal, yet little understood, aspects of the realization problem. Specifically, we are
interested in the following setting. Consider two different profile types, ΠA and
ΠB . Given two profile specifications πA and πB corresponding to these profile
types, the goal is to solve the realization problem of the composed profile speci-
fication πA ∧ πB , namely, construct a graph G that realizes both specifications
simultaneously, if exists, or decide that this is impossible.

As a first concrete example, we focus in this paper on the composition of
degree and distance profiles. In the composed degree and distance (D&D) real-
ization problem, we are given both a degree vector δ̄ and a distance matrix D,
and the goal is to decide whether there is an n-vertex (unweighted/weighted)
undirected graph G = (V,E) realizing δ̄ and D simultaneously, i.e., such that
V = {1, . . . , n}, degG(i) = δi and distG(i, j) = Di,j for every 1 ≤ i < j ≤ n.

We study such compositions in a variety of settings, including precise and
range specifications, and realizations by weighted and unweighted graphs. In addi-
tion, we consider realizations by more restricted graph classes, such as (weighted
or unweighted) trees and bipartite graphs. A somewhat different type of restric-
tion that we consider is where the input to the problem consists also of a given
graph G+ (the supergraph), and the realizing graph G must be a subgraph of
G+, or in other words, G must belong to the class of subgraphs2 of G+.

Terminology. The above exposition outlines a wide collection of problems,
classified by a number of characteristics, including the following:

– the degree specification types δ̃ ∈ {P, [ ]}:
indicates whether the input specifies exact degrees or degree-ranges,

– the distance specification types D̃ ∈ {P, [ ]}:
indicates whether the input specifies exact distances or distance-ranges,

– the class of graphs g̃ ∈ {U,W,UT,WT,UB,WB,US,WS}:
indicates whether the realizing graph should be a (unweighted or weighted)
general graph, tree, bipartite graph, or subgraph of a given graph.

Accordingly, the studied variants of the realization problem are:

– DEG(δ̃, g̃): degree realization problems3,
– DIST(D̃, g̃): distance realization problems,
– D&D(δ̃, D̃, g̃): composed D&D realization problems.

Our Contributions. In Sect. 2 we present some basic properties of profile com-
position, concerning the relations between the properties of the two profile types
ΠA and ΠB and the properties of their composition, ΠA ∧ΠB . In Sect. 3 we focus

2 Such a problem may arise naturally in a setting where it is known a priori that
certain connections are impossible, infeasible or disallowed, due to the environment,
the user specified requirements, or other reasons.

3 For the pure degree-realization problem, there is no distinction between weighted
and unweighted graphs.
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on the properties of profile composition when one of the composed profiles is dis-
tances. Then, in Sect. 4, we turn to studying composed D&D realization problems.
Most of the literature on realization problems concerns either efficient realization
algorithms or characterizations (i.e., necessary or sufficient conditions for realiz-
ability), and negative results are scarce. Here, we are interested in classifying the
resulting problems according to their complexity. We present, for each variant of
this problem, either a polynomial-time algorithm or a proof that it is NP-hard.
Specifically, we show that when the distance matrix specifies precise values, there
are polynomial-time algorithms for all variants (precise degrees or degree-ranges
realizations by weighted or unweighted arbitrary graphs, trees, bipartite graphs,
and subgraphs of a given graph). However, when the distance matrix specifies
distance-ranges, all variants are NP-hard. Along the way, we also fill in the gaps
for some distance realization problems whose status was unresolved so far.

Related Work. A concrete type of composition that has received considerable
attention concerns degree sequences that satisfy an additional graph property
P . Let P be an invariant property of graphs. A graphic degree sequence δ̄ is
said to be potentially P -graphic if there exists at least one graph G conforming
with δ̄ that has the property P . The sequence δ̄ is forcibly P -graphic if every
graph G conforming with δ̄ enjoys P . For example, consider the property that
the graph is k-edge-connected. The composed profile specification consists of a
degree specification and a k-edge-connectivity specification. An algorithm for
this composed profile was given in [3]. Conditions for the existence of k-edge
connected realizations of degree sequences, for k ≥ 1, are also known [19]. Nec-
essary and sufficient conditions for the realization of k-vertex connected graphs
where k ≥ 2, as well as a realization algorithm, were presented in [41]. For a
survey on potentially and forcibly P -graphic sequences, see [32].

The optimal distance realization problem was also introduced in [27] and
studied further in [1,5,13,15–18,20,28,30,31,33,35–38,40,42]. In this problem,
a distance matrix D is given over a set S of n terminal vertices, and the goal
is to find a minimum-weight graph G containing S, with possibly additional
auxiliary vertices, that realizes the given D for S. In contrast, our “pure” distance
realization problem requires the realizing graph to have exactly n vertices, and
does not allow adding auxiliary ones. Hence, the results obtained for the optimal
distance realization problem do not seem to carry over easily to our setting.

Realization questions were studied in the past for other types of network
information profiles, including eccentricites [12,29], connectivity and flow [21–
23,25] and maximum or minimum neighborhood degrees [7,10]. Several other
realization problems are surveyed in [8,9].

2 Profile Composition

Consider a Π-realization problem for some network parameter Π. An instance
π of the Π-realization problem is realizable by a graph of the class GC if there
exists a network G ∈ GC satisfying Π(G) = π. We assume that an instance π
(of any profile type) always specifies also the network size n (i.e., the number of
vertices). Let RG(π,GC) denote the set of graphs G ∈ GC realizing π.
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We are interested in several properties of profile types. Consider a profile
type Π and a graph class GC.

– Π is enumerable over GC if for each of its instances π, the set RG(π,GC)
has size polynomial in n, and moreover, there is a polynomial-time procedure
that given π generates all the graphs of RG(π,GC) successively.

– Π is unique over GC if each instance π has |RG(π,GC)| ≤ ∞, and moreover,
there is a polynomial-time procedure that given π generates the unique graph
of RG(π,GC) or declares that RG(π,GC) = ∅.

– Π is verifiable over GC if there is a polynomial-time procedure that given a
specification π and G ∈ GC checks whether G realizes π (or, Π(G) = π).

– Π is realizable over GC if there is a polynomial-time procedure that given a
specification π finds a graph G ∈ GC such that Π(G) = π, if π is realizable,
and otherwise indicates that no such graph exists4.

– Π is super-realizable over GC if there is a polynomial-time procedure that given
a specification π and G = (V,E) finds a supergraph5 G′ = (V,E′) ∈ GC of G
such that Π(G) = π, if π is realizable by a supergraph of G, and otherwise
indicates that no such graph exists.

Towards gaining an understanding of profile composition, a central goal is
to identify relationships between the realizability of individual profile types and
the realizability of their composition. For example, one might hope to establish
some connections between the following two conditions:

“both ΠA and ΠB are realizable.” (C1)

“ΠA ∧ ΠB is realizable.” (C2)

Unfortunally, profile composition turns out to be more intricate. To illustrate
this, let us consider the following examples.

Example 1. Let ΠA be the full information profile type, i.e., an instance of it is
of the form πA = 〈G0〉, a complete description of some n-vertex graph G0. This
profile type is realizable, and has a unique realization for every instance, namely,
G0 itself. Let ΠB be the clique profile type, i.e., an instance for it consists of two
integers, πB = 〈k0, n〉, where k0 ≤ n, and a realizing n-vertex graph is required
to have a clique of size k0. This profile type is also realizable, simply by taking the
complete n-vertex graph Kn. Hence both profile types are realizable in a trivial
way. However, for the composed profile type ΠA ∧ ΠB , the realization problem
is NP-hard, since in order to decide if a given instance πA ∧ πB = 〈G0〉 ∧ 〈k0, n〉
is realizable, we must determine if G0 has a k0-clique. �

Hence, (C1) is not a sufficient condition for (C2), unless NP=P.
4 Note the difference between a realizable specification π (“π has a realization”) and a

realizable profile type Π (“there is a polynomial-time algorithm deciding, for every
specification π of Π, if it is realizable”).

5 satisfying E ⊆ E′.
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Example 2. Let ΠA be the 2-coloring profile type, i.e., an instance of it is of
the form πA = 〈n〉, and a realizing n-vertex graph is required to have a legal
2-vertex coloring. This profile is realizable, simply by taking an n-vertex path.
Let ΠB be the graph 3-coloring profile type, i.e., an instance of it is of the form
πB = 〈G0〉, a complete description of some n-vertex graph G0 and the realizing
graph is also required to have a legal 3-vertex coloring. This realization problem
is NP-hard, since in order to decide if it is realizable, we must determine if G0

has a legal 3-vertex coloring. Hence profile type ΠA is realizable in a trivial way,
but profile type ΠB is not realizable, unless NP = P. However, the composed
profile type ΠA ∧ ΠB , is realizable, since in order to decide if a given instance
πA ∧ πB = 〈n〉 ∧ 〈G0〉 is realizable, we only need to determine if G0 has a legal
2-vertex coloring, which is known to have a polynomial algorithm. �

Hence, if P �= NP, then (C1) is not a necessary condition for (C2).
We establish the following sufficient condition.

Lemma 1. For any profile types ΠA and ΠB and graph class GC, if ΠA is
enumerable over GC and ΠB is verifiable over GC, then the composed profile
type ΠA ∧ ΠB is realizable over GC.
Proof. Let ΠA and ΠB be as in the lemma. The following algorithm is a polyno-
mial realization for the composed profile type ΠA ∧ΠB over GC. Let πA and πB

be specifications of ΠA and ΠB , respectively. Succesively generate the graphs
of RG(πA,GC), and for each generated graph G, check whether it realizes πB ,
and if so, return G and halt. If every G ∈ RG(πA,GC) does not realize πB ,
return “Impossible”. The correctness of this algorithm is immediate. Since ΠA

is enumerable over GC, there is a polynomial-time procedure that generates all
G ∈ RG(πA,GC), and since πB is verifiable over GC, checking whether G realizes
πB is polynomial. Overall, the running time of this algorithm is polynomial. �

Interestingly, note that the verifiability of both profiles ΠA and ΠB is not
always a necessary condition for the verifiability of the composed profile ΠA ∧
ΠB . To see this, consider the following example.

Example 3. Consider the following two profile types. Profile type ΠA requires
that all degrees in G are 2. Profile type ΠB requires that G contains a Hamilto-
nian cycle. Consequently, the composed profile type ΠA ∧ ΠB necessitates that
G is a cycle. Note that over general graphs, ΠA is both always realizable and
verifiable. ΠB is always realizable too, but verifying it is NP-hard. Yet their
composition ΠA ∧ ΠB is still both always realizable and verifiable. �
Lemma 2. Let ΠA be a unique profile type over the graph class GC. Then for
any profile type ΠB, the composed ΠA ∧ ΠB is realizable over GC if and only if
ΠB is verifiable over GC.
Proof. Fix GC, let ΠA be a unique profile type, and consider some profile type
ΠB . Let ALGA be the realization procedure of ΠA over GC. We first show that
if ΠB is verifiable over GC then ΠA ∧ ΠB is realizable over GC. Suppose ΠB
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is verifiable over GC, and let ALGB be a verification algorithm for it. Then the
following algorithm ALGA∧B solves the ΠA ∧ ΠB-realization problem over GC.
Given an instance specification πA ∧ πB of ΠA ∧ ΠB , invoke procedure ALGA

on πA. If procedure ALGA returns “impossible”, then return “impossible”. If it
returns the (unique) graph G ∈ GC realizing πA, then invoke AlgB on G and
return its response. It is clear that algorithm ALGA∧B is correct.

In the opposite direction, we need to show that if ΠA ∧ΠB is realizable over
GC then ΠB is verifiable over GC. Suppose ΠA ∧ ΠB is realizable over GC, and
let ALGA∧B be an algorithm for the ΠA ∧ ΠB-realization problem. Then the
following procedure ALGB verifies ΠB over GC. Given an instance specification
πB of ΠB and a graph G ∈ GC, do the following. Set πA = ΠA(G). Then
πA ∧πB is an instance of the composed profile type ΠA ∧ΠB . Invoke algorithm
ALGA∧B to πA ∧ πB . If its response is a graph G′, then return “yes”, and if
the response is “impossible”, then return “no”. Indeed, in the former case, the
returned graph G′ must equal the given G, implying that G satisfies πB , and in
the latter case, necessarily G (which is the only possible realization of πA over
GC) has Π(G) �= πB , i.e., it fails to satisfy πB. �

3 Composing the Distance Profile

We next focus on compositions where one of the profile types is distances. The
following algorithm for precise distance realization by unweighted graphs has
been presented as part of the proof of [27, Theorem 7].

Algorithm 1
1: for every pair (i, j) do � Construction
2: if Di,j = 1, then add an edge (i, j) to G.
3: end for
4: for every pair (i, j) do � Verification
5: if distG(i, j) �= Di,j then return “Impossible” and halt.
6: end for
7: return G.

Hereafter, we refer to the constructed graph as the base graph of D, and
denote it by Gbase. The next lemma is implicit in the proof of Thm. 7 of [27].

Lemma 3 [27]. If D is realizable, then Gbase is its unique realization.

Note that in particular, the lemma implies the following.

Corollary 1. The precise distance profile is unique over unweighted graphs.

Hence by Lemma 2, we immediately have the following for the precise dis-
tance profile DIST.

Corollary 2. For every profile Π, the composed profile DIST ∧ Π is realizable
by unweighted graphs if and only if Π is verifiable over unweighted graphs.
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We next consider profile compositions where one of the two profiles is the dis-
tance profile and the realization is by weighted graphs. The following algorithm
solves the distance realization problem in the weighted case [27].

Algorithm 2
1: Initially set V = {1, . . . , n} and E = ∅. � At this stage distG(i, j) = ∞ for every

i, j.
2: Sort the vertex pairs (i, j) for 1 ≤ i < j ≤ n by nondecreasing distances Di,j .
3: Go over the pairs in this order.
4: for every pair (i, j) do � Construction
5: if distG(i, j) > Di,j then add an edge (i, j) of weight Di,j to E.
6: end for
7: for every pair (i, j) do � Verification
8: if distG(i, j) < Di,j then return “Impossible” and halt.
9: end for

10: Return G.

The algorithm’s correctness follows from the next lemma, also due to [27].

Lemma 4 [27]. If the precise distance specification D is realizable by a weighted
graph, then the output G of Algorithm 2 is a minimal realization of D, i.e., every
realization of D must contain the edges of G.

Lemma 5. For every profile type Π on unweighted graphs, the composed profile
type DIST∧ Π is realizable on weighted graphs if and only if Π is super-realizable.

Proof. Suppose Π is super-realizable on unweighted graphs and let ALGπ be
the realization algorithm. We have to show that the profile type DIST ∧ Π
is realizable on weighted graphs. The following algorithm ALGD∧π solves the
DIST ∧ Π-realization problem. Consider a specification D ∧ π. The algorithm
first applies Algorithm 2 to the precise distance specification D. If the response
is “Impossible”, then return “Impossible”. If the response is a weighted graph
Gmin(D) = (V,Emin) realizing D, then invoke Algorithm ALGπ on the graph
Gmin(D) (ignoring the weights). If the response of ALGπ is “Impossible”, then
return “Impossible”. If the response is an unweighted graph Gπ then return the
weighted graph Gπ,D which is Gπ = (V,Eπ) where the weight of every edge
(i, j) ∈ Eπ is Di,j . Note that if the algorithm returns “Impossible” after the
execution of Algorithm 2, the specification D ∧π is indeed unrealizable (since D
is unrealizable). Now consider the case where D is realizable. By Lemma 4, all
of the edges of the returned graph Gmin(D) are necessary in any realization of
D. Therefore, any realization of D ∧ π must be a supergraph of Gmin(D). If an
unweighted supergraph Gπ of Gmin(D) realizing π exists, then it will be found by
Algorithm ALGπ (and if not, both ALGπ and ALGD∧π return “Impossible”).
Note that by definition of a supergraph Emin ⊆ Eπ. Since The weights assigned
to the edges of Gπ,D are all from the specification matrix D, if Gmin(D) is a
weighted realization of D, then so is Gπ,D. It follows that ALGD∧π returns the
correct answer.
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Conversely, suppose DIST ∧ Π is realizable on weighted graphs, and let
ALGD∧π be the realization algorithm. We have to show that Π is super-
realizable on unweighted graphs. The following algorithm ALGπ solves the Π-
realization problem on supergraphs of a given unweighted graph. Consider a spec-
ification π of Π, and let G be the given unweighted graph. Let DG = DIST(G),
the distance matrix of G. Note that Gmin(DG) = G, since G is unweighted, so
Gmin(DG) consists only of the distance-1 entries of DG, which are exactly the
edges of G. Create the composed profile specification DG ∧ π, apply Algorithm
ALGD∧π to this specification, and return its response. Note that any super
graph of Gmin(DG) can be a realization of DG where the weight of every edge
is exactly its corresponding distance in DG. Therefore, there exists a realization
of the composed profile specification DG ∧ π on weighted graphs if and only if π
is realizable by a supergraph of G. Hence, the output of ALGD∧π is the correct
response for ALGπ. �

Note that these lemmas hold unconditionally, i.e., their proof does not rely
on NP �= P .

4 D&D Realizations

In this section, we illustrate profile composition by presenting our results con-
cerning the concrete example of composing degree and distance profiles.

4.1 Precise Distance D&D Realizations

We begin with the problems that involve precise distance profiles. These variants
turn out to be easy in general graphs and in specific graph classes.

Theorem 1. Given a precise distance matrix (i.e., D̃ = P ), for both weighted
and unweighted realizing graphs (i.e., g̃ ∈ {U,W}), and for both precise degrees
and degree-ranges (i.e., δ̃ ∈ {P, [ ]}), the composed D&D realization problem
D&D(δ̃, P, g̃) is solvable in polynomial time.

Proof. We present our algorithms for degree-range sequences, which in particular
solve also instances of precise degrees. In other words, our algorithms assume
instances where the degree sequence δ̄ = ([δ−

1 , δ+1 ], . . . , [δ−
n , δ+n ]) is given with

ranges and the distance matrix D is given with exact values. We start with the
unweighted problem: D&D([ ], P, U). A degree sequence δ̄ can be verified on a
specific graph in linear time. Hence, by Corollary 2, the composed D&D([ ], P, U)
problem is realizable in polynomial time.

We now turn to show a polynomial-time algorithm for the weighted prob-
lem: D&D([ ], P,W ). According to Lemma 5, we need to show that finding a
realization of a degree sequence which is lower bounded by a graph G can be
done efficiently. Let δ̄0 = (δ01 , . . . , δ

0
n) be the degree sequence of G, and let

f = (f1, . . . , fn), where fi = δ+i − δ0i for every 1 ≤ i ≤ n, is the degree shortage
vector. There are two cases to consider. If fi < 0 for some 1 ≤ i ≤ n, then there
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is no realizing graph for δ̄ which is lower bounded by G. Else, fi ≥ 0 for all
1 ≤ i ≤ n. In this case, let Ḡ = Kn\G, where Kn is the complete graph on n
vertices. Edges of Ḡ can now be added to G in order to increase some of the
degrees. Let g = (g1, . . . , gn), where gi = max

{
0, δ−

i − δ0i
}
. The problem now

reduces to that of finding a (g, f)-factor in Ḡ, which is known to be solvable in
polynomial time [2]. �
(Hereafter, most proofs are omitted due to lack of space.)

Theorem 2. Given a precise distance matrix (i.e., D̃ = P ), for weighted or
unweighted tree or bipartite realizing graphs (i.e., g̃ ∈ {UT,WT,UB,WB}),
as well as for weighted or unweighted subgraphs of a given graph (i.e., g̃ ∈
{US,WS}), and for both precise degrees and degree-ranges (i.e., δ̃ ∈ {P, [ ]}),
the following realization problems are all solvable in polynomial time:

– The distance realization problems DIST(P, g̃),
– The composed D&D realization problems D&D(δ̃, P, g̃).

4.2 Distance-Range D&D Realizations

We next consider problems involving distance-range profiles. As mentioned ear-
lier, a polynomial-time algorithm for distance-range realization (not composed
with degrees) by a weighted graph was given in [33,39]. However, no algorithm
was known for the unweighted version. We now show that this is no coincidence:
testing distance-range realizability by an unweighted graph is NP-hard. The
proof method serves also (with small variations) for deriving hardness results for
some of the D&D realization problems discussed later on.

Theorem 3. The unweighted distance-range realization problem DIST([ ], U) is
NP-hard.

Proof. We prove that the problem DIST([ ], U) is NP-hard by a reduction from
the coloring problem. Consider an instance (G, k) of the coloring problem,
namely, an unweighted undirected graph G and an integer k, where it is required
to decide whether G can be legally colored with k or fewer colors. We reduce
this instance to an instance D of DIST([ ], U) defined as follows. D is a distance
matrix for n + k + 1 vertices, {1, . . . , n + k + 1}. Intuitively, we think of the first
n vertices of D, Vorig = {1, . . . , n}, as representing the original n vertices of the
given graph G, and of additional k vertices of D, Vcol = {n + 1, . . . , n + k}, as
representing the colors, and the last vertex n + k + 1 represents a coordinator.

First, we impose the following requirements on the color vertices and the
coordinator. Let Dn+�,n+k+1 = 1 for every 1 ≤ � ≤ k, and Dn+�,n+t = 2 for
every 1 ≤ � < t ≤ k. This allows only one possible realization for the subgraph
induced by the vertices Vcol ∪ {n + k + 1}, namely, a star rooted at n + k + 1
(with no edges between the leaves).

Next, for the connections between the original vertices and the star structure,
define the distance constraints as follows. For every 1 ≤ i ≤ n, let Di,n+k+1 = 2
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and let Di,n+� = [1, 3] for every 1 ≤ � ≤ k. This forces each of the original
vertices to be connected to one (or more) of the color vertices, but not to the
coordinator.

Finally, for every two original vertices 1 ≤ i < j ≤ n, let

Di,j =

{
4, (i, j) ∈ E(G),
[1, 4] , otherwise.

It remains to show that the input G is k-colorable if and only if the distance
matrix D is realizable.

v4

v1

v3

v2

⇐⇒
v4

v3

v2

v1

Vorig

v6

v5

Vcol

v7

n+ k + 1

(a) (b)

Fig. 1. An example of the reduction in the proof of Theorem 3, for n = 4 and k = 2. (a)
The graph G is 2-colorable. (b) A realization of D which is the result of the reduction
from the 2-coloring problem on G.

(⇒): Suppose G is k colorable. Identify the colors as 1, . . . , k and let ϕ :
V �→ {1, . . . , k} be the coloring function. For the matrix D defined from G,
construct a realizing graph G as follows. Start with a star rooted at n+k +1
with the k color vertices n + 1, . . . , n + k as leaves. Connect each original
vertex i to the color vertex ϕ(i). It is easy to verify that G is a valid realization
for D (see Fig. 1 for an example).
(⇐): Suppose D has a valid realization G. Note that the restrictions of D
force the color vertices to form a star rooted at n + k + 1. Note that every
original vertex i must be connected to at least one of the leaves of that star.
Define a coloring function for G as follows. For every original vertex i, let � be
some color vertex connected to i, and let ϕ(i) = �. The distance constraints
defined for the original vertices specify that if two original vertices i and j
are connected by an edge in G, then their distance must be 4. This ensures
that none of the color vertices are connected to both i and j (as this would
make their distance 2). It follows that if (i, j) ∈ E then i and j are assigned
different colors.

This establishes the correctness of the reduction and shows that DIST([ ], U)
is NP-hard. �

As shown next, all variants of the D&D realization problem are hard both in
general graphs and in specific graph classes.
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Theorem 4. Given a distance matrix with distance-ranges (i.e., D̃ = [ ]), for
both weighted and unweighted realizing graphs (i.e., g̃ ∈ {U,W}), and for both
precise degrees and degree-ranges (i.e., δ̃ ∈ {P, [ ]}), the composed D&D realiza-
tion problem D&D(δ̃, [ ], g̃) is NP-hard.

Theorem 5. Given a distance matrix with distance-ranges (i.e., D̃ = [ ]), for
weighted and unweighted general, tree and bipartite realizing graphs (i.e., g̃ ∈
{UT,WT,UB,WB}), as well as for weighted and unweighted subgraphs of a
given graph (i.e., g̃ ∈ {US,WS}), and for both precise degrees and degree-ranges
(i.e., δ̃ ∈ {P, [ ]}), the following distance realization problems are NP-hard:

– The distance realization problems DIST([ ], g̃),
– the composed D&D realization problems D&D(δ̃, [ ], g̃).

Note that the difference between our results for arbitrary realizing graphs
and specific graph classes is for the weighted distance-range realization problem.
Specifically, a polynomial algorithm exists in the general case, but when the
realizing graph is required to be one of the structures we consider, this problem
becomes NP-hard.

One of our results for trees is that the weighted distance-range realization
problem, DIST([ ],WT ), is NP-hard. It is interesting to note that in fact, this
problem is NP-hard even if the realizing graph is required to be a simple path
(denoted DIST([ ],Wpath)), but when the realizing graph is required to be a
star (denoted DIST([ ],Wstar)), the problem becomes polynomial, as shown in
the following two theorems.

Theorem 6. The distance-range realization problem on weighted paths,
DIST([ ],Wpath), is NP-hard.

Theorem 7. There exists a polynomial-time algorithm for the distance-range
realization problem on weighted stars, DIST([ ],Wstar).

5 Conclusions and Open Problems

This paper initiates the study of composed profiles and their realization, so
naturally, many interesting research questions are ignored or touched upon only
cursorily. Let us briefly mention some of those. We focused on the questions
of deciding the realizability of a given specification, and generating a realizing
graph if one exists. Some equally important questions, studied in the literature
for various profile types, involve determining the number of different realizations,
efficiently generating all realizations, establishing conditions for the existence of
a unique realization, and so on. Our study of profile composition assumed that
the two given specifications are aligned, i.e., vertex i in πA is the same as vertex i
in πB . A different set of problems arises when we decouple the two specifications.
In the context of D&D degree and distance profile composition, we may consider
a graph G over V = {1, . . . , n} as an acceptable realization for the two given
specifications if there exists a permutation π such that distG(i, j) = Di,j for
every 1 ≤ i < j ≤ n and degG(π(i)) = δi for every 1 ≤ i ≤ n.
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All Subgraphs of a Wheel
Are 5-Coupled-Choosable
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Abstract. A wheel graph consists of a cycle along with a center vertex
connected to every vertex in the cycle. In this paper we show that every
subgraph of a wheel graph has list coupled chromatic number at most 5,
and this coloring can be found in linear time. We further show that ‘5’
is tight for every wheel graph with at least 5 vertices, and briefly discuss
possible generalizations to planar graphs of treewidth 3.

1 Introduction

In this paper we study the problem of coupled choosability, the problem of finding
a valid coloring given list assignments to every vertex and face of a planar graph.
The problem is of great relevance to list coloring 1-planar graphs, as list coupled
coloring a planar graph corresponds to list coloring an optimal 1-planar graph.
(Detailed definitions will be given in Sect. 2.) Wang and Lih [20] show that
every planar graph is 7-coupled-choosable, and hence every optimal 1-planar
graph is 7-choosable. They further show that maximal planar graphs are 6-
coupled-choosable, planar graphs of maximum degree 3 are 6-coupled-choosable,
and outerplanar graphs (and more generally, all K4-minor free graphs) are 5-
coupled-choosable. Hetherington [11] also proves that K4-minor free graphs are
5-coupled-choosable, and further shows that K2,3-minor free graphs (and more
generally, all (K2 + (K1 ∪ K2))-minor free graphs) are also 5-coupled-choosable.
We note here that wheel graphs are not included in any of these classes of graphs.

The problem of coupled coloring a planar graph has also been extensively
studied, see [1,2,4,5,15].

The result by Wang and Lih and by Hetherington settles the coupled choos-
ability for planar partial 2-trees (which are the same as K4-minor free graphs).
Initially wishing to investigate the coupled choosability of planar partial 3-trees,
in this paper we investigate the coupled choosability of wheel graphs and their
subgraphs. In Theorem 2, we show that any subgraph of a wheel is 5-coupled-
choosable, and the coloring can be found in linear time. (Prior papers such as
[20] and [11] did not address the run-time of finding their colorings; it can clearly
be done in polynomial time by following the steps of their proofs but linear time
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is not obvious.) In Theorem 3, we characterize the coupled choosability of wheel
graphs by showing that 5 is tight for wheel graphs with at least 5 vertices. In
the last section of the paper, we touch upon how these results could be relevant
in finding the coupled choosability of planar partial 3-trees.

As for related results, the (non-coupled) choosability of wheel graphs was
characterized in a different paper by Wang and Lih [19]: wheels of even order
have list chromatic number 4, while wheels of odd order have list chromatic
number 3. This stands in contrast to our result, as the parity of the number of
vertices in the graph does not affect the coupled choosability of wheel graphs.
Wang and Lih also show that Halin graphs that are not wheels have list chromatic
number 3, while in Theorem 4 we prove the existence of a Halin graph that is
not 5-coupled-choosable (in fact, it is not 5-coupled-colorable).

Our paper is structured as follows: In Sect. 2 we will go over the neces-
sary definitions and terminology for graphs and graph coloring. In Sect. 3 we
investigate the coupled choosability of wheel graphs. In Sect. 4 we examine
how coupled choosability behaves under certain graph operations. In Sect. 5 we
extend our analysis of wheel graphs to subgraphs of wheels, along with lower-
bounding the coupled choosability of wheel graphs. In Sect. 6 we go over sev-
eral possible extensions to our results, in particular some conjectures about the
coupled-choosability of planar partial 3-trees.

2 Definitions

We assume basic familiarity with graph theory (see [7]). In this paper all graphs
are finite and connected.

The complete graph K4 consists of four vertices and all possible edges between
them. A subdivision of a graph G is formed by repeatedly taking some edge
uv ∈ E(G), removing e from G, adding a new vertex x, and adding edges ux
and xv. A graph is called K4-minor free if none of its subgraphs is a subdivision
of K4.

We recall that a graph G is called planar if it can be drawn in the plane
without edges crossing, and plane if a specific planar drawing Γ is given. The
maximal regions of R\Γ are called faces; the unbounded region is known as the
outer face and all other faces are inner faces. An outerplanar graph is a graph
that can be drawn in the plane such that every vertex is on the outer face; such
a graph is K4-minor free. A bigon is a face that is bounded by two duplicate
edges between a pair of vertices. For a plane graph G, we use V (G), E(G), and
F (G) to denote the set of vertices, the set of edges, and the set of faces of G,
respectively. The dual graph G∗ of a plane graph is obtained by exchanging the
roles of vertices and faces, i.e., G∗ has a vertex for every face of G, and an
edge (f1, f2) for every common edge of the two corresponding faces f1, f2 in G.
However, we must make one exception to this definition of the dual: If G has
a bridge (an edge e which if removed would disconnected the graph), then the
unique face f incident to e does not receive a loop in the dual graph, because
this would make the dual graph uncolorable. (This exception appears to have
been made, without being stated explicitly, in previous papers as well.)
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A list assignment is a map L that assigns a set of colors for each vertex or
face in V (G) ∪ F (G). A coupled coloring with respect to L is a map c such that
c(x) ∈ L(x) for every x ∈ V (G)∪F (G), and c(x) �= c(y) for incident or adjacent
elements x, y ∈ V (G) ∪ F (G). If such a map c exists, then we say that G is L-
coupled-choosable. If G is L-coupled-choosable for every L such that |L(x)| = k
for every x ∈ V (G) ∪ F (G), then we say that G is k-coupled-choosable. The
smallest integer k such that G is k-coupled-choosable is called the list coupled
chromatic number of G and denoted χL

vf (G). Observe that a list coupled coloring
of a graph G implies a list coupled coloring of the dual graph G∗, since the roles
of the vertices and the faces is exchanged but incidences/adjacencies stay the
same. Hence, we have χL

vf (G) = χL
vf (G∗).

A natural way to express the list coupled chromatic number is to define a new
graph X(G) with vertices for all vertices and faces of G and edges whenever the
vertices and faces G are adjacent/incident. We again assume that this graph has
no loops. This graph X(G) is 1-planar, i.e., can be drawn in the plane with at
most one crossing per edge. In fact, if G is 3-connected then X(G) is an optimal
1-planar graph, i.e., it is simple and has the maximum-possible 4n − 8 edges. (All
optimal 1-planar graphs can be obtained in this fashion [16].) A coupled coloring
of G corresponds to a vertex coloring of X(G), i.e., a coloring of the vertices such
that adjacent vertices have different colors. When restricting a vertex coloring
to given lists L, then the respective terms are L-choosable, k-choosable, and the
list chromatic number χL(X).

The wheel graph Wn is formed by starting with a cycle Cn−1 on n − 1 vertices
(the outer cycle), adding a center vertex inside the cycle and adding a spoke-
edge from the center vertex to every vertex on the cycle. We will label the center
vertex and the outer face of the wheel graph as x0 and f0, respectively. We
further label the vertices in the outer cycle as x1, . . . , xn−1, and label the inner
faces as f1, . . . , fn−1 such that xi is incident to fi and fi+1 for 1 ≤ i < n − 1,
and xn−1 is adjacent to fn−1 and f1 (see Fig. 1).

3 Coupled Choosability of Wheel Graphs

In order to prove the desired result for all subgraphs of the wheel graph, we first
determine the coupled choosability of the wheel graph itself. It will be helpful to
recall the following result relating the choosability of a graph to the maximum
degree; it is an analogue to Brook’s theorem and similarly upper-bounds the
chromatic number of a graph by its maximum degree.

Lemma 1. (Erdős, Rubin, and Taylor [9]). Let G be a connected graph that is
neither an odd cycle nor a complete graph. Then G is Δ(G)-choosable.

Our main result in this section is:

Lemma 2. Every wheel graph Wn, n ≥ 4, is 5-coupled-choosable.

Proof. For n = 4, W4 is the complete graph K4. Wang and Lih [20] proved that
χL
vf (K4) = 4, so we assume n ≥ 5. Let L be a color assignment for Wn such that
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|L(y)| = 5 for every y ∈ V (Wn) ∪ F (Wn). Our goal is to find a coupled coloring
with respect to L. Since x0 and f0 are both adjacent to all remaining vertices,
we will color them first and then color the rest of X(Wn). We will use Xn as
a shortcut for X(Wn)\{x0, f0}. Observe that |V (Xn)| = 2n − 2 and that Xn is
4-regular (see Fig. 1). Furthermore, it suffices to find a vertex-colouring of Xn

with respect to L, plus two suitable colors in L(x0) and L(f0) for x0 and f0. We
have two cases:

x1

x2

x3

xn−1

xn−2

x0

f1

f2 f3

fn−1

fn−2

f1

x1

f2

x2
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xn−2

fn−2

4

3

3

4
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3

3

3

3
3

3

3

3

3
34

Fig. 1. The graph W9 (left) and X9 (right). Circled numbers indicate a lower bound
on the list-length in L′.

Case 1: L(x0) ∩ L(f0) �= ∅. Let a ∈ L(x0) ∩ L(f0), and assign color a to x0 and
f0. Observe that |L(y)\{a}| ≥ 4 for every y ∈ V (Xn) and Xn has maximum
degree 4. Moreover |Xn| = 2n − 2 is even, so Xn is not an odd cycle. Also x1

and x3 are not adjacent by n ≥ 5, so Xn is not a complete graph. Therefore, by
Lemma 1, we have a list coloring of the vertices of Xn that only uses colors in
L\{a}, which in turn implies an L-list-coloring of the vertices and faces of Wn.

Case 2: L(x0) ∩ L(f0) = ∅. We find suitable colors for x0 and f0 by imitating the
method used for K4 in [20] (but adapted here to five colors). Define color-pairs
S := {{a, b} : a ∈ L(x0), b ∈ L(f0)}. By case-assumption |S| = 25.

We claim that | {s ∈ S : s ⊆ L(y)} | ≤ 6 for any y ∈ V (Xn). To see this,
let y ∈ V (Xn), and consider the disjoint sub-lists L1 := L(y) ∩ L(x0) and
L2 := L(y) ∩ L(f0). Since |L1| + |L2| ≤ |L(y)| = 5, and |L1| and |L2| are
integers, we have

| {s ∈ S : s ⊆ L(y)} | = |L1 × L2| = |L1| · |L2| ≤ 6.

Therefore, color-pairs of S appear as subsets of lists in Xn at most
∑

y∈Xn

| {s ∈ S : s ⊆ L(y)} | ≤ (2n − 2) · 6 = 12n − 12
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times. By |S| = 25, some element {a′, b′} of S appears at most

12n − 12
25

<
n − 1

2

times as a subset of a list in Xn. Color x0 with a′ and f0 with b′. For y ∈ V (Xn),
define L′(y) := L(y)\{a′, b′}. For any y ∈ V (Xn), we have 3 ≤ |L′(y)| ≤ 5.
We call y a 3-vertex if |L′(y)| = 3 (this implies {a′, b′} ⊂ L(y)), and a 4-vertex
otherwise. From our choice of colors a′ and b′, we have

| {y ∈ V (Xn) : y is a 3-vertex} |
|V (Xn)| <

(n − 1)/2
2n − 2

=
1
4

Therefore, more than three quarters of the vertices of Xn are 4-vertices. Consider
the cyclic enumeration

σ := 〈f1, x1, f2, x2, . . . , fn−1, xn−1〉
of the vertices of Xn. Since strictly more than 3

4 |V (Xn)| of the vertices are 4-
vertices, we have four consecutive 4-vertices in σ. Up to exchange of fi and
xi and renumbering, we may assume that f1, x1, f2, and x2 are 4-vertices.
Figure 1(right) illustrates the lower bounds on the size of L′.

We next color fn−1, xn−1 and x1 and have two sub-cases. If L′(fn−1) ∩
L′(x1) �= ∅, then color fn−1 and x1 with the same color. Otherwise, since
|L′(fn−1) ∪ L′(x1)| ≥ 7 > |L(f1)|, there are colors p and q for fn−1 and x1

respectively such that at least one of them is not in L(f1), i.e., |L(f1)∩{p, q}| ≤ 1.
Pick these colors for fn−1 and x1. In either case, two vertices adjacent to xn−1

have been colored, and |L′(xn−1)| ≥ 3, so xn−1 will have at least one valid color
left, and we pick this color for xn−1.

We now have colors p, q, and r for fn−1, x1, and xn−1 (respectively) such that
|L′(f1) ∩ {p, q, r}| ≤ 2. Removing these colors from the lists of their neighbors
produces new lists L′′ such that

|L′′(f1)| = |L′(f1) \ {p, q, r}| ≥ 4 − 2 = 2
|L′′(f2)| = |L′(f2) \ {q}| ≥ 4 − 1 = 3
|L′′(x2)| = |L′(x2) \ {q}| ≥ 4 − 1 = 3

|L′′(xn−2)| = |L′(xn−2) \ {p, r}| ≥ 3 − 2 = 1
|L′′(fn−2)| = |L′(fn−2) \ {p}| ≥ 3 − 1 = 2

|L′′(xi)| ≥ 3 (for all 3 ≤ i ≤ n − 3)
|L′′(fi)| ≥ 3 (for all 3 ≤ i ≤ n − 3)

The figure on the right illustrates
these lower bounds on the list-
lengths in L′′.

f1
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fn−2

3

3

3
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3
32

3

1

2
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q

r

Let X ′
n := Xn\{fn−1, xn−1, f1, x1} (X ′

n is solid in the above figure) and color
it with respect to list assignment L′′. This is feasible since X ′

n is outerplanar and
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outerplanar graphs are 3-choosable even if the colors of two consecutive vertices
on the outer face are fixed [13] (here we fix the colors for xn−2 and fn−2). This
colors all vertices except for f1, but |L′′(f1)| ≥ 2 and f1 has only one neighbor
in X ′

n, so we can give it a color not used by f2. Therefore, we have a list vertex-
coloring of Xn that is compatible with the colors for x0, f0 chosen earlier and so
implies a list coupled coloring of Wn. �

Note that this coloring can easily be found in linear time. This is obvious in
Case 1 since the coloring of Lemma 1 can be found in linear time [17]. Determin-
ing the colors a, b for Case 2 takes linear time since all list-lengths are constant,
and then we mostly appeal to list-coloring an outer-planar graph, which can be
done in linear time since outer-planar graphs are 2-degenerate.

4 Coupled Choosability Under Graph Operations

In Sect. 5 we seek to prove that all subgraphs of a wheel are 5-coupled-choosable.
In pursuit of this, we examine how various graph operations affect the list-
coupled-chromatic number. First, in contrast to list-vertex-coloring, there is no
clear relationship between the list coupled chromatic number of a graph and the
list coupled chromatic number of its subgraphs. Indeed, a subgraph may have
larger list coupled chromatic number.

Observation 1. There exists a plane graph G with subgraph H ⊆ G such that
χL
vf (H) > χL

vf (G)

Proof. Let H be the graph obtained by deleting one edge of K4; see Fig. 2.
From Theorem 10 of [20], we know that the graph K4 is 4-coupled-choosable,
i.e., χL

vf (K4) = 4. But in graph H, the incidences and adjacencies between
x0, x1, x2, f2, and f ′ form a K5, and therefore χL

vf (H) ≥ 5 > 4 = χL
vf (K4). �

x2

x1 x3
x0

f2 f3

f1
f0

x2

x1 x3
x0

f2 f3

f ′

Fig. 2. K4 and subgraph H. Observe that χL
vf (H) = 5 since it is outerplanar.

Other graph operations are better behaved in this respect. For instance, there
is a clear relationship between the coupled choosability of some graph G and the
coupled choosability of any subdivision of G.

Lemma 3. For any plane graph G, any subdivision H of G is max{5, χL
vf (G)}-

coupled-choosable.
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Proof. Let L be a list assignment for H such that |L(x)| = max{5, χL
vf (G)} for

every vertex and face of H. We prove the statement by induction on the number
of subdivisions performed on G to obtain H. If H is the result of subdividing
the edges of G zero times, then H = G and so trivially any L-coupled-coloring
of G is an L-coupled-coloring of H.

Otherwise, H was the result of performing k + 1 subdivisions on G for some
k ≥ 0. In particular, H is the result of subdividing a single edge of some graph
H ′, where H ′ was the result of performing k subdivisions on G. Let uv ∈ E(H ′)
be the edge of H ′ that was subdivided, and let x be the vertex which was added.
By the inductive hypothesis, H ′ is max{5, χL

vf (G)}-coupled-choosable. Color the
faces of H and the vertices V (H)\{x} according to how they would be colored in
H ′. Then we only need to color the remaining vertex x. Note that x has degree
two with neighbors u and v. Let f1 and f2 be the two faces adjacent to the edge
uv in H ′. Then u, v, f1, and f2 are the only vertices and faces that are adjacent
(respectively incident) to x. Hence, after coloring the vertices and faces from H ′,
x still has at least |L(x)| − 4 ≥ 5 − 4 = 1 color left and can be colored. �

This implies another result. For a planar graph G, subdividing an edge
corresponds in the dual graph G∗ to duplicating edges to form bigons. Since
χL
vf (G) = χL

vf (G∗) we therefore have:

Corollary 1. Let G be a plane graph, and H the result of duplicating some edges
of G to form bigons. Then H is max{5, χL

vf (G)}-coupled-choosable.
A similar result can also be had for adding a vertex of degree one to a graph.

Lemma 4. Let G be a planar graph, and let H be G plus a new vertex of degree
one. Then H is max{3, χL

vf (G)}-coupled-choosable.
Proof. Let x be the new vertex, and let L be a list assignment for H such that
|L(y)| = max{3, χL

vf (G)} for every vertex and face of H. Color the faces and
vertices of H−x according to how they would be colored in G. It remains to color
x. Since x is adjacent to only one vertex and incident to only one face in H, after
coloring the vertices and face of H −x, x still has at least |L(x)| − 2 ≥ 3− 2 = 1
color left and can be colored. �

Note that for all three of the above lemmas, the coloring of H can be found
in constant time, given a suitable coloring of G.

Wang and Lih [20] and Hetherington [11] proved that all K4-minor free
graphs are 5-coupled-choosable, but it is not clear whether their proofs lead
to a linear-time algorithm to find the coloring. With the above two results, such
an algorithm is immediate.

Theorem 1. All K4-minor free graphs are 5-coupled-choosable, and the coloring
can be found in linear time.

Proof. It is known (see [8]) that every K4-minor free graph G can be obtained
from some tree T via a series of duplicating edges, subdividing edges, and adding
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vertices of degree one. Then by Lemmas 3 and 4, Corollary 1, and the 3-coupled-
choosability of trees, we have that G is 5-coupled-choosable.

To find the coloring efficiently, first split G into its 2-connected components
C1, . . . , Cd [12]. Then run on each component Ci the algorithm that recognizes
so-called series-parallel graphs in linear time [18]. Since 2-connected K4-minor
free graphs are series-parallel graphs, this algorithm will succeed on each Ci,
and following the trace of its execution one obtains how to construct Ci from a
single edge via a series of duplicating edges and subdividing edges. Combining
this with the tree of 2-connected components shows how to obtain G. Since trees
are trivially 3-coupled-colorable (choose a color for the unique face, then find a
2-coloring of the vertices), and each of our expansion steps takes constant time,
we can find the coloring of G in linear time. �

5 Subgraphs of Wheels

We now turn to graphs that are subgraphs of wheels. As demonstrated in Obser-
vation 1, non-trivial work is required to demonstrate that any subgraph of
a wheel graph is also 5-coupled-choosable. The result comes quickly from the
results proved in the previous section.

Theorem 2. Let G be a subgraph of a wheel graph Wn, n ≥ 4. Then G is
5-coupled-choosable and the coloring can be found in linear time.

Proof. We examine several possibilities of the structure of G.

Case 1: G = Wn. Then by Lemma 2 G is 5-coupled-choosable, and the coloring
can be found in linear time.

Case 2: G is the result of deleting at least one edge or vertex of Wn that is
on the outer face. Then G is outerplanar and therefore K4-minor free, and so
by Theorem 1, G is 5-coupled-choosable and the coloring can be found in linear
time.

Case 3: G is the result of removing the center vertex of Wn. Then G = Cn−1 is
outerplanar and (as in the previous case) 5-coupled choosable.

Case 4: None of the above. Then all vertices of Wn belong to G, but we deleted
some edges which were not on the outer face. So G is the result of deleting
some of the spoke-edges incident to the center vertex. If at most two spokes
remain, then G has at most 3 faces and therefore is K4-minor free, and hence
is 5-coupled-choosable by Theorem 1. If at least three spokes remain, then G
is a subdivision of some Wk for k ≥ 4. By Lemmas 2 and 3 G is 5-coupled-
choosable, and we can find the coloring in linear time since we can detect all
subdivision-vertices by scanning for vertices in linear time. �

Having established an upper bound on the list coupled chromatic number of
wheel graphs in Lemma 2, one might wonder whether this bound is tight. In
[20], it is shown that the graph K4 = W4 is 4-coupled-choosable. In fact, this
is the only wheel graph that is 4-coupled-choosable. For all other wheel graphs,
the bound of 5-coupled-choosability is tight.
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Theorem 3. χL
vf (Wn) = 5, for n ≥ 5.

Proof. From Lemma 2, we know that all wheel graphs are 5-coupled-choosable.
It remains to show that they are not 4-coupled-choosable for n ≥ 5.

For n = 5, 6, we consider the list assignment L such that L(y) = {1, 2, 3, 4}
for every y ∈ V (Wn) ∪ F (Wn). (So these graphs are not even 4-coupled-
colorable.) Assume for contradiction that we have an L-coupled-coloring c of Wn.
If c(x0) �= c(f0), then this leaves two colors for coloring the triangle x1, f1, f2 in
Xn, impossible. Hence c(x0) = c(f0), say they are both colored 4. Then we have
an L′-coloring of Xn with lists L′(y) := L(y)\{4} = {1, 2, 3}.

Observe that for X5 and X6, any putative L′-coloring would be unique up to
renaming the colors, since once we have colored one triangle, every other vertex
can be reached via a sequence of triangles. One verifies that for these graphs (and
indeed every Xk where k − 1 is not divisible by 3), attempting such a 3-coloring
leads to a contradiction (see Fig. 3). This proves Theorem 3 for n = 5, 6.

For n ≥ 7, we construct a list assignment L such that Wn is not L-coupled-
choosable. Set L(x0) = {1, 2, 3, 4} and L(f0) = {5, 6, 7, 8}. We further define:

L(f1) = L(x1) = L(f2) = {1, 2, 5, 6}
L(x2) = L(f3) = L(x3) = {1, 2, 7, 8}
L(f4) = L(x4) = L(f5) = {3, 4, 5, 6}
L(x5) = L(f6) = L(x6) = {3, 4, 7, 8}

Observe that each of these triples forms a triangle in Xn, and for any a ∈
{1, 2, 3, 4} and b ∈ {5, 6, 7, 8}, one of these triangles has colors {a, b, x, y} for
some colors x, y. Assume for contradiction that we have an L-coupled-coloring c
of Wn. Up to symmetry, assume c(x0) = 1 and c(f0) = 5. But then f1, x1, and
f2 have two colors left, and therefore cannot be colored, a contradiction. �

Fig. 3. The graphs X5 (left) and X6 (right).

With this, we can characterize the coupled choosability of wheel graphs.
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Corollary 2. For a wheel graph Wn, we have χL
vf (Wn) = min{5, n}.

6 Towards Partial 3-Trees

Our investigation of wheel graphs was motivated by wanting to determine the
coupled choosability number of planar partial 3-trees. To define these, we first
define Apollonian networks recursively as follows. A triangle is an Apollonian
network. If G is an Apollonian network, and f is a face of G (necessarily a
triangle) that is not the outer-face, then the graph obtained by stellating face f
is also an Apollonian network. Here stellating means the operation of inserting
a new vertex v inside face f and making it adjacent to all vertices of f . A
planar partial 3-tree is a graph that is a subgraph of an Apollonian network (see
Fig. 4). (This definition is different, but equivalent, to the “standard” definition
of partial 3-trees via treewidth or via chordal supergraphs with clique-size 4 [3].)
We offer the following conjecture:

Conjecture 1. Every planar partial 3-tree is 6-coupled-choosable.

Fig. 4. A planar partial 3-tree. Dotted edges show the Apollonian network.

Note that the conjecture holds for Apollonian networks, since these are max-
imal planar graphs and these are known to be 6-coupled-choosable [20]. But
this does not imply 6-coupled-choosability of subgraphs, and so the conjecture
remains open.

Towards the conjecture, we studied several graph classes that are planar
partial 3-trees (and generalize wheels). One such class of graphs is the class of
Halin graphs, which are defined by starting with a tree T and adding a cycle
between the leaves of T . See also the solid edges in Fig. 5. Wheel graphs are
the special case of Halin graphs where T is a star graph. A second class of
planar partial 3-trees are the stellated outer-planar graphs, obtained by starting
with some outerplanar graph G, and stellating the outer-face. See also the dashed
edges in Fig. 5. Wheel graphs are the special case of stellated outerplanar graphs
where the outerplanar graph is a cycle.
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One can easily see that Halin graphs are exactly the duals of stellated out-
erplanar graphs. Therefore, any list coupled coloring of a stellated outerplanar
graph corresponds to a list coupled coloring of a Halin graph. Unfortunately, our
upper bound for the coupled choosability of wheel graphs does not in general
extend to Halin graphs.

Theorem 4. There exists a stellated outerplanar graph (equivalently a Halin
graph) that is not 5-coupled-colorable (in particular therefore it is not 5-coupled-
choosable).

Proof. The Halin-graph G is the triangular prism, see Fig. 5 where we also show
the dual graph G∗ and the 1-planar graph X(G). The claim holds if we show
that there is no 5-coloring of the vertices of X(G).

Assume for contradiction that X(G) had a 5-coloring; up to symmetry we
may assume that the triangle formed by the three degree-4-faces of G is colored
1, 2, 3. Let (t, t′) be the edge that crosses the edge colored with 2 and 3. Vertices
t, t′ are colored with 1, 4 or 5; up to renaming of colors 4 and 5 hence one of
them is colored 4.

Starting with this coloring, propagate restrictions on the possible colors to
other vertices of X(G) along the numerous copies of K4 (note that all vertices
other than t, t′ are adjacent to the one colored 1). This leads to a triangle that
has only two possible colors left, a contradiction. �

Fig. 5. A Halin-graph G (black solid; the tree is bold), and the dual graph G∗ (blue
dashed) which is a stellated outerplanar graph (the outerplanar graph is bold). Taking
both, and adding the face-vertex incidences (red dotted) gives graph X(G). We also
show the only possible 5-coloring (up to symmetry) of X(G), which leads to a contra-
diction since a triangle would have to be colored with 2 colors. (Color figure online)

In particular, this shows that we cannot replace ‘6’ by ‘5’ in Conjecture 1.
We also remark that, in line with Observation 1, a supergraph of the triangular
prism is 5-coupled-colorable. Namely, one can insert diagonals in the degree-4
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faces and obtain the octahedron. An octahedron is 3-colorable because all faces
are triangles and the vertex-degrees are even. The dual graph (which is the cube)
is bipartite and hence 2-colorable. Therefore, using disjoint sets of colors for the
primal and the dual graph, we get a 5-coupled-coloring of the octahedron.

Returning to wheel graphs, Theorem 4 shows that wheels are strictly better
(as far as coupled choosability is concerned) than Halin-graphs. Now we study
a second graph class that lies between the wheels and the planar partial 3-trees.
These are the IO-graphs, which are the planar graphs that can be obtained by
adding an independent set to the interior faces of an outerplanar graph (see
Fig. 6). Certainly any subgraph of a wheel is an IO graph.

Conjecture 2. Every IO-graph is 5-coupled choosable.

We studied subgraphs of wheel graphs because they may be an important
stepping stone towards Conjecture 2. In particular, consider some IO-graph G
obtained from an outerplanar graph O and independent set I. Let G+ be a
maximal IO-graph containing G, i.e., add edges to G for as long as the result is
simple and an IO-graph. Then G+ is a tree of wheels, where each wheel consists
of a vertex x ∈ I with its neighbours, and the wheels have been glued together
at edges. Correspondingly G is a tree of subgraphs of wheels. It may be possible
to use Theorem 2 (enhanced with further restrictions on the coloring of some
parts) to prove Conjecture 2 by building a coloring of G incrementally in this
tree, but this remains future work.

Fig. 6. An IO graph G consists of an outerplanar graph (circles) and an independent
set (squares). Dotted edges are added to obtain G+, and some of the wheels used to
build G+ are shaded.

We end with some other open questions surrounding list-colorability and list-
coupled-colorability. Foremost, is every 1-planar graph 7-list-colorable? Borodin
states this to be true [6], but quotes the paper by Wang and Lih [20] which
only deals with 7-coupled-choosability. Hence all optimal 1-planar graphs are
7-list-colorable but to our knowledge the problem remains open for 1-planar
graphs that are not subgraphs of optimal 1-planar graphs (e.g. any 1-planar
graph that contains K6 as a subgraph). Second, how easy is it to test whether
a planar graph G is k-coupled choosable, or whether it is L-coupled-choosable?
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The latter is easily shown to be NP-hard, and it can be solved in polynomial
time if the treewidth t is bounded. (Specifically, the non-coupled version can be
solved in nO(t) time in graphs of treewidth t [14].) One can also easily argue
that for a planar graph G, the treewidth of X(G) can be bounded by a con-
stant times the treewidth of G—details are left to the reader. Hence, the same
result also holds for coupled choosability.) But what is the dependency on the
treewidth? It is known that L-choosability is W [1]-hard when parameterized by
treewidth [10]. (This is in contrast to k-choosability, which surprisingly enough
is fixed-parameter tractable in the treewidth [10].) But the reduction for W [1]-
hardness does not construct planar graphs since it contains a large clique as a
minor. Is L-coupled-choosability W [1]-hard with respect to the treewidth?
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Abstract. Given an undirected graph, a conflict-free coloring (CFON*)
is an assignment of colors to a subset of the vertices of the graph such that
for every vertex there exists a color that is assigned to exactly one vertex
in its open neighborhood. The minimum number of colors required for
such a coloring is called the conflict-free chromatic number. The decision
version of the CFON* problem is NP-complete even on planar graphs.

In this paper, we show the following results.
– The CFON* problem is fixed-parameter tractable with respect to

the combined parameters clique width and the solution size.
– We study the problem on block graphs and cographs, which have

bounded clique width. For both graph classes, we give tight bounds
of three and two respectively for the CFON* chromatic number.

– We study the problem on the following intersection graphs: inter-
val graphs, unit square graphs and unit disk graphs. We give tight
bounds of two and three for the CFON* chromatic number for
proper interval graphs and interval graphs. Moreover, we give upper
bounds or the CFON* chromatic number on unit square and unit
disk graphs.

– We also study the problem on split graphs and Kneser graphs. For
split graphs, we show that the problem is NP-complete. For Kneser
graphs K(n, k), when n ≥ k(k + 1)2 + 1, we show that the CFON*
chromatic number is k + 1.

We also study the closed neighborhood variant of the problem denoted
by CFCN*, and obtain analogous results in some of the above cases.

1 Introduction

Given an undirected graph G = (V,E), a conflict-free coloring is an assignment
of colors to a subset of the vertices of G such that every vertex in G has a uniquely
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colored vertex in its neighborhood. The minimum number of colors required for
such a coloring is called the conflict-free chromatic number. This problem was
introduced in 2002 by Even, Lotker, Ron and Smorodinsky [8], motivated by
the frequency assignment problem in cellular networks where base stations and
clients communicate with one another. To avoid interference, we require that
there exists a base station with a unique frequency in the neighborhood of each
client. Since the number of frequencies are limited and expensive, it is ideal to
minimize the number of frequencies used.

This problem has been well studied [1,5,11,16,18] for nearly 20 years. Several
variants of the problem have been studied. We focus on the following variant of
the problem with respect to both closed and open neighborhoods, which are
defined as follows.

Definition 1 (Conflict-Free Coloring). A CFON* coloring of a graph G =
(V,E) using k colors is an assignment C : V (G) → {0} ∪ {1, 2, . . . , k} such
that for every v ∈ V (G), there exists a color i ∈ {1, 2, . . . , k} such that |N(v) ∩
C−1(i)| = 1. The smallest number of colors required for a CFON* coloring of G
is called the CFON* chromatic number of G, denoted by χ∗

ON (G).
The closed neighborhood variant, CFCN* coloring, is obtained by replacing

the open neighborhood N(v) by the closed neighborhood N [v] in the above. The
corresponding chromatic number is denoted by χ∗

CN (G).

In the above definition, vertices assigned the color 0 are treated as “uncol-
ored”. Hence in a CFON* coloring (or CFCN* coloring), no vertex can have a
vertex colored 0 as its uniquely colored neighbor. The CFON* problem (resp.
CFCN* problem) is to compute the minimum number of colors required for a
CFON* coloring (resp. CFCN* coloring) of a graph. Abel et al. in [1] showed
that both the problems are NP-complete even for planar graphs. They also
showed that eight colors are sufficient to CFON* color planar graphs, which
was improved to four colors [12]. Further these problems have been studied on
outerplanar graphs [4], and intersection graphs like string graphs, circle graphs
[13], disk graphs, square graphs and interval graphs [9]. Continuing this line of
work, we study these problems on various restricted graph classes such as block
graphs, cographs, intervals graphs, unit square graphs, unit disk graphs, Kneser
graphs and split graphs.

The parameterized complexity of conflict-free coloring, for both neighbor-
hoods, has been of recent research interest. They are fixed-parameter tractable
(FPT) when parameterized by tree width [2,5], distance to cluster (distance
to disjoint union of cliques) [17] and neighborhood diversity [11]. Further, with
respect to distance to threshold graphs there is an additive approximation algo-
rithm in FPT-time [17].1

We study CFON* and CFCN* problems for the parameter clique width,
which generalizes all the above parameters. Specifically, for every graph G,

1 Some of the above FPT results are shown for the “full-coloring variant” of the
problem (as defined in Definition 2). Our clique width result can also be adapted for
the full-coloring variant.
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cw(G) ≤ 3 · 2tw(G)−1, where tw(G) and cw(G) denote the tree width of G and
the clique width of G respectively [7]. Graphs with distance to cluster at most
k ∈ N, have clique width of at most O(2k) [19]. We show that the CFON* and
CFCN* problems are FPT with respect to the combined parameters clique width
and the number of colors used. Note that the previously mentioned FPT-results
[2,5,11,17] do not additionally need the solution size as a parameter.

1.1 Results

– In Sect. 3, we show fixed-parameter tractable algorithms for both CFON*
CFCN* problems with respect to the combined parameters clique width w

and the solution size k, that runs in 2O(w3k)nO(1) time where n is the number
of vertices of G.

– In Sect. 4, we discuss the results on block graphs and cographs. Both the
graph classes are solvable in polynomial time, which follows from the clique
width result.

• For block graphs G, we show that χ∗
ON (G) ≤ 3. We show a block graph

G that requires three colors making the above bound tight.
• For cographs, we show that two colors are sufficient for a CFON* coloring.

We also characterize cographs for which one color suffices.
– In Sect. 5, we show that for interval graphs G, χ∗

ON (G) ≤ 3. We show an inter-
val graph that requires three colors making the above bound tight. Moreover,
two colors are sufficient to CFON* color proper interval graphs.
We also show that the CFCN* problem is polynomial time solvable on interval
graphs.

– In Sect. 6, we study the problem on geometric intersection graphs like unit
square graphs and unit disk graphs.
We show that χ∗

ON (G) ≤ 27 for unit square graphs G. For unit disk graphs
G, we show that χ∗

ON (G) ≤ 51. No upper bound was previously known.
– In Sect. 7, we study both the problems on Kneser graphs and split graphs.

• We show that k+1 colors are sufficient to CFON* color the Kneser graphs
K(n, k), when n ≥ 3k−1. We also show that χ∗

ON (K(n, k)) ≥ k+1 when
n ≥ k(k + 1)2 + 1, thereby proving that χ∗

ON (K(n, k)) = k + 1 when
n ≥ k(k + 1)2 + 1.
We also show that k colors are sufficient to CFCN* color a Kneser graph
K(n, k), when n ≥ 2k + 1.

• On split graphs, we show that the CFON* problem is NP-complete and
the CFCN* problem is polynomial time solvable.

2 Preliminaries

Throughout the paper, we assume that the graph G is connected. Otherwise, we
apply the algorithm on each component independently. We also assume that G
does not contain any isolated vertices as the CFON* problem is not defined for an
isolated vertex. We use [k] to denote the set {1, 2, . . . , k} and C : V (G) → {0}∪[k]
to denote the color assigned to a vertex. A universal vertex is a vertex that is
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adjacent to all other vertices of the graph. In some of our algorithms and proofs, it
is convenient to distinguish between vertices that are intentionally left uncolored,
and the vertices that are yet to be assigned any color. The assignment of color
0 is used to denote that a vertex is left “uncolored”.

To avoid clutter and to simplify notation, we use the shorthand notation
vw to denote the edge {v, w}. The open neighborhood of a vertex v ∈ V (G) is
the set of vertices {w : vw ∈ E(G)} and is denoted by N(v). Given a conflict-
free coloring C, a vertex w ∈ N(v) is called a uniquely colored neighbor of v if
C(w) �= 0 and ∀x ∈ N(v) \ {w}, C(w) �= C(x). The closed neighborhood of v is
the set N(v)∪{v}, denoted by N [v]. The notion of uniquely colored neighbor in
the closed neighborhood variant is analogous to the open neighborhood variant,
and is obtained by replacing N(v) by N [v]. We sometimes use the mapping
h : V → V to denote the uniquely colored neighbor of a vertex. We also extend
C for vertex sets by defining C(V ′) =

⋃
v∈V ′ C(v) for V ′ ⊆ V (G). To refer to the

multi-set of colors used in V ′, we use C{{}}(V ′). The difference between C{{}}(V ′)
and C(V ′) is that we use multiset union in the former.

In many of the sections, we also refer to the full coloring variant of the
conflict-free coloring problem, which is defined below.

Definition 2 (Conflict-Free Coloring – Full Coloring Variant). A CFON
coloring of a graph G = (V,E) using k colors is an assignment C : V (G) →
{1, 2, . . . , k} such that for every v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such
that |N(v) ∩ C−1(i)| = 1. The smallest number of colors required for a CFON
coloring of G is called the CFON chromatic number of G, denoted by χON (G).

The corresponding closed neighborhood variant is denoted CFCN coloring,
and the chromatic number is denoted χCN (G).

A full conflict-free coloring, where all the vertices are colored with a non-zero
color, is also a partial conflict-free coloring (as defined in Definition 1) while
the converse is not true. It is clear that one extra color suffices to obtain a full
coloring variant from a partial coloring variant. However, it is not always clear
if the extra color is actually necessary.

For the theorems marked (�), the full proofs are omitted due to space con-
straints.

3 FPT with Clique Width and Number of Colors

In this section, we study the conflict-free coloring problem with respect to the
combined parameters clique width cw(G) and number of colors k. We present
FPT algorithms for both the CFON* and CFCN* problems.

Definition 3 (Clique width [7]). Let w ∈ N. A w-expression Φ defines a graph
GΦ where each vertex receives a label from [w], using the following four recursive
operations with indices i, j ∈ [w], i �= j:

1. Introduce, Φ = v(i): GΦ is a graph consisting a single vertex v with label i.
2. Disjoint union, Φ = Φ′ ⊕ Φ′′: GΦ is a disjoint union of GΦ′ and GΦ′′ .
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3. Relabel, Φ = ρi→j(Φ′): GΦ is the graph GΦ′ where each vertex labeled i in GΦ′

now has label j.
4. Join, Φ = ηi,j(Φ′): GΦ is the graph GΦ′ with additional edges between each

pair of vertices u of label i and v of label j.

The clique width of a graph G denoted by cw(G) is the minimum number w
such that there is a w-expression Φ that defines G.

In the following, we assume that a w-expression Ψ of G is given. There is
an FPT-algorithm that, given a graph G and integer w, either reports that
cw(G) > w or outputs a (23w+2 − 1)-expression of G [15].

A w-expression Ψ is an irredundant w-expression of G, if no edge is introduced
twice in Ψ . Given a w-expression of G, it is possible to get an irredundant w-
expression of G in polynomial time [7]. For a coloring of G, a vertex v is said
to be conflict-free dominated by the color c, if exactly one vertex in N(v) is
assigned the color c. In general, a vertex v is said to be conflict-free dominated
by a set of colors S, if each color in S conflict-free dominates v. Also, a vertex v
is said to miss the color c if there exists no vertex in N(v) that is assigned the
color c. In general, a vertex v is said to miss a set of colors T , if every color in
T is missed by v.

Now, we prove the main theorem of this section.

Theorem 4. Given a graph G, a w-expression of G and an integer k, it is
possible to decide if χ∗

ON (G) ≤ k in 2O(w3k)nO(1) time.

Proof. We give a dynamic program that works bottom-up over a given irre-
dundant w-expression Ψ of G. For each subexpression Φ of Ψ and a coloring
C : V (GΦ) → {0, 1, . . . , k} of GΦ, we have a boolean table entry d[Φ;N ;M ] with

N = n1,0, . . . , n1,k, . . . , nw,0, . . . , nw,k, and

M = M1, . . . ,Mw where for every a ∈ [w], Ma = ma,S1,T1 , . . . ,ma,S3k ,T3k

where S�, T� are all the possible disjoint subsets of the set of colors [k]. Note that
there are 3k many disjoint subsets S�, T� ∈ [k].

Given some vertex-coloring of GΦ, values of M and N have the following
meaning.
N : For each label a ∈ [w] and color q ∈ {0}∪ [k], the variable na,q ∈ {0, 1, 2}. Let
n�

a,q be the number of vertices with label a that are colored q. Then na,q is equal
to n�

a,q when limited to a maximum of two, in other words na,q = min{2, n�
a,q}.

M : For each label a ∈ [w], and disjoint sets S, T ⊆ [k], the variable ma,S,T ∈
{0, 1}. The variable ma,S,T is equal to 1 if there is at least one vertex v with
label a which is conflict-free dominated by exactly colors S and the set of colors
that misses v is exactly T . If there is no such vertex, then ma,S,T is equal to 0.

For each subexpression Φ of Ψ , the boolean entry d[Φ;N ;M ] is set to TRUE
if and only if there exists a vertex-coloring C : V (GΦ) → {0} ∪ [k] that satisfies
the variables na,q and ma,S,T , for each label a ∈ [w], color q ∈ {0} ∪ [k] and
disjoint subsets S, T ⊆ [k]. To decide if k colors are sufficient to CFON* color G,
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we consider the expression Ψ with GΨ = G. We answer ‘yes’ if and only if there
exists an entry d[Ψ ;N ;M ] set to TRUE where ma,{},T = 0 for each a ∈ [w] and
for each T ⊆ [k]. This means there exists a coloring such that there is no label
a ∈ [w] with a vertex v that is not conflict-free dominated.

Now, we show how to compute d[Φ;N ;M ] at each operation.

1. Φ = v(i).
The graph GΦ represents a node with one vertex v that is labelled i ∈ [w].
For each color q ∈ {0} ∪ [k], we set the entry d[Φ;N ;M ] = TRUE if and only
if ni,q = 1, mi,{},[k] = 1 and all other entries of N and M are 0.

2. Φ = Φ′ ⊕ Φ′′.
The graph GΦ results from the disjoint union of graphs GΦ′ and GΦ′′ .
We set d[Φ;N ;M ] = TRUE if and only if there exist entries d[Φ′;N ′;M ′] and
d[Φ′′;N ′′;M ′′] such that d[Φ′;N ′;M ′] = TRUE, d[Φ′′;N ′′;M ′′] = TRUE and
the following conditions are satisfied:
(a) For each label a ∈ [w] and color q ∈ {0}∪ [k], na,q = min{2, n′

a,q +n′′
a,q}.

(b) For each label a ∈ [w] and disjoint S, T ⊆ [k], ma,S,T = min{1, m′
a,S,T +

m′′
a,S,T }.

We may determine each table entry of d[Φ;N,M ] for every N,M as follows.
We initially set d[Φ;N,M ] to FALSE for all N,M . We iterate over all combi-
nations of table entries d[Φ′;N ′;M ′] and d[Φ′′;N ′′;M ′′]. For each combination
of TRUE entries d[Φ′;N ′;M ′] and d[Φ′′;N ′′;M ′′], we update the correspond-
ing entry d[Φ;N ;M ] to TRUE. The corresponding entry d[Φ;N ;M ] has vari-
ables na,q which is the sum of n′

a,q and n′′
a,q limited by two, and variables

ma,S,T which is the sum of m′
a,S,T and m′′

a,S,T limited by one. Thus, to com-

pute every entry for d[Φ; ; ] we visit at most (3w(k+1)2w3k)2 combinations of
table entries and for each of those compute w(k + 1) + w3k values for M
and N .

3. Φ = ρi→j(Φ′).
The graph GΦ is obtained from the graph GΦ′ by relabelling the vertices
of label i in GΦ′ with label j where i, j ∈ [w]. Hence, ni,q = 0 for each
q ∈ {0} ∪ [k] and mi,S,T = 0 for each disjoint S, T ⊆ [k].
We set d[Φ;N ;M ] = TRUE if and only if there exists an entry d[Φ′;N ′;M ′]
such that d[Φ′;N ′;M ′] = TRUE in GΦ′ that satisfies the following conditions:
(a) For each color q ∈ {0} ∪ [k], each label a ∈ [w] \ {i, j} and disjoint

S, T ⊆ [k], na,q = n′
a,q and ma,S,T = m′

a,S,T .
(b) For each color q ∈ {0} ∪ [k], nj,q = min{2, n′

i,q + n′
j,q} and ni,q = 0.

(c) For each disjoint S, T ⊆ [k], mj,S,T = min{1, m′
i,S,T + m′

j,S,T } and
mi,S,T = 0.

We may determine each table entry of d[Φ;N ;M ] for every N,M as follows.
We initially set d[Φ;N ;M ] to FALSE for all N,M . We iterate over all the
TRUE table entries d[Φ′;N ′;M ′], and for each such entry we update the
corresponding entry d[Φ;N ;M ] to TRUE, if applicable. To compute every
entry for d[Φ; ; ] we visit at most 3w(k+1)2w3k table entries d[Φ′; ; ] and for
each of those compute w(k + 1) + w3k values for M and N .
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4. Φ = ηi,j(Φ′).
The graph GΦ is obtained from the graph GΦ′ by connecting each vertex
with label i with each vertex with label j where i, j ∈ [w]. Consider a vertex
v labelled i in GΦ′ and let v contribute to the variable m′

i,̂S, ̂T
, which is v is

conflict-free dominated by exactly Ŝ and the set of colors that misses v is
exactly T̂ . After this operation, the vertex v may contribute to the variable
mi,S,T in GΦ where the choice of the set S in GΦ depends on the colors
assigned to the vertices labelled j in GΦ′ .
We set d[Φ;N ;M ] = TRUE if and only if there exists an entry d[Φ′;N ′;M ′]
such that d[Φ′;N ′;M ′] = TRUE in GΦ′ that satisfies the following conditions:
(a) For each label a ∈ [w] and color q ∈ {0} ∪ [k], na,q = n′

a,q.
(b) For each label a ∈ [w] \ {i, j} and disjoint S, T ⊆ [k], ma,S,T = m′

a,S,T .
(c) For the label i and disjoint S, T ⊆ [k], mi,S,T = 1 if and only if there are

disjoint subsets Ŝ, T̂ ⊆ [k] with m′
i,̂S, ̂T

= 1 such that

i. For each color q ∈ S ∩ Ŝ, variable n′
j,q = 0.

ii. For each color q ∈ S \ Ŝ, variable n′
j,q = 1.

iii. For each color q ∈ Ŝ \ S, variable n′
j,q ≥ 1.

iv. S \ Ŝ ⊆ T̂ and T ⊆ T̂ .
v. For each color q ∈ T̂ \ (T ∪ S), n′

j,q = 2.
(d) For the label j, entry mj,S,T is computed in a symmetric fashion by

swapping the labels i and j in (c).
It can be observed that each TRUE table entry d[Φ′;N ′;M ′] sets exactly one
entry d[Φ;N ;M ] to TRUE. We can determine each table entry of d[Φ;N ;M ]
as follows. We initially set d[Φ;N,M ] to FALSE for all N,M . We iterate over
all the TRUE table entries d[Φ′;N ′;M ′], and for each such entry we update
the corresponding entry d[Φ;N ;M ] to TRUE, if applicable. To compute every
entry for d[Φ; ; ] we visit at most 3w(k+1)2w3k table entries d[Φ′; ; ] and for each
of those compute w(k + 1) + w3k values for M and N .

We described the recursive formula at each operation, that computes the
value of each entry d[; ; ]. The correctness of the algorithm easily follows from
the description of the algorithm. The DP table consists of 3w(k+1)2w3k entries at
each node of the w-expression. The running time is dominated by the operations
at the disjoint union node that requires O(32w(k+1)22w3kw(k + 1 + 3k)nO(1))
time. �

Similarly, we obtain the following result for the CFCN* problem:

Theorem 5 (�). Given a graph G, a w-expression and an integer k, it is possible
to decide if χ∗

CN (G) ≤ k in 2O(w3k)nO(1) time.

By modifying the above algorithm, it is possible to obtain FPT algorithms
for the full coloring variants (CFON and CFCN) of the problem. We merely have
to restrict the entries of the dynamic program to entries without color 0.

Theorem 6. The CFON and the CFCN problems are FPT when parameterized
by the combined parameters clique width and the solution size.
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4 Block Graphs and Cographs

In this section, we study the problems on block graphs and cographs. Note that
block graphs have clique width at most 3, and cographs have clique width at most
2. Hence, CFON* and CFCN* problems are polynomial time solvable on block
graphs and cographs by Theorems 4 and 5 respectively. However, we present
direct proofs for these problems on these graph classes. In particular we show
that χ∗

ON (G) ≤ 3 and χ∗
CN (G) ≤ 2, for block graphs G. We show a block graph

G such that χ∗
ON (G) = 3, making the above bound tight. Next, we show that

χ∗
ON (G), χ∗

CN (G) ≤ 2, for cographs G.

Definition 7 (Block Graph). A block graph is a graph in which every 2-
connected component is a clique.

For the CFON* problem, we give a tight upper bound of 3, in the following
sense: we present a graph (see Fig. 1) that is not CFON*-colorable with colors
{0, 1, 2}, where 0 is the dummy-color. Complementing this result, we show that
there is an algorithm that colors a given block-graph with colors {1, 2, 3}, thus
without the need of a dummy-color 0.

Lemma 8 (�). If G is a block graph, χON (G) ≤ 3, hence χ∗
ON (G) ≤ 3.

Proof (Proof Sketch). We give a constructive algorithm that given a block graph
G outputs a CFON-coloring C using at most three colors 1, 2, 3. For convenience,
let us also specify a mapping h that maps each vertex v ∈ G to one of its uniquely
colored neighbors w ∈ N(v). We use the fact that block-graphs are exactly the
diamond-free chordal graphs (a diamond is a K4 with one edge removed) [3]. As
usual, we assume that G is connected and contains at least one edge uv. Color
C(u) = 1 and C(v) = 2. Color every vertex w ∈ (N(u) ∪ N(v)) \ {u, v} with
C(w) = 3. Assign h(w) = v for every w ∈ N(v), and assign h(w) = u for every
w ∈ N(u) \ N(v).

Let Gv contain every connected component of G\{u, v} that contains a vertex
from N(v). Similarly, let Gu contain every connected component of G \ {u, v}
that contains a vertex from N(u) \ N(v).

Claim (�). The sets V (Gu) and V (Gv) are disjoint.

We color every vertex x ∈ V (Gv) in distance 2, 3, 4, 5, 6, 7, . . . from v in graph
Gv with colors 1, 2, 3, 1, 2, 3, . . . periodically. We assign h(x) for x ∈ V (Gv)
in distance i ≥ 2 to v to an arbitrary neighbor y ∈ N(x) that has distance
i − 1 to v in graph Gv. Similarly we color every vertex x ∈ V (Gu) in distance
2, 3, 4, 5, 6, 7, . . . from u in Gu with colors 2, 1, 3, 2, 1, 3, . . . periodically. Again,
let h(x) for x ∈ V (Gu) in distance i ≥ 2 to u map to an arbitrary neighbor
y ∈ N(x) in distance i − 1 to u in graph Gu. �
Lemma 9. There is block graph G with χ∗

ON (G) > 2.
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Fig. 1. A block graph G with χ∗
ON (G) > 2.

Proof. Let G have vertex set {�,m, r}∪⋃
i∈{1,2,3}{x�

i , x
�
i , x

r
i , x

r
i }, see also Fig. 1.

Let the edge set be defined by the set of maximal cliques {xs
1, x

s
2, x

s
3, s,m} and

{xi
s, x

i
s} for every s ∈ {�, r} and i ∈ {1, 2, 3}. It is easy to see that G is a block

graph. To prove that χ∗
ON (G) > 2, assume, for the sake of contradiction, that

there is χ∗
ON -coloring C : V → {0, 1, 2}. Then there is a mapping h on V that

assigns each vertex v ∈ V (G) its uniquely colored neighbor w ∈ N(v). Note that
xs

i , for s ∈ {�, r} and i ∈ {1, 2, 3}, has to be colored 1 or 2, since it is the only
neighbor of xs

i . Further, we may assume that h(m) ∈ {�, x�
1} and C(h(m)) = 2

because of symmetry.
First consider that h(m) = � and C(�) = 2. Then C(xs

i ) = 1 for every
s ∈ {�, r} and i ∈ {1, 2, 3}. It follows that h(�) = m and hence C(m) = 2. Then
however C{{}}(N(x�

1)) ⊇ {{1, 1, 2, 2}}, a contradiction.
Thus it remains to consider that h(m) = x�

1 and C(x�
1) = 2. Then C(xs

i ) = 1
for every xs

i with (s, i) ∈ {�, r} × [3] \ (�, 1). It follows that h(r) = m and hence
C(m) = 2. Then however C{{}}(N(�)) = {{1, 1, 2, 2}}, also a contradiction.

Since both cases lead to a contradiction, it must be that χ∗
ON (G) > 2. �

Since a block graph G have clique width at most 3, and since χ∗
ON (G) ≤ 3, we

may use Theorem 4 to decide the CFON* problem for block graphs in polynomial
time.

Corollary 10. For block graphs, CFON* is polynomial time solvable.

By observing that the number of colors required is constant, we have the
following analogous result on the CFCN* problem. However, we also present a
direct proof using a characterization of block graphs G with χ∗

CN (G) = 1.

Theorem 11 (�). If G is a block graph, then χ∗
CN (G) ≤ 2. The CFCN* problem

is polynomial time solvable on block graphs.

We now consider the problem on cographs, and obtain Theorem 13, the proof
of which is omitted.

Definition 12 (Cograph [6]). A graph G is a cograph if G consists of a single
vertex, or if it can be constructed from a single vertex graph using the disjoint
union and complement operations.
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Theorem 13 (�). The CFON* and the CFCN* problems are polynomial time
solvable on cographs.

Since constant bounds for the partial coloring variants imply constant bounds
for the full coloring variants and since block graphs and cographs have clique
width at most 3, we have the following.

Theorem 14. The CFON and the CFCN problems are polynomial time solvable
on block graphs and cographs.

5 Interval Graphs

In this section, we show three colors are sufficient and sometimes necessary to
CFON* color an interval graph. For proper interval graphs, we show that two
colors are sufficient. We also show that the CFCN* problem is polynomial time
solvable on interval graphs.

Definition 15 (Interval Graph). A graph G = (V,E) is an interval graph
if there exists a set I of intervals on the real line such that there is a bijection
f : V → I satisfying the following: {v1, v2} ∈ E if and only if f(v1) ∩ f(v2) �= ∅.
For an interval graph G, we refer to the set of intervals I as the interval repre-
sentation of G. An interval graph G is a proper interval graph if it has an interval
representation I such that no interval in I is properly contained in any other
interval of I. An interval graph G is a unit interval graph if it has an interval
representation I where all the intervals are of unit length. It is known that the
class of proper interval graphs and unit interval graphs are the same [10].

Lemma 16 (�). If G is an interval graph, then χ∗
ON (G) ≤ 3.

u

u u u

v

v v w w w

w

Fig. 2. On the left hand side, we have the graph G′, and on the right hand side we
have an interval graph representation of G, a graph where χON (G) > 3. The graph G
is obtained by replacing each vertex u, v, w, u�, v� of G′ with a 3-clique and replacing
u′, u′′.v′, v′′, w′, w′′ by a 4-clique.

The bound of χ∗
ON (G) ≤ 3 for interval graphs is tight. In particular, there is

an interval graph G (see Fig. 2) that cannot be colored with three colors when
excluding the dummy-color 0. That shows the stronger result χON (G) > 3, which
implies that χ∗

ON (G) > 2.
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Lemma 17 (�). There is an interval graph G such that χON (G) > 3 (and thus
χ∗

ON (G) ≥ 3).

Lemma 18. If G is a proper interval graph, then χ∗
ON (G) ≤ 2.

Proof. Let I be a unit interval representation of G. We denote the left endpoint
of an interval I by L(I). We assign C : I → {1, 2, 0} which will be a CFON*
coloring.

At each iteration i, we pick two intervals Ii
1, I

i
2 ∈ I. The interval Ii

1 is the
interval whose L(Ii

1) is the least among intervals for which C has not been
assigned. The interval Ii

2 is a neighbor of Ii
1, whose L(Ii

2) is the greatest. It
might be the case that C has been already assigned for all neighbors of Ii

1. This
can happen only in the very last iteration of the algorithm. Depending on this,
we have the following two cases.

– Case 1: Ii
1 has neighbors for which C is unassigned.

We assign C(Ii
1) = 1 and C(Ii

2) = 2. All other intervals adjacent to Ii
1 and Ii

2

are assigned the color 0.
Now, we argue that C is a CFON* coloring. The intervals Ii

1 and Ii
2 act as the

uniquely colored neighbors for each other. All intervals that are assigned 0 are
adjacent to either Ii

1 or Ii
2, and thus will have a uniquely colored neighbor.

Notice that for every iteration i, the vertices Ii
1 (or Ii

2) and Ii+1
1 (or Ii+1

2 ) will
have the same color. This is fine as there is no interval that intersects both
Ii
1 and Ii+1

1 .
– Case 2: C is already assigned for all the neighbors of Ii

1.
As mentioned before, this can happen only during the last iteration i = j. In
this case, Ij

1 is the only interval for which C is yet to be assigned. Choose an
interval Im ∈ N(Ij−1

2 )∩N(Ij
1). Such an Im exists, else I is disconnected. We

reassign C(Ij−1
1 ) = 0, C(Ij−1

2 ) = 1, C(Im) = 2 and assign C(Ij
1) = 0.

The assignment of colors in iterations 1 ≤ i ≤ j − 2 are unchanged. Though
C(Ij−1

1 ) is changed to 0, this does not affect any interval, since there are no
intervals which depend only on Ij−1

1 for their uniquely colored neighbor. If
there was such an interval, this would contradict the choice of Ij−1

1 .
For the intervals Ij−1

2 and Ij
1 , we have the interval Im as the uniquely colored

neighbor and for the interval Im, we have the interval Ij−1
2 as the uniquely

colored neighbor. �
It is known [9] that 2 colors suffice to CFCN* color an interval graph. We

show that the CFCN* problem is polynomial time solvable on interval graphs
using a characterization.

Theorem 19 (�). CFCN* problem is polynomial time solvable on interval
graphs.

6 Unit Square and Unit Disk Intersection Graphs

Unit square (respectively, unit disk) intersection graphs are intersection graphs
of unit sized squares (resp., disks) in the Euclidean plane. It is shown in [9]
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that χ∗
CN (G) ≤ 4 for a unit square intersection graph G. They also showed that

χ∗
CN (G) ≤ 6 for a unit disk intersection graph G. We study the CFON* problem

on these graphs and get the following constant upper bounds. To the best of our
knowledge, no upper bound was previously known on unit square and unit disk
graphs for CFON* coloring. Due to space constraints, the proofs of the following
theorems are omitted.

Theorem 20 (�). If G is a unit square intersection graph, then χ∗
ON (G) ≤ 27.

Theorem 21 (�). If G is a unit disk intersection graph, then χ∗
ON (G) ≤ 51.

7 Kneser Graphs and Split Graphs

In this section, we study the CFON* and the CFCN* colorings of Kneser graphs
and split graphs. For Kneser graphs K(n, k), we show that χ∗

ON (K(n, k)) = k+1
when n ≥ k(k +1)2 +1 and show bounds for χ∗

CN (K(n, k)). For split graphs, we
show that CFON* problem is NP-complete and CFCN* problem is polynomial
time solvable.

Definition 22 (Kneser graph). The Kneser graph K(n, k) is the graph whose
vertices are

(
[n]
k

)
, the k-sized subsets of [n], and the vertices x and y are adjacent

if and only if x ∩ y = ∅ (when x and y are viewed as sets).

Theorem 23 (�). χ∗
ON (K(n, k)) ≤ k + 1, for n ≥ 3k − 1. Further when n ≥

k(k + 1)2 + 1, χ∗
ON (K(n, k)) = k + 1.

It is easy to see that a proper coloring of a graph G is also a CFCN* coloring.
Since χ(K(n, k)) ≤ n − 2k + 2 [14], we have that χ∗

CN (K(n, k)) ≤ n − 2k + 2.
We show the following:

Theorem 24 (�). χ∗
CN (K(n, k)) ≤ n − 2k + 1, for 2k + 1 ≤ n ≤ 3k − 1. For

the case when n ≥ 3k, we have χ∗
CN (K(n, k)) ≤ k.

Definition 25 (Split Graph). A graph G = (V,E) is a split graph if there
exists a partition of V = K ∪ I such that the graph induced by K is a clique and
the graph induced by I is an independent set.

Theorem 26 (�). The CFON* problem is NP-complete on split graphs.

Theorem 27. The CFCN* problem is polynomial time solvable on split graphs.

The proof of Theorem 27 is through a characterization. We first show that
for split graphs G, χ∗

CN (G) ≤ 2. Then we characterize split graphs G for which
χ∗

CN (G) = 1 thereby proving Theorem 27.

Lemma 28. If G = (V,E) is a split graph, then χ∗
CN (G) ≤ 2.
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Proof. Let V = K ∪ I be a partition of vertices into a clique K and an inde-
pendent set I. We use C : V → {1, 2, 0} to assign colors to the vertices of V .
Choose an arbitrary vertex u ∈ K and assign C(u) = 2. The remaining vertices
(if any) in K \ {u} are assigned the color 0. For every vertex v ∈ I, we assign
C(v) = 1. Each vertex in I will have itself as the uniquely colored neighbor and
every vertex in K will have the vertex u as the uniquely colored neighbor. �

We now characterize split graphs that are CFCN* colorable using one color.

Lemma 29. Let G = (V,E) be a split graph with V = K ∪ I, where K and I
are the clique and independent sets respectively. We have χ∗

CN (G) = 1 if and
only if at least one of the following is true: (i) G has a universal vertex, or (ii)
∀v ∈ K, |N(v) ∩ I| = 1.

Proof. We first prove the reverse direction. If there exists a universal vertex
u ∈ V , then we assign the color 1 to u and assign the color 0 to all vertices in
V \ {u}. This is a CFCN* coloring.

Suppose2 ∀v ∈ K, |N(v) ∩ I| = 1. We assign the color 1 to each vertex in I
and color 0 to the vertices in K. Each vertex in I acts as the uniquely colored
neighbor for itself and for its neighbor(s) in K.

For the forward direction, let C : V → {1, 0} be a CFCN* coloring of G.
We further assume that ∃y ∈ K, |N(y) ∩ I| �= 1 and show that there exists a
universal vertex. We assume that |K| ≥ 2 and |I| ≥ 1 (if either assumption is
violated, G has a universal vertex). We first prove the following claim.

Claim. Exactly one vertex in K is assigned the color 1.

Proof. Suppose not. Let two vertices v, v′ ∈ K be such that C(v) = C(v′) = 1.
Then none of the vertices in K have a uniquely colored neighbor.

Suppose if all vertices in K are assigned the color 0. For vertices in I to have
a uniquely colored neighbor, each vertex in I has to be assigned the color 1. By
assumption, ∃y ∈ K such that |N(y) ∩ I| �= 1. This means that y does not have
a uniquely colored neighbor. �

Now we show that there is a universal vertex in K.
By the above claim, there is a unique vertex v ∈ K such that C(v) = 1.

We will show that v is a universal vertex. Suppose not. Let w′ /∈ N(v) ∩ I. For
w′ to have a uniquely colored neighbor, either w′ or one of its neighbors in K
has to be assigned the color 1. The latter is not possible because v is the lone
vertex in K that is colored 1. If C(w′) = 1, then its neighbor(s) in K does not
have a uniquely colored neighbor because of the vertices w′ and v. Hence, v is a
universal vertex. �

From Lemmas 28 and 29, we get Theorem 27.

2 This case also captures the case when K is empty.
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8 Conclusion

We gave an FPT algorithm for conflict-free coloring for the combined parameters
clique width w and number of colors k. Since the problem is NP-hard for constant
number of colors k, it is unlikely to be FPT with respect to k only. However an
interesting open question is whether this result can be strengthened to an FPT
algorithm for parameter clique width w only. To the best of our knowledge, it
is open whether there is some bound of any conflict-free chromatic number by
the clique width. If there exists such a bound, our algorithm would also be a
fixed-parameter tractable algorithm for parameter w only.

Further we showed a constant upper bound of conflict-free chromatic numbers
for several graph classes. For most of them we established matching or almost
matching lower and upper bounds for their conflict-free chromatic numbers. For
unit square and square disk graphs there still is a wide gap, and it would be
interesting to improve those bounds.
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Abstract. We introduce a natural temporal analogue of Eulerian cir-
cuits and prove that, in contrast with the static case, it is NP-hard
to determine whether a given temporal graph is temporally Eulerian
even if strong restrictions are placed on the structure of the underly-
ing graph and each edge is active at only three times. However, we
do obtain an FPT-algorithm with respect to a new parameter called
interval-membership-width which restricts the times assigned to differ-
ent edges; we believe that this parameter will be of independent inter-
est for other temporal graph problems. Our techniques also allow us to
resolve two open questions of Akrida, Mertzios and Spirakis [CIAC 2019]
concerning a related problem of exploring temporal stars.

Keywords: Temporal graphs · Temporal exploration · Temporal
Eulerian circuit · Fixed parameter tractability

1 Introduction

Many real-world problems can be formulated and modeled in the language of
graph theory. However, real-world networks are often not static. They change
over time and their edges may appear or disappear (for instance friendships may
change over time in a social network). Such networks are called dynamic or evolv-
ing or temporal and their structural and algorithmic properties have been the
subject of active study in recent years [1,6,14,15,19]. Some of the most natural
and most studied topics in the theory of temporal graphs are temporal walks (in
which consecutive edges appear at increasing times), paths and corresponding
notions of temporal reachability [2,4,5,7,16,17,21,22]. Related to these notions
is the study of explorability of a temporal graph which asks whether it is possible
to visit all vertices or edges of a temporal graph via some temporal walk.

Temporal vertex-exploration problems (such as temporal variants of the Trav-
elling Salesman problem) have already been thoroughly studied [3,10,20]. In
contrast, here we focus on temporal edge-exploration and specifically we study
temporally Eulerian graphs. Informally, these are temporal graphs admitting a
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temporal circuit that visits every edge at exactly one time (i.e. a temporal circuit
that yields an Euler circuit in the underlying static graph).

Deciding whether a static graph is Eulerian is a prototypical example of a
polynomial time solvable problem. In fact this follows from Euler’s characteri-
zation of Eulerian graphs dating back to the 18th century [11]. In contrast, here
we show that, unless P = NP, a characterization of this kind cannot exist for
temporal graphs. In particular we show that deciding whether a temporal graph
is temporally Eulerian is NP-complete even if strong restrictions are placed on
the structure of the underlying graph and each edge is active at only three times.

The existence of problems that are tractable on static graphs, but NP-
complete on temporal graphs is well-known [3,6,18,19]. In fact there are exam-
ples of problems whose temporal analogues remain hard even on trees [3,18].
Thus the need for parameters that take into account the temporal structure
of the input is clear. Some measures of this kind (such as temporal variants of
feedback vertex number and tree-width) have already been studied [7,12]. Unfor-
tunately we shall see that these parameters will be of no use to us since the
problems we consider here remain NP-complete even when these measures are
bounded by constants on the underlying static graph. To overcome these difficul-
ties, we introduce a new purely-temporal parameter called interval-membership-
width. Parameterizing by this measure we find that the problem of determining
whether a temporal graph is temporally Eulerian is in FPT.

Temporal graphs of low interval-membership-width are ‘temporally sparse’
in the sense that only few edges are allowed to appear both before and after any
given time. We point out that this parameter does not depend on the structure
of the underlying static graph, but it is instead influenced only by the temporal
structure. We believe that interval-membership-width will be a parameter of
independent interest for other temporal graph problems in the future.

It turns out that our study of temporally Eulerian graphs is closely related
to a temporal variant of the Travelling Salesman Problem concerning the explo-
ration of temporal stars via a temporal circuit which starts at the center of the
star and which visits all leaves. This problem was introduced and proven to
be NP-complete by Akrida, Mertzios and Spirakis on temporal stars in which
every edge has at most k appearances times for all k ≥ 6 [3]. Although they
also showed that the problem is polynomial-time solvable whenever each edge of
the input temporal star has at most 3 appearances, they left open the question
of determining the hardness of the problem when each edge has at most 4 or 5
appearances. We resolve this open problem in the course of proving our results
about temporally Eulerian graphs. Combined with Akrida, Mertzios and Spi-
rakis’ results, this gives a complete dichotomy: their temporal star-exploration
problem is in P if each edge has at most 3 appearances and is NP-complete
otherwise.

As a potential ‘island of tractability’, Akrida, Mertzios and Spirakis proposed
to restrict the input to their temporal star-exploration problem by requiring
consecutive appearances of the edges to be evenly spaced (by some globally
defined spacing). Using our new notion of interval-membership-width we are
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able to show that this restriction does indeed yield tractability parameterized
by the maximum number of times per edge (thus partially resolving their open
problem). Furthermore, we show that a slightly weaker result also holds for the
problem of determining whether a temporal graph is temporally Eulerian in the
setting with evenly-spaced edge-times.

Outline. We fix notation and provide background definitions in Sect. 2. We
prove our hardness results in Sect. 3. Section 4 contains the definition of interval-
membership-width as well as our FPT algorithms parameterized by this mea-
sure. In Sect. 5 we show that Akrida, Mertzios and Spirakis’ temporal star-
exploration problem is in FPT parameterized by the maximum number of
appearances of any edge in the input whenever the input temporal star has
evenly-spaced times on all edges. We also show a similar result for our temporally
Eulerian problem. Finally we provide concluding remarks and open problems in
Sect. 6. Due to space constraints, only sketch proofs are given for most results
(we link the arXiv version here for full details).

2 Background and Notation

For any graph-theoretic notation not defined here, we refer the reader to Diestel’s
textbook [9]; similarly, for any terminology in parameterized complexity, we refer
the reader to the textbook by Cygan et al. [8].

The formalism for the notion of dynamic or time-evolving graphs originated
from the work of Kempe, Kleinberg, and Kumar [16]. Formally, if τ : E(G) → 2N

is a function mapping edges of a graph G = (V (G), E(G)) to sets of integers,
then we call the pair G := (G, τ) a temporal graph. We shall assume all temporal
graphs to be finite and simple in this paper.

For any edge e in G, we call the set τ(e) the time-set of e. For any time
t ∈ τ(e) we say that e is active at time t and we call the pair (e, t) a time-
edge. The set of all edges active at any given time t is denoted Et(G, τ) := {e ∈
E(G) : t ∈ τ(e)}. The latest time Λ for which EΛ(G, τ) is non-empty is called the
lifetime of a temporal graph (G, τ) (or equivalently Λ := maxe∈E(G) max τ(e)).
Here we will only consider temporal graphs with finite lifetime.

In a temporal graph there are two natural notions of walk: one is the famil-
iar notion of a walk in static graphs and the other is a truly temporal notion
where we require consecutive edges in walks to appear at non-decreasing times.
Formally, given vertices x and y in a temporal graph G, a temporal (x, y)-walk is
a sequence W = (e1, t1), . . . , (en, tn) of time-edges such that e1, . . . , en is a walk
in G starting at x and ending at y and such that t1 ≤ t2 ≤ . . . ≤ tn. If n > 1,
we denote by W − (en, tn) the temporal walk (e1, t1), . . . , (en−1, tn−1). We call
a temporal (x, y)-walk closed if x = y and we call it a strict temporal walk if the
times of the walk form a strictly increasing sequence. Hereafter we will assume
all temporal walks to be strict.

Recall that an Euler circuit in a static graph G is a circuit e1 . . . , em which
traverses every edge of G exactly once. In this paper we are interested in the
natural temporal analogue of this notion.

https://arxiv.org/abs/2103.05387
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Definition 1. A temporal Eulerian circuit in a temporal graph (G, τ) is a closed
temporal walk (e1, t1), . . . , (em, tm) such that e1 . . . , em is an Euler circuit in the
underlying static graph G. If there exists a temporal Eulerian circuit in (G, τ),
then we call (G, τ) temporally Eulerian.

Note that if (G, τ) is a temporal graph in which every edge appears at exactly
one time, then we can determine whether (G, τ) is temporally Eulerian in time
linear in |E(G)|. To see this, note that, since every edge is active at precisely one
time, there is only one candidate ordering of the edges (which may or may not
give rise to an Eulerian circuit). Thus it is clear that the number of times per
edge is relevant to the complexity of the associated decision problem – which we
state as follows.

TempEuler(k)
Input: A temporal graph (G, τ) where |τ(e)| ≤ k for every edge e in the
graph G.
Question: Is (G, τ) temporally Eulerian?

As we mentioned in Sect. 1, here we will show that TempEuler(k) is related
to an analogue of the Travelling Salesman problem on temporal stars [3]. This
problem (denoted as StarExp(k)) was introduced by Akrida, Mertzios and
Spirakis [3]. It asks whether a given temporal star (Sn, τ) (where Sn denotes the
n-leaf star) with at most k times on each edge admits a closed temporal walk
starting at the center of the star and which visits every leaf of Sn. We call such
a walk an exploration of (Sn, τ). A temporal star that admits an exploration is
called explorable. Formally we have the following decision problem.

StarExp(k)
Input: A temporal star (Sn, τ) where |τ(e)| ≤ k for every edge e in the star
Sn.
Question: Is (Sn, τ) explorable?

3 Hardness of Temporal Edge Exploration

In this section we will show that TempEuler(k) is NP-complete for all k at least
3 (Corollary 2) and that StarExp(k) is NP-complete for all k ≥ 4 (Corollary
1). This last result resolves an open problem of Akrida, Mertzios and Spirakis
which asked to determine the complexity of StarExp(4) and StarExp(5) [3].

We begin by showing that StarExp(4) is NP-hard. We will do so via a
reduction from the 3-Coloring problem (see for instance Garey and Johnson
[13] for a proof of NP-completeness) which asks whether an input graph G is
3-colorable.
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3-Coloring
Input: A finite simple graph G.
Question: Does G admit a proper 3-coloring?

Throughout, for an edge e of a temporal star (Snτ), we call any pair of times
(t1, t2) ∈ τ(e)2 with t1 < t2 a visit of e. We say that e is visited at (t1, t2) in a
temporal walk if the walk proceeds from the center of the star along e at time
t1 and then back to the center at time t2. We say that two visits (x1, x2) and
(y1, y2) of two edges ex and ey are in conflict with one another (or that ‘there
is a conflict between them’) if there exists some time t with x1 ≤ t ≤ x2 and
y1 ≤ t ≤ y2. Note that a complete set of visits (one visit for each edge of the
star) which has no pairwise conflicts is in fact an exploration.

Theorem 1. StarExp(4) is NP-hard.

Proof (Sketch). Take any 3-Coloring instance G with vertices {x1, . . . , xn}.
We will construct a StarExp(4) instance (Sp, τ) (where p = n + 3m) from G
(see Fig. 1).

Defining Sp. The star Sp is defined as follows: for each vertex xi in G, we make
one edge ei in Sp while, for each edge xixj with i < j in G, we make three edges
e0ij , e1ij and e2ij in Sp.

Defining τ . For i ∈ [n] and any non-negative integer ψ ∈ {0, 1, 2, . . . }, let tiξ be
the integer

tiξ := 2in2 + 2ψ(n + 1) (1)

and take any edge xjxk in G with j < k. Using the times defined in Eq. (1) and
taking ξ ∈ {0, 1, 2}, we then define τ(ei) and τ(eξ

jk) as

τ(ei) :=
{
ti0, t

i
1, t

i
2, t

i
3

}
and (2)

τ(eξ
jk) :=

{
tjξ + 2k − 1, tjξ + 2k, tkξ + 2j − 1, tkξ + 2j

}
. (3)

Note that the elements of these sets are written in increasing order (see Fig. 1).
Intuitively, the times associated to each edge ei ∈ E(Sp) corresponding to a

vertex xi ∈ V (G) (Eq. (2)) encode the possible colorings of xi via the three pos-
sible starting times of a visit of ei. The three edges e0ij , e1ij and e2ij corresponding
to some xixj ∈ E(G) are instead used to ‘force the colorings to be proper’ in G.
That is to say that, for a color ξ ∈ {0, 1, 2}, the times associated with the edge
eξ
ij (Eq. (3)) will prohibit us from entering ei at its ξ-th appearance and also

entering ej at its ξ-th appearance (i.e. ‘coloring xi and xj the same color’). ��
Observe that increasing the maximum number of times per edge cannot make

the problem easier: we can easily extend the hardness result to any k′ > 4 by
simply adding a new edge with k′ times all prior to the times that are already



112 B. M. Bumpus and K. Meeks

Fig. 1. Top left: K3. Top right: star constructed from K3. Bottom: times (and corre-
sponding intervals) associated with the edges e1, e2 and e01,2, e11,2, e21,2 (time progresses
left-to-right and intervals are not drawn to scale). We write r1, r2, r3, r4 as shorthand
for the entries of τ(e01,2) (similarly, for i ∈ [4], we write gi and bi with respect to τ(e11,2)
and τ(e21,2)). The red and thick intervals correspond to visits defined by the coloring
xi �→ i − 1 of the K3.

in the star. This, together with the fact that Akrida, Mertzios and Spirakis [3]
showed that StarExp(k) is in NP for all k, allows us to conclude the following
corollary.

Corollary 1. For all k at least 4, StarExp(k) is NP-complete.

Next we shall reduce StarExp(k) to TempEuler(k−1). We point out that,
for our purposes within this section, only the first point of the statement of the
following result is needed. However, later (in the proof of Corollary 3) we shall
make use of the properties stated in the second point of Lemma 1 (this is also
why we allow any k times per edge rather than just considering the case k = 4).
Thus we include full details here.

Lemma 1. For all k ≥ 2 there is a polynomial-time-computable mapping taking
every StarExp(k) instance (Sn, τ) to a TempEuler(k − 1) instance (Dn, σ)
such that

1. (Sn, τ) is a yes instance for StarExp(k) if and only if (Dn, σ) is a yes
instance for TempEuler(k − 1) and

2. Dn is a graph obtained by identifying n-copies {K3
1 , . . . , K3

n} of a cycle on
three vertices along one center vertex (see Fig. 2) and such that

max
t∈N

|{e ∈ E(Dn) : min(σ(e)) ≤ t ≤ max(σ(e))}|
≤ 3max

t∈N

|{e ∈ E(Sn) : min(τ(e)) ≤ t ≤ max(τ(e))}|.
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Fig. 2. The graph D3 built from S3 in Lemma 1

Since TempEuler(k) is clearly in NP (where the circuit acts as a certificate),
our desired NP-completeness result follows immediately from Lemma 1 and
Corollary 1.

Corollary 2. TempEuler(k) is NP-complete for all k at least 3.

As we noted earlier, TempEuler(1) is trivially solvable in time linear in the
number of edges of the underlying static graph. Thus, towards obtaining a com-
plexity dichotomy for TempEuler(k), the only case remaining open is when
k = 2.

Observe that the reduction in Lemma 1 rules out FPT algorithms with
respect to many standard parameters describing the structure of the underly-
ing graph (for instance the path-width is 2 and feedback vertex number is 1).
In fact we can strengthen these intractability results even further by showing
that TempEuler(k) is hard even for instances whose underlying static graph
has vertex-cover number 2. This motivates our search in Sect. 4 for parameters
that describe the structure of the times assigned to edges rather than just the
underlying static structure.

Notice that this time we will reduce from StarExp(k) to TempEuler(k)
(rather than from StarExp(k+1) as in Lemma 1), so, in contrast to our previous
reduction (Lemma 1), the proof of the following result cannot be used to show
hardness of TempEuler(3).

Theorem 2. For all k ≥ 4, the TempEuler(k) problem is NP-complete even
on temporal graphs whose underlying static graph has vertex-cover number 2.

4 Interval-Membership-Width

As we saw in the previous section, both TempEuler(k) and StarExp(k + 1)
are NP-complete for all k ≥ 3 even on instances whose underlying static graphs
are very sparse (for instance even on graphs with vertex cover number 2). Clearly
this means that any useful parameterization must take into account the temporal
structure of the input. Other authors have already proposed measures of this
kind such as the temporal feedback vertex number [7] or temporal analogues
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of tree-width [12]. However these measures are all bounded on temporal graphs
for which the underlying static graph has bounded feedback vertex number and
tree-width respectively. Our reductions therefore show that TempEuler(k) is
para-NP-complete with respect to these parameters. Thus we do indeed need
some new measure of temporal structure. To that end, here we introduce such
a parameter called interval-membership-width which depends only on temporal
structure and not on the structure of the underlying static graph. Parameterizing
by this measure, we will show that both TempEuler(k) and StarExp(k) lie
in FPT.

To first convey the intuition behind our width measure, consider again the
TempEuler(1) problem. As we noted earlier, this is trivially solvable in time
linear in |E(G)|. The same is true for any TempEuler(k)-instance (G, τ) in
which every edge is assigned a ‘private’ interval of times: that is to say that, for all
distinct edges e and f in G, either max τ(f) < min τ(e) or max τ(e) < min τ(f).
This holds because, on instances of this kind, there is only one possible relative
ordering of edges available for an edge-exploration. It is thus natural to expect
that, for graphs whose edges have intervals that are ‘almost private’ (defined
formally below), we should be able to deduce similar tractability results.

Towards a formalization of this intuition, suppose that we are given a tem-
poral graph (G, τ) which has precisely two edges e and f such that there is a
time t with min τ(e) ≤ t ≤ max τ(e) and min τ(f) ≤ t ≤ max τ(f). It is easy to
see that the TempEuler(k) problem is still tractable on graphs such as (G, τ)
since there are only two possible relative edge-orderings for an edge exploration
of (G, τ) (depending on whether we choose to explore e before f or f before e).
These observations lead to the following definition of interval-membership-width
of a temporal graph (see Fig. 3).

Fig. 3. A temporal star (S4, τ) with interval-membership-sequence: F1 = F2 = {cw},
F3 = {cw, cx}, F4 = F5 = {cw, cx, cy}, F6 = {cw, cy} and F7 = F8 = F9 = {cw, cz}.

Definition 2. The interval membership sequence of a temporal graph (G, τ) is
the sequence (Ft)t∈[Λ] of edge-subsets of G where Ft := {e ∈ E(G) : min τ(e) ≤
t ≤ max τ(e)} and Λ is the lifetime of (G, τ). The interval-membership-width
of (G, τ) is the integer imw(G, τ) := maxt∈N |Ft|.
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Note that a temporal graph has unit interval-membership-width if and only if
every edge is active at times spanning a ‘private interval’. Furthermore, we point
out that the interval membership sequence of a temporal graph is not the same
as the sequence (Et(G, τ))t∈N. In fact, although maxt∈N |Et(G, τ)| ≤ imw(G, τ),
there exist classes C of temporal graphs with unbounded interval-membership-
width but such that every temporal graph in C satisfies the property that at most
one edge is active at any given time. To see this consider any graph H with edges
e1, . . . , em and let (H, ν) be the temporal graph defined by ν(ei) := {i,m + i}.
Clearly maxi∈N |Ei(H, ν)| = 1, but we have imw(H, ν) = m.

Note that the interval membership sequence of a temporal graph (G, τ) can
be computed in time O(imw(G, τ)Λ) by iterating over the edges of G.

Armed with the notion of interval-membership-width, we will now show that
both TempEuler(k) and StarExp(k) are in FPT when parameterized by this
measure. We will do so first for TempEuler(k) (Theorem 3) and then we will
leverage the reduction of Lemma 1 to deduce the fixed-parameter-tractability of
StarExp(k) as well (Corollary 3).

Theorem 3. There is an algorithm that decides whether any temporal graph
(G, τ) with n vertices and lifetime Λ is a yes-instance of TempEuler(k) in time
O(w32wΛ) where w = imw(G, τ) is the interval-membership-width of (G, τ).

Proof (Sketch). Let (Ft)t∈[Λ] be the interval membership sequence of (G, τ) and
suppose without loss of generality that F1 is not empty.

We will now describe an algorithm that proceeds by dynamic programming
over the sequence (Fi)i∈[Λ] to determine whether (G, τ) is temporally Eulerian.
For each set Fi we will compute a set Li ⊆ F

{0,1}
i × V (G) × V (G) consisting of

triples of the form (f, s, x) where s and x are vertices in G and f is a function
mapping each edge in Fi to an element of {0, 1}. Intuitively each entry (f, s, x)
of Li corresponds to the existence of a temporal walk starting at s and ending
at x at time at most i and such that, for any edge e ∈ Fi, we will have f(e) = 1
if and only if e was traversed during this walk.

We will now define the entries Li recursively starting from the dummy set
L0 := {(0, x, x) : ∃e ∈ F1 incident with x} where 0 : e ∈ F1 
→ 0 is the function
mapping every element in F1 to 0. Take any (f, s, y) in F

{0,1}
i × V (G) × V (G).

For (f, s, y) to be in Li we will require there to be an entry (g, s, x) of Li−1 such
that

g(e) = 1 for all e ∈ Fi−1 \ Fi (4)

and such that the one of the following cases holds: either

C1 y = x and f(e) = 1 if and only if e ∈ Fi−1 ∩ Fi and g(e) = 1,
or

C2 there exists an edge xy in G such that:
C2.P1 xy ∈ Ei(G, τ) \ {e ∈ Fi : g(e) = 1} and
C2.P2 f(e) = 1 if and only if g(e) = 1 or e = xy.

The Cases C1 and C2 correspond to the the two available choices we have
when extending a temporal (s, x)-walk at time i: either we stay put at x (Case
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C1) or we find some new edge xy active at time i (Case C2) which has never
been used before (Property C2.P1) and add it to the walk (Property C2.P2).
Equation (4) ensures that we filter out partial solutions that we already know
cannot be extended to a Eulerian circuit. To see this, note that, if an edge e will
never appear again after time i − 1 and we have g(e) = 0, then there is no way
of extending the temporal walk represented by the triple (g, s, x) to an Eulerian
circuit in (G, τ) because one edge will always be left out (namely the edge e). ��

As a corollary of Theorem 3, we can leverage the reduction of Lemma 1 to
deduce that StarExp(k) is in FPT parameterized by the interval-membership-
width.

Corollary 3. There is an algorithm that decides whether a StarExp(k)
instance (Sn, τ) is explorable in time O(w323wΛ) where w = imw(Sn, τ) and
Λ is the lifetime of the input.

Proof. By Lemma 1, we know that there is a polynomial-time reduction that
maps any StarExp(k) instance (Sn, τ) to a TempEuler(k−1)-instance (Dn, σ)
such that

max
t

|{e ∈ E(Dn) : min(σ(e)) ≤ t ≤ max(σ(e))}|
≤ 3max

t
|{e ∈ E(Sn) : min(τ(e)) ≤ t ≤ max(τ(e))}|.

In particular this implies that imw(Dn, σ) ≤ 3w. Thus we can decide whether
(Sn, τ) is explorable in time O(w323wΛ) by applying the algorithm of Theorem
3 to (Dn, σ). ��

5 Win-Win Approach to Regularly Spaced Times

In this section we will find necessary conditions for edge-explorability of temporal
graphs with respect to their interval-membership-width. This will allow us to
conclude that either we are given a no-instance or that the interval-membership-
width is small (in which case we can employ our algorithmic results from the
previous section).

We will apply this bidimensional approach to a variants of TempEuler(k)
and StarExp(k) in which we are given upper and lower bounds (u and � respec-
tively) on the difference between any two consecutive times at any edge. Specif-
ically we will show that StarExp(k) is in FPT parameterized by k, � and u
(Theorem 4) and that TempEuler(k) is in FPT parameterized by k and u
(Theorem 5). In other words, these results allow us to trade in the dependences
on the interval-membership-width of Corollary 3 and Theorem 3 for a depen-
dences on k, �, u and k, u respectively.

We note that, for StarExp instances, the closer � and u get, the more
restricted the structure becomes to the point that the dependence on � and u in
the running time of our algorithm vanishes when � = u. In particular this shows
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that the problem of determining the explorability of StarExp(k)-instances for
which consecutive times at each edge are exactly λ time-steps apart (for some
λ ∈ N) is in FPT parameterized solely by k (Corollary 4). This partially resolves
an open problem of Akrida, Mertzios and Spirakis [3] which asked to determine
the complexity of exploring StarExp(k)-instances with evenly-spaced times.

Towards these results, we will first provide sufficient conditions for non-
explorability of any StarExp(k) instance (Lemma 2). These conditions will
depend only on: (1) knowledge of the maximum and minimum differences
between any two successive appearances of any edge, (2) on the interval-
membership-width and (3) on k.

Lemma 2. Let (Sn, τ) be a temporal star with at most k times at any edge and
such that every two consecutive times at any edge differ at least by � and at most
by u. If (Sn, τ) is explorable, then imw(Sn, τ) ≤ 2(ku + 1)/(� + 1).

Proof. Let Λ be the lifetime of (Sn, τ), let (Ft)t∈[Λ] be the interval membership
sequence of (Sn, τ) and choose any n ∈ [Λ] such that |Fn| = imw(Sn, τ). Let
m and M be respectively the earliest and latest times at which there are edges
in Fn which are active and chose representatives em and eM in Fn such that
m = min τ(em) and M = max τ(eM ).

Recall that visiting any edge e in Sn requires us to us pick two appearances
(which differ by at least � + 1 time-steps) of e (one appearance to go along e
from the center of Sn to the leaf and another appearance to return to the center
of the star). Thus, whenever we specify how to visit an edge e of Fn, we remove
at least � + 1 time-steps from the available time-set {m, . . . , M} at which any
other edge in Fn can be visited. Furthermore, since any exploration of (Sn, τ)
must explore all of the edges in Fn, for (Sn, τ) to be explorable, we must have
|Fn|(� + 1) ≤ M − m + 1. This concludes the proof since imw(Sn, τ) = |Fn| and
M − m ≤ |max τ(eM ) − min τ(eM )| + |max τ(em) − min τ(em)| (since, by the
definition of Fn, n is in the intervals of any two elements of Fn) which is at most
2ku + 1 (since consecutive times at any edge differ by at most u). ��

Notice that nearly-identical arguments yield the following slightly weaker
result with respect to the TempEuler(k) problem.

Lemma 3. Let (G, τ) be a TempEuler(k) instance such that every two con-
secutive times at any edge differ at most by u. If (G, τ) is temporally Eulerian,
then imw(G, τ) ≤ 2(ku + 1).

The reason that the we can only bound imw(G, τ) above by 2(ku+1) (rather
than 2(ku+1)/(�+1) as in the StarExp(k) case of Lemma 2) is that temporal
Euler circuits only visit each edge once (so exploring each edge only removes
exactly one available time).

Lemma 2 allows us to employ a ‘win-win’ approach for StarExp(k) when we
know the maximum difference between consecutive times at any edge: either the
considered instance does not satisfy the conditions of Lemma 2 (in which case we
have a no-instance) or the interval-membership-width is ‘small’ (in which case
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we apply the algorithm given by Corollary 3). These ideas allow us to conclude
the following result.

Theorem 4. Let (Sn, τ) be a temporal star with at most k times at any edge
and such that every two consecutive times at any edge differ at least by � and at
most by u. There is an algorithm deciding whether (Sn, τ) is explorable in time
2O(ku/�)Λ where Λ is the lifetime of the input.

Proof. The algorithm proceeds as follows. First determine imw(Sn, τ) (this can
be done in time O(Λn) where Λ is the lifetime of the input). If imw(Sn, τ) >
2(ku+1)/(�+1), then (Sn, τ) is not explorable by Lemma 2. Otherwise run the
algorithm given in Corollary 3. In this case, since w := imw(Sn, τ) ≤ 2(ku +
1)/(�+1), we know that the algorithm of Corollary 3 will run on (Sn, τ) in time
2O(ku/�)Λ. ��

Once again arguing by bidimensionality (this time using Lemma 3 and The-
orem 3) we can deduce the following fixed-parameter tractability result for
TempEuler.

Theorem 5. Let (G, τ) be a TempEuler(k) instance such that every two con-
secutive times at any edge differ at most by u. There is an algorithm deciding
whether (G, τ) is temporally Eulerian in time 2O(ku)Λ where Λ is the lifetime of
the input.

As a special case of Theorem 4 (i.e. the case where � = u) we resolve an
open problem of Akrida, Mertzios and Spirakis [3] which asked to determine
the complexity of exploring StarExp(k)-instances with evenly-spaced times.
In particular we show that the problem of deciding the explorability of such
evenly-spaced StarExp(k)-instances is in FPT when parameterized by k.

Corollary 4. There is an algorithm which, given any StarExp(k) instance
(Sn, τ) with lifetime Λ and in which every two pairs of consecutive times assigned
to any edge differ by the same amount, decides whether (Sn, τ) is explorable in
time 2O(k)Λ.

6 Discussion

We introduced a natural temporal analogue of Eulerian circuits and proved that,
in contrast to the static case, TempEuler(k) is NP-complete for all k ≥ 3.
In fact we showed that the problem remains hard even when the underlying
static graph has path-width 2, feedback vertex number 1 or vertex cover num-
ber 2. Along the way, we resolved an open problem of Akrida, Mertzios and
Spirakis [3] by showing that StarExp(k) is NP-complete for all k ≥ 4. This
result yields a complete complexity dichotomy with respect to k when combined
with Akrida, Mertzios and Spirakis’ results [3]; however, a similar dichotomy for
TempEuler(k) still eludes us. In fact, although we know that TempEuler(1)
is in P, our reduction cannot be extended to obtain a complete dichotomy
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result. Thus to determine the complexity of the only remaining open case (i.e.
TempEuler(2)) new ideas are needed.

Our hardness results rule out the possibility of obtaining FPT algorithms
for TempEuler(k) and StarExp(k) with respect to many standard parameters
describing the structure of the underlying graph (such as path-width, feedback
vertex number and vertex-cover number). We thus introduced a new width mea-
sure which captures structural information that is purely temporal; we call this
the interval-membership-width. In contrast to our hardness results, we showed
that TempEuler(k) and StarExp(k) can be solved in times O(w32wΛ) and
O(w323wΛ) respectively where w is our new parameter and Λ is the lifetime of
the input.

Our fixed-parameter-tractability results parameterized by interval-
membership-width can also be leveraged via a win-win approach to obtain
tractability results for both TempEuler(k) and StarExp(k) parameterized
solely by k and the spacing of appearances of edges in the input. These results
allow us to partially resolve another open problem of Akrida, Mertzios and Spi-
rakis concerning the complexity of StarExp(k): we showed that it can be solved
in time 2O(k)Λ when the input has evenly spaces appearances of each edge and
lifetime Λ. We note, however, that it remains an open problem to determine the
complexity of the evenly-spaced StarExp(k) problem when k is unbounded.

Finally we point out that all of our hardness reductions hold also for the case
of non-strict temporal walks and, with slightly more work, this also holds for
our tractability results.

Acknowledgements. The authors would like to thank Samuel Hand for spotting a
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for their helpful comments and suggestions.
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Abstract. Quadratization is a transform of a system of ODEs with
polynomial right-hand side into a system of ODEs with at most quadratic
right-hand side via the introduction of new variables. Quadratization
problem is, given a system of ODEs with polynomial right-hand side,
transform the system to a system with quadratic right-hand side by intro-
ducing new variables. Such transformations have been used, for example,
as a preprocessing step by model order reduction methods and for trans-
forming chemical reaction networks.

We present an algorithm that, given a system of polynomial ODEs,
finds a transformation into a quadratic ODE system by introducing new
variables which are monomials in the original variables. The algorithm
is guaranteed to produce an optimal transformation of this form (that
is, the number of new variables is as small as possible), and it is the
first algorithm with such a guarantee we are aware of. Its performance
compares favorably with the existing software, and it is capable to tackle
problems that were out of reach before.

Keywords: Differential equations · Branch-and-bound ·
Quadratization

1 Introduction

The quadratization problem considered in this paper is, given a system of ordi-
nary differential equations (ODEs) with polynomial right-hand side, transform

The article was prepared within the framework of the HSE University Basic Research
Program. GP was partially supported by NSF grants DMS-1853482, DMS-1760448,
DMS-1853650, CCF-1564132, and CCF-1563942 and by the Paris Ile-de-France region.
The authors are grateful to Mathieu Hemery, François Fages, and Sylvain Soliman
for helpful discussions. The work has started when G. Pogudin worked at the Higher
School of Economics, Moscow. The authors would like to thank the referees for their
comments, which helped us improve the manuscript.

c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 122–136, 2021.
https://doi.org/10.1007/978-3-030-79987-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-79987-8_9


Optimal Monomial Quadratization for ODE Systems 123

it into a system with quadratic right-hand side (see Definition 1). We illustrate
the problem on a simple example of a scalar ODE:

x′ = x5. (1)

The right-hand side has degree larger than two but if we introduce a new variable
y := x4, then we can write:

x′ = xy, and y′ = 4x3x′ = 4x4y = 4y2. (2)

The right-hand sides of (2) are of degree at most two, and every solution of (1)
is the x-component of some solution of (2).

A problem of finding such a transformation (quadratization) for an ODE
system has appeared recently in several contexts:

– One of the recent approaches to model order reduction [11] uses quadratiza-
tion as follows. For the ODE systems with quadratic right-hand side, there
are dedicated model order reduction methods which can produce a better
reduction than the general ones. Therefore, it can be beneficial to perform a
quadratization first and then use the dedicated methods. For further details
and examples of applications, we refer to [11,15,16,20].

– Quadratization has been used as a preprocessing step for solving differential
equations numerically [6,12,14].

– Applied to chemical reaction networks, quadratization allows one to transform
a given chemical reaction network into a bimolecular one [13].

It is known (e.g. [11, Theorem 3]) that it is always possible to perform quadra-
tization with new variables being monomials in the original variables (like x4

in the example above). We will call such quadratization monomial (see Def-
inition 2). An algorithm for finding some monomial quadratization has been
described in [11, Section G.]. In [13], the authors have shown that the prob-
lem of finding an optimal (i.e. of the smallest possible dimension) monomial
quadratization is NP-hard. They also designed and implemented an algorithm
for finding a monomial quadratization which is practical and yields an optimal
monomial quadratization in many cases (but not always, see Sect. 3).

In this paper, we present an algorithm that computes an optimal mono-
mial quadratization for a given system of ODEs. To the best of our knowledge,
this is the first practical algorithm with the optimality guarantee. In terms of
efficiency, our implementation compares favorably to the existing software [13]
(see Table 3). The implementation is publicly available at https://github.com/
AndreyBychkov/QBee/. Our algorithm follows the classical Branch-and-Bound
approach [17] together with problem-specific search and branching strategies and
pruning rules (with one using the extremal graph theory, see Sect. 5.2).

Note that, according to [2], one may be able to find a quadratization of
lower dimension by allowing the new variables to be arbitrary polynomials, not
just monomials. We restrict ourselves to the monomial case because it is already
challenging (e.g., includes an APX-hard [2]-sumset cover problem, see Remark 6)
and monomial transformations are relevant for some application areas [13].

https://github.com/AndreyBychkov/QBee/
https://github.com/AndreyBychkov/QBee/
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The rest of the paper is organized as follows. In Sect. 2, we state the problem
precisely. In Sect. 3, we review the prior approaches, most notably [13]. Sections 4
and 5 describe our algorithm. Its performance is demonstrated and compared
to [13] in Sect. 6. Sections 7 and 8 contain remarks on the complexity and con-
clusions/open problems, respectively.

2 Problem Statement

Definition 1. Consider a system of ODEs

x′
1 = f1(x̄), . . . , x′

n = fn(x̄), (3)

where x = (x1, . . . , xn) and f1, . . . , fn ∈ C[x]. Then a list of new variables

y1 = g1(x̄), . . . , ym = gm(x̄), (4)

is said to be a quadratization of (3) if there exist polynomials h1, . . . , hm+n ∈
C[x̄, ȳ] of degree at most two such that

– x′
i = hi(x̄, ȳ) for every 1 � i � n;

– y′
j = hj+n(x̄, ȳ) for every 1 � j � m.

The number m will be called the order of quadratization. A quadratization of
the smallest possible order will be called an optimal quadratization.

Definition 2. If all the polynomials g1, . . . , gm are monomials, the quadrati-
zation is called a monomial quadratization. If a monomial quadratization of a
system has the smallest possible order among all the monomial quadratizations
of the system, it is called an optimal monomial quadratization.

Now we are ready to precisely state the main problem we tackle:

Input A system of ODEs of the form (3).
Output An optimal monomial quadratization of the system.

Example 1. Consider a single scalar ODE x′ = x5 from (1), that is f1(x) = x5.
As has been show in (2), y = x4 is a quadratization of the ODE with g(x) = x4,
h1(x, y) = xy, and h2(x, y) = 4y2. Moreover, this is a monomial quadratization.

Since the original ODE is not quadratic, the quadratization is optimal, so it
is also an optimal monomial quadratization.

Example 2. The Rabinovich-Fabrikant system [19, Eq. (2)] is defined as follows:

x′ = y(z − 1 + x2) + ax, y′ = x(3z + 1 − x2) + ay, z′ = −2z(b + xy).

Our algorithm finds an optimal monomial quadratization of order three: z1 =
x2, z2 = xy, z3 = y2. The resulting quadratic system is:

x′ = y(z1 + z − 1) + ax, z′
1 = 2z1(a + z2) + 2z2(z − 1),

y′ = x(3z + 1 − z1) + ay, z′
2 = 2az2 + z1(3z + 1 − z1 + z3) + z3(z − 1)

z′ = −2z(b + z2), z′
3 = 2az3 + 2z2(3z + 1 − z1).
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3 Discussion of Prior Approaches

To the best of our knowledge, the existing algorithms for quadratization are [11,
Algotirhm 2] and [13, Algorithm 2]. The former has not been implemented and is
not aimed at producing an optimal quadratization: it simply adds new variables
until the system is quadratized, and its termination is based on [11, Theorem 2].

It has been shown [13, Theorem 2] that finding an optimal quadratization
is NP-hard. The authors designed and implemented an algorithm for finding a
small (but not necessarily optimal) monomial quadratization which proceeds as
follows. For an n-dimensional system x̄′ = f̄(x̄), define, for every 1 � i � n,

Di := max
1�j�n

degxi
fj .

Then consider the set

M := {xd1
1 . . . xdn

n | 0 � d1 � D1, . . . , 0 � dn � Dn}. (5)

[4, Proof of Theorem 1] implies that there always exists a monomial quadra-
tization with the new variables from M . The idea behind [13, Algorithm 2] is
to search for an optimal quadratization inside M . This is done by an elegant
encoding into a MAX-SAT problem.

However, it turns out that the set M does not necessarily contain an optimal
monomial quadratization. As our algorithm shows, this happens, for example, for
some of the benchmark problems from [13] (Hard and Monom series, see Table 3).
Below we show a simpler example illustrating this phenomenon.

Example 3. Consider a system

x′
1 = x4

2, x′
2 = x2

1. (6)

Our algorithm shows that it has a unique optimal monomial quadratization

z1 = x1x
2
2, z2 = x3

2, z3 = x3
1 (7)

yielding the following quadratic ODE system:

x′
1 = x2z2, z′

1 = x6
2 + 2x3

1x2 = z22 + 2x2z3, z′
3 = 3x2

1x
4
2 = 3z21 ,

x′
2 = x2

1, z′
2 = 3x2

1x
2
2 = 3x1z1.

The degree of (7) with respect to x1 is larger than the x1-degree of the original
system (6), so such a quadratization will not be found by the algorithm [13].

It would be interesting to find an analogue of the set M from (5) always con-
taining an optimal monomial quadratization as this would allow using powerful
SAT-solvers. For all the examples we have considered, the following set worked

˜M := {xd1
1 . . . xdn

n | 0 � d1, . . . , dn � D}, where D := max
1�i�n

Di.
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4 Outline of the Algorithm

Our algorithm follows the general Branch-and-Bound (B&B) paradigm [17]. We
will describe our algorithm using the standard B&B terminology (see, e.g., [17,
Section 2.1]).

Definition 3 (B&B formulation for the quadratization problem).

– The search space is a set of all monomial quadratizations of the input system
x̄′ = f̄(x̄).

– The objective function to be minimized is the number of new variables intro-
duced by a quadratization.

– Each subproblem is defined by a set of new monomial variables
z1(x̄), . . . , z�(x̄) and the corresponding subset of the search space is the set
of all quadratizations including the variables z1(x̄), . . . , z�(x̄).

Definition 4 (Properties of a subproblem). To each subproblem (see Def-
inition 3) defined by new variables z1(x̄), . . . , z�(x̄), we assign:

1. the set of generalized variables, denoted by V , consisting of the polynomials
1, x1, . . . , xn, z1(x̄), . . . , z�(x̄);

2. the set of nonsquares, denoted by NS, consisting of all the monomials in the
derivatives of the generalized variables which do not belong to V 2 := {v1v2 |
v1, v2 ∈ V }. In particular, a subproblem is a quadratization iff NS = ∅.

Example 4. We will illustrate the notation introduced in Definition 4 on a system
x′ = x4 + x3 and a new variable z1(x) = x3. We have z′

1 = 3x2x′ = 3x6 + 3x5.
Therefore, for this subproblem, we have:

V = {1, x, x3}, V 2 = {1, x, x2, x3, x4, x6}, NS = {x5}.

In order to organize a B&B search in the search space defined above, we
define several subroutines/strategies answering the following questions:

– How to set the original bound? [4, Theorem 1] implies that the set M from (5)
gives a quadratization of the original system, so it can be used as the starting
incumbent solution.

– How to explore the search space? There are two subquestions:
• What are the child subproblems of a given subproblem (branching strat-

egy)? This is described in Sect. 4.1.
• In what order we traverse the tree of the subproblems? We use DFS (to

make new incumbents appear earlier) guided by a heuristic as described
in Algorithm 1.

– How to prune the search tree (pruning strategy)? We use two algorithms for
computing a lower bound for the objective function in a given subtree, they
are described and justified in Sect. 5.
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4.1 Branching Strategy

Let x̄′ = f̄(x̄) be the input system. Consider a subproblem defined by new
monomial variables z1(x̄), . . . , z�(x̄). The child subproblems will be constructed
as follows:

1. among the nonsquares (NS, see Definition 4), choose any monomial m =
xd1
1 . . . xdn

n with the value
∏n

i=1(di + 1) the smallest possible;
2. for every decomposition m = m1m2 as a product of two monomials, define a

new subproblem by adding the elements of {m1,m2} \ V (see Definition 4)
as new variables. Since m ∈ NS, at least one new variable will be added.

The score function
∏n

i=1(di + 1) is twice the number of representations m =
m1m2, so this way we reduce the branching factor of the algorithm.

Lemma 1. Any optimal subproblem z1(x̄), . . . , z�(x̄) is a solution of at least one
of the children subproblems generated by the procedure above.

Proof. Let z1(x̄), . . . , zn(x̄) be any solution of the subproblem. Since m must
be either of the form zizj or zj , it will be a solution of the child subproblem
corresponding to the decomposition m = zizj or m = 1 · zj , respectively.

Example 5. Figure 1 below show the graph representation of system x′ = x4+x3

from Example 4. The starting vertex is ∅. The underlined vertices correspond
to optimal quadratizations, so the algorithm will return one of them. On the
first step, the algorithm chooses the monomial x3 which has two decompositions
x3 = x · x2 and x3 = 1 · x3 yielding the left and the right children of the root,
respectively. The subproblem {x3} was described in more details in Example 4.

The score function
∏n

i=1(di + 1) for the decompositions x3 = x · x2 and
x3 = 1 · x3 takes values 6 and 4, respectively. Hence the algorithm will first
explore the branch on the right.

∅

{x2} {x3}

{x2, x3}{x2, x4} {x2, x5} {x3, x4} {x3, x5}

Fig. 1. Graph illustration for equation x′ = x4 + x3
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4.2 Recursive Step of the Algorithm

The recursive step of our algorithm can be described as follows.

Algorithm 1: Branch and Bound recursive step
Input

– polynomial ODE system x̄′ = f̄(x̄);
– set of new variables z1(x̄), . . . , z�(x̄);
– an optimal quadratization found so far (incumbent) with N new variables.

Output the algorithm replaces the incumbent with a more optimal quadratization
containing z1(x̄), . . . , z�(x̄) if such quadratization exists.

(Step 1) if z1(x̄), . . . , z�(x̄) is a quadratization
(a) if � < N , replace the incumbent with z1(x̄), . . . , z�(x̄);
(b) return;

(Step 2) if any of the pruning rules (Algorithm 2 or 3) applied to z1(x̄), . . . , z�(x̄) and
N return True, return;

(Step 3) generate set C of child subproblems as described in Section 4.1
(Step 4) sort C in increasing order w.r.t. S + n|V |, where S is the sum of the degrees

of the elements in V (V is different for different subproblems as defined in
Definition 4);

(Step 5) for each element of C, call Algorithm 1 on it.

5 Pruning Rules

In this section, we present two pruning rules yielding a substantial speedup of the
algorithm: based on a quadratic upper bound and based on squarefree graphs.

Property 1. Each pruning rule has the following input-output specification:

Input:

– the original ODE system x̄′ = f̄(x̄);
– already added new variables z1(x̄), . . . , z�(x̄) which are monomials in x̄;
– positive integer N .

Output: True if it is guaranteed that the set of new variables z1(x̄), . . . , zs(x̄)
cannot be extended to a monomial quadratization of x̄′ = f̄(x̄) of order less
then N . False otherwise.

Note that, if False is returned, it does not imply that the set of new variables
can be extended.

Remark 1. Both pruning rules presented here actually check a stronger condi-
tion: whether the set of new variables can be extended by at most N −s variables
so that all the monomials NS in the current subproblem can be written as a prod-
uct of two generalized variables. It would be very interesting to strengthen these
rules by taking into account the derivatives of the extra new variables.
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5.1 Rule Based on Quadratic Upper Bound

Remark 2 (Intuition behind the rule). Consider a subproblem with the gener-
alized variables V and set of nonsquares NS (see Definition 4). Assume that
it can be quadratized by adding a set W of variables. This would imply that
NS ⊆ (V ∪ W )2. This yields a bound

|NS | � (|V | + |W |)(|V | + |W | + 1)
2

. (8)

The general ideal of the rule is: since |V | and |NS | are known, (8) can be used
to find a lower bound for |W |. However, a straightforward application of (8)
does not lead to noticeable performance improvements. We found that one can
do much better by first estimating the number of elements of NS∩(V · W ) and
then applying an argument as in (8) to NS \(V · W ) and W .

Algorithm 2: Pruning rule: based on a quadratic upper bound
(Step 1) Compute the following multiset of monomials in x̄

D := {m/v | m ∈ NS, v ∈ V, v | m}.

(Step 2) Let mult be the list of multiplicities of the elements of D sorted in the
descending order.

(Step 3) Find the smallest integer k such that

| NS | �
k∑

i=1

mult[i] +
k(k + 1)

2
. (9)

(We use 1-based indexing and set mult[i] = 0 for i > | mult |)
(Step 4) If k + � � N , return True. Otherwise, return False.

Lemma 2. Algorithm 2 satisfied the specification described in Property 1.

Proof. Assume that Algorithm 2 has returned True. Consider any quadratization
z1, . . . , z�+r of x̄′ = f̄(x̄) extending z1, . . . , z�. We define ˜V , a superset of V , as
{1, x1, . . . , xn, z1, . . . , z�+r}. By the definition of quadratization, NS ⊆ ˜V 2. We
split NS into two subsets NS0 := NS ∩(V · ˜V ) and NS1 := NS \NS0. For every
1 � i � r, the cardinality of NS∩(z�+i · V ) does not exceed the multiplicity of

z�+i in the multiset D constructed at (Step 1). Therefore, |NS0 | �
r
∑

i=1

mult[i].

The number of products of the form z�+iz�+j with 1 � i � j � r does not exceed
r(r+1)

2 . Therefore, we have

|NS | = |NS0 | + |NS1 | �
r

∑

i=1

mult[i] +
r(r + 1)

2
,

so r satisfies (9). The minimality of k implies r � k. Thus, r+� � N , so z1, . . . , z�

cannot be extended to a quadratization of order less than N .
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5.2 Rule Based on Squarefree Graphs

Remark 3 (Intuition behind the rule). We will illustrate the idea behind the rule
in a simple example. Assume that we have five monomials m1, . . . ,m5 such that
none of them is a square. Assume also that there is a set V of monomial new
variables such that |V | = 4 and mi ∈ V 2 for every i. Since none of mi’s is
a square, it can be written as mi = zi,1zi,2 for distinct zi,1, zi,2 ∈ V . We can
therefore think about a graph with vertices being elements of V and edges given
by m1, . . . ,m5. One can check that every graph with four vertices and five edges
must contain a four-cycle. Let the cycle consist of edges m1,m2,m3,m4 in this
order. Then, for some numbering of elements in V , we have:

m1 = z1z2, m2 = z2z3, m3 = z3z4, m4 = z4z1 =⇒ m1m3 = m2m4.

Thus, by checking that all pairwise product of m1, . . . ,m5 are distinct, we can
verify that m1, . . . ,m5 ∈ V 2 implies that |V | > 4.

In order to take into account the monomials which are squares, we consider
not just graphs but pseudographs. We also employ the separation strategy NS =
(NS ∩ (V · W )) ∪ (NS \ (V · W )) as described in Remark 2.

Definition 5. A pseudograph G (i.e., a graph with loops and multiple edges
allowed) is called C4∗-free if there is no cycle of length four in G with every two
adjacent edges being distinct (repetition of edges and/or vertices is allowed).

Example 6. A C4∗-free pseudograph cannot contain:

– A vertex with two loops. If the loops are �1 and �2 then the cycle �1, �2, �1, �2
will violate C4∗-freeness.

– Multiple edges. If e1 and e2 are edges with the same endpoints, then
e1, e2, e1, e2 will violate C4∗-freeness.

– Two vertices with loops connected by an edge. If the loops are �1 and �2 and
the edge is e, then �1, e, �2, e will violate C4∗-freeness.

Definition 6. By C(n,m) we denote the largest possible number of edges in a
C4∗-free pseudograph G with n vertices and at most m loops.

Remark 4. Note that the example above implies that C(n, n + k) = C(n, n) for
every positive integer k because a C4∗-free pseudograph cannot contain more
than n loops.

The number C(n, 0) is the maximal number of edges in a C4-free graph and
has been extensively studied (e.g. [1,5,7,9]). Values for n � 31 are available as
a sequence A006855 in OEIS [18].

In Algorithm 3, we use the exact values for C(n,m) found by an exhaus-
tive search and collected in Table 1 for n � 7. The script for the search
is available at https://github.com/AndreyBychkov/QBee/blob/0.5.0/qbee/no
C4 count.py. For n > 7, we use the following bound

C(n,m) � C(n, 0) + m � n

2
(1 +

√
4n − 3) + m,

https://github.com/AndreyBychkov/QBee/blob/0.5.0/qbee/no_C4_count.py
https://github.com/AndreyBychkov/QBee/blob/0.5.0/qbee/no_C4_count.py
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Table 1. Exact values for C(n,m) (see Definition 6).

n m

0 1 2 3 4 5 6 7

1 0 1

2 1 2 2

3 3 3 4 4

4 4 5 5 6 6

5 6 6 7 7 8 8

6 7 8 9 9 9 10 10

7 9 10 11 12 12 12 12 12

where the bound for C(n, 0) is due to [10, Chapter 23, Theorem 1.3.3].

Algorithm 3: Pruning rule: based on squarefree graphs
(Step 1) Compute a subset E = {m1, . . . , me} ⊆ NS such that all the products

mimj for 1 � i � j � e are distinct.
(done by traversing NS in a descending order w.r.t. the total degree and
appending each monomial if it does not violate the property)

(Step 2) Compute the following multiset of monomials in x

D := {m/v | m ∈ E, v ∈ V, v | m}.

(Step 3) Let mult be the list of multiplicities of the elements of D sorted in
descending order.

(Step 4) Let c be the number of elements in E with all the degrees being even.
(Step 5) Find the smallest integer k such that

|E| �
k∑

i=1

mult[i] + C(k, c). (10)

(We use 1-based indexing and set mult[i] = 0 for i > | mult |)
(Step 6) If k + � � N , return True. Otherwise, return False.

Lemma 3. Algorithm 3 satisfied the specification described in Property 1.

Proof. Assume that Algorithm 2 has returned True. Consider any quadratization
z1, . . . , z�+r of x̄′ = f̄(x̄) extending z1, . . . , z�. We define ˜V , a superset of V , as
{1, x1, . . . , xn, z1, . . . , z�+r}. By the definition of quadratization, E ⊆ NS ⊆ ˜V 2.
Similarly to the proof of Lemma 2, we split E into two subsets

E0 := E ∩ (V · ˜V ) and E1 := E \ E0.

For every 1 � i � r, the cardinality of E ∩ (z�+i · V ) does not exceed the multi-

plicity of z�+i in the multiset D from (Step 2). Therefore, |E0| �
r
∑

i=1

mult[i].
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Consider a pseudograph G with r vertices numbered from 1 to r correspond-
ing to z�+1, . . . , z�+r, respectively. For every element m ∈ E1, we fix a represen-
tation m = z�+iz�+j , and add an edge connecting vertices i and j in G (this
will be a loop of i = j). We claim that pseudograph G will be C4∗-free. Indeed,
if there is a cycle formed by edges m1,m2,m3,m4 ∈ E0, then we will have
m1 · m3 = m2 · m4. Moreover, {m1,m3} ∩ {m2,m4} = ∅, so such a relation con-
tradicts the condition on E imposed by (Step 1). Finally, a monomial m ∈ E
can correspond to a loop in G only if it is a square, that is, all the degrees in m
are even. Hence E1, the total number of edges in G, does not exceed C(r, c)

In total, we have

|E| = |E0| + |E1| �
r

∑

i=1

mult[i] + C(r, c),

so r satisfies (10). The minimality of k implies that r � k. Thus, r + � � N , so
z1, . . . , z� cannot be extended to a quadratization of order less than N .

Remark 5 (Cycles of even length). One can modify this rule to use graphs not
containing cycles of even length. In this case, the set E from (Step1) of Algo-
rithm 3 would satisfy the condition that there are no multi-subsets of equal
cardinality and with equal product. However, this approach did not work that
well in practice, in particular, due to the overhead for finding such E.

5.3 Performance of the Pruning Rules

Table 2 below shows the performance of our algorithm with a different combina-
tion of the pruning rules employed. It shows that the rules substantially speed
up the computation and that Algorithm 3 is particularly successful in higher
dimensions.

Table 2. Comparison of the pruning rules used by our algorithm. Values in the cells
represent an average time with the standard deviation in seconds.

ODE system Dimension No pruning Algorithm 2 Algorithm 3 Algorithm 2 & 3

Circular(8) 2 4293 ± 445 497 ± 5 526 ± 8 453 ± 7

Hill(20) 3 3.4 ± 0.1 3.0 ± 0.1 2.4 ± 0.1 2.4 ± 0.1

Hard(2) 3 106.3 ± 1.0 19.6 ± 1.1 20.1 ± 0.6 16.7 ± 0.6

Hard(4) 3 360.1 ± 5.6 107.5 ± 2.4 108.8 ± 2.1 96.6 ± 1.5

Monom(3) 3 552.9 ± 10.9 85.7 ± 4.2 124.7 ± 5.5 84.2 ± 3.3

Cubic Cycle(6) 6 187.3 ± 0.8 43.6 ± 0.6 20.0 ± 0.5 20.1 ± 0.3

Cubic Cycle(7) 7 2002 ± 6.4 360.7 ± 1.1 150.2 ± 1.3 160.9 ± 5.9

Cubic Bicycle(7) 7 1742 ± 89 73.2 ± 0.6 29.8 ± 0.3 30.5 ± 0.2

Cubic Bicycle(8) 8 4440+ 175.4 ± 4.0 64.8 ± 0.5 68.9 ± 0.7
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6 Performance and Results

We have implemented our algorithm in Python, and the implementation is avail-
able at https://github.com/AndreyBychkov/QBee/tree/0.5.0. We compare our
algorithm with the one proposed in [13]. For the comparison, we use the set of
benchmarks from [13] and add a couple of new ones (described in the Appendix).

The results of the comparison are collected in Table 3. All computation times
are given either in milliseconds or in seconds and were obtained on a laptop with
the following parameters: Intel(R) Core(TM) i7-8750H CPU @ 2.20 GHz, WSL
Windows 10 Ubuntu 20.04, CPython 3.8.5. From the table, we see that the only
cases when the algorithm from [13] runs faster are when it does not produce an
optimal quadratization (while we do). Also, cases, when the algorithm from [13]
is not able to terminate, are marked as “—” symbol.

Table 3. Comparison of our implementation with the algorithm [13] on a set bench-
marks .

ODE system Biocham time Biocham order Our time Our order

Circular(3), ms 83.2 ± 0.1 3 5.1 ± 0.1 3

Circular(4), ms 106.7 ± 2.3 4 164.8 ± 32.3 4

Circular(5), ms 596.2 ± 10.9 4 20.0 ± 0.1 4

Circular(6), s 37.6 ± 0.4 5 4.2 ± 0.1 5

Circular(8), s — — 453.3 ± 6.9 6

Hard(3), s 1.09 ± 0.01 11 8.6 ± 0.2 9

Hard(4), s 20.2 ± 0.3 13 96.9 ± 1.5 10

Hill(5), ms 87.8 ± 0.9 2 4.6 ± 0.0 2

Hill(10), ms 409.8 ± 5.6 4 49.7 ± 1.3 4

Hill(15), s 64.1 ± 0.4 5 0.34 ± 0.1 5

Hill(20),s — — 2.4 ± 0.1 6

Monom(2), ms 96.4 ± 1.6 4 15 ± 0.1 3

Monom(3), s 0.44 ± 0 13 84.2 ± 3.3 10

Cubic Cycle(6), s — — 20.1 ± 0.3 12

Cubic Cycle(7), s — — 160.9 ± 5.9 14

Cubic Bicycle(7), s — — 30.5 ± 0.2 14

Cubic Bicycle(8), s — — 68.9 ± 0.7 16

7 Remarks on the Complexity

It has been conjectured in [13, Conjecture 1] that the size of an optimal mono-
mial quadratization may be exponential in the number of monomials of the input

https://github.com/AndreyBychkov/QBee/tree/0.5.0
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system in the worst case. Interestingly, this is not the case if one allows mono-
mials with negative powers (i.e., Laurent monomials): Proposition 1 shows that
there exists a quadratization with the number of new variables being linear in
the number of monomials in the system.

Proposition 1. Let x̄′ = f̄(x̄), where x̄ = (x1, . . . , xn), be a system of ODEs
with polynomial right hand sides. For every 1 � i � n, we denote the monomials
in the right-hand side of the i-th equation by mi,1, . . . ,mi,ki

. Then the following
set of new variables (given by Laurent monomials) is a quadratization of the
original system:

zi,j :=
mi,j

xi
for every 1 � i � n, 1 � j � ki.

Proof. Since mi,j = zi,jxi, the original equations can be written as quadratic in
the new variables. Let the coefficient in the original system in front of mi,j be
denoted by ci,j . We consider any 1 � i � n, 1 � j � kj :

z′
i,j =

n
∑

s=1

fs(x)
∂zi,j

∂xs
=

n
∑

s=1

ks
∑

r=1

cs,rms,r
∂zi,j

∂xs
.

Since ∂zi,j

∂xs
is proportional to zi,j

xs
, the monomial ms,r

∂zi,j

∂xs
is proportional to a

quadratic monomial zs,rzi,j , so we are done.

Remark 6 (Relation to the [2]-sumset cover problem). The [2]-sumset cover prob-
lem [3] is, given a finite set S ⊂ Z>0 of positive integers, find a smallest set
X ⊂ Z>0 such that S ⊂ X ∪ {xi + xj | xi, xj ∈ X}. It has been shown in [8,
Proposition 1] that the [2]-sumset cover problem is APX-hard, moreover, the set
S used in the proof contains 1. We will show how to encode this problem into
the optimal monomial quadratization problem thus showing that the latter is
also APX-hard (in the number of monomials, but not necessarily in the size of
the input). For S = {s1, . . . , sn} ⊂ Z>0 with s1 = 1, we define a system

x′
1 = 0, x′

2 =
n

∑

i=1

xsi
1 .

Then a set X = {1, a1, . . . , a�} is a minimal [2]-sumset cover of S iff xa1
1 , . . . , xa�

1

is an optimal monomial quadratization of the system.

8 Conclusions and Open Problems

In this paper, we have presented the first practical algorithm for finding an
optimal monomial quadratization. Our implementation compares favorably with
the existing software and allows us to find better quadratizations for already used
benchmark problems. We were able to compute quadratization for ODE systems
which could not be tackled before.
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We would like to mention several interesting open problems:

1. Is it possible to describe a finite set of monomials which must contain an opti-
mal quadratization? This would allow using SAT-solving techniques of [13]
as described in Sect. 3.

2. As has been shown in [2], general polynomial quadratization may be of a
smaller dimension than an optimal monomial quadratization. This poses a
challenge: design an algorithm for finding optimal polynomial quadratization
(or at least a smaller one than an optimal monomial).

3. How to search for optimal monomial quadratizations if negative powers are
allowed (see Sect. 7)?

4. How to design a faster algorithm for approximate quadratization (that is,
finding a quadratization which is close to the optimal) with guarantees on
the quality of the approximation?

Appendix: Benchmark Systems

Most of the benchmark systems used in this paper (in Tables 2 and 3) are
described in [13]. Here we show additional benchmarks we have introduced:

1. Cubic Cycle(n). For every integer n > 1, we define a system in variables
x1, . . . , xn by

x′
1 = x3

2, x′
2 = x3

3, . . . , x′
n = x3

1.

2. Cubic Bicycle(n). For every integer n > 1, we define a system in variables
x1, . . . , xn by

x′
1 = x3

n + x3
2, x′

2 = x3
1 + x3

3, . . . , x′
n = x3

n−1 + x3
1.
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7. Erdös, P., Rényi, A., Sós, V.: On a problem of graph theory. Studia Sci. Math.
Hungar. 1, 215–235 (1966)

8. Fagnot, I., Fertin, G., Vialette, S.: On finding small 2-generating sets. In: Ngo,
H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 378–387. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02882-3 38
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Abstract. We present a Hamilton cycle in the k-sided pancake network
and four combinatorial algorithms to traverse the cycle. The network’s
vertices are coloured permutations π = p1p2 · · · pn, where each pi has an
associated colour in {0, 1, . . . , k − 1}. There is a directed edge (π1, π2) if
π2 can be obtained from π1 by a “flip” of length j, which reverses the first
j elements and increments their colour modulo k. Our particular cycle
is created using a greedy min-flip strategy, and the average flip length
of the edges we use is bounded by a constant. By reinterpreting the
order recursively, we can generate successive coloured permutations in
O(1)-amortized time, or each successive flip by a loop-free algorithm. We
also show how to compute the successor of any coloured permutation in
O(n)-time. Our greedy min-flip construction generalizes known Hamilton
cycles for the pancake network (where k = 1) and the burnt pancake
network (where k = 2). Interestingly, a greedy max-flip strategy works
on the pancake and burnt pancake networks, but it does not work on the
k-sided network when k > 2.

1 Introduction

Many readers will be familiar with the story of Harry Dweighter, the harried
waiter who sorts stacks of pancakes for his customers. He does this by repeatedly
grabbing some number of pancakes from the top of the stack, and flipping them
over. For example, if the chef in the kitchen creates the stack , then Harry
can sort it by flipping over all four pancakes , and then the top two .

This story came from the imagination of Jacob E. Goodman [9], who was
inspired by sorting folded towels [24]. His original interest was an upper bound on
the number of flips required to sort a stack of n pancakes. Despite its whimsical
origins, the problem attached interest from many mathematicians and computer
scientists, including a young Bill Gates [12]. Eventually, it also found serious
applications, including genomics [11].

A variation of the original story involves burnt pancakes. In this case, each
pancake has two distinct sides: burnt and unburnt. When Harry flips the pan-
cakes, the pancakes involved in the flip also turn over, and Harry wants to sort
the pancakes so that the unburnt sides are facing up. For example, Harry could
sort the stack by flipping all four , then the top two , and the top
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 137–151, 2021.
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one . Similar lines of research developed around this problem (e.g. [6,11]).
The physical model breaks down beyond two sides, however, many of the same
applications do generalize to “k-sided pancakes”.

1.1 Pancake Networks

Interconnection networks connect single processors, or groups of processors,
together. In this context, the underlying graph is known as the network, and
classic graph measurements (e.g. diameter, girth, connectivity) translate to dif-
ferent performance metrics. Two networks related to pancake flipping are in
Fig. 1.

The pancake network G(n) was introduced in the 1980s [1] and various
measurements were established (e.g. [14]). Its vertex set is the set of permu-
tations of {1, 2, . . . , n} in one-line notation, which is denoted P(n). For example,
P(2) = {12, 21}. There is an edge between permutations that differ by a prefix-
reversal of length �, which reverses the first � symbols. For example, (3421, 4321)
is the � = 2 edge between and . Goodman’s original problem is finding
the maximum shortest path length to the identity permutation. Since G(n) is
vertex-transitive, this value is simply its diameter.

The burnt pancake network G(n) was introduced in the 1990s [6]. Its vertex
set is the set of signed permutations of {1, 2, . . . , n}, which is denoted P(n). For
example, P(2) = {12, 12̄, 1̄2, 1̄2̄, 21, 21̄, 2̄1, 2̄1̄} where overlines denote negative
symbols. There is an edge between signed permutations that differ by a sign-
complementing prefix-reversal of length �, which reverses the order and sign of
the first � symbols. For example, (2̄1̄34, 1234) is the � = 2 edge between and

.
The k-sided pancake network Gk(n) is a directed graph that was first stud-

ied in the 2000s [15]. Its vertex set is the set of k-coloured permutations of
{1, 2, . . . , n} in one-line notation, which is denoted Pk(n). For example, P3(2) is
illustrated below, where colours the 0, 1, 2 are denoted using superscripts, or in
black, red, blue.

P3(2) = {12,12,12,12,12,12,12,12,12,21,21,21,21,21,21,21,21,21}
= {1020, 1021, 1022, 1120, 1121, 1122, 1220, 1221, 1222, 2010, . . . , 2211, 2212}.

There is a directed edge from π1 ∈ Pk(n) to π2 ∈ Pk(n) if π1 can be transformed
into π2 by a colour-incrementing prefix-reversal of length �, which reverses the
order and increments the colour modulo k of the first � symbols. For example,
(2134,1234) = (21123040, 10223040) is a directed � = 2 edge.

Notice that G(n) and G1(n) are isomorphic, while G(n) and G2(n) are iso-
morphic, so long as we view each undirected edge as two opposing directed edges.
It also bears mentioning that Gk(n) is a (connected) directed Cayley graph, and
its underlying group is the wreath product of the cyclic group of order k and the
symmetric group of order n.
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Fig. 1. Hamilton cycles in a pancake network and a coloured pancake network. The
highlighted cycles start at 12 · · · n (or 1020 · · · n0) and are constructed by the greedy
min-flip strategy. The colours 0, 1, 2 in (b) correspond to black, red, and blue. (Color
figure online)

When the context is clear, or the distinction is not necessary, we use the term
flip for prefix-reversal (when k = 1), sign-complementing prefix-reversal (when
k = 2), and colour-incrementing prefix-reversal (when k > 2).

1.2 (Greedy) Hamilton Cycles

In this paper, we are not interested in shortest paths in pancake networks, but
rather Hamilton cycles. There are myriad ways that researchers attempt to build
Hamilton cycles in highly-symmetric graphs, and the greedy approach is perhaps
the simplest (see Williams [26]). This approach initializes a path at a specific
vertex, then repeatedly extends the path by a single edge. More specifically,
it uses the highest priority edge (according to some criteria) that leads to a
vertex that is not on the path. The path stops growing when the current vertex
is only adjacent to vertices on the path. A Hamilton cycle has been found if
every vertex is on the path, and there is an edge from the final vertex to the first
vertex. Despite its simplicity, the approach is known to work on many well-known
graphs [26].

We show that the greedy approach works for the coloured pancake net-
work Gk(n) when we prioritize the edges by shortest flip length. More specif-
ically, we start a path at 1020 · · · n0 ∈ Pk(n), then repeatedly extend it to a
new vertex along the edge that corresponds to the shortest colour-incrementing
prefix-reversal. We refer to this as the greedy min-flip construction, denoted
GreedyMink(n), and it is illustrated in Fig. 1. When k = 1, the cycle that we
create is identical to the one given by Zaks [27], and when k = 2, our cycle in
the burnt pancake network was previously produced by Suzuki, N. Sawada, and
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Kaneko [16]; however, both of these papers describe their cycles recursively. The
greedy construction of the cycles in the pancake and burnt pancake networks
was previously given by J. Sawada and Williams [10,20].

1.3 Combinatorial Generation

Ostensibly, the primary contribution of this paper is the Hamiltonicity of k-sided
pancake networks. However, the authors’ primary motivation was not in finding
a Hamilton cycle, but rather in investigating its contributions to combinato-
rial generation. Combinatorial generation is the research area devoted to the
efficient and clever generation of combinatorial objects. By efficient we mean
that successive objects can be generated in amortized O(1)-time or worst-case
O(1)-time, regardless of their size. The former is known as constant amortized
time (CAT), while the latter is known as loop-free. By clever we mean that
non-lexicographic orders are often desirable. When describing these alternate
orders, the authors make liberal use of the term Gray code—in reference to the
eponymous binary reflected Gray code patented by Frank Gray [13])—and we
refer to our Hamilton cycle as a colour-incrementing prefix-reversal Gray code
for coloured permutations. Informally, it is a flip Gray code.

There are dozens of publications on the efficient generation of permuta-
tion Gray codes. In fact, comprehensive discussions on this topic date back to
Sedgewick’s survey in 1977 [22], with more modern coverage in Volume 4 of
Knuth’s The Art of Computer Programming [17]. However, to our knowledge,
there are no published Gray codes for coloured permutations. This is surprising
as the combinatorial [4,5,8,18,19] and algebraic [2,3,23] properties of coloured
permutations have been of considerable interest. Work on the latter is due to
the group theoretic interpretation of Pk(n) as the wreath product of the cyclic
and symmetric group, Zk � Sn. We find our new Gray code of interest for two
additional reasons.

1. Other greedy approaches for generating P(n) do not seem to generalize to
Pk(n).

2. Flips are natural and efficient operations in certain contexts.

To expand on the first point, consider the Steinhaus-Johnson-Trotter (SJT)
order of permutations, which dates back to the1600s [17]. In this order, successive
permutations differ by an adjacent-transition (or swap) meaning that adjacent
values in the permutations change place. In other words, the order for P(n) traces
a Hamilton path in the permutohedron of order n. For example, SJT order for
n = 4 appears below

1234, 1243, 1423, 4123,4132, 1432, 1342, 1324, 3124, 3142, 3412, 4312,

4321, 3421, 3241,3214, 2314, 2341, 2431, 4231,4213, 2413, 2143,2134.
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The symbols that are swapped to create the next permutation are underlined,
and the larger value is in bold. The latter demarcation shows the order’s under-
lying greedy priorities: Swap the largest value. For example, consider the fourth
permutation in the list, 4123. The largest value 4 cannot be swapped to the left
(since it is in the leftmost position) or the right (since 1423 is already in the
order), so the next option is to consider 3, and it can only be swapped to the
left, which gives the fifth permutation 4132. If this description is perhaps too
brief, then we refer the reader to [26].

Now consider greedy generalizations of SJT to signed permutations. The most
natural generalization would involve the use of sign-complementing adjacent-
transpositions which swap and complement the sign of two adjacent values.
Unfortunately, any approach using these operations is doomed to fail. This is
because the operation does not change the parity of positive and negative values.
The authors experimented with other types of signed swaps—complementing
the leftmost or rightmost value in the swap, or the larger or small value in the
swap—without success.

More surprising is the fact that our greedy min-flip strategy works for
coloured permutations, but the analogous max-flip strategy does not. For exam-
ple, the max-flip strategy creates the following path in G3(2) before getting
stuck.

1020, 2111, 1222, 2010, 1121, 2212, 2012, 1021, 2211, 1220, 2110, 1122, E

The issue is that the neighbors of last coloured permutation in the path are
already on the path. More specifically, a flip of length one transforms 1122 into
1222, and a flip of length two transforms 1122 into 2012, both of which appear
earlier. The failure of the max-flip strategy on coloured permutations is surpris-
ing due to the fact that it works for both permutations and signed-permutations
[10,20].

To expand on the second point, note that the time required to flip a prefix
is proportional to its length. In particular, if a permutation over {1, 2, . . . , n} is
stored in an array or linked list of length n, then it takes O(m)-time to flip a
prefix of length m1. Our min-flip strategy ensures that the shortest possible flips
are used. In fact, the average flip length used in our Gray codes is bounded by
e = 2.71828 · · · when k = 1, and the average is even smaller for k > 1.

We also note that flips can be the most efficient operation in certain situa-
tions. For example, consider a brute force approach to the undirected travelling
salesman problem, wherein every Hamilton path of the n cities is represented by
a permutation in P(n). If we iterate over the permutations using a prefix-reversal
Gray code, then successive Hamilton paths differ in a single edge. For example,
the edges in 12345678 and 43215678 are identical, except that the former includes
(4, 5) while the latter includes (1, 5). Thus, the cost of each Hamilton cycle can be

1 Some unusual data structures can support flips of any lengths in constant-time [25].
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updated from permutation to permutation using one addition and subtraction.
More generally, flip Gray codes are the most efficient choice when the cost (or
value) of each permutation depends on its unordered pairs of adjacent symbols.
Similarly, our generalization will be the most efficient choice when the cost (or
value) of each coloured permutation depends on its unordered pairs of adjacent
symbols and the minimum distance between their colours.

1.4 New Results

We present a flip Gray code for Pk(n) that corresponds to a Hamilton cycle in the
k-sided pancake network. We present the following four different combinatorial
algorithms for traversing the Hamilton cycle, each having unique and interesting
properties:

1. A greedy algorithm that is easy to describe, but requires an exponential
amount of memory.

2. A recursive algorithm, that reveals the structure of the listing and can be
implemented in O(1)-amortized time.

3. A simple successor rule approach that allows the cycle to start from any
vertex (coloured permutation) and takes on average O(1)-time amortized
over the entire listing.

4. A loop-free algorithm to generate the flip-sequence iteratively.

Before we present these algorithms in Sect. 3, we first present some notation
in Sect. 2. We conclude with a summary and related work in Sect. 4.

2 Notation

Let π = p1p2 · · · pn be a coloured permutation where each pi = vci
i has value

vi ∈ {1, 2, . . . , n} and colour ci ∈ {0, 1, . . . , k − 1}. Recall that Pk(n) denotes the
set of k-coloured permutations of {1, 2, . . . , n}. Observe that P1(n) corresponds
to regular permutations and P2(n) corresponds to signed permutations. For the
remainder of this paper, it is assumed that all permutations are coloured.

As mentioned earlier, a flip of a permutation π, denoted flipi(π), applies a
prefix-reversal of length i on π that also increments the colour of the flipped
elements by 1 (modulo k). As an example for k = 3:

flip4(7
0126150314121) = 51621071314121.

A pre-perm is any prefix of a permutation in Pk(n), i.e. p = p1p2 · · · pj

is a pre-perm if there exist pj+1, . . . pn such that p1p2 · · · pn is a permutation.
Note that if j = n, then the pre-perm is a permutation. Let p = p1p2 · · · pj be
an arbitrary pre-perm for given a k. For a given element pi = vci

i , let p+s
i =

v
(ci+s) (mod k)
i . For 0 ≤ i < k, let p+i denote p+i

1 p+i
2 · · · p+i

j , i.e. p with the
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colour of each element incremented by i modulo k. Note, p+0 = p. Furthermore,
let ρ(p) = p+(k−1) · p+(k−2) · · ·p+0 = r1r2 · · · rm be a circular string of length
m = kj where · denotes the concatenation of symbols. Let ρ(p)i denote the
length j − 1 subword ending with ri−1.

Example 1 Consider a pre-perm p = 102032 where j = 3 and k = 4.
Then

ρ(p) = 132331 · 122230 · 112133 · 102032 and ρ(p)2 = 3213.

For any pre-perm p = p1p2 · · · pj , let ←−p denote the reverse of p. i.e. ←−p =
pjpj−1 · · · p2p1. Note that ←−p is not equivalent to applying a flip of length j to p
when k > 1 as the colours of each symbol do not change in ←−p . For the remainder
of this paper we will use p to denote a pre-perm, and when it is clear we will
use π to denote a permutation.

3 Constructions of a Cyclic Flip Gray Code for Pk(n)

In this section we present four different combinatorial algorithms for generat-
ing the same cyclic flip Gray code for Pk(n). We begin by studying the listing
of permutations generated by a greedy min-flip algorithm. We define the flip-
sequence of a listing of permutations as the sequence of the flip lengths used to
generate the listing beginning with the first permutation. By studying the under-
lying recursive structure of the greedy listing, we provide a recursive description
and its corresponding flip-sequence and prove it is equivalent to the flip-sequence
generated by the greedy algorithm. This proves that the greedy algorithm gener-
ates all permutations in Pk(n). We then present a successor-rule that determines
the successor of a given permutation in the greedy min-flip listing in expected
O(1)-time. We conclude by showing how the flip-sequence can be generated via
a loop-free algorithm.

3.1 Greedy Algorithm

Recall that GreedyMink(n) denotes the greedy algorithm on Pk(n) that starts at
permutation 1020 · · · n0 and prioritizes the neighbors of each permutation in the
k-sided pancake network by increasing flip length.
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Example 2 The following listing (left of the vertical bar) denotes the output
of GreedyMin3(3) (read top to bottom, then left to right), where black, red and
blue correspond to the colours 0,1 and 2 respectively. This listing is exhaustive
and cyclic; the last permutation differs from the first permutation by a flip of
length n = 3. To the right of the vertical line is the flip length required to get
from the permutation in that position to its successor.

123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 2 2 2 2 2 2 2 2 2
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 1 1 1 1 1 1 1 1 1
123 312 231 123 312 231 123 312 231 2 2 2 2 2 2 2 2 2
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 1 1 1 1 1 1 1 1 1
213 132 321 213 132 321 213 132 321 3 3 3 3 3 3 3 3 3

Observe that each column of permutations ends with the same element. Fur-
thermore, the last permutation in each column is a subword of the cyclic word
321321321.

Unlike the max-flip approach, we will prove that GreedyMink(n) exhaustively
generates all permutations in Pk(n) for all n, k ≥ 1. We also show that the last
permutation in the listing differs by a flip of length n from the first permutation,
so the listing is a cyclic flip Gray code. To prove this result, we study the under-
lying recursive structure of the resulting listings and examine the flip-sequences.

3.2 Recursive Construction

By applying the two observations made following the listing of GreedyMin3(3)
in Example 2, we arrive at the following recursive definition for a listing of pre-
perms, given a pre-perm p of a permutation in Pk(n):

Reck(p) = Reck(ρ(p)m) · rm, Reck(ρ(p)m−1) · rm−1, . . . , Reck(ρ(p)1) · r1, (1)

where Reck(px) = p+0
x , p+1

x , p+2
x , . . . , p

+(k−1)
x and ρ(p) = r1 · · · rm. Here, the

operation L · r denotes the listing L with r appended to every element in the
listing. We prove that Reck(1020 · · · n0) generates the same (exhaustive) listing
of permutations as GreedyMink(n).
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Lemma 1. Let p = p1p2p3 · · · pj be a pre-perm of a permutation in Pk(n) for
some n ≥ j. Then the first and last pre-perms in the listing Reck(p) are p and←−−−−−
p+(k−1), respectively.

Proof. The proof proceeds by induction on j. When j = 1, we have p = ←−p = p1,

so Reck(p) = p,p+1, p+2, . . . , p+(k−1). Since p+(k−1) =
←−−−−−
p+(k−1) the claim

holds. Now for 1 ≤ j < n and any pre-perm p = p1p2 · · · pj of a permuta-
tion in Pk(n), suppose that the first and last pre-perms in Reck(p) are p and←−−−−−
p+(k−1) respectively. Let p = p1p2 · · · pjpj+1 be a pre-perm of a permutation
in Pk(n). By definition, the first pre-perm of Reck(p) is the first pre-perm of
Reck(ρ(p)m)·rm where m = (j+1)k. By definition of ρ(p) and ρ(p)m, it is clear
that rm = pj+1 and ρ(p)m = p1p2 · · · pj−1pj . Applying the inductive hypothe-
sis, the first pre-perm of Reck(p1p2 · · · pj−1pj) is p1p2 · · · pj−1pj . Therefore, the
first pre-perm of Reck(p) is p1p2 · · · pj−1pj · pj+1 = p. Similarly, the last pre-
perm of Reck(p) is the last pre-perm of Reck(ρ(p)1) · r1. Now, r1 = p

+(k−1)
1

and ρ(p)1 = p2p3 · · · pjpj+1 and, by the inductive hypothesis, the last pre-perm
in Reck(ρ(p)1) is p

+(k−1)
j+1 p

+(k−1)
j · · · p+(k−1)

2 . Therefore, the last pre-perm of

Reck(p) is
←−−−−−
p+(k−1). ��

Define the sequence σk,n recursively as

σk,n =

{
1k−1 if n = 1
(σk,n−1, n)kn−1, σk,n−1 if n > 1,

(2)

where given a sequence τ , τ j denotes j copies of τ concatenated together. We
will show that σk,n is the flip-sequence for both Reck(p) and GreedyMink(n).
This flip-sequence is a straightforward generalization of the recurrences for non-
coloured permutations [27] and signed permutations [20]. Note that σ3,3 is shown
to the right of the vertical bar in Example 2.

Lemma 2. For n ≥ 1 , k ≥ 1, and π ∈ Pk(n), the flip-sequence for Reck(π) is
σk,n.

Proof. By induction on n. In the base case Reck(p1) = p1, p
+1
1 , p+2

1 , . . . , p
+(k−1)
1

and the flip-sequence is σk,1 = 1k−1. For n ≥ 1 assume that the sequence of flips
used to create Reck(p1p2p3 · · · pn) is given by σk,n. Consider Reck(π) where
π = p1p2p3 · · · pn+1 ∈ Pk(n + 1). By the inductive hypothesis, it suffices to
show that the last permutation of Reck(ρ(π)i) · ri and the first permutation
of Reck(ρ(π)i−1) · ri−1 differ by a flip of length n + 1 for i = 2, 3, . . . ,m (=
k(n + 1)). By definition, ρ(π)i = ri−nri−(n−1) · · · ri−2ri−1 where the indices are
taken modulo m. Therefore, by Lemma 1, the last permutation in Reck(ρ(π)i) is
(ri−1ri−2 · · · ri−(n−1)ri−n)+(k−1). Applying a flip of length n + 1 to Reck(ρ(π)i)·
ri yields

r+1
i ri−nri−(n−1) · · · ri−2ri−1. (3)
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By Lemma 1, the first permutation of Reck(ρ(π)i−1) is ri−(n+1)ri−n · · · ri−3ri−2.
By the definition of ρ(π), it follows that ri−(n+1) = r+1

i . Thus, from (3), it follows
that Reck(ρ(π)i) · ri and the first permutation of Reck(ρ(π)i−1) · ri−1 differ by
a flip of length n+1. By applying the inductive hypothesis, the flip-sequence for
Reck(π) is (σk,n, n + 1)k(n+1)−1, σk,n which is exactly σk,n+1. �

Theorem 1. For n ≥ 1, k ≥ 1, and π ∈ Pk(n), Reck(π) is a cyclic flip Gray
code for Pk(n), where the first and last permutations differ by a flip of length n.

Proof. From Lemma 2, the flip-sequence for Reck(π) is given by σk,n. Induc-
tively, it is easy to see that the length of the flip-sequence σk,n is knn! − 1 and
that each permutation of Reck(π) is unique. Thus, each of the knn! permutations
must be listed exactly once and, from Lemma 1, the first and last permutations
of the listing differ by a flip of length n, making Reck(π) a cyclic flip Gray code
for permutations. ��
Lemma 3. For n ≥ 1 and k ≥ 1, the flip-sequence for GreedyMink(n) is σk,n.

Proof. By contradiction. Suppose the sequence of flips used by GreedyMink(n)
differs from σk,n and let j be the smallest value such that the j-th flip used to
create GreedyMink(n) differs from the j-th value of σk,n. Let these flip lengths
be s and t respectively. Since GreedyMink(n) follows a greedy minimum-flip
strategy and because σk,n produces a valid flip Gray code for permutations
by Theorem 1 where no permutation is repeated, it must be that s < t. Let
π = p1p2p3 · · · pn denote the j-th permutation in the listing GreedyMink(n), i.e.
the permutation immediately prior to the j-th flip. Since σk,n is the flip-sequence
for Reck(1020 · · · n0) by Lemma 2, from the recursive definition it follows induc-
tively that all other permutations with suffix ptpt+1 · · · pn appear before π in
Reck(1020 · · · n0), since no permutations are repeated by Theorem 1. Since σk,n

and the sequence of flips used by GreedyMink(n) agree until the j-th value, all
other permutations with suffix ptpt+1 · · · pn appear before π in GreedyMink(n).
Therefore, flipping π by a flip of length s < t results in a permutation already vis-
ited in GreedyMink(n) before index j contradicting the fact that GreedyMink(n)
produces a list of permutations without repetition. ��

By definition, GreedyMink(n) starts with the permutation 1020 · · · n0 and
by Lemma 1, Reck(1020 · · · n0) also starts with 1020 · · · n0. Since they are each
created by the same flip-sequence by Lemma 2 and Lemma 3, we get the following
corollary.

Corollary 1. For n ≥ 1 and k ≥ 1, the listings GreedyMink(n) and
Reck(1020 · · · n0) are equivalent.

3.3 Successor Rule

In this section, we will generalize the successor rules found for non-coloured
permutations and signed permutations in [21] for GreedyMink(n) for k > 2. We
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say a permutation in Pk(n) is increasing if it corresponds to a length n subword
of the circular string ρ(1020 · · · n0). For example if n = 6 and k = 4, then the
following permutations are all increasing:

233343536312 516110203040 102030405060 506013233343.

A permutation is decreasing if it is a reversal of an increasing permutation.
A pre-perm is increasing (decreasing) if it corresponds to a subsequence of an
increasing (decreasing) permutation (when the permutation is thought of as a
sequence). For example, 51612040 is an increasing pre-perm, but 51204060 and
12223140 are not. Given a permutation π2, let succ(π2) denote the successor of
π2 in Reck(π) when the listing is considered to be cyclic.

Lemma 4. Let π2 = q1q2 · · · qn be a permutation in the (cyclic) listing Reck(π),
where π = p1p2 · · · pn is increasing. Let q1q2 · · · qj be the longest prefix of π2 that
is decreasing. Then succ(π2) = flipj(π2).

Proof. By induction on n. When n = 1, the result follows trivially as only flips
of length 1 can be applied. Now, for n > 1, we focus on the permutations whose
successor is the result of a flip of length n and the result will follow inductively
by the recursive definition of Reck(π). By Lemma 2, the successor of π2 will
be flipn(π2) if and only if it is the last permutation in one of the recursive
listings of the form Reck(ρ(π)i) · ri. Recall that ri is the i-th element in ρ(π)
when indexed from r1 = p

+(k−1)
1 to rm = pn. As it is clear that at most one

permutation is decreasing in each recursive sublist, it suffices to show that the
last permutation in each sublist is decreasing to prove the successor rule holds
for flips of length n. By Lemma 1, the last permutation in Reck(ρ(π)i) · ri

is ←−s · ri where s = ρ(π)+(k−1)
i . Since π is increasing, it is clear that ρ(π)i is

increasing and therefore that s is increasing. Hence, ←−s is decreasing by definition.
Furthermore, by the definition of the circular word ρ(π), the element immediately
before r

+(k−1)
i−1−(n−1) in ρ(π) is ri (note the subscript i − 1 − (n − 1) is considered

modulo nk here). Therefore, ←−s · ri is decreasing. Therefore, the successor rule
holds for flips of length n and thus for flips of all lengths by induction. ��

Example 3 With respect to the listing Rec10(102030405060),

succ(382859491763) = flip4(3
82859491763) = 405029391763

and
succ(183726554362) = flip1(1

83726554362) = 193726554362.

By applying the previous lemma, computing succ(π2) for a permutation in the
listing Reck(π) can easily be done in O(n)-time as described in the pseudocode
given in Algorithm 1.
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Algorithm 1. Computing the successor of π in the listing Reck(1020 · · · n0)
1: function Successor(π)
2: incr ← 0
3: for j ← 1 to n − 1 do
4: if vj < vj+1 then incr ← incr + 1

5: if incr = 2 or (incr = 1 and vj+1 < v1) then return flipj(π)

6: if k > 1 and vj < vj+1 and ( (cj+1 − cj + k) mod k �= 1) then return
flipj(π)

7: if k > 1 and vj > vj+1 and ( cj �= cj+1) then return flipj(π)

8: return flipn(π)

Theorem 2. Successor(π) returns the length of the flip required to obtain the
successor of π in the listing Reck(1020 · · · n0) in O(n)-time.

Though the worst case performance of Successor(π) is O(n)-time, on aver-
age it is much better. Let σk,n denote (σk,n, n), i.e. the sequence of flips used
to generate the listing Reck(π) with an extra flip of length n at the end to
return to the starting permutation. Our goal is to determine the average flip
length of σk,n, denoted avg(k, n). Note that our analysis generalize the results
for avg(1, n) [27] and avg(2, n) [20].

Lemma 5. For n ≥ 1 and k ≥ 1,

avg(k, n) =
n−1∑
j=0

1
kjj!

.

Moreover, avg(k, n) < k
√

e.

Proof. By definition of σk,n, it is not difficult to see that σk,n+1 is equivalent to
the concatenation of (n + 1)k copies of σk,n with the last element in every copy
of σk,n incremented by 1. Therefore, we have

avg(k, n + 1) =

(
1 +

∑
f∈σk,n

f

)
(n + 1)k

(n + 1)!kn+1

=

∑
f∈σk,nf

n!kn
+

1
n!kn

= avg(k, n) +
1

n!kn
.

Hence, with the trivial base case that avg(k, 1) = 1, we have

avg(k, n) =
n−1∑
j=0

1
kjj!

.
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Therefore,

avg(k, n) <

∞∑
j=0

1
kjj!

= k
√

e

by applying the well-known Maclaurin series expansion for ex. ��
Observe that the Successor function runs in expected O(1)-time when the
permutation is passed by reference because the average flip length is bounded
above by the constant k

√
e as proved in Lemma 5. Thus, by repeatedly applying

the successor rule, we obtain a CAT algorithm for generating Reck(1020 · · · n0).

3.4 Loop-Free Generation of the Flip-Sequence σk,n

Based on the recursive definition of the flip-sequence σk,n given in (2), Algo-
rithm 2 will generate σk,n in a loop-free manner. The algorithm generalizes a
similar algorithm presented by Zaks for non-coloured permutations [27]. The
next flip length x is computed using an array of counters c1, c2, . . . , cn+1 initial-
ized to 0, and an array of flip lengths f1, f2, . . . , fn+1 with each fi initialized to i.
For a formal proof of correctness, we invite the readers to see the simple inductive
proof for the non-coloured case in [27], and note the primary changes required to
generalize to coloured permutations are in handling of the minimum allowable
flip lengths (when k = 1, the smallest allowable flip length is 2) corresponding
to lines 5–6 and adding a factor of k to line 8.

Algorithm 2. Loop-free generation of the flip-sequence σk,n

1: procedure FlipSeq
2: c1, c2, . . . , cn+1 ← 0, 0, . . . , 0
3: f1, f2, . . . , fn+1 ← 1, 2, . . . , n + 1
4: repeat
5: if k = 1 then x ← f2; f2 ← 2
6: else x ← f1; f1 ← 1

7: cx ← cx + 1
8: if cx = kx−1 then
9: cx ← 0

10: fx ← fx+1

11: fx+1 ← x + 1

12: Output(x)
13: until x > n

Theorem 3. The algorithm FlipSeq is a loop-free algorithm to generate the
flip-sequence σk,n one element at a time.

Since the average flip length in σk,n is bounded by a constant, as determined
in the previous subsection, Algorithm 2 can be modified to generate Reck(π)
by passing the initial permutation π as a parameter, outputting π at the start
of the repeat loop, and updating π ← flipx(π) at the end of the loop instead of
outputting the flip length.
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Corollary 2. The algorithm FlipSeq can be modified to generate successive
permutations in the listing Reck(π) in O(1)-amortized time.

4 Summary and Related Work

We presented four different combinatorial algorithms for traversing a specific
Hamilton cycle in the k-sided pancake network. The Hamilton cycle corresponds
to a flip Gray code listing of coloured permutations. Given such combinatorial
listings, it is desirable to have associated ranking and unranking algorithms.
Based on the recursive description of the listing in (1), such algorithms are
relatively straightforward to derive and implement in O(n2)-time. A complete
C implementation of our algorithms is available on The Combinatorial Object
Server [7].

References

1. Akers, S., Krishnamurthy, B.: A group-theoretic model for symmetric interconnec-
tion networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

2. Athanasiadis, C.A.: Binomial Eulerian polynomials for colored permutations. J.
Comb. Theory Ser. A 173, 105214 (2020)

3. Bagno, E., Garber, D., Mansour, T.: On the group of alternating colored permu-
tations. Electron. J. Comb. 21(2), 2.29 (2014)

4. Borodin, A.: Longest increasing subsequences of random colored permutations.
Electron. J. Comb. 6(13), 12 (1999)

5. Chen, W.Y.C., Gao, H.Y., He, J.: Labeled partitions with colored permutations.
Discret. Math. 309(21), 6235–6244 (2009)

6. Cohen, D.S., Blum, M.: On the problem of sorting burnt pancakes. Discret. Appl.
Math. 61(2), 105–120 (1995)

7. COS++: The Combinatorial Object Server. http://combos.org/cperm
8. Duane, A., Remmel, J.: Minimal overlapping patterns in colored permutations.

Electron. J. Comb. 18(2), 38 (2011). Paper 25
9. Dweighter, H.: Problem E2569. Am. Math. Mon. 82, 1010 (1975)

10. Essed, H., Therese, W.: The harassed waitress problem. In: Ferro, A., Luccio, F.,
Widmayer, P. (eds.) Fun with Algorithms. FUN 2014. Lecture Notes in Com-
puter Science, vol. 8496. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07890-8 28

11. Fertin, G., Labarre, A., Rusu, I., Vialette, S., Tannier, E.: Combinatorics of
Genome Rearrangements. MIT Press, Cambridge (2009)

12. Gates, W.H., Papadimitriou, C.H.: Bounds for sorting by prefix reversal. Discret.
Math. 27(1), 47–57 (1979)

13. Gray, F.: Pulse code communication. U.S. Patent 2,632,058 (1947)
14. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J.

Algorithms 25(1), 67–94 (1997)
15. Justan, M.P., Muga, F.P., Sudborough, I.H.: On the generalization of the pan-

cake network. In: Proceedings International Symposium on Parallel Architectures,
Algorithms and Networks. I-SPAN 2002, pp. 173–178 (2002)

16. Kaneko, K.: Hamiltonian cycles and Hamiltonian paths in faulty burnt pancake
graphs. IEICE - Trans. Inf. Syst. E90-D(4), 716–721 (2007)

http://combos.org/cperm
https://doi.org/10.1007/978-3-319-07890-8_28
https://doi.org/10.1007/978-3-319-07890-8_28


A Hamilton Cycle in the k-Sided Pancake Network 151

17. Knuth, D.E.: The Art of Computer Programming, volume 4: Combinatorial Algo-
rithms, Part 1. Addison-Wesley (2010)

18. Mansour, T.: Pattern avoidance in coloured permutations. Sém. Lothar. Combin.
46, B46g-12 (2001)

19. Mansour, T.: Coloured permutations containing and avoiding certain patterns.
Ann. Comb. 7(3), 349–355 (2003)

20. Sawada, J., Williams, A.: Greedy flipping of pancakes and burnt pancakes. Discret.
Appl. Math. 210, 61–74 (2016)

21. Sawada, J., Williams, A.: Successor rules for flipping pancakes and burnt pancakes.
Theoret. Comput. Sci. 609(part 1), 60–75 (2016)

22. Sedgewick, R.: Permutations generation methods. ACM Comput. Surv. 9(2), 137–
164 (1977)

23. Shin, H., Zeng, J.: Symmetric unimodal expansions of excedances in colored per-
mutations. Eur. J. Comb. 52(part A), 174–196 (2016)

24. Singh, S.: Flipping pancakes with mathematics. The Guardian (2013)
25. Williams, A.: O(1)-time unsorting by prefix-reversals in a boustrophedon linked

list. In: Boldi, P., Gargano, L. (eds.) FUN 2010. LNCS, vol. 6099, pp. 368–379.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13122-6 35

26. Williams, A.: The greedy gray code algorithm. In: Dehne, F., Solis-Oba, R., Sack,
J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 525–536. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40104-6 46

27. Zaks, S.: A new algorithm for generation of permutations. BIT 24(2), 196–204
(1984)

https://doi.org/10.1007/978-3-642-13122-6_35
https://doi.org/10.1007/978-3-642-40104-6_46


Algorithms and Complexity of s-Club Cluster
Vertex Deletion

Dibyayan Chakraborty1,2, L. Sunil Chandran1,2, Sajith Padinhatteeri1,2,

and Raji R. Pillai1,2(B)

1 Indian Institute of Science, Bangalore, India
rajpillai@iisc.ac.in

2 BITS-Pilani, Hyderabad, India

Abstract. An s-club is a graph which has diameter at most s. LetG be a graph. A
set of vertices D ⊆V (G) is an s-club deleting (s-CD) set if each connected com-
ponent of G−D is an s-club. In the s-CLUB CLUSTER VERTEX DELETION (s-
CVD) problem, the goal is to find an s-CD set with minimum cardinality. When
s = 1, the s-CVD is equivalent to the well-studied CLUSTER VERTEX DELE-
TION problem. On the negative side, we show that unless the Unique Games
Conjecture is false, there is no (2− ε)-algorithm for 2-CVD on split graphs, for
any ε > 0. This contrast the polynomial-time solvability of CLUSTER VERTEX

DELETION on split graphs. We show that for each s ≥ 2, s-CVD is NP-hard on
bounded degree planar bipartite graphs and APX-hard on bounded degree bipar-
tite graphs. On the positive side, we give a polynomial-time algorithm to solve
s-CVD on trapezoid graphs, for each s ≥ 1.

Keywords: Vertex deletion problem · s-Club · Split graphs · (Planar) bipartite
graphs · NP-hardness · APX-hardness · Trapezoid graphs · Polynomial-time
algorithms

1 Introduction and Results

Vertex deletion problems form a core topic in algorithmic graph theory with many appli-
cations. Typically, the objective of a vertex deletion problem is to delete the minimum
number of vertices so that the remaining graph satisfies some property. Many clas-
sic optimization problems like MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET,
VERTEX COVER are examples of vertex deletion problems. In this paper, we study the
s-CLUB CLUSTER VERTEX DELETION problem.

For an integer, an s-club is a graph with diameter at most s. Let G be a graph with
vertex set V (G) and edge set E(G). A set of vertices D is an s-club deleting set (s-CD
set) if each connected component of G−D is an s-club. In s-CLUB CLUSTER VERTEX

DELETION(s-CVD), the input is an undirected graph and integers s,k. The objective is
to decide if there exists an s-CD set of cardinality at most k.

s-CLUB CLUSTER VERTEX DELETION was first introduced by Schäfer [24]. He
proved NP-completeness of s-CVD on planar graphs and gave polynomial-time algo-
rithm for trees. In this paper, we strengthen Schäfer’s hardness result by proving the
following result.
c© Springer Nature Switzerland AG 2021
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Theorem 1. For each s ≥ 2, s-CVD is NP-hard on planar bipartite graphs with maxi-
mum degree 7.

We use the proof techniques for Theorem 1 to prove the following.

Theorem 2. For each s ≥ 2, s-CVD is APX-hard on bipartite graphs with maximum
degree 7.

Liu et al. [20] studied the special case of 2-CVD and gave a fixed parameter algo-
rithms with respect to the solution size. In this paper, we show that 2-CVD is difficult to
solve even on split graphs i.e. graphs whose vertex set can be partitioned into a clique
and independent set.

Theorem 3. Unless the Unique Games Conjecture is false, there is no (2 − ε)-
approximation algorithm for 2-CVD on split graphs, for any ε > 0.

On the other hand, 1-CVD on split graphs can be solved in polynomial-time. Note
that, 1-CVD is equivalent to the well-studied CLUSTER VERTEX DELETION [14].

Given a collection C = {C1,C2, . . . ,Cn} of sets, the intersection graph of C is the
graph with vertex set [n] and two vertices i and j are adjacent if and only if the cor-
responding sets Ci and Cj have non-empty intersection. Trapezoid graphs are special
class of intersection graphs. Let �t , �b be two horizontal lines. In the case of trapezoid
graphs, the collection of sets C is restricted to contain only trapezoids with two corner
points on �t(top line) and other two corner points on �b(bottom line). In this paper, we
study the computational complexity of s-CVD on trapezoid graphs. Specifically, we
prove the following theorem.

Theorem 4. For each s ≥ 1, there is an O(n8)-time algorithm on s-CVD on trapezoid
graphs on n vertices.

Theorem 4 generalises a result of Cao et al. [6] where they gave a polynomial-time
algorithm for CLUSTER VERTEX DELETION on interval graphs, intersection graphs of
intervals on the real line. To the best of our knowledge, Theorem 4 provides the first
polynomial-time algorithm for CLUSTER VERTEX DELETION on trapezoid graphs.

Related Works and Significance of Our Results: The notion of s-clubs is important
in the contexts of biological networks [22], protein interaction networks [3], and social
networks. The special case of 1-clubs i.e. cliques and 1-CVD i.e. CLUSTER VERTEX

DELETION has been widely studied in literature since it’s inception due to Hüffner et
al. [14]. Being an hereditary property, the work of Lewis and Yannakakis [19] provide
a dichotomy result for CLUSTER VERTEX DELETION. A result of Yannakakis [27]
implies that that CLUSTER VERTEX DELETION is NP-Complete on planar graphs and
bipartite graphs. To the best of our knowledge, the complexity of CLUSTER VERTEX

DELETION on planar bipartite graphs is unknown. Theorem 1 proves that s-CVD is
NP-complete even on planar bipartite graphs for each s ≥ 2. Note that, for s ≥ 2, the
property “diameter at most s” is not hereditary and therefore meta theorems that work
for CLUSTER VERTEX DELETION do not hold for s-CVD.

Observe that, solving CLUSTER VERTEX DELETION is equivalent to hitting all
induced paths of length 3. Therefore, the general dynamic programming approach given
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by Sau and Souza [23] provides a polynomial-time algorithm for CLUSTER VERTEX

DELETION on bounded tree-width graphs. However, popular graph classes like chordal
graphs and split graphs have unbounded tree-width. Contrasting the polynomial-time
solvability of CLUSTER VERTEX DELETION on split graphs, Theorem 3 implies that
2-CVD is even hard to approximate beyond a factor of 2 on split graphs.

Often intersection graphs have high tree-width and therefore separate attention is
required to formulate polynomial-time algorithms. Indeed, the complexity of CLUS-
TER VERTEX DELETION on interval graphs remained open until Cao et al. [6] gave a
quadratic time optimal algorithm in 2018. However, to the best of our knowledge com-
plexity of CLUSTER VERTEX DELETION remained open on related graph classes like
permutation graphs [18], triangle graphs [21], simple triangle graphs [26]. Trapezoid
graph is an important class of graphs that contain aforementioned graph classes as sub-
classes. Computational complexities of many algorithmic problems have been studied
on trapezoid graphs [4,5,13]. Theorem 4 settles the complexity of s-CVD on trapezoid
graphs, for each s ≥ 1.

Our algorithm for s-CVD relies on a connection between maximum weight of an
independent set of cocomparability graphs and dual of the s-CD set.

Even though the problem of finding the 2-club of maximum cardinality has been
extensively studied [2,3,7,12,25], the computational complexity of 2-CVD is much
less understood. Liu et al. [20] studied the fixed parameter tractability of 2-CVD and
gave an O∗(3.31k) algorithm where k is the solution size. Figiel et al. [10] proved that
for 2-CVD there does not exists a polynomial kernel with respect to the solution size k,
unless NP ⊆CoNP \Poly. Our results make significant advancements towards under-
standing of the computational complexity of 2-CVD on various important classes of
graphs.

Notations: We define some notations that will be used throughout the paper. Let G
be a graph and v ∈ V (G) be a vertex. The sets N[v] and N(v) denote the closed and
open neighbourhood of v. For a subset S of vertices, N[S] is the union of the closed
neighbourhoods of the vertices in S and N(S) is the union of the open neighbourhoods
of the vertices in S. The graph G denotes the complement of G. For two sets X ,Y , the
set of elements in X but not in Y is denoted by either X −Y or X \Y . For a graph G
and a set S of vertices, G− S shall denote the subgraph induced by V (G)− S. For a
finite collection of finite sets S , let min{S } denote any set Z ∈ S with minimum
cardinality.

Organisation of the Paper: In Sect. 2 we prove Theorems 1 and 2. In Sect. 3, we prove
the hardness result Theorem 3. In Sect. 4 we give a polynomial-time algorithm for s-
CVD on trapezoid graphs for each s ≥ 1.

2 Hardness on (Planar) Bipartite Graphs

First we shall prove Theorem 1. For each s≥ 2, we shall reduce the MINIMUM VERTEX

COVER on cubic planar graphs which is known to be NP-Complete [11] to s-CVD on
planar bipartite graphs of maximum degree 7. A vertex cover of a graph G is a set S of
vertices such that each edge of G is incident on at least one vertex in S. Given a graph G
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(a) (b)

xe

ye
e

Fig. 1. Reduction for Theorem 1. (a) The graph G, (b) The graph H for s= 4

and an integer k, MINIMUM VERTEX COVER is to decide whether there exists a vertex
cover of G with cardinality at most k.
Let G be a cubic planar graph and s ≥ 2 be an integer. For each vertex v ∈V (G) intro-
duce a path Pv having s−2 edges and introduce an edge between v and one of the pen-
dent vertices of Pv. Note that Pv contains s− 1 vertices. For each edge e = uv ∈ E(G)
introduce two new vertices xe,ye and add the edges {xeu,xev,yeu,yev}. Finally delete
the edge e from G (See Fig. 1). Let H be the graph obtained after applying the above
operations onG. Note that ifG is a cubic planar graph, thenH is a planar bipartite graph
of maximum degree at most 7.

Lemma 1. If G has a vertex cover of size k, then H has an s-CD set of size k.

Proof. Let D be a vertex cover of G of size k. We shall show that D is an s-CD set
of H. For a vertex u ∈ G, let EG(u) denote the edges incident on u in G. Let C be the
vertices of a connected component of H −D. Suppose C contains a vertex u that also
belongs to G. This means u /∈D and therefore NG(u)⊆D. ThereforeC=V (Pu)∪{u}∪
{xe,ye}e∈EG(u). This implies that the diameter of C is at most s. Now suppose C does
not contain any vertex u of G. Then either C is V (Pv) for some vertex v ∈ D or C is a
singleton set {w} where w ∈ {xe,ye}e∈EG(u). In either case, the diameter ofC is at most
s−1. ��
Observation A. Let S be an s-CD set of H. Let e = uv be an edge of G such that S
contains none of its end points. That is, S∩{u,v}= /0. Then at least one of the following
is true:

1. The set S contains at least one vertex each from Pv and Pu, or
2. The set S contains both xe and ye.

Proof. Suppose for contradiction, that for an edge e = uv of G none of the conditions
listed in the statement of this observation are satisfied. Then H−S contains Pu,Pv,u and
v. Moreover, H − S also contains one of the vertex from the set {xe,ye}. Without loss
of generality assume that xe is in H −S. Then H −S has a connected component C that
contains a path P = (Pu,u,xe,v,Pv). Note that the distance between the endpoints of P
inC is at least s+1. Clearly the diameter ofC is at least s+1, and therefore S is not an
s-CD set of H. ��
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Observation B. Let S be an s-CD set of H. Then both of the following are true.

1. For a vertex v∈V (G), if S contains a vertex w of Pv, then (S−{w})∪{v} is an s-CD
set of H.

2. For an edge e= uv ∈ E(G), if S contains both xe,ye then (S−{xe,ye})∪{u,v} is an
s-CD set of H.

Proof. The first part of the observation follows from the fact that any path between w
and a vertex z ∈ H −Pv goes through v. The second part of the observation follows
from the fact that any path between w ∈ {xe,ye} and a vertex z ∈V (H −{xe,ye}) goes
through u or v. ��
Lemma 2. Let H has an s-CD of size at most k. Then G has a vertex cover of size k.

Proof. Let S be an s-CD of H of size at most k. Observations A and B imply that there
is an s-CD set S′ of H such that for each edge uv ∈ E(G) either u or v belongs to S′ and
the cardinality of S′ is at most k. Therefore, S′ is a vertex cover of G of size at most k. ��

Since G is a cubic planar graph, then H is a planar bipartite graph with maximum
degree at most 7. Now Lemma 1 and 2 together imply Theorem 1.

Proof of Theorem 2: Since MINIMUM VERTEX COVER is APX-hard on cubic
graphs [1], the above reduction when applied on cubic graphs we have the proof of
Theorem 2.

3 APX-Hardness on Split Graphs

In this section, we shall prove Theorem 3. We shall reduce MINIMUM VERTEX COVER

(MVC) on general graphs to 2-CVD on split graphs. Let 〈G,k〉 be an instance of MIN-
IMUM VERTEX COVER such that maximum degree of G is at most n−3. Let G denote
the complement of G. Now construct a split graph Gsplit from G as follows. For each
vertex of v ∈V (G), we introduce a new vertex xv in Gsplit and for each edge e ∈ E

(
G

)

we introduce a new vertex ye inGsplit. For each pair of edges e1,e2 ∈ E(G)we introduce
an edge between ye1 and ye2 in Gsplit. For each edge e = uv ∈ E

(
G

)
, we introduce the

edges xuye and xvye in Gsplit (See Fig. 2). Observe thatC= {ye}e∈E(G) is the clique and
I = {xv}v∈V (G) is the independent set of Gsplit. We shall show that G has a vertex cover
of size k if and only if Gsplit has a 2-CD set of size k.

Observation C. For each vertex v ∈ C, |N[v]∩ I| = 2 and for each vertex u ∈ I, the
degree of u is at least two.

Lemma 3. Let D be a subset of I and let T = {u∈V (G) : xu ∈D}. The set D is a 2-CD
set of Gsplit if and only if T is a vertex cover of G.

Proof. Let D′ = I−D and T ′ = {u ∈V (G) : xu ∈ D′} (note that T =V (G)−T ′). Note
that the induced subgraph Gsplit −D forms a single connected component since there
are no isolated vertices by observation C. Therefore, for any two vertices xu,xv ∈D′ the
distance between xu,xv is 2 if and only if there is an edge between u,v in G. Therefore,
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Fig. 2. Reduction for Theorem 3. (a) The graph G, (b) The graph G, and (c) The graph Gsplit.

distance between any two pair of vertices in D′ is 2 if and only if T ′ induces a clique in
G and therefore an independent set in G. Since T = V (G)−T ′, we have that distance
between any two pair of vertices in D′ is 2 if and only if T is a vertex cover of G. Since
D′ = I −D we have that D is a 2-CD set of Gsplit if and only if T is a vertex cover
of G. ��
Lemma 4. There is a subset of I which is a minimum 2-CD set of Gsplit.

Proof. Let S be a minimum 2-CD set of Gsplit such that |S∩ I| is maximum. We claim
that S ⊆ I. Suppose for contradiction this is not true. That is, S∩C = /0. Consider the
collection C of connected components of Gsplit − S. First, observe that there exists at
most one connected component in C that intersects C (the clique of Gsplit). We shall
call such a component as the big component and let X be the set of vertices of the big
component. In fact I itself is a 2-CD set and observation C implies |I| ≤ |C|. Therefore,
without loss of generality we can assume that C ⊂ S and indeed such a big component
exists.

Let Y denote those vertices of Gsplit − S that belongs to I−X . Let SC = S∩C and
SI = S∩ I. Recall that by assumption, SC = /0.

If there is a vertex v ∈ SC such that |N[v]∩Y | = 0, then S− {v} is a 2-CD set
with X ∪ {v} as corresponding big component with diameter less than or equal to 2.
This contradicts the minimality of S. Similarly, if there exists a vertex v ∈ SC such that
N[v]∩Y = {u}, a singleton set then S′ = S∪{u}−{v} is a new 2-CD set with X∪{v} as
corresponding new big component. This contradicts the assumption that S is a minimum
2-CD set with |S∩ I| is maximum. Hence together with observation C we infer that
|N(v)∩Y | = 2, for each v ∈ SC. Observation C also implies that for each vertex u ∈ Y ,
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|N(u)∩SC| ≥ 2, since Y ⊆ I for each u ∈ Y we have N(u) ⊆ SC. Therefore, |Y | ≤ |SC|
and S′ = (S−SC)∪Y is a minimum 2-CD set with X ∪SC as the corresponding new big
component and |S′ ∩ I| > |S∩ I|. This contradicts the assumption for S.

Hence we conclude that S is indeed a minimum 2-CD set such that S ⊆ I. ��
Lemmas 3 and 4 imply thatG has a vertex cover of size k if and only ifGsplit has a 2-

CD set of size k. Now Theorem 3 follows from a result of Khot and Regev [15], where
they showed that unless the Unique Games Conjecture is false, there is no (2− ε)-
approximation algorithm for MINIMUM VERTEX COVER on general graphs, for any
ε > 0.

4 Polynomial-Time Algorithm for Trapezoid Graphs

Recall that we have discussed about trapezoid graphs in Sect. 1. In this section we shall
propose a polynomial-time algorithm for s-CVD on trapezoid graphs, for each s ≥ 1.
We shall consider the following maximisation problem called WEAK MAXIMUM s-
CLUB (WMs-CLUB). A weak s-club of G is a subgraph of G such that each connected
component of it is an s-club. In WMs-CLUB the input is a graph and an integer k. The
objective is to decide if G has a weak s-club having at least k vertices. We have the
following observation.

Observation D. For each s ≥ 1, a graph G has an s-CD set of size k if and only if G
has a weak s-club having |V (G)|− k vertices.

In the rest of the section, we present a polynomial-time algorithm for WMs-CLUB

on trapezoid graphs.
Every trapezoid graph is a cocomparability graph. A graph G is a cocomparability

graph if the edges of G admits a transitive orientation1. We shall use the following
structural and algorithmic results on cocomparability graphs. For a graph G and an
integer k ≥ 1, the kth power of G, denoted by Gk, is the graph whose vertex set is same
as G, and two vertices u and v are adjacent if and only if the distance between u and v
in G is at most k.

Theorem 5 [8]. Let G be a cocomparability graph. For each k ≥ 1, Gk is a cocompa-
rability graph.

Theorem 6 [16]. There is an O(n+m)-time algorithm to compute the maximum clique
of a cocomparability graph with n vertices and m edges.

Theorem 7 [17]. There is an O(n+m)-time algorithm to compute the weighted maxi-
mum independent set of a cocomparability graph with n vertices and m edges.

1 Let H be a graph and E(H) be the edge set of H. A transitive orientation of H is an orientation
of the edges in E(H) such that if (a,b),(b,c) ∈ E(G) and are oriented from a to b and b to c
respectively then (a,c) ∈ E(H) and is oriented from a to c.



Algorithms and Complexity of s-Club Cluster Vertex Deletion 159

Now we formally define a trapezoid representation of a graph. Let G be a graph,
�t , �b be two horizontal lines. For each v ∈ G, let It(v) = [t−(v), t+(v)] and Ib(v) =
[b−(v),b+(v)] be two intervals on �t , �b, respectively. Let I(v) denote the trapezoid
defined by It(v) and Ib(v) so that It(v) and Ib(v) form a pair of parallel sides of I(v).
The collection of trapezoidsI = {I(v)}v∈V (G) is a trapezoid representation of G if two
trapezoids I(v) and I(u) intersect if and only if uv ∈ E(G). For an induced subgraph H,
let

t−(H) =min{t−(v) : v ∈V (H)}
t+(H) =max{t+(v) : v ∈V (H)}
b−(H) =min{b−(v) : v ∈V (H)}
b+(H) =max{b+(v) : v ∈V (H)}

A vertex v ∈V (H) is a corner vertex of H if

{t−(v), t+(v),b−(v),b+(v)}∩{t−(H), t+(H),b−(H),b+(H)} = /0

Observe that any induced subgraph of G has at most four corner vertices. For the
remainder of this section, s is a fixed positive integer, G denotes a fixed trapezoid graph
with n vertices and m edges and the setI = {I(v)}v∈V (G) is a fixed trapezoid represen-
tation of G where corners of the trapezoids are distinct2. Let H1 and H2 be two induced
subgraphs of G. We say that H1 is left of H2 if t+(H1)< t−(H2) and b+(H1)< b−(H2).
The subgraphs H1 and H2 of G are neighbour disjoint if (i) V (H1)∩V (H2) = /0 and (ii)
there is no edge uv ∈ E(G) such that u ∈V (H1) and v ∈V (H2).

The subgraph H is valid if (i) whenever we have a vertex v ∈V (G) such that t(v) ∈
[t−(H), t+(H)] and b(v) ∈ [b−(H),b+(H)] we have v ∈V (H) and (ii) distance between
the corner vertices of H in G is at most s. Observe that there are at most O(n4) many
valid induced subgraphs of G. We shall use the following observation about trapezoid
graphs.

Observation E. Let H1 and H2 be two valid induced subgraphs of G. Then H1 and H2

are neighbour disjoint if and only if either H1 is left of H2 or H2 is left of H1.

Proof. First to see the easy direction, without loss of generality assume that H1 is left of
H2. Clearly for any vetex u ∈H1 and v ∈H2 we have t+(u)≤ t+(H1)< t−(H2)≤ t−(v)
and b+(u) ≤ b+(H1)< b−(H2) ≤ b−(v) and hence the vertices u and v are not adjacent
in G. Therefore H1 and H2 are neighbour disjoint. For the other direction, assume that
H1 and H2 are neighbour disjoint. For the sake of contradiction suppose H1 is not left of
H2 and H2 is not left of H1. Then we have two cases:

1. t+(H1) > t+(H2) and b+(H1) > b+(H2). Let u,u′ ∈ V (H1) be the corner vertices
of H1 such that t+(u) = t+(H1) and b+(u′) = b+(H1), possibly u = u′. Clearly
t−(u) ≥ t−(H1) and b−(u′) ≥ b−(H1). If t−(H1) > t+(H2) and b−(H1) > b+(H2)
then H2 is left of H1, contradicting the assumption (See Fig. 3 (a)). Hence assume

2 Such representation of trapezoid graphs are possible, see [9].
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that one of the above condition is false and without loss of generality assume that
t−(H1) < t+(H2). If t−(u) < t+(H2) then It(u)∩ It(v) = /0 where v ∈ V (H2) is the
corner vertex such that t+(v) = t+(H2), in which case the trapezoids correspond-
ing to the vertices u and v intersects. So assume that t−(u) > t+(H2). Now consider
the corner vertex u′′ ∈ V (H1) such that t−(u′′) = t−(H1). We infer that t+(u′′) <
t−(v) ≤ t+(v). Otherwise, It(u′′)∩ It(v) = /0 and the trapezoid u′′ intersects with the
trapezoid v. Now we have two sub cases depending on the position of b−(H1). If
b−(H1) > b+(H2), then b−(u′′) > b+(v). Since t−(v) > t+(u′′) the trapezoid corre-
sponding to the vertex v intersects with the trapezoid corresponding to the vertex u′′
and hence (u′′,v) ∈ E(G) (See Fig. 3 (b)). This contradicts the assumption that H1

and H2 are neighbour disjoint. Now consider the other sub case, b−(H1) < b+(H2).
Since t−(v) > t+(u′′) we must have b+(v) ≥ b−(v) > b+(u′′) ≥ b−(u′′)(See Fig. 3
(c)). Otherwise, Ib(u′′)∩ Ib(v) = /0 and the trapezoid u′′ intersects with the trapezoid
v. Thus t(v) ∈ [t−(H1), t+(H1)] and b(v) ∈ [b−(H1),b+(H1)]. Since by assumption
H1 is valid, we have v ∈ V (H1). But v ∈ V (H2) and this implies H1 and H2 are
neighbour disjoint, a contradiction to the assumption.

2. t+(H1) > t+(H2) and b+(H2) > b+(H1). Let x ∈ V (H2) be a corner vertex of H2

such that b+(x) = b+(H2) and y ∈V (H1) be a corner vertex of H1 such that t+(y) =
t+(H1). Observe that t+(x) ≤ t+(H2) and b+(y) ≤ b+(H1). Therefore, t+(H2) <
t+(H1) implies t+(x) < t+(y) and b+(H2) > b+(H1) implies b+(y) < b+(x). This
clearly shows that the trapezoid corresponding to the vertex x intersects with the
trapezoid corresponding to the vertex y and hence (x,y) ∈ E(G) (See Fig. 3 (d)).
This contradicts the assumption that H1 and H2 are neighbour disjoint. ��

Now construct a graphH whose vertex set is all valid induced subgraphs of G and
two verticesH1,H2 are adjacent if and only ifH1 andH2 are not neighbour disjoint inG.
Clearly,H hasO(n4) vertices,O(n8) edges and can be constructed in polynomial-time.
We prove the following lemma.

Lemma 5. The graph H is a cocomparability graph.

Proof. To prove that H is a cocomparability graph we show that the edges of H can
be transitively oriented. For an edge (H1,H2) ∈ E(H ), clearly H1 and H2 are neighbor
disjoint. From Observation E either H1 is left of H2 or H2 is left of H1. If H1 is left of
H2, we orient the edge (H1,H2) in H from H1 to H2. Otherwise, we orient the edge
from H2 to H1. Now to verify that this orientation is indeed a transitive orientation of
H , consider two directed edges (H1,H2),(H2,H3) ∈ E(H ). This means that H1 is left
of H2 and H2 is left of H3. From the definition of left of it is easily follows that H1 is
left of H3. By invoking Observation E, we can see that H1 and H3 are neighbour disjoint
and therefore H1 and H3 are adjacent in H . Therefore, by the rule of our orientation
the edge (H1,H3) is oriented from H1 to H3, as required. ��

Let ωs : V (H ) → Z
+ be a positive integer valued weight function where ωs(H)

denote the cardinality of the maximum s-CLUB of H. From now on, we will consider
H as a weighted graph where weights are defined by ωs.
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Fig. 3. Trapezoid representation of corner vertices of induced subgraphs H1 and H2. (a)
t+(H1)> t−(H1)> t+(H2) and b+(H1)> b−(H1)> b+(H2), (b) t+(H1)> t+(H2)> t−(H1) and
b+(H1) > b−(H1) > b+(H2), (c) t+(H1) > t+(H2) > t−(H1) and b+(H1) > b+(H2) > b−(H1)
and (d) t+(H1) > t+(H2) and b−(H2) > b+(H1)

Lemma 6. The weight function ωs can be determined in polynomial-time.

Proof. Let H be a valid induced subgraph of G and Hs be the sth power of H. Observe
that, an induced subgraph F of H is an s-club if and only if V (F) induces a complete
subgraph in Hs. Hence, the maximum s-club of H corresponds to the maximum clique
in Hs. Since the class of trapezoid graphs is closed under taking induced subgraphs, H
is a trapezoid graph. Therefore H is a cocomparability graph and Theorem 5 implies
that Hs is a cocomparability graph. Theorem 6 implies that the maximum clique of Hs

can be found in polynomial-time. Hence, the maximum s-club of H and ωs(H) can be
found in polynomial-time. ��

In the following lemma, we shall relate a weak s-club of G with an independent set
of H .

Lemma 7. The trapezoid graph G has a weak s-club with at least k vertices if and only
ifH has an independent set of weight at least k.

Proof. LetI = {H1,H2, . . . ,Ht} be an independent set ofH of weight k. For 1≤ i≤ t,
let H ′

i denote the maximum s-club of Hi. Then |V (H ′
i )| = ωs(Hi) and therefore

t

∑
i=1

|V (H ′
i )| =

t

∑
i=1

ωs(Hi) ≥ k

Since H1,H2, . . . ,Ht are pairwise neighbour disjoint, H ′
1,H

′
2, . . . ,H

′
t are also pairwise

neighbour disjoint. Hence, H ′
1,H

′
2, . . . ,H

′
t forms a weak s-club of G with at least k ver-

tices.
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To prove the other direction, assume H is a weak s-club of G having at least k ver-
tices and C1,C2, . . . ,Cq be the connected components of H. Observe that C1,C2, . . . ,Cq

are neighbour disjoint subgraphs of G. Without loss of generality, assume t−(Ci) <
t−(Cj) for any 1 ≤ i < j ≤ q. For 1 ≤ i ≤ q, let C′

i denote the subgraph of G induced
by the set of vertices {w ∈ V (G) : [t−(w), t+(w)] ⊆ [t−(Ci), t+(Ci)], [b−(w),b+(w)] ⊆
[b−(Ci),b+(Ci)]}. Observe that each C′

i is a supergraph of Ci and C′
i is a valid induced

subgraph of G. Therefore each C′
i are vertices of H . Moreover, for any 1 ≤ i < j ≤ q,

t+(C′
i) < t−(C′

j) and b+(C′
i) < b−(C′

j). By Observation E implies that C′
i and C′

j are
valid neighbour disjoint subgraphs of G. Hence, C′

1,C
′
2, . . . ,C

′
q forms an independent

set I of H . Moreover, ωs(C′
i) ≥ |V (Ci)| and therefore

q

∑
i=1

ωs(C′
i) ≥ k

Therefore weight of I is at least k. ��
Since a weighted maximum independent set of a cocomparability is possible in

polynomial-time (Theorem 7), we have the following polynomial-time algorithm for
solving WMs-CLUB on a trapezoid graph G. Given two integers s ≥ 1, k ≥ 1, a trape-
zoid graph G and a trapezoid representation I of G

– construct the graph H and the weight function ωs, and
– decide ifH has an independent set of weight k.

The above algorithm solves WMs-CLUB on a trapezoid graph G and due to
Observation D we have a polynomial-time algorithm for s-CVD on trapezoid graphs.

5 Conclusion

In this paper we studied the computational complexity of s-CVD on three important
graph classes: (planar) bipartite graphs, split graphs and trapezoid graphs. We gave a
polynomial-time algorithm for s-CVD on trapezoid graphs for each s ≥ 1. This raises
the following question. Is there a polynomial-time algorithm for s-CVD on cocompa-
rability or asteroidal triple free graphs? Note that, the computational complexity of
CLUSTER VERTEX DELETION is unknown for both the aforementioned graph classes.

We proved that for each s≥ 2, s-CVD is NP-hard on planar bipartite graphs. On the
other hand, the complexity of CLUSTER VERTEX DELETION on planar bipartite graphs
remains unknown. Observe that, solving CLUSTER VERTEX DELETION on (planar)
bipartite graphs is equivalent to finding the minimum number of vertices whose deletion
cause the remaining graphs to have maximum degree 1. The aforementioned problem
is known as MINIMUM DISSOCIATION NUMBER whose complexity on planar bipartite
graphs is unknown.

We also showed that unless the Unique Games Conjecture is false, it is not possible
to approximate 2-CVD on split graphs beyond a factor of 2. CLUSTER VERTEX DELE-
TION is polynomial-time solvable on split graphs but it’s computational complexity is
unknown on chordal graphs. For each s ≥ 2, is there a constant factor approximation
algorithm for s-CVD on chordal graphs?
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17. Köhler, E., Mouatadid, L.: A linear time algorithm to compute a maximum weighted inde-
pendent set on cocomparability graphs. Inf. Process. Lett. 116(6), 391–395 (2016)

18. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms for recog-
nizing interval graphs and permutation graphs. SIAM J. Comput. 36(2), 326–353 (2006)

19. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-
complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

20. Liu, H., Zhang, P., Zhu, D.: On editing graphs into 2-club clusters. In: Snoeyink, J., Lu, P., Su,
K., Wang, L. (eds.) AAIM/FAW -2012. LNCS, vol. 7285, pp. 235–246. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29700-7 22

21. Mertzios, G.B.: The recognition of triangle graphs. Theor. Comput. Sci. 438, 34–47 (2012)

https://doi.org/10.1007/3-540-62592-5_80
https://doi.org/10.1007/978-3-642-12200-2_53
https://doi.org/10.1007/3-540-58218-5_13
http://arxiv.org/abs/2006.14972
https://doi.org/10.1007/978-3-319-08404-6_28
https://doi.org/10.1007/978-3-642-29700-7_22


164 D. Chakraborty et al.

22. Pasupuleti, S.: Detection of protein complexes in protein interaction networks using n-clubs.
In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 153–164. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78757-0 14

23. Sau, I., Souza, U.S.: Hitting forbidden induced subgraphs on bounded treewidth graphs.
arXiv preprint arXiv:2004.08324 (2020)
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Abstract. We consider the planar two-center problem for a convex
polygon: given a convex polygon in the plane, find two congruent disks
of minimum radius whose union contains the polygon. We present an
O(n log n)-time algorithm for the two-center problem for a convex poly-
gon, where n is the number of vertices of the polygon. This improves
upon the previous best algorithm for the problem.

Keywords: Two-center problem · Covering · Convex polygon

1 Introduction

The problem of covering a region R by a predefined shape Q (such as a disk,
a square, a rectangle, a convex polygon, etc.) in the plane is to find k homoth-
ets1 of Q with the same homothety ratio such that their union contains R and
the homothety ratio is minimized. The homothets in the covering are allowed
to overlap, as long as their union contains the region. This is a fundamental
optimization problem [2,4,19] arising in analyzing and recognizing shapes, and
it has real-world applications, including computer vision and data mining.

The covering problem has been extensively studied in the context of the k-
center problem and the facility location problem when the region to cover is a set
of points and the predefined shape is a disk in the plane. In last decades, there have
been a lot of works, including exact algorithms for k = 2 [3,11,13,14,33,35], exact

1 For a shape Q in the plane, a (positive) homothet of Q is a set of the form λQ + v :=
{λq + v | q ∈ Q}, where λ > 0 is the homothety ratio, and v ∈ R

2 is a translation
vector.
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and approximation algorithms for large k [2,19,21,24], algorithms in higher dimen-
sional spaces [1,2,29], and approximation algorithms for streaming points [5,6,12,
22,25,37]. There are also some works on the k-center problem for small k when the
region to cover is a set of disks in the plane, for k = 1 [20,27,28] and k = 2 [8].

In the context of the facility location, there have also been some works on the
geodesic k-center problem for simple polygons [7,30] and polygonal domains [9],
in which we find k points (centers) in order to minimize the maximum geodesic
distance from any point in the domain to its closest center.

In this paper we consider the covering problem for a convex polygon in which
we find two congruent disks of minimum radius whose union contains the con-
vex polygon. Thus, our problem can be considered as the (geodesic) two-center
problem for a convex polygon. See Fig. 1 for an illustration.

Previous Works. For a convex polygon with n vertices, Shin et al. [34] gave an
O(n2 log3 n)-time algorithm using parametric search for the two-center problem.
They also gave an O(n log3 n)-time algorithm for the restricted case of the two-
center problem in which the centers must lie at polygon vertices. Later, Kim and
Shin [26] improved the results and gave an O(n log3 n log log n)-time algorithm
for the two-center problem and an O(n log2 n)-time algorithm for the restricted
case of the problem.

There has been a series of work dedicated to variations of the k-center prob-
lem for a convex polygon, most of which require certain constraints on the cen-
ters, including the centers restricted to lie on the polygon boundary [31] and
on a given polygon edge(s) [17,31]. For large k, there are quite a few approx-
imation algorithms. For k ≥ 3, Das et al. [17] gave an (1 + ε)-approximation
algorithm with the centers restricted to lie on the same polygon edge, along
with a heuristic algorithm without such restriction. Basappa et al. [10] gave a
(2 + ε)-approximation algorithm for k ≥ 7, where the centers are restricted to
lie on the polygon boundary. There is a 2-approximation algorithm for the two-
center problem for a convex polygon that supports insertions and deletions of
points in O(log n) time per operation [32].

P P

(a) (b)

Fig. 1. (a) Two congruent disks whose union covers a convex polygon P . (b) P can be
covered by two congruent disks of smaller radius.
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Our Results. We present an O(n log n)-time deterministic algorithm for the two-
center problem for a convex polygon P with n vertices. That is, given a convex
polygon with n vertices, we can find in O(n log n) time two congruent disks
of minimum radius whose union covers the polygon. This improves upon the
O(n log3 n log log n) time bound of Kim and Shin [26].

Sketch of Our Algorithm. Our algorithm is twofold. First we solve the sequential
decision problem in O(n) time. That is, given a real value r, decide whether
r ≥ r∗, where r∗ is the optimal radius value. Then we present a parallel algorithm
for the decision problem which takes O(log n) time using O(n) processors, after
an O(n log n)-time preprocessing. Using these decision algorithms and applying
Cole’s parametric search [16], we solve the optimization problem, the two centers
for P , in O(n log n) deterministic time.

We observe that if P is covered by two congruent disks D1 and D2 of radius
r, D1 covers a connected subchain P1 of the boundary of P and D2 covers the
remaining subchain P2 of the boundary of P . Thus, in the sequential decision
algorithm, we compute for any point x on the boundary of P , the longest sub-
chain of the boundary of P from x in counterclockwise direction that is covered
by a disk of radius r, and the longest subchain of the boundary P from x in
clockwise direction that is covered by a disk of radius r. We show that the deter-
minators of the disks that define the two longest subchains change O(n) times
while x moves along the boundary of P . We also show that the disks and the
longest subchains can be represented by O(n) algebraic functions. Our sequen-
tial decision algorithm computes the longest subchains in O(n) time. Finally,
the sequential decision algorithm determines whether there is a point x′ in P
such that the two longest subchains from x′, one in counterclockwise direction
and one in clockwise direction, cover the polygon boundary in O(n) time.

Our parallel decision algorithm computes the longest subchains in parallel
and determines whether there is a point x′ in P such that the two longest sub-
chains from x′ covers the polygon boundary in O(log n) parallel steps using O(n)
processors after O(n log n)-time preprocessing. For this purpose, the algorithm
finds rough bounds of the longest subchains, by modifying the parallel decision
algorithm for the planar two-center problem of points in convex position [14]
and applying it for the vertices of P . Then the algorithm computes O(n) alge-
braic functions of the longest subchains in O(log n) time using O(n) processors.
Finally, it determines in parallel computation whether there is a point x′ in P
such that the two longest subchains from x covers the polygon boundary.

We can compute the optimal radius value r∗ using Cole’s parametric
search [16]. For a sequential decision algorithm of running time TS and a
parallel decision algorithm of parallel running time TP using N processors,
Cole’s parametric search is a technique that computes an optimal value in
O(NTP + TS(TP + log N)) time. In our case, TS = O(n), TP = O(log n), and
N = O(n). Therefore, we get a deterministic O(n log n)-time algorithm for the
two-center problem for a convex polygon P .

Due to lack of space, some of the proofs and details are omitted. A full version
of this paper is available in [15].
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2 Preliminaries

For any two sets X and Y in the plane, we say X covers Y if Y ⊆ X. We say a
set X is r-coverable if there is a disk D of radius r covering X. For a compact
set A, we use ∂A to denote the boundary of A. We simply say x moves along
∂A when x moves in the counterclockwise direction along ∂A. Otherwise, we
explicitly mention the direction.

Let P be a convex polygon with n vertices v1, v2, . . . , vn in counterclockwise
order along the boundary of P . Throughout the paper, we assume general cir-
cular position on the vertices of P , meaning no four vertices are cocircular. We
denote the subchain of ∂P from a point x to a point y in ∂P in counterclockwise
order as Px,y = 〈x, vi, vi+1, . . . , vj , y〉, where vi, vi+1, . . . , vj are the vertices of P
that are contained in the subchain. We call x, vi, vi+1, . . . , vj , y the vertices of
Px,y. By |Px,y|, we denote the number of distinct vertices of Px,y.

We can define an order on the points of ∂P , with respect to a point p ∈ ∂P .
For two points x and y of ∂P , we use x <p y if y is farther from p than x in the
counterclockwise direction along ∂P . We define ≤p, >p,≥p accordingly.

For a subchain C of ∂P , we denote by Ir(C) the intersection of the disks
of radius r, each centered at a point in C. See Fig. 2(a). Observe that any disk
of radius r centered at a point p ∈ Ir(C) covers the entire chain C. Hence,
Ir(C) �= ∅ if and only if C is r-coverable. The circular hull of a set X, denoted
by αr(X), is the intersection of all disks of radius r covering X. See Fig. 2(b).
Let S be the set of vertices of a subchain C of ∂P . If a disk covers C, it also
covers S. If a disk covers S, it covers C since it covers every line segment induced
by pairs of the points in S, due to the convexity of a disk. Therefore, αr(C) and
αr(S) are the same and Ir(C) and Ir(S) are the same.

(a) (b)

C C

Fig. 2. C is a subchain of ∂P and S is the vertex set of C. (a) Ir(S) = Ir(C) (b)
αr(S) = αr(C)

Every vertex of αr(C) is a vertex of C. The boundary of αr(C) consists of
arcs of radius r, each connecting two vertices of C. The circular hull αr(C) is
dual to the intersection Ir(C), in the sense that every arc of αr(C) is on the circle
of radius r centered at a vertex of Ir(C), and every arc of Ir(C) is on the circle
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of radius r centered at a vertex of αr(C). This implies that αr(C) �= ∅ if and
only if Ir(C) �= ∅. Therefore, αr(C) is nonempty if and only if C is r-coverable.

For a vertex v of αr(C), we denote by ccw(v) its counterclockwise neighbor
on ∂αr(C), and by cw(v) its clockwise neighbor on ∂αr(C). We denote by γ(v)
the arc of αr(C) connecting v and ccw(v) of αr(C). By δ(v), we denote the
supporting disk of the arc γ(v) of αr(C), that is, the disk containing γ(v) in
its boundary. We may use α(C) and I(C) to denote αr(C) and Ir(C), respec-
tively, if it is understood from context. Since α(C) and α(S) are the same, we
obtain the following observation on subchains from the observations on planar
points [18,23].

Observation 1 [18,23]. For a subchain C of ∂P the followings hold.

1. For any subchain C ′ ⊆ C, αr(C ′) ⊆ αr(C) .
2. A vertex of C appears as a vertex in αr(C) if and only if C is r-coverable by

a disk containing the vertex on its boundary.
3. An arc of radius r connecting two vertices of C appears as an arc of αr(C) if

and only if C is r-coverable by the supporting disk of the arc.

For a point x ∈ ∂P , let fr(x) be the farthest point on ∂P from x in the coun-
terclockwise direction along ∂P such that Px,fr(x) is r-coverable. We denote by
Dr

1(x) the disk of radius r covering Px,fr(x). Similarly, let gr(x) be the farthest
point on ∂P from x in the clockwise direction such that Pgr(x),x is r-coverable,
and denote by Dr

2(x) the disk of radius r covering Pgr(x),x. Note that x may
not lie on the boundaries of Dr

1 and Dr
2. We may use f(x), D1(x), g(x), and

D2(x) by omitting the subscript and superscript r in the notations, if they are
understood from context.

Since we can determine in O(n) time whether P is r-coverable [29], we assume
that P is not r-coverable in the remainder of the paper. For a fixed r, consider any
two points t and t′ in ∂P satisfying t <t t′ <t f(t). Then Pt′,f(t) is r-coverable,
which implies f(t) ≤t′ f(t′). Thus, we have the following observation.

Observation 2. For a fixed r, as x moves along ∂P in the counterclockwise
direction, both f(x) and g(x) move monotonically along ∂P in the counterclock-
wise direction.

3 Sequential Decision Algorithm

In this section, we consider the decision problem: given a real value r, decide
whether r ≥ r∗, that is, whether there are two congruent disks of radius r whose
union covers P .

For a point x moving along ∂P , we consider two functions, f(x) and g(x). If
there is a point x ∈ ∂P such that f(x) ≥x g(x), the union of Px,f(x) and Pg(x),x

is ∂P . Thus there are two congruent disks of radius r whose union covers P , and
the decision algorithm returns yes. Otherwise, we conclude that r < r∗, and
the decision algorithm returns no. For a subchain Px,y of ∂P , we use α(x, y) to
denote α(Px,y), and I(x, y) to denote I(Px,y).
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3.1 Characterizations

For a fixed r, I(x, f(x)) is a point, and it is the center of α(x, f(x)). Moreover,
α(x, f(x)) and D1(x) are the same. Observe that D1(x) is defined by two or three
vertices of Px,f(x), which we call the determinators of D1(x). For our purpose,
we define four types of D1(x) by its determinators: (T1) x, f(x), and one vertex.
(T2) x and f(x). (T3) f(x) and one vertex. (T4) f(x) and two vertices. See Fig. 3
for an illustration of the four types.

Fig. 3. Four types of D1(x) and its determinators (small circles).

We denote by e(a) the edge of P containing a point a ∈ ∂P . If a is a vertex
of P , e(a) denotes the edge of P incident to a lying in the counterclockwise
direction from a. For a point x moving along ∂P , the combinatorial structure
of f(x) is determined by e(x), e(f(x)), and the determinators of D1(x). We
call each point x in ∂P at which the combinatorial structure of f(x) changes a
breakpoint of f(x). For x ∈ ∂P lying in between two consecutive breakpoints,
we can compute f(x) using e(x), e(f(x)), and D1(x).

Consider x moving along ∂P starting from x0 on ∂P in counterclockwise
direction. Let x1 = f(x0), x2 = f(x1) and x3 = f(x2). We simply use the index
i instead of xi for i = 0, . . . , 3 if it is understood from context. For instance,
we use Pi,j to denote Pxi,xj

, and ≤i to denote ≤xi
. For the rest of the section,

we describe how to handle the case that x moves along P0,1. The cases that x
moves along P1,2 and P2,3 can be handle analogously. As x moves along P0,1,
f(x) moves along P1,2 in the same direction by Observation 2.

Lemma 1. For any fixed r ≥ r∗, the union of P0,1, P1,2, and P2,3 is ∂P .

The structure of a circular hull can be expressed by the circular sequence of
arcs appearing on the boundary of the circular hull. There is a 1-to-1 correspon-
dence between a breakpoint of f(x) for x moving along P0,1 and a structural
change to α(x, f(x)). This is because D1(x) and α(x, f(x)) are the same. Thus,
we maintain D1(x) for x moving along P0,1 and capture every structural change
to α(x, f(x)). Observe that the boundary of α(x, f(x)) consists of a connected
boundary part of α(x, x1), a connected boundary part of α(x1, f(x)), and two
arcs of D1(x) connecting α(x, x1) and α(x1, f(x)). See Fig. 4 for an illustration.

The following lemmas give some characterizations to the four types of D1(x).
Recall that δ(v) is the supporting disk of the arc γ(v) of an circular hull, that
is, the disk containing γ(v) on its boundary.
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Fig. 4. Two cases of D1(x) of type T1. Two arcs (dashed) of D1(x) connecting α(x, x1)
and α(x1, f(x)). (a) If v is on the boundary of α(x, x1), D1(x) is δ(x) of α(x, x1). (b)
If v is on the boundary of α(x1, f(x)), D1(x) is δ(cw(f(x))).

Lemma 2. The following characterizations hold for each type of D1(x).

– For D1(x) of type T1, it is δ(x) of α(x, x1) or δ(cw(f(x))) of α(x1, f(x)).
– For D1(x) of type T2, the Euclidean distance between x and f(x) is 2r.
– For D1(x) of type T3 or T4 containing x on its boundary, it is δ(x) of α(x, x1)

or δ(cw(f(x))) of α(x1, f(x)). Moreover, for any point y in the interior of
Px,v, D1(y) has the same type as D1(x), where v is the determinator of D1(x)
closest to x in counterclockwise order.

If there is a change to e(x), e(f(x)), ccw(x) of α(x, x1) or cw(f(x)) of α(x1, f(x)),
the combinatorial structure of f(x) changes. Therefore, we compute the changes
to e(x) and ccw(x) of α(x, x1) for a point x moving along P0,1, and compute
the changes to e(y) and cw(y) of α(x1, y) for a point y moving along P1,2. We
call the points inducing these changes the event points. From this, we detect the
combinatorial changes to f(x).

3.2 Data Structures and Decision Algorithm

Wang [36] proposed a semi-dynamic (insertion-only) data structure for maintain-
ing the circular hull for points in the plane that are inserted in increasing order
of their x-coordinates. It is also mentioned that the algorithm can be modified
to work for points that are inserted in the sorted order around a point. Since
the vertices of P are already sorted around any point in the interior of P , we
can use the algorithm for our purpose.

Lemma 3 (Theorem 5 in [36]). We can maintain the circular hull of a set Q
of points such that when a new point to the right of all points of Q is inserted,
we can decide in O(1) amortized time whether α(Q) is nonempty, and update
α(Q).
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We can modify the algorithm to work not only for point insertions, but also
for edge insertions. Let v1, . . . , vi be the vertices of P inserted so far in order
from v1. When vi+1 is inserted, we compute the points z on edge vivi+1 at which
a structural change to α(v1, z) occurs.

Lemma 4. For a point x moving along P0,1, e(x) and ccw(x) of α(x, x1) change
O(|P0,1|) times. We can compute the event points x at which ccw(x) of α(x, x1)
changes in O(|P0,1|) time.

From Lemma 4, we obtain the following Corollary.

Corollary 1. For a point y moving along P1,2, e(y) and cw(y) of α(x1, y)
change O(|P1,2|) times. We can compute the event points y at which cw(y) of
α(x1, y) changes in O(|P1,2|) time.

The event points subdivide P0,1 and P1,2 into O(|P0,1|) and O(|P1,2|) pieces,
respectively. Since the vertices of P0,1 and P1,2 are also event points (defined
by the changes to e(x) and e(y)), each piece is a segment contained in an edge.
Moreover, any point x in a segment of P0,1 has the same ccw(x) of α(x, x1), and
any point y in a segment of P1,2 has the same cw(y) of α(x1, y).

Let T be a maximal segment contained in an edge of P0,1 such that e(x),
e(f(x)), ccw(x) of α(x, x1), and cw(f(x)) of α(x1, f(x)) remain the same for
any x ∈ T . We count the breakpoints of f(x) in the interior of T . There are
O(n) such segments by Lemmas 1, 4 and Corollary 1. We count the breakpoints
of f(x) by computing point x where the type of D1(x) or the determinators of
D1(x) changes. We show that there are at most O(1) breakpoints in the interior
of each maximal segment, and therefore there are O(n) breakpoints in total. In
order to compute f(x), we first compute f(x0) = x1. Then starting from x = x0

and f(x) = x1, we compute f(x) as x moves along ∂P by maintaining the two
maximal segments such that e(x) and ccw(x) of α(x, x1) remain the same and
e(f(x)) and cw(f(x)) of α(x1, f(x)) remain the same. By repeating this process
over maximal segments, we get the following lemma. The details of the process
can be found in [15].

Lemma 5. For a fixed r ≥ r∗, there are O(n) breakpoints of f(x) and g(x), and
they can be computed in O(n) time.

Recall that our algorithm returns yes if there exists a point x ∈ ∂P such
that f(x) ≥x g(x), otherwise it returns no. Hence, using Lemma 5, we have the
following theorem.

Theorem 1. Given a convex polygon P with n vertices in the plane and a radius
r, we can decide whether there are two congruent disks of radius r covering P
in O(n) time.
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4 Parallel Decision Algorithm

Given a real value r, our parallel decision algorithm computes f(x) and g(x)
that define the longest subchains of ∂P from x covered by disks of radius r, and
determines whether there is a point x ∈ ∂P such that f(x) ≥x g(x), in parallel.
To do this efficiently, our algorithm first finds rough bounds of f(x) and g(x) by
modifying the parallel decision algorithm for the two-center problem for points
in convex position by Choi and Ahn [14] and applying it for the vertices of P .
Then our algorithm computes f(x) and g(x) exactly.

The parallel decision algorithm by Choi and Ahn runs in two phases: the pre-
processing phase and the decision phase. In the preprocessing phase, their algo-
rithm runs sequentially without knowing r. In the decision phase, their algorithm
runs in parallel for a given value r. It constructs a data structure that supports
intersection queries of a subset of disks centered at input points in O(log n)
parallel time using O(n) processors after O(n log n)-time preprocessing. In our
problem, two congruent disks must cover the edges of P as well as the vertices
of P , and thus we modify the preprocessing phase.

In the preprocessing phase, their algorithm partitions the vertices of P into
two subsets S1 = {v1, . . . , vk} and S2 = {vk+1, . . . , vn}, each consisting of con-
secutive vertices along ∂P such that there are vi ∈ S1 and vj ∈ S2 satisfying
{vi, vi+1, . . . , vj−1} ⊂ D1 and {vj , vj+1, . . . , vi−1} ⊂ D2 for an optimal pair
(D1,D2) of disks for the vertices of P . The indices of vertices are cyclic such
that n + k ≡ k for any integer k. Then in O(n log n) time, it finds O(n/ log6 n)
pairs of subsets, each consisting of O(log6 n) consecutive vertices such that there
is one pair (U,W ) of sets with vi ∈ U and vj ∈ W , where vi and vj are the
vertices that determine the optimal partition.

In the preprocessing phase, our algorithm partitions ∂P into two subchains.
Then, we partition ∂P into O(n/log6 n) subchains, each consisting of O(log6 n)
consecutive vertices, and compute O(n/log6 n) pairs of the subchains such that
at least one pair has x in one subchain and x′ in the other subchain, and Px,x′

and Px′,x is r∗-coverable.
In the decision phase, their algorithm constructs a data structure in O(log n)

parallel time with O(n) processors, that for a query with r computes Ir(u,w),
where u ∈ U ′, w ∈ W ′ for any pair (U ′,W ′) among the O(n/ log6 n) pairs.
Then it computes I(u,w) in O(log n) time and determines if I(u,w) = ∅ in
O(log3 log n) time using the data structure.

In our case, our algorithm constructs a data structure that for a query with
r computes Ir(vi, vj) and Ir(vj , vi) for vi ∈ P1, vj ∈ P2, where (P1, P2) is one of
the O(n/ log6 n) pairs of subchains computed in our preprocessing phase. Our
data structure also determines if I(vi, vj) = ∅.

Using the data structure, our algorithm gets rough bounds of f(x) and g(x).
Then it computes f(x) and g(x) exactly. In doing so, it computes all break-
points of f(x) and g(x), and their corresponding combinatorial structures, and
determines whether there exists x ∈ ∂P such that f(x) ≥x g(x).
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4.1 Preprocessing Phase

We use f∗(x) and g∗(x) to denote fr∗(x) and gr∗(x), respectively. Our algorithm
partitions ∂P into two subchains such that Px,x′ and Px′,x are r∗-coverable, for
x and x′ contained in each subchain. Then it computes O(n/log6 n) pairs of
subchains of ∂P , each consisting of O(log6 n) consecutive vertices.

More precisely, for any two points x, y ∈ ∂P , let τ(x, y) be the smallest value
such that Px,y is τ(x, y)-coverable. For a point p ∈ ∂P , let h(p) be the farthest
point from p in counterclockwise direction along ∂P that satisfies τ(p, h(p)) ≤
τ(h(p), p). Then for any vertex v of P , Pv,h(v) and Ph(v),v form a partition of
∂P such that there are x ∈ Pv,h(v) and x′ ∈ Ph(v),v, and Px,x′ and Px′,x are
r∗-coverable. The details on the partition of ∂P into two subchains can be found
in [15].

We consider x moving along Pv1,h(v1) and f(x) moving along Ph(v1),v1 . Also,
from now on, we use < instead of <v1 . The same goes for ≤v1 , >v1 ,≥v1 . To
compute rough bounds of f(x) and g(x), our algorithm computes a step function
F (x) approximating f∗(x) and a step function G(x) approximating g∗(x) on the
same set of intervals of the same length. More precisely, at every (log6 n)-th
vertex v from v1 along ∂P , it evaluates step functions F (v) and G(v) on r∗ such
that f∗(v) ≤ F (v) and g∗(v) ≥ G(v). See Fig. 5(a). In each interval, the region
bounded by F (x) from above and by G(x) from below is a rectangular cell. Thus,
there is a sequence of O(n/ log6 n) rectangular cells of width at most log6 n.
See Fig. 5(b). Observe that every intersection of f∗(x) and g∗(x) is contained
in one of the rectangular cells. Thus, we focus on the sequence of rectangular
cells bounded in between F (x) and G(x), which we call the region of interest
(ROI shortly). In addition, we require F (x) and G(x) to approximate f∗(x) and
g∗(x) tight enough such that each rectangular cell can be partitioned further
by horizontal lines into disjoint rectangular cells of height at most log6 n, and
in total there are O(n/ log6 n) disjoint rectangular cells of width and height at
most log6 n in ROI. See Fig. 5(c).

Fig. 5. (a) Step function F (x) satisfying f∗(x) ≤ F (x), with intervals, each consisting
of log6 n consecutive vertices. (b) Sequence of rectangular cells bounded in between
F (x) and G(x). (c) Disjoint rectangular cells of width and height at most log6 n.
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We say that a vertex pair (vi, vj) is in ROI if and only if G(vi) ≤ vj ≤
F (vi). Also, we say an edge pair (vivi+1, vjvj+1) is in ROI if and only if vertex
pairs (vi, vj), (vi, vj+1), (vi+1, vj) and (vi+1, vj+1) are all in ROI. The details on
computing ROI can be found in [15].

4.2 Decision Phase

Recall that our parallel decision algorithm finds, for a given r, the intersections
of the graphs of f(x) and g(x) in ROI. We use the data structure of the parallel
decision algorithm of the two-center problem for points in convex position [14].
To evaluate f(x) for a given r, we first find O(n) edge pairs (e(x), e(f(x))) in ROI.
Then we assign a processor to each edge pair to compute the event points. Then
we assign a processor to each event point to compute the breakpoints and the
corresponding combinatorial structures of f(x). We also do this for g(x). Lastly,
for each combinatorial structure, we determine whether there exists x ∈ ∂P such
that f(x) ≥ g(x). This process can be done in O(log n) parallel steps using O(n)
processors, after O(n log n)-time preprocessing.

Data Structures. We adopt the data structure for the two-center problem for
points in convex position by Choi and Ahn [14]. To construct the data structure,
they store the frequently used intersections of disks for all r > 0. Then, they
find a range of radii (r1, r2] containing the optimal radius r′ for the two center
problem for points in convex position. To do this they use binary search and
the sequential decision algorithm for points in convex position. In our case, we
compute a range of radii (r1, r2] containing the optimal radius r∗ using binary
search and the sequential decision algorithm in Sect. 3 running in O(n) time. For
r ∈ (r1, r2], we construct a data structure that supports the following.

Lemma 6 [14]. After O(n log n)-time preprocessing, we can construct a data
structure in O(log n) parallel steps using O(n) processors that supports the fol-
lowing queries with r ∈ (r1, r2]: (1) For any vertex vi in Pv1,h(v1), compute
I(vi, h(v1)) represented in a binary search tree with height O(log n) in O(log n)
time. (2) For any pair (vi, vj) of vertices in ROI, determine if I(vi, vj) = ∅ in
O(log3 log n) time.

Computing Edge Pairs. Using the data structure in Lemma 6, we get the
following lemma.

Lemma 7. Given r ∈ (r1, r2], we can compute all edge pairs (e(x), e(f(x)))
in ROI in O(log n) parallel time using O(n) processors, after O(n log n)-time
preprocessing.

Computing the Combinatorial Structure. After computing the edge pairs
using Lemma 7, we compute the breakpoints and the corresponding combinato-
rial structures of f(x). To do this, we compute event points and find breakpoints
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from the event points for each edge pair. For D1(x) of type T3 or T4, its deter-
minators never change for an edge pair (e(x), e(f(x))) by Lemma 2. Thus, for
each edge pair we find candidates of the determinators of D1(x) of type T3 or
T4 in O(log n) time.

For D1(x) of type T1 or T2, we find the event points of ccw(x) of α(x, h(v1)),
and the event points of cw(f(x)) of α(h(v1), f(x)). Consider an edge pair
(u′u, vv′) in ROI such that f(x) ∈ vv′ for some x ∈ u′u. The edge pair (u′u, vv′)
may have O(n) event points at which ccw(x) of α(x, h(v1)) or cw(f(x)) of
α(h(v1), f(x)) changes, while the total number of event points is O(n). We find
the event points of ccw(x) of α(x, h(v1)) represented in a binary search tree
using I(u, h(v1)) in O(log n) time. Thus, we can find the event points of ccw(x)
of α(x, h(v1)) for all edge pairs in O(log n) parallel steps using O(n) proces-
sors. For two consecutive event points of ccw(x) of α(x, h(v1)), we compute the
corresponding event points of cw(f(x)) of α(h(v1), f(x)) in O(log n) time. For
a segment T such that e(x), ccw(x) of α(x, h(v1)), e(f(x)), and cw(f(x)) of
α(h(v1), f(x)) remain the same for any x ∈ T , we compute f(x).

Lemma 8. Given r ∈ (r1, r2], we can compute f(x) for all x ∈ ∂P such that
(e(x), e(f(x))) is an edge pair in ROI, represented as a binary search tree of
height O(log n) consisting of O(n) nodes, in O(log n) parallel steps using O(n)
processors, after O(n log n)-time preprocessing.

Now, we have f(x) and g(x) within ROI, each represented as a binary search
tree of height O(log n) and size O(n). For two consecutive breakpoints t and t′

of f(x), we find the corresponding combinatorial structures of g(t) and g(t′).
Then we determine whether there exists x ∈ tt′ such that f(x) ≥ g(x) for all
combinatorial structures of g(x). Since f(x) and g(x) have O(n) breakpoints by
Lemma 5, we can determine whether two disks of radius r cover P in O(log n)
parallel steps using O(n) processors, after O(n log n)-time preprocessing. There-
fore, using Lemma 8, we get the following theorem.

Theorem 2. Given a real value r, we can determine whether r ≥ r∗ in O(log n)
parallel steps using O(n) processors, after O(n log n)-time preprocessing.

We use Cole’s parametric search technique [16] to compute the optimal radius
r∗. For a sequential decision algorithm of running time TS and a parallel decision
algorithm of parallel running time TP using N processors, we can apply Cole’s
parametric search to compute r∗ in O(NTP + TS(TP + log N)) time. To apply
Cole’s parametric search, the parallel decision algorithm must satisfy a bounded
fan-in/bounded fan-out requirement. Our parallel decision algorithm satisfies
such requirement. In our case, TS = O(n), TP = O(log n), and N = O(n).
Therefore, by applying Cole’s technique, r∗ can be computed in O(n log n) time.

Theorem 3. Given a convex polygon with n vertices in the plane, we can find
in O(n log n) time two congruent disks of minimum radius whose union covers
the polygon.
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Abstract. A tandem duplication is an operation that converts a string
S = AXB into a string T = AXXB. As they appear to be involved in
genetic disorders, tandem duplications are widely studied in computa-
tional biology. Also, tandem duplication mechanisms have been recently
studied in different contexts, from formal languages, to information the-
ory, to error-correcting codes for DNA storage systems. The question of
determining the complexity of computing the tandem duplication dis-
tance between two given strings was posed by (Leupold et al., 2004)
and, very recently, the problem was shown to be NP-hard for the case of
unbounded alphabets (Lafond et al., STACS 2020).

In this paper, we significantly improve this result and show that the
tandem duplication distance problem is NP-hard already for the case of
strings over an alphabet of size 5.

For a restricted class of strings, we establish the tractability of the
existence problem: given strings S and T over the same alphabet, decide
whether there exists a sequence of duplications converting S into T . A
polynomial time algorithm that solves this existence problem was only
known for the case of the binary alphabet.

1 Introduction

Since the draft sequence of the human genome was published, it has been known
that a very large part of it consists of repeated substrings [10]. One talks about
a tandem repeat when a pattern of one or more nucleotides occurs twice and
the two occurrences are adjacent. For instance, in the word CTACTAGTCA, the
substring CTACTA is a tandem repeat. In this case, we say that CTACTAGTCA
is generated from CTAGTCA by a tandem duplication of length three. As tan-
dem repeats appear to be correlated to several genetic disorders [16,17], the
study of tandem duplication mechanisms has attracted the interest of different
communities also outside the specific area of computational biology [1,3,5,8,15].

Problem Definition. Formally, a tandem duplication (TD)—later simply
referred to as a duplication—is an operation on a string S that replaces a sub-
string X with its square XX. Given two strings S and T, we write S ⇒ T if
there exist strings A, B, X such that S = AXB and T = AXXB.
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The tandem duplication distance from S to T , denoted by distTD(S, T ), is
the minimum value of k such that S can be turned into T by a sequence of k
duplications. If no such k exists, then dist(S, T ) = ∞.

For example, distTD(0121, 0101211) = 2, since: (i) we have the two dupli-
cations 0121 ⇒ 010121 ⇒ 0101211; (ii) and it is easy to verify that no single
duplication can turn 0121 into 0101211.

We consider the following two problems about the possibility of converting
a string S into a string T by using tandem duplications:

Tandem Duplication Existence (TD-Exist)
Input: Strings S and T over the same alphabet Σ.
Question: Is distTD(S, T ) < ∞?

Tandem Duplication Distance (TD-Dist)
Input: Strings S and T over the same alphabet Σ and an integer k.
Question: Is distTD(S, T ) ≤ k?

The problem of determining the complexity of computing the tandem dupli-
cation distance between two given strings (the TD-Dist problem) was posed in
[15]. Only very recently, the problem was shown to be NP-hard in the case of
unbounded alphabets [9]. Here, we significantly improve this result by showing
that TD-Dist is NP-hard for the case of bounded alphabets of size 5.

For both, the result of [9] and ours, it is assumed that the strings S and T
satisfy distTD(S, T ) < ∞. In general, the complexity of deciding if a string S can
be turned into a string T by a sequence of tandem duplications (the TD-Exist
problem above) is still an open problem for alphabets of size > 2. In the second
part of the paper we also consider this existence problem (TD-Exist), focussing
on a special class of strings—which we call purely alternating (see Sect. 2 for
the definition)—that generalize the special structure of binary strings to larger
alphabets. We show that a linear time algorithm for the TD-Exist problem
exists for every alphabet of size ≤ 5 if the strings are purely alternating. In
a final section we also discuss the limit of the approach used here for larger
alphabets |Σ| > 5.

Related Work. To the best of our knowledge, the first papers explicitly deal-
ing with tandem duplication mechanisms are in the area of formal languages
[2,4,6,12–15]. In [14,15], the authors study decidability and hierarchy issues
of a duplication language, defined as the set of words generated via tandem
duplications. In the same line of research, Jain et al. [7] proved that k-bounded
duplication languages are regular for k ≤ 3. More recently, the authors of [1]
investigated extremal and information theoretic questions regarding the num-
ber of tandem duplications required to generate a binary word starting from
its unique root (the square free word from which it can be generated via dupli-
cations). In the same paper, the authors also considered approximate dupli-
cation operations. In [5] Farnoud et al. began the study of the average infor-
mation content of a k-bounded duplication language, referred to as the capac-
ity of a duplication system. Motivated by problems arising from DNA storage
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applications, Jain et al. [8] proposed the study of codes that correct tandem
duplications to improve the reliability of data storage, and gave optimal con-
structions for the case where tandem duplication length is at most two. In [3],
Chee et al. investigated the question of confusability under duplications, i.e.,
whether, given words x and y, there exists a word z such that x and y can be
transformed into z via duplications. They show that even for small duplication
lengths, the solutions to this question are nontrivial, and exact solutions are
provided for the case of tandem duplications of size at most three.

2 Notation and Basic Properties

We follow the terminology from [1,9]. For any positive integer n we denote by
[n] the set of the first n positive integers {1, 2, . . . , n}. We also use [n]0 to denote
[n] ∪ {0}. Given a string S we denote by Σ(S) the alphabet of the string S, i.e.,
the set of characters occurring in S. If |Σ(S)| = q we say that the string is q-ary.
We say that S′ is a subsequence of S, if S′ can be obtained by deleting zero or
more characters from S, and we denote this by S′ ⊆ S. T is a substring of S if T
is a subsequence of S whose characters occur contiguously in S. If the substring
T occurs at the beginning (resp. end) of S that it is also called a prefix (resp.
suffix ) of S.

A string XX consisting of the concatenation of two identical strings is called
a square. A string is square-free if it does not contain any substring which is a
square. We say that a string S is exemplar if no two characters of S are equal.
Given two strings S and T, we say that there is a duplication turning S into
T, denoted by S ⇒ T, if there exist strings A, B, X such that S = AXB and
T = AXXB. We use ⇒k to denote the existence of a sequence of k TD’s, i.e.,
S ⇒k T if there exist S1, . . . , Sk−1 such that S ⇒ S1 ⇒ · · · ⇒ Sk−1 ⇒ T . We
write S ⇒∗ T if there exists some k such that S ⇒k T. In this case, we also
say that T is a descendant of S and S is an ancestor of T. If S is a square free
ancestor of T , we also say that S is a root of B.

The reverse operation of a tandem duplication consists of taking a square
XX in S and deleting one of the two occurences of X. This operation is referred
to as a contraction. We write T � S if there exist strings A, B, X such that
T = AXXB and S = AXB. For a sequence of k contractions, we write T �k S
and for a sequence of an arbitrary number of contractions we write T �∗ S. In
particular, we have that T �k S if and only if S ⇒k T, and T �∗ S if and only
if S ⇒∗ T .

For any string A = a1 . . . an and set of indices I = {i1, . . . , ik}, such that
1 ≤ i1 < i2 < · · · < ik ≤ n we define dup(A, I) as the string obtained by
duplicating character aij for each j = 1, . . . , k, i.e.,

dup(A, I) = a(1)ai1ai1a
(2)ai2ai2a

(3) · · · a(k)aikaika(k+1),

where a(j) = aij−1+1aij−1+2 . . . aij−1, and i0 = 0, ik+1 = n + 1.
For a character a and a positive integer l, let al denote the string consisting

of l copies of a. A run in a string S is a maximal substring of S consisting of
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copies of the same character. Given a string S containing k runs, the run-length
encoding of S, denoted RLE(S), is the sequence (s1, l1), . . . , (sk, lk), such that
S = sl11 sl22 . . . slkk , where, in particular, for each i = 1, . . . , k, we have that slii
is the i-th run of S, consisting of the symbol si repeated li times. We write
|RLE(S)| for the number of runs contained in S. For example, given the string
S = 111001222 = 13021123, we have RLE(S) = (1, 3), (0, 2), (1, 1), (2, 3) and
|RLE(S)| = 4.

A q-ary string S = sl11 · · · slkk is called purely alternating if, there is an order
on the symbols of the alphabet Σ(S) = {σ0 < σ1 < . . . σq−1} and a j ∈ [k],
such that for each i = 1, . . . , k si = σj+i mod q, i.e., each run of the symbol σj

is followed by a run of the symbol σj+1 mod q. Note that a purely alternating
string is uniquely determined by the order on the alphabet, the initial character
and the lengths of its runs. In general, we will assume, w.l.o.g., that, for a q-ary
purely alternating string the alphabet is the set {0, 1, . . . , q−1} with the natural
order and the first run is a run of 0’s.

For example, the string 0001220112 is purely alternating, but the string 01202
is not. Note that all binary strings (that up to relabelling we assume to start
with 0) are purely alternating.

Given a q-ary purely alternating string S, a group of S is a substring X of S
containing exactly q runs of S.

Given a string S = s1s2 . . . sn, we denote by Sdup the string obtained
by duplicating each single character in S, i.e., Sdup = dup(S, [|S|]) =
s1s1s2s2 . . . snsn.

A string S is almost square-free if there exists a square-free string SSF such
that SSF ⊆ S ⊆ Sdup

SF .
For example, the string 01120022 is almost square-free, while the strings

01122201 and 0012212 are not.
The following lemma states a useful immediate consequence of the definition

of an almost square free string.

Lemma 1. Z is an almost square free string if and only if there exists a square
free string ZSF and a set I ⊆ [|ZSF |] such that Z = dup(ZSF , I). Moreover, the
only contractions possible on Z are of size 1, i.e., those that remove one of two
consecutive equal characters.

Due to the space limitation, several proofs are deferred to the extended ver-
sion of the paper.

3 The Hardness of TD-Dist Over Alphabets of Size 5

In this section we show that given two strings S and T , over a 5-ary alphabet
Σ and such that S ⇒∗ T, finding the minimum number of duplications required
to transform S into T is NP-complete.

To see that the problem is in NP, note that, if S ⇒∗ T , then distTD(S, T ) ≤
|T | because each duplication from S to T adds at least one character. Thus a
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certificate for the problem consisting of the sequence of duplications turning S
into T has polynomial size and can also be clearly verified in polynomial time.

The Block-Exemplar Tandem Duplication Distance Problem. For the
hardness proof, we reduce from a variant of the Tandem Duplication Dis-
tance problem over unbounded alphabets, which we was originally presented
in [9] in a more specialized setting and we repropose here in a somehow stream-
lined form. In this variant, only instances made of strings of a special structure
are allowed. We call the allowed instances block exemplar pairs. We provide an
operative definition of how a block-exemplar pair of strings is built. Recall that
a string is exemplar if its characters are all distinct.

Definition 1 (Block-Exemplar Pair). Fix an integer t > 1 and t + 2
exemplar strings X,B0, B1, . . . , Bt over pairwise disjoint alphabets, such that
|X|, |B0|, |B1| > 1 and |Bi| = 1 for each i = 2, . . . , t. Fix a second positive inte-
ger p < t and p distinct subsets ∅ 	= I1, . . . , Ip � [|X|]. Finally, fix a character �L
which does not appear in any of the strings X,B0, . . . , Bt.

The strings �L,X,B0, B1, . . . , Bt and the sets I1, . . . , Ip, determine a block-
exemplar pair of strings S and T as follows:

For each j = 1, . . . , p, define the distinct strings X1, . . . , Xp, where Xj is
obtained from X by single character duplications, Xj = dup(X, Ij), hence X �

Xi � Xdup. Define the strings

B0
t = BtBt−1 . . . B2B1B

dup
0 B1

t = BtBt−1 . . . B2B
dup
1 B0,

and for each i = 1, . . . , t, define the strings

Bi = BiBi−1 . . . B2B1B0 B01
i = BiBi−1 . . . B2B

dup
1 Bdup

0 .

Then set

S = BtX �L = BtBt−1 . . . B2B1B0X �L, (1)
T = B0

t X
dup �LB1

t X �L B01
1 X1 �LB1

t X �L B01
2 X2 �LB1

t X �L . . . B01
p Xp �LB1

t X �L. (2)

More generally, we say that S, T is a block-exemplar pair, if there exist inte-
gers t, p, strings �L,X,B0, . . . , Bt, and sets I1, . . . , Ip such that S and T are given
by the above construction.

We can now define the following variant of the TD-Dist problem.

Block-Exemplar Tandem Duplication Distance Problem (B-Ex-TD)
Input: A Block-Exemplar pair of strings S and T, an integer bound k.
Question: Is distTD(S, T ) ≤ k?

In [9] the authors showed how to map instances (G, k) of the NP-complete
problem Clique to choices of strings X,B0, . . . , Bt, and sets I1, . . . , Ip and a
parameter k′ such that G has clique of size k if and only if S ⇒k′ T, where S, T
is the block-exemplar pair given by X,B0, . . . , Bt, I1, . . . , Ip. Hence, the following
result is implicit in [9].
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Theorem 1. The B-Ex-TD problem is NP-complete.

From B-Ex-TD to TD-Dist on Alphabets of Size 5.
The basic idea is to map a block-exemplar pair S and T to a pair of 5-ary strings
Ŝ, T̂ having a structure analogous to the one of S and T (as given in (1)-(2)).
However, instead of using exemplar strings for the building blocks X,B0, . . . , Bt

we use substrings of a square free ternary string. The crucial point is to care-
fully choose such substrings so that we can control the squares appearing in the
resulting Ŝ and T̂ . We want that the only duplications allowed in any process
transforming Ŝ into T̂ can be one-to-one mapped to some duplication sequence
from S to T. For this, we need to overcome significant technical hurdles, that
make the hard part of the reduction non-trivial (i.e., the equivalence in the direc-
tion from the 5-ary variant considered here to the block-exemplar variant of the
problem considered in [9]).

The Mapping from the Block-Exemplar Pair (S, T ) to the 5-ary Pair
(Ŝ, T̂ ). We first show how to map the different substrings that define the struc-
ture of the pair S and T (see Def. 1) into 5-ary strings. Then we will show that
the resulting strings Ŝ, T̂ preserve the properties of the original strings with
respect to the possible duplication sequences Ŝ ⇒∗ T̂ .

The strings Ŝ and T̂ will be defined on the alphabet {0, 1, 2, �L, $}. For each
i = 0, 1, . . . , t we define a string B̂i ∈ {0, 1, 2, $}∗ that will be used to encode
the string Bi. Also we define the encoding of strings X,X1, . . . , Xp into strings
X̂, X̂1, . . . , X̂p over the alphabet {0, 1, 2}.

The encodings B̂i and X̂ are obtained by iteratively “slicing off” suffixes from
a long square free string, denoted by O. In addition each B̂i is also extended
with a single occurrence of the character $.

More precisely, let us define O to be a square free string of length at least |X|+
t2+t(5+max{|B0|, |B1|})) over the alphabet {0, 1, 2}. Note that creating O takes
polynomial time in |S| + |T | using a square-free morphism, for example Leech’s
morphism ([11]). Let us now proceed to define the building blocks B̃t, . . . , B̃0, X̃.
Refer to Fig. 1 for a pictorial description of this process. First, we define the string
X̃ to be the suffix of length |X| of O. Let O(0) be the string obtained from O
after removing the suffix X̃. Let B̃0 be the shortest suffix of O(0) that does not
start with 0 and has length at least max(|B0|, |B1|). We then define B̃1 as the
shortest suffix of the string obtained by removing the suffix B̃0 from O(0) such
that |B̃1| > |B̃0| and that doesn’t start with 0.

Fig. 1. The way the blocks B̃t, B̃t−1, . . . , B̃1B̃0, X̃ are consecutively extracted from the
square free ternary string O.



Tandem Duplication Distance 185

For i = 2, . . . t we define the string B̃i as the minimum suffix of the string
O(i−1) obtained from O after removing the suffix B̃i−1B̃i−2 . . . B̃1B̃0X̃ and such
that: (i) |B̃i| > |B̃i−1|; (ii) if i 	= t then B̃i does not start with 0; (iii) if i = t
then B̃i starts with 0. Thus, the lengths of the strings B̃0, B̃1, B̃2, . . . , B̃t are
monotonically increasing, all the strings are ternary square-free and only for j = t
we have that B̃j starts with the character 0. Note that, in order to guarantee that
the starting character of the strings B̃i is (resp. is not) 0, it is enough to consider
a suffix of O(i−1) of size at most |B̃i−1| + 5. This follows from O(i−1) being a
ternary square free string, hence it cannot contain substrings of size 4 using only
two characters, since every string of size 4 over only two characters necessarily
contains a square. Therefore, the prefix of length 4 of the suffix of length |B̃i−1|+5
of O(i−1) contains an occurrence of any character in {0, 1, 2} that can be chosen
as the desired starting character of B̃i. Therefore, the number of character we use
for the strings X̃, B̃0, . . . B̃t, is at most |X| +

∑t
i=0 (max{|B0|, |B1|} + i + 4) ≤

|X| + t2 + t(4 + max{|B0|, |B1|}) = |O|.
We now use these strings and the two additional characters �L, $ as building

blocks to create larger strings which will be our 5-ary “analog” of the strings Bi.
Let Ω be the following set of strings:

Ω = {�L} ∪ {B2, B3, . . . , B2p} ∪ B0 ∪ B1 ∪ X,

where B0 = {B′
0 | B0 ⊆ B′

0 ⊆ Bdup
0 }, B1 = {B′

1 | B1 ⊆ B′
1 ⊆ Bdup

1 }, X = {X ′ |
X ⊆ X ′ ⊆ Xdup}. Note that Ω contains all the almost square free strings that
either appear among the building blocks of T and S (1)-(2) or can be obtained
from such building blocks via single letter duplications. It turns out that (see
Fact 2 below) any string encountered in a sequence of contractions T �∗ S is a
concatenation of elements of Ω. For this reason we refer to the elements of Ω as
the macro-characters or chunks of S and T.

Note that, by Lemma 1, for any C ′ ∈ B0 ∪ B1 ∪ X, there exists a unique
C ∈ {B0, B1,X} and a unique set I ⊆ [|C|] such that C ′ = dup(C, I).

We now define an encoding of the elements of Ω. Let μ : Ω 
→ {0, 1, 2, $, �L}∗

be defined as follows (for the sake of highlighting the factors involved in the
formulas, a · b will denote concatenation of strings a and b):

– μ(�L) = �L, and μ(X) = X̃,
– for each i = 2, . . . , t, we set μ(Bi) = B̃i · $
– for each B′ ∈ B0 ∪ B1, we let μ(B′) = dup(μ(B), I) · $, where, by Lemma 1,

B ∈ {B0, B1} and I ⊆ [|B|] are uniquely defined by B′ = dup(B, I);
– for each X ′ ∈ X we let μ(X ′) = dup(μ(X), I), where, by Lemma 1, I ⊆ [|X|]

is uniquely defined by X ′ = dup(X, I).

The mapping μ is naturally extended to concatenations of elements of Ω by
setting μ(A1 · A2 · · · Ar) = μ(A1) · μ(A2) · · · μ(Ar), for each A1, . . . , Ar ∈ Ω

For each i = 1, . . . , t, let B̂i = μ(Bi) and for i = 0, 1, let B̂∗
i = μ(Bdup

i ).
Finally, let X̂ = μ(X) and X̂∗ = μ(Xdup). The set of macro-characters Ω̂ that
constitute the range of μ is then given by:

Ω̂ = {�L} ∪ {B̂2, B̂3, . . . , B̂t} ∪ B̂0 ∪ B̂1 ∪ X̂,
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where B̂0 = {B̂′
0 | B̂0 ⊆ B̂′

0 ⊆ B̂∗
0}, B̂1 = ∪{B̂′

1 | B̂1 ⊆ B̂′
1 ⊆ B̂∗

1}, and
X̂ = {X̂ ′ | X̂ ⊆ X̂ ′ ⊆ X̂dup}. It is easy to see that μ is one-one from Ω to Ω̂.

We are ready to define the 5-ary strings Ŝ and T̂ that we use in our reduction:

Ŝ = µ(S) = B̂tB̂t−1 . . . B̂2B̂1B̂0X̂ �L = B̃t$B̃t−1$ . . . $B̃2$B̃1$B̃0$X̃ �L (3)
T̂ = µ(T ) = B̂0

t X̂
∗ �L B̂1

t X̂ �L B̂01
1 X̂1 �LB̂1

t X̂ �L B̂01
2 X̂2 �LB̂1

t X̂ �L . . . B̂01
p X̂p �LB̂1

t X̂ �L, (4)

where for each i = 1, . . . , t, we let X̂i = μ(Xi), and for q ∈ [t], and a ∈ {0, 1, 01}
we let B̂q = μ(Bq), and B̂a

q = μ(Ba
q ). Note that Ŝ is square-free. In analogy with

S and T , we refer to the substrings from Ω̂ that constitute the building blocks
of Ŝ and T̂ as chunks.

The Final Steps of the Hardness Proof. Exploiting the properties of μ and
the structure of S, T, Ŝ, T̂ , we have the following result.

Theorem 2. Let S, T be a block exemplar pair of strings and let Ŝ and T̂ be the
corresponding pair of 5-ary strings built as above. Then S ⇒k T iff Ŝ ⇒k T̂ .

The hardness of the TD-Dist problem over a 5-ary alphabet, immediately
follows from Theorem 1 and Theorem 2. �

3.1 Sketch of the Proof of Theorem 2: The Main Analytic Tools

The first properties we use are summarized in the following fact. They come
from the interdependence between μ and the operator dup and their effect on
concatenations of a prefix of a chunk with a suffix of a chunk. They basically
say that the equality of the prefixes (resp. suffixes) of pairs of chunks from Ω
is preserved also by the images of such chunks via the map μ. Moreover, the
concatenation of prefixes and suffixes of chunks from Ω result in a chunk from
Ω iff the same holds true for their images via μ. For a string C = c1c2 . . . cn, and
indices i, j ∈ [n] we denote by C[i, j] the substring cici+1 . . . cj , if i ≤ j and the
empty string otherwise.

Fact 1. Let C ∈ {B0, B1,X} and C ⊆ C ′ ⊆ Cdup. Let I be the unique set of
indices such that C ′ = dup(C, I). Let Ĉ = μ(C) and denote by Ĉh = Ĉ[1, |C|]
and Ĉt = Ĉ[|C| + 1, |Ĉ|]. Let c = |C|, c′ = |C ′|, ĉ = |Ĉ|. Then, it holds that

1. μ(C ′) = dup(Ĉ, I) = dup(Ĉh, I) · Ĉt;
2. for any I ′, I ′′ ⊆ [c] and i ∈ [c + |I ′|]0, j ∈ [c + |I ′′|]0, we have

– dup(C, I ′)[1, i] = dup(C, I ′′)[1, i] ⇐⇒ dup(Ĉ, I ′)[1, i] = dup(Ĉ, I ′′)[1, i]
– dup(C, I ′)[i + 1, c + |I ′|] = dup(C, I ′′)[j + 1, c + |I ′′|]

⇐⇒ dup(Ĉ, I ′)[i + 1, ĉ + |I ′|] = dup(Ĉ, I ′′)[j + 1, ĉ + |I ′′|]
3. for any I ′, I ′′, I ′′′ ⊆ [|C|], and i ∈ [ĉ + |I ′|], j ∈ [ĉ + |I ′′|], we have

– dup(Ĉ, I ′)[1, i] · dup(Ĉ, I ′′)[j + 1, ĉ + |I ′′|] = dup(Ĉ, I ′′′)
⇒dup(C, I ′)[1,min{i, c + |I ′|}] · dup(C, I ′′)[j + 1, c + |I ′′|] = dup(C, I ′′′)
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The first property directly follows from the definition of μ. The following proper-
ties are immediate consequences of Property 1 and the one-one correspondence
between the position of the duplications in a chunk C ′ = dup(C, I) and the posi-
tion of the duplication in its image μ(C ′) = dup(μ(C), I). This correspondence
comes from the fact that both strings C and μ(C) are square free.

Part 1 - The Proof that S ⇒k T Implies Ŝ ⇒k T̂ . Assume that S ⇒k T
and let T = T (0) � T (1) � · · · � T (k) = S be the corresponding series of
contractions leading from T to S. We recall a result that directly follows from
[9, Appendix, Claim 2].

Fact 2. For each � = 0, 1, . . . , k − 1, the string T (�) has a factorization into
elements of Ω, i.e., T (�) = A1A2 . . . , Ar where for each i = 1, . . . , r, we have
Ai ∈ Ω. Moreover, adjacent chunks are over disjoint alphabets, i.e., for each
i = 1, . . . , r − 1, Σ(Ai) 	= Σ(Ai+1).

Exploiting the factorization of T (�) into chunks, guaranteed by Fact 2, and
using Property 2 in Fact 1 we have that the following claim holds.

Claim 1. For � = 0, 1, . . . , k − 1, the contraction T (�) � T (� + 1) implies the
existence of a contraction μ(T (�)) � μ(T (� + 1)).

Applying this claim for each contraction from T to S, we have that a sequence
of contractions exists from T̂ to Ŝ, i.e., T̂ = μ(T (0)) � μ(T (1)) � · · · �
μ(T (k)) = Ŝ. Hence Ŝ ⇒k T̂ , proving the “only if” part of Theorem 2.

The proof of Claim 1 is based on the fact that each contraction T (�) �
T (� + 1) is either a single character within a chunk Ai of the factorization of
T (�) given by Fact 2 or it is a contraction that starts in a chunk Ai and spans
at least AiAi+1Ai+2Ai+3. To see this let DD be the square removed by the
contraction and let us denote by DL and DR the left and right copy of D, with
the first character of DL being in Ai.

(i) If the first character of DR is also in Ai, then DL is a substring of Ai.
Since Σ(Ai) ∩ Σ(Ai+1) = ∅, DR, being equal to DL cannot extend to Ai+1.
Since Ai is almost square free, the only square are pairs of single characters,
hence DLDR must be a pair of adjacent single characters. In this case, by 1. in
Fact 1, a single letter square is present in the chunk μ(Ai) and the contraction
that removes it implies μ(T (�)) � μ(T (� + 1)).

(ii) If the first character of DR is not in Ai, the first character of DL cannot
be from Ai+1 which does not have any character occurring in Ai. The analogous
argument about the last characters of DR and DL implies that DLDR spans at
least four chunks. Then, DL = Ai[u+1, |C1|]D′Aj [1, u′], i.e., it starts with a suffix
Ai[u + 1, |Ai|] of chunk Ai and ends with a (possibly empty) prefix Aj [1, u′] of a
chunk Aj with j ≥ i+2 and DR starts with the suffix of Aj [u′+1, |Aj |] of Aj and
ends with the (possibly empty) prefix Aj′ [1, u′] of a chunk Aj′ . The remaining
parts of DL and DR must be equal and coincide with some sequence of chunks
D′, i.e., DL = Ai[u + 1, |Ai|] · D′ · Aj [1, u′] = Aj [u′ + 1, |Aj |]D′Aj′ [1, u′] = DR.

Then, by using 2. of Fact 1 we show that there is an equivalent square D̂LD̂R in
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μ(T (�) corresponding to DL = μ(C1)[i+1, |μ(C1)|]μ(D′)μ(C2)[1, j] = μ(C2)[j +
1, |μ(C2)|]μ(D′)μ(C3)[1, j] = D̂R. Contracting it, implies μ(T (�)) � μ(T (�+1))
also in this case. The complete proof is deferred to the extended version of the
paper.

Part 2 - The Proof that Ŝ ⇒k T̂ Implies S ⇒k T. In this case, we show
the possibiliy of mapping every sequence of contractions T̂ � T̂ (1) � T̂ (2) �
· · · � Ŝ to a sequence of contraction T �k S. Finding a characterization of
the strings T̂ (�) analogous to Fact 2 is significantly more involved. Although by
construction T̂ and Ŝ also have a factorization into chunks of Ω̂, most of these
chunks (also adjacent ones) are from the same 4-ary alphabet. Therefore, showing
that every intermediate string T̂ (�) is also factorizable into chunks requires more
care. Moreover, this fact, together with the invertibility of μ, shows only that we
can find strings T (0) = μ−1(T̂ ), T (1) = μ−1(T̂ (1)), . . . , T (k−1) = μ−1(T̂ (k−1)),
each of which is factorizable into chunks of Ω. Since a contraction T̂ (�) � T̂ (�+1)
can involve suffixes and prefixes of chunks, we need a deeper analysis of such
strings to characterize precisely the structure of the possible contractions T̂ (�) �
T̂ (�+1) (Proposition 1 in appendix). Then, we show that 3. in Fact 1 guarantees
the existence of a contraction T (�) � T (� + 1). Due to the space limitations,
this part of the proof is deferred to the extended version of the paper.

4 TD-distance for Purely Alternating Strings

In this section, we investigate the existence of polynomial time algorithms to
decide whether a purely alternating string S can be transformed into another
purely alternating string T through a series of duplications, i.e., if S ⇒∗ T .

Definition 2. Fix strings S = sl11 sl22 . . . slnn and T = t
l′1
1 t

l′2
2 . . . t

l′m
m . We say that

the run slii matches the run t
l′j
j if si = tj and li ≤ l′j. We also say that S matches

T (and write S � T.) if n = m and for i = 1, . . . , n we have slii matches t
l′j
j .

The existence of a string S′ that matches T and that satisfies S ⇒∗ S′,
implies that S ⇒ T : we can convert S′ into T by duplications on single letters.

Definition 3. Given two q-ary strings S and T , we say that the operation S =
AXB ⇒ AXXB = T is a normal duplication if one of the following conditions
holds: (i) X is a q-ary string with exactly q runs such that the first and the last
run are of length 1; (ii) X is a single character.

We write S ⇒N T if there exists a normal duplication converting S into T .
We write S ⇒N

k T if there exist S1, . . . , Sk−1 such that S ⇒N S1 ⇒N · · · ⇒N

Sk−1 ⇒N T . We write S ⇒N
∗ T if there exists some k such that S ⇒N

k T .
In perfect analogy with the definition of contractions given in Sect. 2, we

define normal contractions: T �N
k S and T �N

∗ S by T �N
k S if and only if

S ⇒N
k T and T �N

∗ S if and only if S ⇒N
∗ T .
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Intuitively, normal duplications are effective in converting a string S into a
string S′ that matches a string T because they keep the resulting string purely
alternating and create new runs that are as small as possible; these runs allow
the string S′ to match many strings.

We proceed to characterizing pairs of strings S and T such that S ⇒N
∗ T.

Lemma 2. Fix 2 ≤ q ≤ 5. Let S = sl10 sl21 . . . slnn and T = t
l′1
0 t

l′2
1 . . . t

l′m
m be purely

alternating strings over the same q-ary alphabet Σ = {0, 1, 2, . . . , q − 1}. Then,
S ⇒N

∗ T if and only if there exists a function f : {1, . . . , n−q+2} 
→ {1, . . . , m−
q + 2} such that: (1.) f(1) = 1 and f(n − q + 2) = m − q + 2; (2.) f(i) = j =⇒
si = tj and for each u = 0, . . . , q − 2 we have that li+u ≤ l′j+u; (3.) f(i) = j
and f(i′) = j′ and i < i′ =⇒ j < j′; (4.) if q = 5 and f(i) = j and
f(i + 1) = j′ 	= j + 1 =⇒ there exists a substring M in T starting in a position

p such that j ≤ p ≤ j′ with the form M = s
l′p
i+3, s

l′p+1
i+4 , . . . s

l′p+q−3
i+q , s

l′p+q−2
i+q+1 such

that for each u = 0, 1, . . . , q − 3 it holds that li+3+u ≤ l′p+u and li+1 ≤ l′p+q−2.

It turns out that for alphabets of size ≤ 5 the set of normal duplications is
as “expressive” as the set of all possible duplications. We use the following claim
(the proof is omitted here because of the space limitation).

Claim 2. Let S and T be q-ary purely alternating strings such that S ⇒∗ T .
Let AXA′ ⇒ AXXA′ be one of the duplications of the sequence leading from S
to T . Then, |RLE(X)| mod q ≤ 1.

Lemma 3. Let S and T be purely alternating strings over the same alphabet Σ
of size ≤ 5. Then S ⇒∗ T if and only if S ⇒N

∗ T.

Proof. Using Claim 2, we show that any duplication can be simulated by normal
duplications. We give the complete argument only for the case |Σ| = 5. The cases
|Σ| ∈ {2, 3, 4} can be showed analogously.

Claim 3. Let S and T be a 5-ary purely alternating strings over the alphabet
Σ = {0, 1, 2, 3, 4}. If there exists a duplication S ⇒ T , then we can create a
series of normal duplications S ⇒ · · · ⇒ T ′ such that T ′ matches T .

Proof. Let S = AXB ⇒ AXXB = T be the original duplication. Like before, we
create a string that matches XX starting from X through normal duplications,
depending on how many runs are contained in X. By Claim 2 the only possible
cases are |RLE(X)| mod 5 ∈ {0, 1}
Case 1. |RLE(X)| = 1. It means that the only effect of the original duplication
is to extend one of the runs of S. For this reason S must already match T .
Case 2. |RLE(X)| mod 5 = 0, we suppose that the string X starts with a 0
(rotate the characters if it starts with any other symbol), so X has the form
X = 0l11l22l33l44l50l6 . . . 3ln−14ln . If |RLE(X)| is equal to 5 then it is trivially
equivalent to some normal duplication plus possibly additional duplications of
single characters.
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If |RLE(X)| = 10, we consider the following two sequences of normal dupli-
cations to match XX (the duplicated part is underlined):

(i) X = 0l11l22l33l44l50l61l72l83l94l10 ⇒ 0l11l22l33l441011l22l33l44l50l61l72l83l94l10

⇒ 0l11l22l33l441011121 3l4 41011l22l33l44l50l61l72l83l94l10 = X ′

(ii) X = 0l11l22l33l44l50l61l72l83l94l10 ⇒ 0l11l22l33l44l50l61l72l83l941011l72l83l94l10

⇒ 0l11l22l33l44l50l61l72l83l941011121 3l9 41011l72l83l94l10 = X ′′

XX = 0l11l22l33l44l50l61l72l8 3l9 4l100l11l22l33l44l50l61l72l83l94l10

It is easy to see that according to whether l4 ≤ l9 or not, we have that either
X ′ or X ′′ matches XX. Hence, in either case, we have the desired sequence of
duplications proving the claim.

Finally, let us assume that X contains 5r runs for some r > 2. Then, in order
to produce a string through normal duplications that matches XX, it suffices to
execute the duplications explained before, then continue with |RLE(X)|/5 − 2
normal duplications containing the four adjacent runs of length 1 plus another
adjacent run. This pushes to the right the original runs of X remaining, together

with 3l4 (in the first case) or 3l9 (in the second case). We can see that 3l4

in X ′ will be in the same position as 3l9 in XX and vice versa.

The previous two lemmas imply the following

Theorem 3. Let Σ be an alphabet of size ≤ 5. There exists a algorithm that
for every pair of purely alternating strings S and T over Σ can decide in linear
time whether S ⇒∗ T.

Proof. The algorithm computes the run length encoding of S and T and then
decides about the existence of the function f satisfying the properties of Lemma
2. By Lemma 3 we have that S ⇒∗ T if and only if S ⇒N

∗ T. By Lemma 2
this latter condition holds if and only if there exists a function f satisfying the
conditions 1–4 in Lemma 2. Therefore, to prove the claim it is enough to show
that the existence of such a function f can be decided in linear time. This is
easily attained by employing the following greedy approach: once the values of
f(1) = 1, . . . , f(i − 1) = j have been fixed, sets the assignment f(i) = j′ to the
smallest j′ such that li+u ≤ l′j′+u for each u = 0, . . . k − 1 and if this condition
does not hold for j′ = j + 1, then j′ is the smallest integer > j that guarantees
the existence of a j < p < j′ satisfying condition 4 in Lemma 2. The correctness
of this approach can be easily shown by a standard exchange argument and it
is deferred to the appendix for the sake of the space limitations. The resulting
algorithm takes O(|S| + |T |) time, since it only scans for a constant number of
times each component of the run length encoding of T and S.

Final Remarks on 6-ary Strings and Some Open Problems. The tech-
nique we used to prove Lemmas 2, 3 is not generalizable to the case of larger
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alphabets: For purely alternating strings with |Σ(S)| = 6, we cannot always sim-
ulate a general duplication with normal duplications. Take, e.g., the duplication
AXB ⇒ AXXB where X is the string: X = 021122314251011221324152. One
can show that no pair of normal duplications can convert the string X into a
string T ′ � XX. We do not know whether this has an implication on the polyno-
mial time solvability of the problem TD-Exist already on 6-ary alphabets, and
we leave it as a first step for future research. More generally, the main algorith-
mic problems that are left open by our results are the complexity of TS-Dist for
binary alphabets (more generally, whether our hardness result can be extended
to smaller alphabets) and the complexity of TD-Exist for arbitrary ternary
alphabets. Also, on the basis of the hardness result, approximation algorithms
for the distance problem is another interesting direction for future research.

Appendix

The Basic Ingredients for the Proof of Part 2 (“if” part)
of Theorem 2

Let us recall the definition of T̂ and Ŝ :

Ŝ = B̂2pX̂ �L = B̂2p$B̂2p−1$ . . . $B̂2$B̂1$B̂0$X̂ �L (5)

T̂ = B̂0
2pX̂

dup �L B̂1
2pX̂ �L B̂01

1 X̂1 �LB̂1
2pX̂ �L B̂01

2 X̂2 �LB̂1
2pX̂ �L . . . B̂01

p X̂p �LB̂1
2pX̂ �L.(6)

Assume that there exists a sequence of k contractions

T̂ = μ(T ) = T̂ (0) � T̂ (1) � T̂ (2) � · · · � T̂ (k) = Ŝ,

where T̂ (�) denotes the string obtained from T̂ after the first � contractions have
been performed. We tacitly assume that in each contraction T̂ (�) = ADDA′ �
ADA′ = T̂ (� + 1), it is the right copy of D which is removed.

A block of T̂ (�) is a maximal substring P of T̂ (�) satisfying the following
properties: the last character of P is �L; and this is the only occurrence of �L in P .
Hence, the first character of P is either preceded by �L or it is the first character
of T̂ (�).

We denote by B̂X̂ �L the first, leftmost block B̂0
2pX̂ �L of T̂ . For i = 1, . . . , p, we

also denote by Ei the block B̂01
i X̂i �L in T̂ . We let Ei(�) be the substring of T̂ (�)

formed by all the characters that belong to Ei. Note that Ei(�) is any possibly
empty subsequence of Ei.

For any a ∈ {0, 1, 01} and j ∈ [2p], a block B̂′X̂ ′ �L is called a B̂a
j X̂ �L-block

if B̂jX̂ �L ⊆ B̂′X̂ ′ �L ⊆ B̂a
j X̂dup �L. In other words, B̂′X̂ ′ �L has the same runs of

B̂a
j X̂dup �L in the same order, but some of the duplicated characters may have

been contracted into a single character. A B̂1
2pX̂ �L-cluster is a string obtained

by concatenating an arbitrary number of B̂1
2pX̂ �L-blocks. We write (B̂1

2pX̂ �L)∗ to
denote a possibly empty B̂1

j X̂ �L-cluster.
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Proposition 1. For each � = 0, . . . , k

1. T̂ (�) has the form:

B̂X̂ �L (B̂1
2pX̂ �L)∗Ei1(�)(B̂1

2pX̂ �L)∗Ei2(�)(B̂1
2pX̂ �L)∗ . . . Eih(�)(B̂1

2pX̂ �L)∗ (7)

where:
– B̂X̂ �L is a B̂0

2pX̂ �L-block
– i1 < i2 < · · · < ih
– each (B̂1

2pX̂ �L)∗ is a B̂1
2pX̂ �L-cluster

– for each j ∈ {i1, . . . , ih}, Ej(�) is a B̂01
j X̂ �L-block.

2. the contraction T̂ (�) = ADDA′ � ADA′ = T̂ (� + 1) satisfies one of the
following possibilities
(a) D is a single character, hence, necessarily one of the characters in some

substring X̂ ′ ∈ X̂, B̂′
0 ∈ B̂0, B̂′

1 ∈ B̂1—these are the substrings corre-
sponding to the elements of Ω̂, which appear in the above factorization of
T̂ (�) which are not square free;

(b) there exists a contraction T̂ (�) = AD̃D̃A′ � AD̃A′ = T̂ (� + 1) such
that D̃ is a sequence of whole chunks (note that this case includes the
possibility D̃ = D, i.e., already D is a sequence of whole chunks)

(c) there are chunks Ĉ1 = Ĉ ′
1Ĉ

′′
1 ; Ĉ2 = Ĉ ′

2Ĉ
′′
2 ; Ĉ3 = Ĉ ′

3Ĉ
′′
3 such that for some

Ĉ ∈ {B̂0, B̂1, X̂} for each i = 1, 2, 3, it holds that Ĉ ⊆ Ĉi ⊆ Ĉ∗ and
D = C ′′

1 D′C ′
2 = C ′′

2 D′C ′
3, and C ′

1 is a suffix of A and C ′′
3 is a prefix of

A′.

The proof of this proposition is deferred to the extended version of the paper.
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Abstract. Let
−→
G = (V, A) be an oriented graph and G the underlying

graph of
−→
G . An oriented k-coloring of

−→
G is a partition of V into k subsets

such that there are no two adjacent vertices belonging to the same subset,
and all the arcs between a pair of subsets have the same orientation. The

oriented chromatic number χo(
−→
G) of

−→
G is the smallest k, such that−→

G admits an oriented k-coloring. The oriented chromatic number of G,

denoted by χo(G), is the maximum of χo(
−→
G) for all orientations

−→
G of

G. Oriented chromatic number of product of graphs were widely studied,
but the disjoint union has not being considered. In this article we study
oriented coloring for the disjoint union of graphs. We establish the exact
values of the union: of two complete graphs, of one complete with a forest
graph, and of one complete and one cycle. Given a positive integer k, we
denote by CNk the class of graphs G such that χo(G) ≤ k. We use those
results to characterize the class of graphs CN 3. We evaluate, as far as we
know for the first time, the value of χo(Wn) and we yield with this value
an upper bound for the union of one complete and one wheel graph Wn.

Keywords: Oriented graph · Oriented chromatic number ·
Disconnected graphs · Graph classes · Disjoint union of graphs

1 Introduction

Given a graph G = (V,E), the orientation of an edge e = {u, v} ∈ E is one of
the two possible ordered pairs uv or vu called arcs. If uv ∈ E we say that u

dominates v. An oriented graph
−→
G is obtained from G by orienting each edge of

E,
−→
G is called an orientation of G, and G is called the underlying graph of

−→
G .
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Note that an oriented graph is a digraph without opposite arcs or loops. Given
an arc uv ∈ E(

−→
G), v is called the successor of u and u is called the predecessor of

v. A vertex without predecessors is called source and a vertex without successors
is called sink. Let G and H be a pair of graphs. If H is a subgraph of G we say
that G contains H as a subgraph, otherwise we say that G is H-free. Two graphs
are disjoint if they have no vertex in common. If G and H are disjoint, their
disjoint union graph denoted by G ∪ H, has V (G ∪ H) = V (G) ∪ V (H) and
E(G ∪ H) = E(G) ∪ E(H).

A directed path is the orientation of a path, a directed cycle is the orientation
of a cycle. If for each pair u, v of consecutive vertices in a directed cycle we
have the arc uv, then this orientation called cyclic, otherwise is called acyclic.
A tournament

−→
Kn with n vertices is an orientation of a complete graph Kn. A

tournament is called transitive if and only if whenever uv and vw are arcs, uw
is also an arc. The complete bipartite graph G = K1,n is a star. A wheel graph
Wn has V (Wn) = {v1, v2, . . . , vn, c} and E(Wn) =

{
vivi+1 : i ∈ {1, 2, . . . , n −

1}} ∪ {vnv1} ∪ {
vic : i ∈ {1, 2, . . . , n}}. We say that

−→
G is an oriented star (the

same for a tree, forest, cycle, and wheel).
Let

−→
G be an oriented graph, xy, zt ∈ E(

−→
G) and C = {1, 2, . . . , k} be a set

of colors. An oriented k-coloring of
−→
G is a function c : V (

−→
G) → C, such that

c(x) �= c(y), and if c(x) = c(t), then c(y) �= c(z). The oriented chromatic number
of

−→
G denoted by χo(

−→
G) is the smallest k such that

−→
G admits an oriented k-

coloring. An oriented absolute clique or o-clique [7] is an oriented graph
−→
G for

which χo(
−→
G) = |V (

−→
G)|.

Let
−→
G and

−→
H be oriented graphs, a homomorphism of

−→
G into

−→
H is a mapping

f : V (
−→
G) → V (

−→
H ) such that f(u)f(v) ∈ E(

−→
H ) for all uv ∈ E(

−→
G). When

−→
H is

an oriented graph on k vertices, a homomorphism from
−→
G into

−→
H is an oriented

k-coloring of
−→
G .

We can extend the definition of oriented chromatic number to graphs. The
oriented chromatic number of a graph G denoted by χo(G), is the maximum
χo(

−→
G) for all orientations

−→
G of G. Given a positive integer k, we denote by CNk

the class of graphs G such that χo(G) ≤ k.
Oriented coloring has been studied by many authors. A survey on oriented

coloring can be seen in [13]. Subsequently, many other papers have been pub-
lished on oriented coloring. See for instance [3] and [7] on complexity aspects
and approximation algorithms, and [8–10] for bounds on oriented coloring.

It is NP-complete [3,6,7] to decide whether a graph belongs to CNk for all
k ≥ 4. In [2] it was shown that CNk for all k ≥ 4 is NP-complete even for acyclic
oriented graph such that the underlying graph has maximum degree 3 and it
is at the same time connected, planar and bipartite. Already, it can be decided
in polynomial time [7] whether a graph belongs to CNk. So, in the Sect. 2 we
characterize the class of connected and disconnected graphs that belong to the
CN3 class.
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The works of [1,4,5,12] presents various bounds for oriented chromatic num-
ber on the product of graphs. In spite of the vast amount of literature dedicated
to the product of graphs, we don’t have many results on the disjoint union.

Assume the 3-oriented coloring for
−→
K3 in Fig. 1 (a), where colors 1, 2 and

3 are assigned respectively, to vertices a, b and c. Notice that, by definition of
oriented coloring, if the P4 in Fig. 1 (b) is colored with the three colors 1, 2 and
3, then necessarily to vertices d, e, f are assigned, respectively, colors 1, 2 and
3. Hence, it is required a fourth color to assign to vertex g.

Fig. 1. Graph
−→
K3 ∪ −→

P 4.

From the coloring given to the graph of Fig. 1 we can notice that, different
from the usual coloring, the oriented coloring given to a connected component
interferes in the coloring of another connected component in graphs formed by
the disjoint union of two other graphs. Motivated by this fact, in Sect. 4 we
determine the oriented chromatic number of the disjoint union between complete
graphs and others graphs, such as stars, trees, forests, cycles and an upper bound
for the union of one complete and one wheel. In Sect. 3 we show the oriented
chromatic number of wheel graphs, for the first time as far as we know.

2 The Chromatic Number of the Class CN3

In this section, we characterize the class of graphs CN3 = {G;χo(G) ≤ 3}. First,
we consider the case when the graph G is connected.

Lemma 1. Let G = (V,E) be a connected graph, |V | ≥ 4. If G contains a K3

as a subgraph, then χo(G) ≥ 4.

Proof. Let G = (V,E) be a connected graph with |V | ≥ 4 and u, v, w be the
vertices of a K3 subgraph of G. As G is connect there is a vertex t /∈ {u, v, w} in
V such that t is adjacent to a vertex in {u, v, w}. Assume {t, u} ∈ E. Consider
an orientation

−→
G = (V,

−→
E ) of G where uv, vw, uw, tu ∈ −→

E . We need 3 different
colors to vertices u, v, w since u, v, w belong to K3. As there is a path of size at
most 2 from t to each vertex in {u, v, w} by the oriented k-coloring definition,
an additional fourth color is necessary to t. Hence, χo(G) ≥ 4. �	

From Lemma 1, we know that the connected not K3-free graphs on 4 vertices
or more do not belong to the class CN3. Sopena [11] proved that for oriented
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graphs with maximum degree 2, the oriented chromatic number is at most 5. He
also proved that the cycle on 5 vertices has oriented chromatic number 5, this
result is presented in Lemma 2. We use these results to propose Lemma 3.

Lemma 2 ([11]). If C5 is the cycle on 5 vertices, then χo(C5) = 5.

Lemma 3. If a connected graph G contains Ck as a subgraph, with k ≥ 4, then
χo(G) ≥ 4. In particular, if G contains C5 as a subgraph, then χo(G) ≥ 5.

Now we can describe the class of connected graphs that belongs to CN3.

Theorem 1. The connected graph G ∈ CN3 if and only if, G is either a K3 or
a tree.

Proof. Let G ∈ CN3 be a connected graph. If G is acyclic, then G is a tree. If G
is not acyclic, then from Lemmas 1 and 3, it follows that G = K3. We conclude
that G is either a K3 or a tree. Suppose that G is a K3 or a tree. If G is a K3

then χo(G) = 3. If G is a tree, then χo(G) = 3 by [3]. Therefore G ∈ CN3. �	
Now will consider the case when G is a disconnected graph.

Lemma 4. Let G be a graph with q connected components X1,X2, . . . , Xq, q ≥
2, such that Xi contains K3 as a subgraph, for some i ∈ {1, 2, . . . , q}. If there is
a component Xj, i �= j, containing K3 or P4 as a subgraph, then χo(G) ≥ 4.

Proof. Consider a graph G with q connected components X1,X2, . . . , Xq, q ≥ 2.
Suppose there are two connected components Xi and Xj , i �= j, such that both
contains K3 as a subgraph.

We can obtain an oriented graph
−→
G from G with χo(

−→
G) ≥ 4, by defining

the orientation of the subgraph K3 of component Xi as a directed cycle and
the subgraph K3 of the component Xj as a transitive tournament. Let c be
an oriented coloring for the subgraph K3 of the component Xi, c has 3 colors,
suppose {1, 2, 3} and the property that no color dominates the two others. Let c1
be an oriented coloring of K3 of the component Xj . In c one color dominates the
two others, thus one fourth color is required in the component Xj and therefore
χo(G) ≥ 4.

Now suppose that the component Xj contains P4 as a subgraph. In the
oriented graph

−→
G obtained from G, we choose the transitive orientation

−→
K3

for the subgraph K3 of the component Xi and the directed path
−→
P 4 for the

subgraph P4 of the component Xj . We know that χo(
−→
K3) = 3, we use colors

1, 2 and 3 in the oriented coloring of
−→
K3 of the component Xi. We choose the

oriented coloring of
−→
K3 such as the vertex with color 1 is the source and the

vertex with color 2 is the sink. We will show that, using the constraints obtained
in the oriented coloring of the subgraph

−→
K3 in the component Xi, we cannot

color the subgraph
−→
P 4 of the component Xj only with colors 1, 2 and 3.



198 E. M. M. Coelho et al.

We consider three cases:
Case 1 : (Assign color 1 to the source of

−→
P 4) Since the vertex with color 1 is

a predecessor of the vertex with color 2 in the oriented coloring of
−→
K3, we can

assign color 2 to the successor of the source in
−→
P 4. The vertex with color 2 in−→

K3 is the sink, so we cannot assign any of the colors 1, 2 or 3 to the successor
of the vertex with color 2 in

−→
P 4. A fourth color is needed in component Xj .

Another sub-case is to assign color 3 to the successor of the source in
−→
P 4,

because the vertex with the color 1 also precedes a vertex with color 3 in an
oriented coloring of

−→
K3. We can assign color 2 to the successor of the vertex

with color 3 in
−→
P 4, but again the color 2 is assigned to a vertex that is not sink

in
−→
P 4 and a fourth color is needed in component Xj .
Case 2 : (Assign color 2 to the source of

−→
P 4) The vertex with color 2 in the

oriented coloring of
−→
K3 is a sink, so none of the colors 1, 2 or 3 can be assigned

to the successor of the source in
−→
P 4. A fourth color is required in component

Xj .
Case 3 : (Assign color 3 to the source of

−→
P 4) Respecting the constraints on

the coloring of
−→
K3, we can assign color 2 to the successor of the source in

−→
P 4.

Again, the successor of the vertex with color 2 in
−→
P 4 cannot be colored with

any color used in
−→
K3. A fourth color is required in component Xj .

We conclude that χo(G) ≥ 4. �	
It follows from Lemma 4 that the graph G = K3 ∪ P4 /∈ CN3. In Fig. 1 we

have an orientation of graph G such that χo(G) = 4. If we consider the graph G
to be a forest, we have the following results.

Lemma 5. Let F be a forest with a collection {T1, T2, . . . , Tq} of q disjoint trees,
then χo(F ) = max{χo(Ti); i = 1, 2, . . . , q}.

From Lemma 5 we can show that every oriented forest has a homomorphism
to a directed cycle, as we show on Corollary 1.

Corollary 1. Every oriented forest
−→
F has a homomorphism into a directed

cycle
−→
C3.

Finally in Theorem 2 we can characterize the class CN3.

Theorem 2. Let G be a graph. G ∈ CN3 if and only if, G is either a forest or
a K3 ∪ S, where S is a forest of stars.

Proof. Suppose that G ∈ CN3. If G has a cycle, then by Lemmas 1, 3 and 4 there
is at most one connected component Gi of G which has a cycle as a subgraph,
and in this case Gi = K3. Still by Lemma 4 the remaining components have a
diameter that is less than 3, and hence G is a disjoint union of K3 and a forest
of stars.

If G is acyclic, then G is a forest and by Lemma 5 and [3] we have χo(
−→
G) ≤ 3.

Conversely, first suppose that G is a forest. For every tree Ti of G we know that
χo(Gi) ≤ 3, by [3]. By Lemma 5 we conclude that χo(G) ≤ 3.
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Now suppose that G = K3 ∪ S. The connected component K3 can be oriented
in two different ways, with circular orientation or transitive orientation. If the
component K3 have a circular orientation

−→
K3, we know by Corollary 1 that

there is a homomorphism from
−→
S into

−→
K3 and χo(G) ≤ 3. Now consider the

component K3 with a transitive orientation
−→
K ′

3. We choose the oriented coloring
of

−→
K ′

3 with the colors 1, 2 and 3, so that the vertices with color 1 are predecessors
of vertices with color 2 and the vertices with color 2 are predecessors of vertices
with color 3.

We define a homomorphism from
−→
S into

−→
K ′

3 where all sources in
−→
S are

mapped into the vertex with color 1 in
−→
K ′

3, and all sinks in
−→
S are mapped into

the vertex with color 3 in
−→
K ′

3, if the vertex is neither a source nor a sink in−→
S , then it is mapped into a vertex with color 2 in

−→
K ′

3. This homomorphism is
easily verified, since only one vertex that has more than one neighbor in

−→
S can

be mapped into the vertex with color 2 in
−→
K ′

3. �	

3 The Oriented Chromatic Number of Wheel Graphs

In this section we establish that the family of wheel graphs Wq with q ≥ 8 has its
oriented chromatic number 8. We use this value, in Sect. 4, in order to establish
an upper bound for the disjoint union of a wheel with a complete graph.

Theorem 3. Let q ≥ 8, be a positive integer. Then χo(Wq) = 8.

Proof. We consider q mod 3, i.e., q = 3k + 1, 3k + 2, k ≥ 2 and q = 3k, k ≥ 3.
We prove first that 8 colors are sufficient to color every orientation ω of Wq.
Consider an orientation ω for Wq. We construct an 8–oriented color for this
orientation. Let V (Wq) = {v1, v2, . . . , vq, c} and E(Wq) =

{
vivi+1, vic : i ∈

{1, 2, 3, . . . , q − 1}} ∪ {
vqv1, vqc

}
.

In order to yield an 8–oriented coloring for ω we consider a key property of an
orientation ω that is when there is a 4-oriented coloring for the corresponding Cq,
such that there is one color, say color 4, that occurs just in one vertex v ∈ V (Cq).

From this 4–oriented coloring of Cq, we give the following recipe to color Cq

in Wq, with at most 7 colors, and hence Wq with 8 colors. For each x ∈ {1, 2, 3}
of the 3 colors that can be repeated, consider the oriented bipartite graph Bx

induced of Wq by the vertices with color x and vertex c. If there are sinks and
sources in Bx \{c}, then If v ∈ V (Bx)\{c} and v is a sink, set to x+4 the color
of v. If the orientation ω in Cq is acyclic, then there is a sink vertex vi, hence we
color the path vi+1, . . . , vn, v1, . . . , vi−1 with 6 colors in {1, 2, 3, 5, 6, 7}, color vi
with color 4, and c with color 8. Hence, when ω is acyclic, there is an 8–oriented
coloring for Wq.

The remaining case is when the orientation ω is cyclic in Cq. Next we consider
q = 3k, k ≥ 3 and q = 3k+1, k ≥ 2, and prove that there is a 4–oriented coloring
for the corresponding Cq where there is a color class with at most one vertex
v ∈ Cq, say color 4.
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1. If q = 3k, k ≥ 3, in this case we color v1, v2, . . . , vn, respectively, with colors
1, 2, 3, . . . , 1, 2, 3.

2. If q = 3k + 1, k ≥ 2, in this case we color v1, v2, . . . , vn−1, respectively, with
colors 1, 2, 3, . . . , 1, 2, 3, and color vn with color 4.

Hence, when ω is cyclic in Cq, q = 3k, k ≥ 3 or q = 3k + 1, k ≥ 2, there is an
8–oriented coloring for Wq.

We prove that if the orientation is cyclic, and q = 3k +2, k ≥ 3, then there is
a 5–oriented coloring such that exactly 2 colors appear once. For that we color
v1, v2, . . . , vn−2, respectively, with colors 1, 2, 3, . . . , 1, 2, 3, color vn−1 with color
4, and vn with color 5. From this 5–oriented coloring of Cq, we give the following
recipe to color Cq in Wq, with at most 7 colors, and hence Wq with 8 colors.

We consider 2 cases:

1. Vertex c is a sink or a source of Wq. In this case we can color Wq with 6
colors.

2. Vertex c is neither a sink nor a source of Wq. In this case we assume that
cvn, v1c ∈ ω. We can assume that because the orientation of Cq is cyclic.
First, for each x ∈ {1, 2, 3} of the 3 colors that can be repeated in Cq, consider
the oriented bipartite graph Bx induced by the vertices with color x and vertex
c. If there are sinks and sources in Bx \ {c}, then If v ∈ V (Bx) \ {c} and v
is a sink, set to x + 5 the color of v. Hence, we have an 8-oriented coloring
of Cq in Wq, which is an 9-oriented coloring of Wq, that we will reduce to a
8-oriented coloring of Wq.
Hence, we set to 6 the color of vertex vn. This can be done, since v1 has color
1, and every other vertex in Cq with color 6, has a distance to vn of at least
3. And thus, we have a coloring of Cq with colors 1, 2, 3, 4, 6, 7, 8, and we can
give the color 5 to vertex c.

Now we prove that 8 colors are necessary. For that we show an example of W8

that requires 8 colors. For the convenience of the reader we exhibit this example
in Fig. 2 and ask the reader to follow the Figure with the next items. Let φ be an
8-coloring of W8. The set of vertices {v1, v2, v4, v5, v6, v8, c} is an o-clique, thus
the colors of this vertices are different, respectively {0, 1, 2, 3, 4, 5, 6}. Hence, we
know from the orientation of W8 that φ(v3) �∈ {0, 1, 2, 3, 5, 6} because all of the
vertices with these colors are adjacent or have a path of size two to v3. We
can color v3 with the color 4. Again from the orientation of W8 we have that
φ(v7) �∈ {0, 2, 3, 4, 5, 6} because all of the vertices with these colors are adjacent
or have a path of size two to v7. We also can not color v7 with the color 1 because
we have v3v2 ∈ E(

−→
W8) and φ(v3) = 4, so we need an eighth color for v7. �	

4 On the Oriented Chromatic Number of the Union
of Graphs

The study of the class CN3 motivated us to study the oriented chromatic num-
ber of disconnected graphs. We show an example in Fig. 1, where the oriented
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Fig. 2. An orientation of W8 that has χo(
−→
W8) = 8.

chromatic number of a graph G = K3∪P4 is greater than the oriented chromatic
number of each of its connected components separately.

In Fig. 3, where G = K4 ∪ P5, consider the orientation
−→
G of G in which

−→
K4

is the transitive tournament and
−→
P 5 is the directed path.

So we have another example in which χo(G) > max{K4;P5}, where K4 and
P5 are components of G. Since χo(

−→
K4) = 4, we assign a 4-oriented coloring of−→

K4. Using the constraints of 4-oriented coloring of
−→
K4 in the component

−→
P 5,

we prove that
−→
P 5 cannot be colored only with four colors and one fifth color is

required, so the graph G = K4 ∪ P5 /∈ CN4.

Fig. 3. Graph
−→
K4 ∪ −→

P 5.

Now, we will obtain the oriented chromatic number of the disjoint union
between the complete graph and others graphs, such as graphs that can be
colored by the path

−→
P3 or the cycle

−→
C3, stars, trees, forests and cycles. First we

analyse the case of graphs that have a homomorphism to the path
−→
P3 or the

cycle
−→
C3

Theorem 4. Let G be a graph with two connected components G1 and G2, where
G1 is a complete graph Kp, p ≥ 3, and G2 is a graph such that all oriented graphs−→
G2 have a homomorphism f into a directed path

−→
P 3, then χo(G) = p.

Proof. Since χo(
−→
P 3) = 3 (by definition of oriented coloring), considering an

oriented coloring c of
−→
P 3, in which we assign color 1 to the source, color 3 to the

sink, and color 2 to the remaining vertex (successor of color 1 and predecessor
of color 3). By hypothesis, all oriented graphs

−→
G2 have a homomorphism f
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into a directed path
−→
P 3. Thus, we can assign an oriented coloring for

−→
G2 using

c ◦ f : V (
−→
G2) → {1, 2, 3}.

We will assign an oriented coloring with p colors to any oriented graph
−→
G1

from G1 respecting the constraints used in
−→
G2. As G1 = Kp, p ≥ 3, χo(G1) = p

and all oriented graphs
−→
G1 from G1 contains either a transitive or a circular

−→
K3.

In both cases, there exists a directed path P3 as a subgraph. This directed path
can be colored with the same constraints used in G1. There are no restrictions
for the remaining p − 3 colors and therefore we can assign these colors to the
other vertices not yet colored without conflict. �	
Theorem 5. Let G be a graph with two connected components G1 and G2, where
G1 is a complete graph Kp, p ≥ 3, and G2 is a graph such that all oriented graphs−→
G2 have a homomorphism into a directed cycle

−→
C 3 and diameter greater than

p. Then χo(G) = p + 1.

Proof. By hypothesis,
−→
G2 requires three colors 1, 2, 3 to an oriented coloring,

with the property that no color dominates the two others. We can obtain an
oriented graph

−→
G from G with χo(

−→
G) ≥ p + 1, in the following way: orient

−→
G1

as a transitive tournament. It follows that all subgraphs
−→
K3 of

−→
G1 are transitive.

As in an oriented coloring of
−→
G1, for all

−→
K3 of

−→
G1 one color dominates the two

others, at least one different color from 1, 2, 3 is required in some component−→
K3. Then χo(G) ≥ p + 1.

Conversely, we show that χo(G) ≤ p + 1. Let
−→
Kp be any orientation for G1.

As χo(
−→
Kp) = p, without loss of generality, we admit a coloring of

−→
Kp using the

colors from 1 to p. We add a vertex v to the graph
−→
Kp, and if there is source f

or sink s in
−→
Kp we add the arcs vf and sv, we call the resulting graph of

−→
K ′

p+1,
the remaining edges assume any orientation so that v is neither source nor sink
in the new graph. We assign the color p+1 to the vertex v. Note that

−→
K ′

p+1 has

neither sources nor sinks. On the other hand, considers the directed cycle
−→
C 3.

We assign an oriented coloring of
−→
C 3 respecting the constraint on the coloring

of
−→
K ′

p+1.

We start by assigning a color p+1 to any vertex v1 of
−→
C 3. By the construction

of
−→
K ′

p+1 the vertex v with color p+1 is neither source nor sink, so we divide the
neighbors of v into two disjoint sets, a set of successors of v denoted by Suc(v)
and a set of predecessors of v denoted by Pred(v). We will assign the same color
as the successor v2 of v1 in

−→
C 3 of a vertex r ∈ Suc(v) who has a successor

in t ∈ Pred(v), the same color for predecessor v3 of v1 in
−→
C 3 of the vertex of

t ∈ Pred(v).
By construction, there exists at least one vertex in r ∈ Suc(v) such that rt is

an arc in
−→
K ′

p+1, where t ∈ Pred(v). So we can assign colors to
−→
C 3 with the p+1

colors of
−→
K ′

p+1 and as
−→
Kp is a subgraph of

−→
K ′

p+1 then χo(G) ≤ χo(
−→
K ′

p+1∪
−→
C 3) =

p + 1. �	
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Corollary 2 follows directly from Theorem 5 and Corollary 1. We also
show an upper bound for the disjoint union of complete graphs and stars on
Corollary 3.

Corollary 2. Given G = Kp ∪ Pq or G = Kp ∪ Tq or G = Kp ∪ Fq, then
χo(G) = p + 1. Where p ≥ 3 and Pq, Tq, Fq be respectively a path, a tree and a
forest on q vertices and diameter greater than 2.

Corollary 3. Given G = Kp ∪ Sq, then χo(G) = p, where p ≥ 3 and Sq is a
star on q vertices.

Now we define a special tournament on 5 vertices that we will use to describe
the union of cycles and a few other graph classes. Let TU

5 be the tournament
where V (TU

5 ) = {v1, v2, v3, v4, v5}, and E(TU
5 ) = {v1v2, v2v3, v2v5, v3v1, v3v4,

v3v5, v4v2, v4v5, v1v4, v5v1}. Also for this purpose we show that every tournament
in 4 vertices has a sub-tournament which has a homomorphism to the acyclic
tournament in 3 vertices.

Lemma 6. Every tournament with 4 vertices has a homomorphism into TU
5 .

Proof. We can verify by exhaustion that every 4-vertex tournament has a homo-
morphism into TU

5 .

Corollary 4. Every tournament in 4 vertices has a sub-tournament which has
a homomorphism to the acyclic tournament in 3 vertices.

Now we define the chromatic number of the disjoint union of graphs that
belongs to the class CN4 and cycles.

Theorem 6. Let G ∈ CN 4 be a graph and C be a cycle. Then χo(G ∪ C) = 5.

Proof. Let
−→
C d

5 be a directed cycle with 5 vertices, then χo(C5) = 5, see Lemma 2.
By Lemma 3 and because any other orientation of C5 has a 4-oriented coloring,
the class C\−→C d

5 ∈ CN4. By Lemma 6 every G ∈ CN4 has a homomorphism into
TU
5 . The cycle

−→
C d

5 also has homomorphism in TU
5 , see that TU

5 has a directed
cycle 1, 2, 3, 4, 5, 1. Therefore, χo(G ∪ C) = 5 with TU

5 as a color graph. �	
Corollary 5. Let G = C ∪ C or G = C ∪ P or G = C ∪ T or G = C ∪ K4,
then χo(G) = 5, where C,P, T,K4 be respectively a cycle, a path, a tree and the
complete graph with 4 vertices.

We also define the chromatic number of the disjoint union of complete graphs
and cycles.

Theorem 7. Let p and q be a pair of integers with p ≥ 2 and q ≥ 3, then

χo(Kp ∪ Cq) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3, if p = 2 and χo(Cq) = 3

4,

{
if p = 2
if p = 3

and
and

χo(Cq) = 4
(χo(Cq) = 3 or χo(Cq) = 4)

5,

{
if p = 2
if p = 3

and
and

χo(Cq) = 5
χo(Cq) = 5

p + 1, if p ≥ 4
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Finally we will analyse the chromatic number of the disjoint union of two
complete graphs.

Lemma 7. Let c be an oriented coloring of
−→
Kp ∪ −→

K q. Given
−→
G1 and

−→
G2 sub-

graphs induced of
−→
Kp and

−→
K q respectively, such that ∃ u ∈ V (

−→
G1) if and only if

∃ a ∈ V (
−→
G2) with c(u) = c(a). Then

−→
G1 and

−→
G2 are isomorphic.

Proof. As
−→
G1 and

−→
G2 are induced subgraphs by vertices of tournaments, then−→

G1 and
−→
G2 are also tournaments. Thus, in an oriented coloring c of

−→
Kp ∪ −→

K q

there are no identical colors between the vertices of
−→
G1, as well as between the

vertices of
−→
G2, then by hypothesis we know that |V (

−→
G1)| = |V (

−→
G2)|.

Case |V (
−→
G1)| = |V (

−→
G2)| ≤ 2 then

−→
G1 and

−→
G2 are isomorphic.

Suppose that |V (
−→
G1)| = |V (

−→
G2)| ≥ 2. Let u, v ∈ V (

−→
G1) and a, b ∈ V (

−→
G2)

such that c(u) = c(a) and c(v) = c(b). We define f : V (
−→
G1) → V (

−→
G2) such that

f(u) �→ a and f(v) �→ b.
Let f(u) = f(v). As

−→
G2 is a tournament then c(f(u)) = c(f(v)). By function

f we have that c(f(u)) = c(u) we get by replacing c(u) = c(v). Like
−→
G2 also

is a tournament, then u = v. We conclude that the function f is injective.
As |V (

−→
G1)| = |V (

−→
G2)| and

−→
G1,

−→
G2 are tournaments, then the function f is

sobrejective. �	

Theorem 8. Let Kp and Kq be complete graphs, and
−→
K be the collection of all

tournaments. Consider the sets P and Q consisting of all orientations of Kp and
Kq respectively. Define the set L = {−→K l ∈ K; |V (

−→
K l)| = max{|V (

−→
K j)|;−→K j ⊆−→

K ′
p,

−→
K j ⊆ −→

K ′
q}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}. Let r = min{|V (
−→
K l)|;∀−→

K l ∈ L}.
Then χo(Kp ∪ Kq) = p + q − r.

Proof. Let
−→
K r a tournament on r vertices, where r = min{|V (

−→
K l)|;∀−→

K l ∈ L}.
We denote by

−→
Kp

r a subgraph
−→
K r of

−→
Kp and

−→
K q

r a subgraph
−→
K r of

−→
K q. Since−→

Kp
r and

−→
K q

r are isomorphic, we can assign identical r colors to the vertices
of both graphs. As r ≤ q ≤ p remain p + q − r vertices to be colored. Then
χo(Kp ∪ Kq) ≤ p + q − r.

By Lemma 7, the maximum number of colors used in both
−→
Kp and

−→
K q

is r, otherwise we contradict the cardinality of
−→
K r. Hence χo(Kp ∪ Kq) =

p + q − r. �	
We also analyse some specific disjoint unions of K5 with another K5 and

with complete graphs.

Theorem 9. Given the union K5 ∪ K5, set L = {−→K l ∈ K; |V (
−→
K l)| =

max{|V (
−→
K j)|;−→K j ⊆ −→

K ′
5,

−→
K j ⊆ −→

K ′
5}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}, then r =

min{|V (
−→
K l)|;∀−→

K l ∈ L} = 3.
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Corollary 6. Given the union Kp ∪ K5, p ≥ 5, set L = {−→K l ∈ K; |V (
−→
K l)| =

max{|V (
−→
K j)|;−→K j ⊆ −→

K ′
5,

−→
K j ⊆ −→

K ′
5}, ∀−→

K ′
p ∈ P and

−→
K ′

q ∈ Q}, then r =

min{|V (
−→
K l)|;∀−→

K l ∈ L} = 3.

We have done some computational experiments, that drove us to Conjec-
ture 1.

Conjecture 1. Let Kp, Kq be 2 complete graphs with p, q ≥ 4. Then χo(Kp ∪
Kq) = p + q − 3.

Lastly we show an upper bound for the disjoint union of wheel graphs and
complete graphs.

Theorem 10. Let p, q, p ≥ 4, q ≥ 3 be positive integers. Then χo(Kp + Wq) ≤
p + 5.

Proof. Let
−→
K3 be the transitive orientation of the tournament with 3 vertices.

We consider 2 cases:

1.
−→
K3 is not a subgraph of Wq. In this case we can color Wq with 3 colors. Hence,
2 colors of the graph Kp can be used with color p + 1 to color Wq.

2.
−→
K3 is a subgraph of Wq. In this case according to Theorem 3 we can color
Wq with 8 colors. From Corollary 4 we know that we can use 3 colors of the
graph Kp plus additional 5 colors to color Wq. �	

5 Conclusions

In this paper, we prove that if q ≥ 8 then χo(Wq) = 8 and for every forest F ,
χo(F ) is determined by the connected component of F with the largest oriented
chromatic number of its connected components, what is an exception to the
general case of disconnected graphs.

We characterized the class CN3 of the graphs with χo(G) ≤ 3. This charac-
terization motivated us to study the oriented chromatic number of disconnected
graphs. We have established χo(Kp∪Pq), χo(Kp∪F ), χo(Kp∪Cq), and an upper
bound for χo(Kp ∪ Wq).

We establish the oriented chromatic number of the union of two complete
graphs Kp, Kq as χo(Kp ∪ Kq) = p + q − r, where r is the size of the maximum
tournament contained in all orientations of Kp and Kq. We have conjectured
that r = 3 for every pair 4 ≤ p, q.

Table 1 presents the results obtained in this paper regarding to the union of
complete graphs with other graph classes. For future works we intend to expand
our Table of results where most of the important classes be added in the firsts
column and row of the Table, besides considering the cases when we have more
than 2 components.
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Table 1. Oriented chromatic number of the union χo(G ∪ H).

G
H

Forest
diameter

d ≤ 2

Forest
diameter

d ≥ 3

Cq,
q ≥ 3 Kq Wq

Kp,
p = 2

d + 1
3

(Corol. 1)

3, if χo(Cq) = 3
4, if χo(Cq) = 4
5, if χo(Cq) = 5

p + q − r
(Corol. 8)

q + 1, if 3 ≤ q ≤ 6
8, if q ≥ 8

Kp,
p = 3

3
(Thm. 2)

4
(Corol. 8)

4, if χo(Cq) = 3
4, if χo(Cq) = 4
5, if χo(Cq) = 5

p + q − r
(Thm. 8)

q + 1, if 3 ≤ q ≤ 6
8, if q ≥ 8

Kp,
p ≥ 4

p
(Corol. 3)

p + 1
(Corol. 2)

p + 1
(Thm. 7)

p + q − r
(Corol. 8)

≤ p + 5
(Thm. 10)

References

1. Aravind, N.R., Narayanan, N., Subramanian, C.R.: Oriented colouring of some
graph products. Discuss. Math. Graph Theory 31(4), 675–686 (2011). https://doi.
org/10.7151/dmgt.1572

2. Coelho, H., Faria, L., Gravier, S., Klein, S.: Oriented coloring in planar, bipar-
tite, bounded degree 3 acyclic oriented graphs. Discret. Appl. Math. 198, 109–117
(2016). https://doi.org/10.1016/j.dam.2015.06.023

3. Culus, J.-F., Demange, M.: Oriented coloring: complexity and approximation. In:
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Abstract. We introduce a new problem which we call the Pony Express
problem. n robots with differing speeds are situated over some domain. A
message is placed at some commonly known point. Robots can acquire
the message either by visiting its initial position, or by encountering
another robot that has already acquired it. The robots must collaborate
to deliver the message to a given destination (We restrict our attention
to message transmission rather than package delivery, which differs from
message transmission in that packages cannot be replicated.). The objec-
tive is to deliver the message in minimum time. In this paper we study
the Pony Express problem on the line where n robots are arbitrarily
deployed along a finite segment. We are interested in both offline cen-
tralized and online distributed algorithms. In the online case, we assume
the robots have limited knowledge of the initial configuration. In par-
ticular, the robots do not know the initial positions and speeds of the
other robots nor even their own position and speed. They do, however,
know the direction on the line in which to find the message and have the
ability to compare speeds when they meet.

First, we study the Pony Express problem where the message is ini-
tially placed at one endpoint (labeled 0) of a segment and must be deliv-
ered to the other endpoint (labeled 1). We provide an O(n log n) running
time offline algorithm as well as an optimal (competitive ratio 1) online
algorithm. Then we study the Half-Broadcast problem where the mes-
sage is at the center (at 0) and must be delivered to either one of the
endpoints of the segment [−1, +1]. We provide an offline algorithm run-
ning in O(n2 log n) time and we provide an online algorithm that attains
a competitive ratio of 3

2
which we show is the best possible. Finally, we

study the Broadcast problem where the message is at the center (at 0)
and must be delivered to both endpoints of the segment [−1, +1]. Here
we give an FPTAS in the offline case and an online algorithm that attains
a competitive ratio of 9

5
, which we show is tight.
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Keywords: Delivery · Robots · Competitive ratio · Pony express

1 Introduction

The Pony Express refers to the well-known mail delivery service performed by
continuous horse-and-rider relays between a source and a destination point. It
was employed in the US for a short period (1860 to 1861) to deliver mail between
Missouri and California.

The problem considered in this paper is motivated by the above. If one thinks
of the horses as robots of differing speeds operating over a continuous domain
then the Pony Express can serve as a suitable paradigm for message delivery
from a source to a destination by robots passing messages from one robot to
the next upon contact. In particular, consider the following problem: Initially
a piece of information is placed at a certain location, referred to as the source.
A group of robots are required to deliver the information from the source to
another location referred to as the destination. The problem is one of designing
a message delivery algorithm that delivers the message by selecting a sequence of
robots and their movements that relay the message from a source to a destination
in optimal time.

As will be seen, designing such algorithms can be a challenge given that the
robots do not necessarily have the same speed and the overall delivery time may
depend on what knowledge the agents possess concerning the location and speeds
of the other robots. Further, the communication exchange model is face-to-face
(F2F) in that two robots can exchange a message only when they are at the
same location at the same time.

The problem itself can be studied over any domain. In this paper, we restrict
our attention to a finite interval which already offers some interesting questions
to resolve.

1.1 Model

We consider a set R of n robots initially scattered along a finite interval. Each
robot r has a speed v(r) and unique initial position p(r). Note that robots with
the same initial position can be handled through some tie-breaking mechanism,
adding minor perturbations to the robots’ positions, etc. The goal is to use the
robots to deliver a message to one or both of the interval endpoints. Robots
acquire the message through face-to-face contact either with the message at its
initial location, or by encountering another robot with the message. We consider
three variants of the Pony Express problem in which the message is initially
placed at the point 0.

1. Pony Express. On the interval [0, 1], the message must reach the endpoint 1.
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2. Half-Broadcast. On the interval [−1, 1], the message must reach one of the
endpoints ±1.

3. Broadcast-Problem. On the interval [−1, 1], the message must reach both
endpoints ±1.

In each case, the goal is to solve the problem in the minimum amount of
time. We consider both the offline and online settings. In the offline setting, all
information regarding the robots (their initial positions and speeds) are available
and a centralized algorithm provides a sequence of robot meetings that relay the
message from the source to the destination(s) in optimal time.

In the online setting, we consider a model where robots do not know their own
location nor their own speeds. Further, the agents do no have any information
about other agents (initial positions, speeds) or even the number of robots in
the system. The robots do however know the direction of the origin from their
current position. When two robots meet, they can compare their speeds and
decide which is faster.

To measure the performance of our online algorithms, we consider their com-
petitive ratios. Let t∗(I) be the optimal delivery time for an instance I of a given
problem and tA(I) be the time needed by some online algorithm A for the same
instance. Then the competitive ratio of A is

max
I

tA(I)
t∗(I)

.

Our goal is to find online algorithms that minimize this competitive ratio.

1.2 Related Work

There are many applications in a communication network where message passing
(see [6]) is used by agents so as to solve such problems as search, exploration,
broadcasting and converge-casting, connectivity, and area coverage. For example,
the authors of [4] address the issue of how well a group of collaborating robots
with limited communication range is able to monitor a given geographical space.
In particular, they study broadcasting and coverage resilience, which refers to
the minimum number of robots whose removal may disconnect the network and
result in uncovered areas, respectively. Another application may be patrolling
whereby many agents are required to keep perpetually moving along a specified
domain so as to minimize the time a point in the domain is left unvisited by an
agent, e.g., see [11] for a related survey.

A general energy-aware data delivery problem was posed by [1], whereby n
identical, mobile agents equipped with power sources (batteries) are deployed
in a weighted network. Agents can move along network edges as far as their
batteries permit and use their batteries in linear proportion to the distance
traveled. At the start the agents possess some initial information which they can
exchange upon meeting at a node. The authors investigate the minimal amount
of power, initially available to all agents, necessary so that convergecast may be
achieved. They study the question in the centralized and the distributed setting.
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Two related communication problems: data delivery and convergecast are
presented for a centralized scheduler which has full knowledge of the input in [10].
The authors show that if the agents are allowed to exchange energy, both prob-
lems have linear-time solutions on trees but for general undirected and directed
graphs they show that these problems are NP-complete.

A restricted version of the problem above concerns n mobile agents of limited
energy that are placed on a straight line and which need to collectively deliver a
single piece of data from a given source point s to a given target point t on the
line. In [5] the authors show that the decision problem is NP-hard for a single
source and also present a 2-approximation algorithm for the problem of finding
the minimum energy that can be assigned to each agent so that the agents can
deliver the data. In [7] it is shown that deciding whether the agents can deliver
the data is (weakly) NP-complete, while for instances where all input values are
integers, a quasi-, pseudo-polynomial time algorithm in the distance between s
and t is presented.

Additional research under various conditions and topological assumptions can
be found in [2] which studies the game-theoretic task of selecting mobile agents
to deliver multiple items on a network and optimizing or approximating the total
energy consumption over all selected agents, in [3] which studies data delivery
and combines energy and time efficiency, and in [12,13] which is concerned with
collaborative exploration in various topologies.

The focus of our current study is on finding offline and online algorithms
for message delivery from a source to a destination on a line segment where the
goal is to minimize the time needed. This differs from the work outlined above
which focuses on energy transfer and consumption to perform either a delivery
or broadcast. To the best of our knowledge, the problem and analysis considered
in this paper has not been considered before.

1.3 Outline and Results of the Paper

In Sect. 2 we discuss the Pony Express variant of the problem and present optimal
online and offline algorithms. In Sect. 3, we discuss the Half-Broadcast variant
of the problem. We provide an optimal offline algorithm and an online algorithm
with a 3

2 competitive ratio and show this ratio is the best possible. In Sect. 4, we
discuss the Broadcast variant of the problem and provide an online algorithm
with a competitive ratio of 9

5 which we show is the best possible. We also present
an offline FPTAS for the Broadcast variant. (Note: the offline algorithm is not
exact but depends upon performing binary search over a real interval). Due to
space limitations some proofs are omitted. A complete version of the paper can
be found on arXiv [9].

2 Pony Express

In this section, we discuss the solution for the Pony Express variant of the
problem over the segment [0, 1], wherein the message is placed initially at 0 and
must be delivered to 1.
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2.1 Online

First, we propose an online algorithm for the Pony Express variant. The robots
start at the same time and move towards the origin. The first robot to reach
0 acquires the message. A slower robot with the message meeting a faster one,
transfers the message to the faster which then moves towards 1. The algorithm
is as follows.

Algorithm 1. Pony Express Online Algorithm
1: All robots start at the same time and move with their own speeds towards the

endpoint 0;
2: if a robot r reaches 0 then
3: robot r acquires the message and moves towards 1;

4: if a robot with the message r meets a robot r′ such that v(r) < v(r′) then
5: robot r transmits the message to robot r′;
6: robot r′ changes direction and moves towards 1;
7: else
8: continue moving;

9: Stop when destination 1 is reached;

Next we prove the optimality of Algorithm 1.

Theorem 2.1. Algorithm 1 delivers the message in optimal time.

Proof. Let mi be the ith handover point between robots ri−1 and ri at time ti.
Observe that since ri−1 participated in the i − 1th handover, it must be slower
than ri, or v(ri−1) < v(ri) (or else there would not be a handover). For simplicity
and consistency of notation, let r0 be an additional robot with initial position
and velocity 0. In other words, robot r0 simply holds the message at its initial
position until robot r1 arrives at 0 to perform the first handover. Note this does
not change the problem at all, since robot r0 will not carry the message any
distance.

We show by induction and use the following inductive hypothesis: “Each
participating robot r to the left of mi has speed v(r) < v(ri) and ti is the earliest
time the message can be delivered to mi.” We say the message is delivered to
a point m as soon as any robot that has acquired the message (excluding the
additional robot r0) reaches point m.

For the base case consider m1. Observe robot r1 is the first robot to reach the
source, since any robot with speed greater than 0 would satisfy the condition to
participate in a handover. It is clear then, that every robot to the left of m1 = 0
has speed less than v(r1), since otherwise it would not be the first to arrive at 0.
Also, t1 is the first time the message is delivered to 0 since r1 is the first robot
to arrive at 0.

Assume the inductive hypothesis holds for mi−1. Observe that since there is a
handover at mi, v(r) < v(ri−1) < v(ri) for all robots r to the left of ri−1. There-
fore, all participating robots to the left of mi are slower than ri−1. Furthermore,
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the message reaches mi at the earliest possible time, since otherwise a slower
robot must not have handed the message over to a faster available robot. Finally,
observe that it is the fastest robot delivers the message to the destination point.

��

2.2 Offline

In this section, we present an offline algorithm for computing the optimal delivery
time for the Pony Express variant (see Algorithm 2). In the previous section, we
discussed the behavior of the robots in an optimal solution (i.e. they move toward
0 until encountering the message and then turn around and move toward the
endpoint). The goal for an offline algorithm, then, is to compute all the meeting
points where a handover occurs. We could consider all n2 possible meeting points,
but that would be inefficient. The key observation is that every robot must
encounter one of its neighbors (either from its left or from its right) before
encountering any other robot. When two robots meet, either both robots are
moving toward 0 (and neither have the message) or one robot is traveling toward
the endpoint with the message and the other is traveling toward 0 to acquire it.
In either case, the meeting robots’ neighbors and/or directions change, so new
meeting points must be computed. This is the idea behind the algorithm. We
keep track of potential O(n) meeting points in a priority queue and examine
them one-by-one to see how they affect the system.

Theorem 2.2. Algorithm 2 finds an optimal solution to the Pony Express prob-
lem and runs in O(n log n) time.

Proof. Observe that q is a Priority Queue whose operations add(r, p) for
adding element r with a priority p, remove(r) for removing element r from
the queue, remove front() for removing and returning the element with the
highest priority, and update(r, p) for updating an element’s priority in the
queue each have a time-complexity of O(log n).

In the first step of the algorithm, each robot is added to the priority queue,
using its meeting time with its left-hand neighbor as a priority. Note this could
be ∞ if the robot’s left-hand neighbor either does not exist or moves at a faster
speed away from it. This step has time-complexity O(n log n).

Next, notice on each iteration of the loop in line 15, the size of the queue
is decremented by at least one and thus terminates after at most n iterations.
Therefore this part of the algorithm has time complexity O(n log n).

Finally, observe that robots change direction if and when they meet a slower
robot with the message and meeting times are updated appropriately when a
change in direction occurs. This behavior is equivalent to that of Algorithm 1
and therefore is optimal by Theorem 2.1. ��

Algorithm 2 returns only the final delivery time of the message to its desti-
nation. Observe though, that the algorithm could easily be made to return the
entire sequence of handover meeting times (each r.meet in line 18).
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Algorithm 2. Pony Express Offline Algorithm
Input: r, array of n robot structs sorted by initial position, r[i].p

1: q ← PriorityQueue()
2: left ← Robot(p=0, v=0, meet=∞) � Additional robot to represent source
3: for i ← 1 . . . n do
4: if r[i].v > left.v then

5: r[i].meet ← r[i].p −left.p
r[i].v −left.v

� Meeting time when moving the same direction
6: else
7: r[i].meet ← ∞
8: if i ≤ n − 1 then
9: r[i].right ← r[i + 1]

10: r[i].left ← left
11: left ← r[i]
12: q.add(r, -r[i].meet) � Add robot to queue with meet-time-based priority

13: dst ← Robot(p=1, v=0, meet=∞) � Additional robot to represent destination
14: q.add(dst, −∞)
15: while q.size > 0 do
16: r ← q.remove front() � Get robot with first meeting time
17: if r.left.has message then
18: r.has message ← True
19: if r.left.v ≤ r.v then
20: q.remove(r.left)

21: if r.right then
22: if r.left.v ≤ r.v then
23: r.right.left ← r
24: else
25: r.left.right ← r.right
26: r.right.left ← r.left

27: r.right.meet ← r.right.p−r.p+2·r.meet·r.v
r.v+r.right.v

� Compute new meeting time
28: q.update(r.right, -r.right.meet)

29: else � robot r passes non-participating robot
30: q.remove(r.left)
31: r.left ← r.left.left
32: if r.left then
33: r.left.right ← r

34: if r.left.has message then
35: r.meet ← r.p−r.left.p+2·r.left.meet·r.left.v

r.left.v+r.v

36: else if r.v > r.left.v then
37: r.meet ← r.p−r.left.p

r.v−r.left.v

38: else
39: r.meet ← ∞
40: q.add(r, -r.meet)

41: return dst.meet
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3 Half-Broadcast

In this section we consider the Half-Broadcast variant of the problem in which
a message initially placed at 0 must be delivered to one of the endpoints of the
interval [−1, 1].

3.1 Online

First, we show a lower bound of 3
2 on the competitive ratio for any algorithm to

solve this problem.

Theorem 3.1. The competitive ratio for the Half-Broadcast problem is at least
3
2 .

Proof. Consider two robots r and r′ with speeds v(r) = 1
2 and v(r′) = 1. Initially

r is placed at p(r) = 0. The initial position of r′, p(r′) will be determined below.
Let A be any online algorithm for two robots. Observe the movement of r during
the time period [0, 1]. Without loss of generality, assume that the final position
of r in this time period is x ∈ [

0, 1
2

]
. In this case, we let p(r′) = −1. (Note that

if r ends up in
[
0,− 1

2

]
, we let p(r′) = 1 and a symmetric argument will follow.)

Observe that the trajectories taken by r and r′ cannot overlap during the
time period [0, 1]. Indeed, at time 0 ≤ t ≤ 1, r is in the range

[
x − 1−t

2 , x + 1−t
2

]

(as it must reach x by time 1) and r′ is in the range [−1,−1 + t]. These ranges
do not overlap for x ∈ [

0, 1
2

]
and t ∈ [0, 1] except at x = 0 and t = 1, in which

case both robots are at 0 at time 1. Thus it is not possible for r′ to receive the
message before time 1. At time 1, r is at x ∈ [

0, 1
2

]
and can not make it to either

endpoint (−1 or 1) sooner than time 2. Let the position of r′ be −y ∈ [−1, 0] at
time 1. If r′ receives no help from r when delivering the message then it cannot
obtain the message before an additional y units of time to travel from −y to the
message source 0 and 1 unit of time to bring the message to either endpoint, i.e.,
2+y ≥ 2 (y ≥ 0 units of time). If r′ does receive help from r, it cannot receive the
message before time x−y

3
2

and deliver the message before time 1+1+ 2(x−y)
3
2

≥ 2

for x ∈ [0, 1
2 ] and y ∈ [−1, 0].

Thus any online algorithm A must take time at least 2 units of time to solve
this instance of the problem. But the optimal offline algorithm can complete the
task in time 4

3 by having the two robots meet at time 2
3 at position − 1

3 and
then having r′ deliver the message to −1. Therefore the competitive ratio for
any algorithm is at least 3

2 . ��
Next we provide an online algorithm that achieves the competitive ratio 3

2 .
We consider the very simple algorithm that essentially partitions the line seg-
ment (and robots) into two instances of the Pony Express Problem (over [−1, 0]
and [0, 1]) solves them independently. The delivery time is given by whichever
instance delivers the message first.
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Algorithm 3. Half-Broadcast Online Algorithm
1: All robots start at the same time and move within their own subinterval at their

own speeds towards the endpoint 0;
2: if a robot r reaches 0 then
3: robot r acquires the message and moves towards the endpoint closest to its

original position;

4: if a robot with the message r meets a robot r′ such that v(r) < v(r′) then
5: robot r transmits the message to robot r′;
6: robot r′ changes direction and moves towards the nearest endpoint;
7: else
8: continue moving;

9: Stop when either endpoint is reached by robot;

First, we show that Algorithm 3 guarantees a competitive ratio of 3
2 when

only two robots participate. Then, we extend the result to systems of n robots.
Note that our algorithm is clearly optimal in the case where there is only one
robot.

Lemma 3.1. Algorithm 3 solves the Half-Broadcast problem for the case n = 2
with competitive ratio at most 3

2 .

Proof. Consider two robots r and r′. Without loss of generality, assume that
v(r) ≤ v(r′) and that in the optimal algorithm the message is delivered at
1. Considering an optimal algorithm, observe that either robot r′ delivers the
message without any help or both collaborate to deliver the message. In the
second case, suppose that m is the optimal meeting point between robots r and
r′. Since v(r) ≤ v(r′), r′ must deliver the message. Thus, the delivery time is at
least

min
( |p(r)| + 1

v(r)
,
|p(r′)| + 1

v(r′)
,
m + |p(r)|

v(r)
+

1 − m

v(r′)

)
.

Observe that in cases where either robot delivers the message without collab-
oration, Algorithm 3 is optimal. If the optimal algorithm requires the two robots
to collaborate, however, Algorithm 3 is not optimal. Observe that the algorithm
terminates when either of the two robots arrives at an endpoint. Therefore, the
delivery time is maximized when |p(r)|+1

v(r) = |p(r′)|+1
v(r′) . Thus, the competitive ratio

is given by:

|p(r′)|+1
v(r′)

m+|p(r)|
v(r) + 1−m

v(r′)

=
|p(r′)| + 1

v(r′)
v(r) (m + |p(r)|) + 1 − m

=
v(r)(|p(r′)| + 1)

v(r′)(m + |p(r)|) + v(r)(1 − m)

=
v(r)(m + |p(r′)|) + v(r)(1 − m)
v(r′)(m + |p(r)|) + v(r)(1 − m)
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Observe that p(r) = 0 and p(r′) = 1 maximizes the ratio. Thus, the competitive
ratio is at most 2v(r)

mv(r′)+v(r)(1−m) and v(r′) = 2v(r). Then:

2v(r)
mv(r′) + v(r)(1 − m)

=
v(r′)

mv(r′) + (1 − m)v(r′)
2

=
2v(r′)

v(r′)(m + 1)

=
2

m + 1

Since 2v(r) = v(r′), m = 1
3 and the competitive ratio is bounded by 3/2 for any

chosen speed of v(r′). ��
Now we are ready to present the main result of the section in the follow-

ing theorem. We show that the competitive ratio of Algorithm 3 for the Half-
Broadcast problem is at most 3

2 when n robots are participating. By Theorem
3.1, this is best possible.

Theorem 3.2. The competitive ratio of Algorithm 3 is at most 3
2 for systems

of n robots.

Proof. Without loss of generality, assume that the message is delivered to 1 in
both the online and optimal offline algorithm. (Otherwise a symmetric argument
can be used.) Let μ1, μ2, . . . , μk be the k < n meeting points of the optimal
centralized algorithm where robot rπ(i) carries the message between μi−1 and
μi. Let μ0 = 0. Let m1,m2, . . . ml be the l < n meeting points of the Algorithm 3
where robot rσ(i) traverses between mi−1 and mi. Let m0 = 0. The competitive
ratio of our algorithm is

p(rσ(1))

v(rσ(1))
+ 1−ml

v(rσ(l))
+

∑l−1
i=1

mi−mi−1
v(rσ(i))

p(rπ(1))

v(rπ(1))
+ 1−μk

v(rπ(k))
+

∑k−1
i=1

μi−μi−1
v(rπ(i))

Observe that ml ≤ μk since Algorithm 3 does not attain optimal time. There-
fore, 1−ml

v(rσ(l))
≤ μk−ml

v(rπ(k−1))
+ 1−μk

v(rπ(k))
since v(rπ(k−1)) < v(rπ(k)). Observe then, that

we can trim the interval at ml and solve the problem with n−1 robots. The key
observation is that the online algorithm is actually “faster” at each intermediate
handover except for the first handover. In other words, the first handover is the
only segment that hurts the online algorithm. We have shown that the compet-
itive ratio of the new problem is less than or equal to the competitive ratio of
the original problem and therefore by induction (with Lemma 3.1 as the base
case) the result follows. ��
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3.2 Offline

Next, we show an offline algorithm for computing the optimal solution. To do
this, we make use of Algorithm 2, the offline algorithm for the Pony Express
problem.

First we need the following lemma:

Lemma 3.2. Let r and r′ be the fastest robots in the subintervals [−1, 0] and
(0, 1], respectively. Then either r or r′ will deliver the message in optimal time.

In an optimal solution, robots that initially start in the interval [−1, 0] can
participate in the message delivery at the point 1, or vice-versa. The follow-
ing lemma shows that even if many robots that initially start in an opposite
interval can participate in delivering the message, there is always an identical
solution where only one robot in the opposite interval participates in delivering
the message.

Lemma 3.3. There is an optimal solution such that at most one robot from the
interval that does not contain the delivered-to endpoint participates.

Theorem 3.3. There exists an offline algorithm for finding an optimal solution
to the Half-Broadcast problem with time-complexity O(n2 log n).

4 Broadcast

In this section we study the Broadcast variant of the problem. Recall that in the
Broadcast problem, a message initially placed at 0 must be delivered by robots
to both endpoints of the interval [−1, 1] in minimum time. We begin with the
following lemma:

Lemma 4.1. There is an optimal solution such that at most one robot partici-
pates in the message’s delivery to both endpoints.

4.1 Online

First we show that the competitive ratio of any online algorithm is at least 9
5 .

Theorem 4.1. The competitive ratio for any Algorithm that solves the Broad-
cast problem is at least 9

5 .

Proof. Consider two robots, r with speed 1 and initial location 0 and r′ with
speed and initial location to be determined below. Let A be any online algorithm
for two robots. Observe the movement of r during the time period [0, 1] under
algorithm A. Without loss of generality, assume the final position of r is x ∈
[−1, 0] and let y be the furthest that r progressed into [0, 1] during this time
period. Observe that 0 ≤ y ≤ 1

2 since r is in [−1, 0] at time 1. Let a = 1−y
2 . In
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Fig. 1. Possible trajectory for the online algorithm. Robot r moves between x and y
(the shaded region) during the time interval [0, 1].

this case, we set the r′’s speed v(r′) = a and its initial position p(r′) = y + a
(Fig. 1). A symmetric argument can be used in the case that x ∈ [0, 1].

Observe that the trajectories of r and r′ do not overlap in the time period
[0, 1] for any x ∈ [−1, 0] and y ∈ [

0, 1
2

]
with the exception of the case where

y = x = 0 and t = 1. Indeed, r′ can only reach the position y at time 1. Prior to
that time, its position must be to the right of y and therefore to the right of r.
At time 1 it may reach y but by that time r is at x ≤ 0. The only overlap occurs
when x = y = 0.

At time 1, r′ is at position z ≥ y ≥ 0. In order to deliver to the message to
either end point, it must take time at least 1+z

a ≥ 2(1+y)
1−y ≥ 2 + 2y. Thus, if r′ is

the first to deliver the message to one of the end points, the algorithm must take
at least time 3 + 2y. On the other hand, if r is to deliver the message to both
end points, it must take at least time y to reach position y, a further time y to
return to 0, plus an additional time 3 to reach both end points. Therefore, the
online algorithm A must take time at least 3 + 2y to solve this instance of the
problem. (The case where r′ delivers the message to both endpoints is clearly
worse.)

Consider the following (offline) algorithm for the above instance: r and r′

meet at position y+a
1+a at time y+a

1+a (they move toward each other until meeting).

Then r delivers the message to -1 in a further y+a
1+a + 1 for a total of 1 + 2(y+a)

1+a

time. And r′ delivers the message to 1 in a further y+a
1+a + 1−y−a

a = y+a
1+a + 1 for

a total of 1 + 2(y+a)
1+a time.

Therefore, the competitive ratio of algorithm A on this instance is at least
3+2y

1+
2(y+a)
1+a

= (3+2y)(3−y)
5+y ≥ 9

5 for y ∈ [0, 1
2 ]. ��

Now we show that there is an online algorithm that attains this competitive
ratio. Algorithm 4 is very similar to the Half-Broadcast algorithm, in that we
essentially partition the line segment (and robots) into two instances of the
Pony Express Problem (over [−1, 0] and [0, 1]). The difference is that every time
a robot participates in a handover (at the source, endpoint, or with another
robot), it turns around and moves in the opposite direction. This is necessary to
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ensure the message is delivered to both endpoints (consider the case where all
robots start on one side of the message).

Algorithm 4. Broadcast Algorithm
1: All robots start at the same time and move within their own subinterval at their

own speeds towards the endpoint 0;
2: if a robot r reaches 0 then
3: robot r acquires the message and moves towards the endpoint closest to its

original position;

4: if a robot with the message r meets a robot r′ such that v(r) < v(r′) then
5: robot r transmits the message to robot r′, changes direction, and continues

moving towards the opposite endpoint;
6: robot r′ changes direction and moves towards the nearest endpoint;
7: else
8: continue moving;

9: if a robot with the message r reaches the endpoint the opposite endpoint then
10: robot r changes direction and continues moving;

11: Stop when both endpoints have been reached by robot;

Lemma 4.2. The competitive ratio of Algorithm 4 for the case n = 2 is at most
9
5 .

Next, we show that Algorithm 4 attains optimal competitive ratio with n ≥ 3
robots.

Theorem 4.2. The competitive ratio of Algorithm 4 for systems of n robots is
at most 9

5 .

4.2 Offline

In this section, we provide an offline fully polynomial time approximation scheme
(FPTAS).

Theorem 4.3. For any ε > 0, there exists an algorithm for finding a solution to
within an additive factor of ε of optimal to the Broadcast problem with running
time O(n2 log n log 1

ε ).

Proof. According to Lemma 4.1, at most one robot must cross 0 and participate
in the message’s delivery to both endpoints. This robot, say r, may participate by
delivering the message itself or handing it over to another robot. It’s important
to note that the receiving robot may not be the first encountered by r nor
must it be faster than r. We must consider the scenarios where r delivers the
message to each of the possible robots on the opposite subinterval. To facilitate
the formulation of the solution, we assume there are robots with speed 0 at both
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endpoints −1 and 1 so that delivering to these robots is equivalent (in time and
meaning) to delivering to the destination.

Suppose the optimal handover on the opposite side of the interval occurs at
position m on the segment. Then, observe that since all robots must only partic-
ipate in delivering the message to the nearest endpoint, there are essentially two
instances of the regular PonyExpress problem to solve (one for each endpoint).
One instance is on the interval [−1,min(m, 0)] and the other [max(m, 0), 1].
Also, the robots have shifted some distance toward 0, based on their speeds.
This new instance can be constructed in linear time and solved in O(n log n)
time by Algorithm 2.

All that remains, then, is to find m. Observe that two robots l and r with
initial positions p(l) and p(r), and speeds v(l) and v(r), respectively can meet
at any point on the interval

[
0,min

(
1,

p(r) − p(l)
v(l) − v(r)

)]
.

So the optimal solution can be described as:

min
l∈L,r∈L

min
m∈[0,min(1,

p(r)−p(l)
v(l)−v(r) )]

PonyExpress

(
T

(
R,

m − p(l)
v(l)

,m

))
.

Notice the inner minimization is over a real domain where the function is
bitonic and so it can be estimated using binary search. The runtime for this is
therefore O(n2 log n log 1

ε ) where the computed meeting point is within ε of the
optimal meeting point. ��

5 Conclusion

In this paper, we have introduced the Pony Express problem. We considered
the case where the domain of interest is a line segment and the cases where a
message must be delivered from one end to the other (Pony Express), from the
center to one of the end points (Half-Broadcast) and from the center to both
end points (Broadcast). For the first two problems we provide polynomial time
offline algorithms and for the third an FPTAS. We provide online algorithms for
each problem with best possible competitive ratio in each case.

A number of open problems are suggested by our study. First, it seems likely
the runtime of our offline algorithms may be improved at least for the case of
Half-Broadcast and Broadcast and that an exact algorithm exists for Broadcast.
Second, it might be worth considering variations on the amount and type of infor-
mation available to the agents in the online setting. Finally, another direction
of study would be to consider domains other than a finite interval. Preliminary
results for the plane can be found in [8].
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Abstract. Skyline queries are multicriteria queries that are of great
interest for decision applications. Skyline Groups extend the idea of sky-
line to groups of objects. In the recent years, several algorithms have
been proposed to extract, in an efficient way, the complete set of skyline
groups. Due to the novelty of the skyline group concept, these algorithms
use custom enumeration strategies. The first contribution of this paper is
the observation that a skyline group corresponds to the notion of ideal of
a partially ordered set. From this observation, our second contribution
consists in proposing a novel and efficient algorithm for the enumera-
tion of all ideals of a given size k (i.e. all skyline groups of size k) of a
poset. This algorithm, called GenIdeals, has a time delay complexity of
O(w2), where w is the width of the poset, which improves the best known
time output complexity for this problem: O(n3) where n is the number
of elements in the poset. This work present new theoretical results and
applications on skyline queries.

Keywords: Skyline queries · Ideal enumeration · Time delay
complexity

1 Introduction

In decision making, one often wants to optimize simultaneously several charac-
teristics. For example, consider a soccer coach who wants to recruit, into her
team, a player who has both a low miss rate (corresponding to a high accuracy)
and doesn’t take long to cross the field. These characteristics (i.e. dimensions)
are often multiple and conflicting: there is rarely a single solution optimizing
all the characteristics at the same time. Skyline queries [3] solve this problem
by considering the “best compromises” between the different dimensions. More
formally, in a multidimensional space where the dimension domains are ordered
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(totally or partially), skyline queries return the objects that are not dominated
by any other object. An object dominates another object, if it is as good or bet-
ter in all dimensions and strictly better in at least one dimension. This notion
of dominance is also called Pareto dominance.

In the soccer example, results of skyline queries may be: (i) the best goal-
scorer (whatever her running speed), (ii) the best runner (whatever her miss
rate), or (iii) a player being average on both criteria, with no other player both
missing less and taking less time to cross the field.

An interesting and challenging problem arises when, in some applications,
users are interested in capturing skyline groups instead of points. This is for
example the case when looking for the best soccer team and not the best soccer
player. The Pareto dominance concept of one object over another is not directly
applicable to the notion of groups of objects. For example, it is obvious that
the best soccer team may not correspond to the group of the best individual
players, nor necessarily to the group of the most average players. Recent works [6,
8,15,18] have considered the issue of skyline group computation by extending
the dominance relation between points to groups of points: this is the group
dominance relation, also called g-dominance, which allows comparison between
groups of the same size. The g-dominance relation allows comparison between
groups of the same size, and is defined by [8] as: “Given two different groups G
and G′ with k points, we say that G g-dominates G′, if we can find a permutation
of the k points for G and G′, such that either pi dominates p′

i or pi=p′
i for all 1

≤ i ≤ k, and for at least one i, pi dominates p′
i”.

Enumerating skyline groups defined by such group dominance relation is
challenging given the huge size of the search space considered: in a set of n
points, there are

(
n
k

)
possible group skylines of size k. This prompted the need

to design efficient enumeration algorithms dedicated to the discovery of group
skylines. In the papers proposing g-dominance [8,9], the authors proposed to
exploit a novel structure based on skyline layers (i.e. models the dominance links
between the points), and two efficient search strategies to enumerate the skyline
groups. Other works studied the g-dominance relation and proposed algorithmic
improvements [7,15,17,19]. The state of the art approach is G-MDS [15], which
is based on a structure called minimum dominance graph (MDG), a directed
acyclic graph representing the dominance relation among relevant points.

In this work, our objective is to get a finer understanding of the space of
skyline groups as defined by the g-dominance relation, in order to propose an
algorithm exploring only the space of solutions. By going back to enumeration
theory concepts, we could show that the skyline group notion corresponds to
the well known concept of ideal. This allows us to propose an elegant and effi-
cient algorithm to compute skyline groups, that does not visit any unnecessary
group. Furthermore, the algorithm that we propose to enumerate ideals of size
k improves the state of the art for ideal enumeration, having a time delay com-
plexity of O(w2) (with w the posets’ width), where the best know time output
complexity for this problem is O(n3) per ideal [16] (with n the number of ele-
ments in the poset).
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We first recall that an ideal (or downset) of a poset is a subset that is closed by
the order relation ≤, i.e. an ideal containing an element x, contains all elements
inferior or equal to x. The notion of ideals of partially ordered sets has been found
many times in several applications as (scheduling [13], verification of distributed
systems [2]). Listing or enumerating all ideals of a poset simply means outputing
them one after the other. Many algorithms have been proposed in the literature
[1,4,10,12,13]. But all these algorithms cannot be used for our purposes, since
they list all ideals. In addition their adaptation does not allow to have a good
complexity.

In this work, we show that given the classical dominance relation for points
of the data, group skylines of size k correspond exactly to ideals of size k for this
relation (Proposition 1). We are then interested in the enumeration of ideals of a
given size k. To the best of our knowledge the only works for enumerating ideals
of a given size have been considered in [5] for particular cases of posets, and
Wild’s algorithm in [16] for the general case. We identify a directed graph whose
vertices are ideals of size k and such that there is an edge between two ideals if
there is a small transformation to obtain one from the others. We then propose
an efficient algorithm to enumerate all ideals of a given size k using polynomial
space.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts related to skyline queries and the concept of skyline group. We present
and detail, in Sect. 3, the established correspondence between key concepts from
the field of skyline queries and the field of partial order theory. In Sect. 4, we
develop the formal aspects, highlight new and useful properties, and present a
way to organize the space of ideals (i.e. skyline groups) as a Depth First Search
(DFS) tree. Our algorithm GenIdeals for enumerating k-ideals based on this
tree-shaped structuration of the space is then discussed in Sect. 5. In this same
section, we present the detailed complexity analysis of GenIdeals, showing its
O(w2) complexity for k-ideals enumeration. Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce the concept of skylines and extend it to the concept
of group skylines. We then review a few useful results from the literature.

The various definitions are illustrated using the example of Table 1 which
describes proposals for hotels according to the dimensions Price, Distance from
the beach, and Distance from transportation. Without any loss of generality, we
assume that it is always better if the values of the attributes are low.

Definition 1 (Pointset). A pointset is a set of same size tuples of real num-
bers. We usually write the pointset using the letter D and assume said numbers
to be positives. The elements of the pointset are called points, the elements of
the points are its attributes.

Example 1. In Table 1, D = {(10, 1, 4), (10, 2, 4), (10, 4, 1), (20, 1, 4), (40, 1, 1),
(40, 5, 1), (50, 4, 1)} is a pointset defined in a 3-dimensional space F = (Price,
Distance, Transportation). The domain of each attribute is totally ordered.
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Table 1. A set of hotels

Hotel ID Price Distance Transportation

a 10 1 4

b 10 4 4

c 10 1 5

d 20 2 1

e 40 1 2

f 40 3 2

g 50 2 3

Definition 2 (Point domination). A point p dominates a different point p′,
denoted by p ≺ p′, if p is lower or equal to p′ on any attribute and p is strictly
lower than p′ on at least one attribute. We write p � p′ to say “either p dominates
p′ or p = p′”.

Example 2. In Table 1, we have (20, 2, 1) � (50, 2, 3), since the price value 20
is lower than 50 and the other attribute values are equal. We also note that
(10, 1, 4) � (20, 2, 1), since the transportation value 4 is higher than 1.

Definition 3 (Skyline). The Skyline of a pointset D is the set of all points in
D that are not dominated by any other point.

2.1 Skyline Groups

In the hotel example (Table 1), one may consider the case of a travel agency,
that wants to pre-book exactly k rooms (supposed in k different hotels for sake
of simplicity). Each room has the same price and distances characteristics as
before: among the many rooms available (k << |D|), the travel agency wants to
identify the best groups, able to satisfy the needs of many potential customers.

The definition of Group domination and skyline group used in this paper was
first introduced in [8]. It is the notion that, in our opinion, is the best adaptation
of the idea of skylines to groups of points.

Definition 4 (Group domination). A group (set) G containing k points dom-
inates another group G′ of size k, denoted by G ≺g G′, if and only if there is a
bijection f from G to G′ such that: ∀p ∈ G, p � f(p) ∧ ∃p ∈ G s.t. p ≺ f(p).

Example 3. For the pointset in Table 1, we have {a, e, g} ≺g {b, f, g}, because
a ≺ b, e ≺ f , and g � g.

Definition 5 (Skyline group). We say that a group G of size k is a skyline
group if and only if it is dominated by no other group.

Example 4. In Table 1, {a, c, e} is a skyline group of size 3. Since the three points
are skyline points, it is easy to verify that this group cannot be dominated by
any other group of size 3.
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Definition 6 (g-skyline). The g-skyline of size k of a pointset D, denoted Sk,
is the set of all groups of k elements of D that are not dominated by any other
group, i.e. the set of all the skyline groups of size k of D.

Example 5. In Table 1, S4 = {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {a, c,
e, g}, {a, c, e, f}, {c, e, f, g}}

We also recall two useful notations for discussing partially ordered sets (i.e.
posets) which we will need later. Those are the notions of ideal and that of the
width of a poset.

Definition 7 (Ideal). Given (E,≤) a partially ordered set, a subset I of E is
an ideal if and only if: ∀(x, y) ∈ E × I, if x ≤ y, then x ∈ I.
In other words, I is closed by the order relation ≤.

Definition 8 (Poset width). Given (E,≤) a poset, the width of that poset is
the size of the maximal subset I of E such that: ∀(x, y) ∈ I2, x 	< y. I is called
a maximal antichain of (E,≤).

3 Skyline Groups Are Ideals

In this section, we present our first contribution: a new correspondence between
concepts from the field of skyline queries and concepts from the field of partial
order theory. Namely, we see that a skyline group is an ideal. This correspondence
is in our eyes the most important in this paper. In [15], the authors introduced
the concept of Unit group as follow:

Definition 9 (Unit group). The unit group of point p is the set of all points
that dominate it plus p. It is written u(p). Formally : u(p) = {p′ ∈ D | p′ � p}.

The concept of unit group is equivalent to the concept of principal ideal in a
partially ordered set (poset). For example, in Table 1, u(b) = {a, b}.

Proposition 1. Consider a group G of size k. The following properties are
equivalent: (1) G is a skyline group, (2) ∪p∈G u(p) = G, (3) ∀p ∈ G, u(p) ⊆ G,
(4) and G is an Ideal of (D,�).

Because of the third property of Proposition 1, we know that a point with
a unit group of size strictly superior to k cannot belong to a skyline group.
Because domination is transitive, unit group size increases with domination (i.e.,
p � p′ =⇒ u(p) ⊆ u(p′)). Therefore, when searching for skyline groups, all
points with an unit group of size strictly superior to k can be entirely removed
without affecting in any way the information at hand on the other points.

The fourth property has important implications: it means that any algorithm
suitable for the enumeration of ideals of size k of a poset is also suitable to be
used for the enumeration of skyline groups of size k of a pointset, using � as an
order relation.
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In the rest of the paper, we draw on Proposition 1 and consider skyline groups
on a given pointset D to be defined as the ideals of the poset (D,�). Thus, our
problem becomes the enumeration of all ideals of a given size k of a poset.

We consider the particular case of skyline queries for our explanations and
will make references to the canonical lexicographic order on points. However,
all that follows is compatible with any poset with a topological order. Because
calculating a topological order for a poset can be done in O(n2) with n the size of
the poset, everything bellow this point and especially the algorithm we present
can be adapted to list the ideals of size k of any given poset.

In the next section we will describe new properties to explore the graph of
skyline groups. These properties allowed us to propose a simple and efficient
k-ideal (i.e. skyline groups of size k) enumeration algorithm.

4 The Tree of Skyline Groups

Given a pointset D of dimension d and an integer k, we want to enumerate the
elements of the set Sk of its skyline groups of size k, i.e. its g-skyline of parameter
k. We identify a rooted covering tree T = (Sk,P) which leads us to an efficient
algorithm to search this tree in polynomial time and space. But first, we must
introduce a few notions. We begin by some order relations on points and groups.

We define the usual lexicographical order relation ≤ on points of D as follows:

Definition 10. p = (x1, x2, ..., xd) ≤ q = (y1, y2, ..., yd) if and only if p = q or
there is i ∈ {1, 2, ..., d} such that for all 1 ≤ j < i, xj = yj and xi < yi.

It has the following interesting property.

Property 1. ≤ is a topological ordering for the dominance relation.

Because the notion of skyline group only depends on the dominance relation
between points and not on their coordinates, we can rename points according to
the lexicographic order and only remember which points dominate which ones.

Example 6. In Table 1, we have the following points order (according to ≤):
p1 = (10, 1, 4), p2 = (10, 4, 4), p3 = (10, 1, 5), p4 = (20, 2, 1), p5 = (40, 1, 2),
p6 = (40, 3, 2), p7 = (50, 2, 3)

Fig. 1 shows the point domination relation between the points defined above.
Such graphical representation helps to quickly identify skyline groups. Then, we
can easily notice that (p1, p2, p3, p6) is not a skyline group because p4 is not in
it and p4 � p6. Also, (p1, p2, p3, p4) is a skyline group since no point could be
replaced by another that dominates it.

Since all elements of Sk have the same size, a group G ∈ Sk is represented
by a tuple (p1, p2, ..., pk) such that p1 ≤ p2 ≤ ... ≤ pk. In the same way as for D,
we define a lexicographical ordering � on the set Sk.
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Fig. 1. Domination graph between points of Table 1

Example 7. In Table 1, we have the following skyline groups of size 4
(ordered according to ≤): G0 = (p1, p2, p3, p4), G1 = (p1, p2, p3, p5), G2 =
(p1, p2, p4, p5), G3 = (p1, p3, p4, p5), G4 = (p1, p4, p5, p6), G5 = (p1, p4, p5, p7),
G6 = (p4, p5, p6, p7)

In the following examples, we fix the size of skyline groups to 4.
We denote by G0 the smallest group according to the lexicographical ordering

�. We then define the parent relation.

Definition 11 (Parent). Let G be a group in Sk with G 	= G0. The parent of
G, denoted by Parent(G), is obtained from G by deleting the largest element b
in G (w.r.t ≤) and adding the smallest element a ∈ D\G.

Proposition 2. The parent of a skyline group is a skyline group of the same
size.

We say that G′ is a child of G if Parent(G′) = G, and denote by Children(G)
the set of all the children of G. Let T = (Sk, Parent) be the directed graph whose
vertices are elements of Sk and edges correspond to the parent relation.

Proposition 3. The directed graph T = (Sk, Parent) is a tree rooted at G0

Proof. Let G 	= G0 be a group in Sk. We show that there is a unique path
G0 ≤ G1 ≤ G2 ≤ ... ≤ Gm = G such that Parent(Gi) = Gi−1 for 0 < i ≤ m.
Let G′ = Parent(G) with G′ = (G\{b})∪{a}. Since G 	= G0, the smallest point
not in G is smaller than the highest point in G. Hence, a < b and G′ < G. So for
every group different from G0, its parent is smaller for ≤ than it. By repetitive
application of the relation parent we inevitably reach G0 since Sk is finite. �

Our algorithm will simply run a tree exploration. However, we need to be
able to enumerate the children of a given group.

We assume that the points in D are numbered according to the lexicographic
order ≤. We have p1 ≤ p2 ≤ ... ≤ pn such that G0 = {p1, p2, ..., pk}.

Definition 12 (Starting prefix). Let G be a group in Sk. The starting prefix
of G, denoted by SPrefix(G) is the longest common prefix of G with G0.

Example 8. Starting prefixes are shown below in Fig. 2 in bold.
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In the following we show that the children of a given group G are exactly
the groups that can be obtained by removing one point of its starting prefix and
adding another point greater than any point of G such that the new group is an
ideal.

Proposition 4. Let G1 and G2 be two skyline groups. G2 is a child of G1 iff
G2 is obtained by removing one element of the starting prefix of G1 from G1 and
adding another element higher than any element of G1.

Proof. Let G1 and G2 be two groups in Sk.
Suppose that G2 = (G1\{a}) ∪ {b} where a is a point of the starting prefix
of G1 and b /∈ G1 is greater than every elements of G1. We show that G1 =
Parent(G2). Clearly b is the largest element in G2. Moreover by definition of
the starting prefix, a is the smallest point (for ≤) that is not in G1\{a} = G2\{b}.
Hence a is the smallest element that can be added to G2\{b}, and thus G1 =
Parent(G2). Now, suppose that G2 is child of G1, i.e. G1 = Parent(G2). By
definition of the relation Parent, G1 is obtained from G2 by deleting the largest≤
element b in G2 and adding the smallest≤ element a not in G2. We show that a
belongs to the starting prefix of G1. For contradiction, suppose there is a′ not
in G1, a′ < a and a′ belongs to G0. Then a′ /∈ G2\{b} and b 	≤ a′. Thus a′ can
be added to G2\{b} which contradict that a is the smallest element that can be
added. �

Moreover the depth of a group G in the tree T = (Sk, Parent) is equal to
the size of | G0\G |. So the depth of a leaf in the tree is bounded by k. Figure 2
shows the tree T for our example set of points.

Fig. 2. Example tree of skyline groups
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5 Algorithm

5.1 First Look at Our Algorithm

Our algorithm will be a DFS (Depth First Search) on the tree T . First we show
how to generate all the children of a given group G. Recall that a child is obtained
by exchanging two elements (deleting one and adding another one).

Let p1, p2, ..., pn be a topological order of (D,≤) and G a group in Sk. We
use max(G) to denote the largest point in G w.r.t ≤. We denote by Pred(p) the
points that dominate a given point p and by Succ(p) the points it dominates.

Let SPrefix(G) be the set of elements in the starting prefix in G and
SPrefixToDel(G) the set of points in SPrefix(G) that are maximal w.r.t.
≤ in G, i.e all points a ∈ G such that G\{a} is still a skyline group (of size
k − 1). No other elements of G can be removed to create a child of G.

We also consider the set of all potential candidates that could be added to
G after deleting one element from SPrefixToDel(G). Let CandToAdd(G) be
the set of points greater than max(G) that are minimal in D\G w.r.t �. The
set of candidates when deleting an element a ∈ SPrefixToDel(G) from G is
obtained from CandToAdd(G) by removing from it the successors of a in D, i.e.
CandToAdd(G, a) = CandToAdd(G)\Succ(a).

Theorem 1. Let G be a group in Sk. Then Children(G) = {(G\{a}) ∪ {b} |
a ∈ SPrefixToDel(G), b ∈ CandToAdd(G, a)}.

Proof. Let G be a group in Sk and let G′ ∈ {(G\{a}) ∪ {b} | a ∈ SPrefix
ToDel(G), b ∈ CandToAdd(G, a)}. We show that Parent(G′) = G. We fix G′ =
(G\{a}) ∪ {b} with a ∈ SPrefixToDel(G) and b ∈ CandToAdd(G, a). Since a
belongs to the starting prefix of G then for all a′ ≤ a we have a′ in G. Thus a
is the smallest point not in G′. Furthermore, by definition of CandToAdd(G, a)
we have b ≥ max(G) which implies that b is the largest point in G′. Hence G is
the parent of G′. Conversely let G and G′ be two groups (G′ 	= G0) such that
G = Parent(G′), we show that G′ ∈ {(G\{a})∪{b} | a ∈ SPrefixToDel(G), b ∈
CandToAdd(G, a)}. Again, we fix G = (G′\{b})∪{a} with b the largest point in
G′ and a the smallest one not in G′. We show that a ∈ SPrefixToDel(G). a is
the smallest point not in G′ and therefore a belongs to the starting prefix of G.
Since G∩G′ is also an ideal, we conclude that a is maximal in G for � and thus
a ∈ SPrefixToDel(G). Since b is maximal in G′ it is higher than any point in
G. Because b 	∈ G and because it can be added to G, we have b ∈ min(D\G).
Hence b ∈ CandToAdd(G). Moreover because b can be added to G\{a}, we know
a 	� b (i.e. b /∈ Succ(a)) and thus b ∈ CandToAdd(G, a). �

Remark 1. It is worth noticing that if G′ ∈ Children(G) with G′ = (G\{a}) ∪
{b}, then a cannot be added and b cannot be deleted from any group in the
subtree rooted at G′. In other words, in any path of the execution tree, any
point can be deleted or added at most once. This is because all deleted elements
belong to the starting prefix (i.e. elements ranging from p1 to pk), and all added
ones are greater than pk in the topological ordering ≤.
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We now describe an algorithm called GenIdeals (Algorithm 2) that takes
the starting prefix of a group G in Sk, the lists SPrefixToDel(G) and
CandToAdd(G) and outputs all groups in the subtree of T rooted at G.
The first call is GenIdeals(SPrefix(G0), SPrefixToDel(G0), CandToAdd
(G0) , G0) which lists all groups in Sk.

5.2 Detailed Explanation of GenIdeals: Data structures and
algorithms

The GenIdeals algorithm uses the following global data structures:

– Succ[1..n] an array where Succ[i] is a list of successors of pi in (D,≤).
– Pred[1..n] an array where Pred[i] is a list of predecessors of pi in (D,≤).
– T look[1..n] an array where T look[i] = 1 if the point pi is present and
T look[i] = 0 otherwise.

– PredCount[1..n] an array where PredCount[i] is the number of predecessors
of pi not in the current group G. This allows us to check in O(1) if a point
pi is ready to be added, i.e. minimal in (D\G).

– SuccCount[1..n] an array where SuccCount[i] is the number of successors of
pi in the current group. This counter let us check in O(1) if a point pi is
maximal in the current group.

Remark 2. The sizes of Succ[i], Pred[i], SPrefixToDel(G), CandToAdd(G) and
Children(G) are bounded in w the width of (D,≤).

The algorithm GenIdeals Main is split into two phases. We first call the
initialization process to compute G0 and then lists SPrefixToDel(G0) and
CandToAdd(G0). Then we start the recursive process GenIdeals that corre-
sponds to the core of the algorithm.

We describe the function Initialisation (Algorithm 1) briefly here. The first
for loop initializes the arrays T look and PredCount[1..n] and adds those points
that are minimal in (D,≤) and greater than pk to the list Min. This loop can
be achieved in O(n + m) time complexity where n is the number of points and
m the size of the lists Pred.

The second for loop computes G0 and updates the counter PredCount and
the list Min. At the end of this loop, Min contains the minimal points in D\G0

and SuccCount[i] the number of successor points of Pi in G0. The time spent
by this loop is bounded by O(kw).

The third for loop computes the maximal points in G0 in O(k). Thus the
total complexity of the algorithm initialization is bounded by O(n + m + kw)
which is less than O(n2). Please mind that initialization isn’t purely described by
its output, it also initializes global variables in the form of the arrays PredCount
and SuccCount.

We now describe in details the recursive algorithm GenIdeals (Algorithm
2). It takes a group G in Sk, the lists SPrefixToDel(G) and CandToAdd(G)
and outputs all groups in the subtree of T rooted in G.
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Algorithm 1. Initialization
1: Min = ∅
2: for i = 1 to n do
3: T look[i] = 0
4: PredCount[i] = sizeof(Pred[i])
5: SuccCount[i] = 0
6: if PredCount[i] = 0 and i > k then
7: Add i to Min
8: { Now we initialize G0}
9: G0 = ∅

10: for i = 1 to k do
11: Add pi to G0

12: for v ∈ Succ[i] do
13: PredCount[v] = PredCount[v] − 1
14: if v ≤ k then
15: SuccCount[i] = SuccCount[i] + 1

16: if PredCount[v] = 0 and v > k then
17: Add v to Min
18: CandToAdd = Min
19: SPrefixToDel = ∅
20: for i = 1 to k do
21: if SuccCount[i] = 0 then
22: Add i to SPrefixToDel

23: return (SPrefixToDel, CandToAdd,G0)

The outer loop while considers all points in the starting prefix of G that
might be removed to create children of G. For each such a ∈ SPrefixToDel(G),
we delete a and compute the list L = CandToAdd(G, a). This is done using
the algorithm UpdateCandToAdd1 (Algorithm 3). First we insert points in
Succ(a) into T look, and for each v ∈ CandToAdd(G): we check if T look[v] = 0,
then we add a to the output, else we delete it from T look in order to keep
the array T look empty when entering and exiting the algorithm UpdateCand-
ToAdd1. The time complexity of algorithm UpdateCandToAdd1 is bounded
by O(w). Note that the list L may be empty for all a ∈ SPrefixToDel(G). So
the worst case is when G is a leaf and in this case the total cost is bounded by
O(w2).

Then, the inner loop while takes any point b in the list L, calls the function
Print and prepare the parameters for the new group G′ = (G\{a})∪{b}. For the
former step, we use two update functions UpdateCandToAdd2 (Algorithm
4) and UpdateSPrefixToDel(a, b, SPrefixtoDel) (Algorithm 5). The first
function UpdateCandToAdd2 adds the new candidates to be added when
deleting the point b. The second one computes the starting prefix of G′ and
SPrefixtoDel, i.e. maximal elements in G′ that can be deleted from G′.

The time complexity needed by the algorithms UpdateCandToAdd2 and
UpdateSPrefixToDel is bounded by O(w).
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Algorithm 2. GenIdeals(SPrefixToDel, CandToAdd, G)
1: while SPrefixToDel is not empty do
2: a = Delete and return an element in SPrefixToDel
3: L = UpdateCandToAdd1(a,CandToAdd)
4: while L is not empty do
5: b = Delete and return an element in L
6: G′ = (G\{a}) ∪ {b}
7: Print (G′)
8: SprefD =UpdateSPrefixToDel(a, b, SPrefixetoDel)
9: Cand =UpdateCandToAdd2(b, L)

10: GenIdeals(SprefD,Cand,G′)
11: Cancel changes to PredCount and SuccCount done to add b

12: Cancel changes to PredCount and SuccCount done to remove a

Algorithm 3. UpdateCandToAdd1(a,CandToAdd)
1: L = ∅
2: for v ∈ Succ[a] do
3: T look[v] = 1

4: for v ∈ CandToAdd do
5: if T look[v] = 0 then
6: Add v to L
7: else
8: T look[v] = 0

9: return L

Algorithm 4. UpdateCandToAdd2(b, CandToAdd)
1: for v ∈ Succ[b] do
2: PredCount[v] = PredCount[v] − 1
3: if PredCount[v] = 0 and v > b then
4: Add v to CandToAdd
5: return CandToAdd

Algorithm 5. UpdateSPrefixToDel (a, b, SPrefixetoDel)
1: for v ∈ Pred[a] do
2: SuccCount[v] = SuccCount[v] − 1
3: if SuccCount[v] = 0 then
4: Add v to SPrefixetoDel

5: for v ∈ Pred[b] do
6: if v ≤ k then
7: SuccCount[v] = SuccCount[v] + 1
8: Delete v from SPrefixetoDel

9: return SPrefixetoDel

Finally, the main algorithm GenIdeals main is presented in Algorithm 6.
It simply consists of a call to Initialization followed by the first call to the
core function GenIdeals.
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Algorithm 6. GenIdeals main

1: (SPrefixToDel, CandToAdd,G0) =Initialization()
2: GenIdeals(SPrefixToDel, CandToAdd,G0)

Theorem 2. The algorithm GenIdeals main lists all groups of size k in O(w2)
delay and polynomial space.

Proof. The correctness of the algorithm GenIdeals main comes from
Theorem 1. The complexity of each call to GenIdeals is dominated by the run-
ning time of the algorithm UpdateCandToAdd1 which is bounded by O(w2)
as discussed before. Thus the algorithm takes O(w2) time per ideal, but the
delay between two outputs can be greater. This is the case when we output a
group in depth k and the next outputted one is in depth 1, so the delay between
them is O(kw2) since the depth is O(k). To show O(w2) delay we use the idea
in [11,14]. Indeed, the algorithm GenIdeals main is internal output, that is it
outputs an ideal at each node of the tree rather than outputing only for leaves.
So we alternatively output depending on the parity of the depth of a node. As
suggested in [14], we do the following two changes in algorithm GenIdeals:

– We change the Line 7 by: If the depth of the call is odd then output G′

– We add after line 10 the instruction: If the depth of the call is even then
output G′.

The space used by the algorithm is linear for each node of the searching tree.
Moreover the depth of the tree is bounded by k. �

6 Conclusion

This work is the first to show that skyline groups are objects set by partial
order theory, called ideals. This allowed us to bring out interesting properties
to ease the exploration of the graph of k-ideals (i.e. skyline groups of size k).
Indeed, we presented a novel way to organize the space of skyline groups as
a DFS tree. This helped us to propose a simple and efficient k-ideal enumera-
tion algorithm: GenIdeals main. The time delay complexity analysis that was
performed highlights the relevance of our approach and shows that it outper-
forms the current state-of-the-art algorithm. Moreover, there are two directions
to improve the result of this work. First one can improve the complexity of the
algorithm UpdateCandToAdd1 to O(1) when its output is empty. Second,
to improve the space complexity, one may find a lexicographic order on the
groups to avoid the re-enumeration in the reverse search technique, but the time
complexity may increase.
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Abstract. The question of characterizing graphs H such that the Ver-
tex Cover problem is solvable in polynomial time in the class of H-free
graphs is notoriously difficult and still widely open. We completely solve
the corresponding question for a distance-based generalization of vertex
cover called distance-k vertex cover, for any positive integer k. In this
problem the task is to determine, given a graph G and an integer �,
whether G contains a set of at most � vertices such that each edge of G
is at distance at most k from a vertex in the set. We show that for all
k ≥ 1 and all graphs H, the distance-k vertex cover problem is solvable in
polynomial time in the class of H-free graphs if H is an induced subgraph
of P2k+2 + sPmax{k,2} for some s ≥ 0, and NP-complete otherwise.

Keywords: Distance-k Vertex Cover · H-free graph ·
NP-completeness · Polynomial-time algorithm · Dichotomy

1 Introduction

Various theoretical and practical motivations have led to generalizations of many
classical graph optimization problems to their distance-based variants. Infor-
mally, this means that the adjacency property used to defined a feasible solution
to the problem is replaced with a relaxed property based on distances in the
graph.

For a concrete example, consider the Vertex Cover problem. A vertex cover
in a graph G is a set of vertices intersecting all edges. For a non-negative integer
k, a distance-k vertex cover in a graph G is a set C of vertices such that every
edge has an endpoint which is at distance at most k from a vertex in C. Note that
a distance-0 vertex cover is the same thing as a vertex cover. The Distance-k
Vertex Cover problem is the problem of deciding, given a graph G and an
integer �, whether G contains a distance-k vertex of size at most �. Motivated by
an application in network monitoring, where links between hosts (edges in the
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network graph) can be monitored from hosts (vertices) at distance at most k,
the problem was first studied in 2008, under the name Beacon Placement
Problem, by Sasaki et al. [33]. They showed that the problem is NP-complete
for all k ≥ 2 and provided a greedy heuristic for the corresponding minimization
problem. NP-completeness for k = 1 was established in 2003 by Horton and
López-Ortiz [18]. Our terminology, Distance-k Vertex Cover, follows the
work of Busch et al. [8] from 2010, where it was proved that for the class of
dually chordal graphs, the problem is NP-complete for k = 0 but solvable in
polynomial time for any fixed integer k ≥ 1.

The case k = 0 corresponds to the Vertex Cover problem, which is equiva-
lent to the Independent Set problem and has been the subject of great interest
in algorithmic graph theory. One of the key questions in this area, investigated
for decades, is whether for every positive integer p, the Vertex Cover problem
can be solved in polynomial time in the class of graphs not containing a p-vertex
path as an induced subgraph. While the solution for p = 4 has been known at
least since 1981 [12], the cases of p = 5 and p = 6 were settled only in 2014 and in
2019, respectively, by Lokshantov et al. [24] and Grzesik et al. [17]. The question
is currently still open for all p ≥ 7, but Gartland and Lokshtanov recently devel-
oped a quasi-polynomial time algorithm for every fixed p [16]. Going beyond
forbidden induced paths, the following more general question is also open: Is
the Vertex Cover problem polynomial-time solvable in the class of H-free
graphs whenever every component of H is either a path or a subdivision of the
claw? While this restriction on H is necessary for the polynomial-time solvability
(unless P = NP) [1], it is not known whether it is also sufficient. Also for the
cases when H is not a path, only few partial results are known, see, e.g., [2,5].

Our Focus. We study the Distance-k Vertex Cover problem for k ≥ 1.
Contrary to the case k = 0, the distance-based generalizations have received
only limited attention in the literature so far. We already mentioned the work
of Busch et al. [8] and an application in network monitoring [33]. Canales et al.
gave an extremal result regarding minimum distance 2-vertex covers of maximal
outerplanar graphs [10]. This result was further generalized to all k by Alvarado
et al. [3]. Nonetheless, the complexity of the problem for restricted inputs remains
poorly understood. Our main goal is to fill this gap by providing a systematic
study of the complexity of the problem. We do this by analyzing the Distance-k
Vertex Cover problem for k ≥ 1 in classes of H-free graphs, that is, in classes
of graphs defined by a single forbidden induced subgraph H.

Our Results. For integers k ≥ 1, s ≥ 0, and t ≥ 1, we denote by Pk + sPt the
disjoint union of a k-vertex path and s copies of the t-vertex path. We develop
the following computational complexity dichotomies for Distance-k Vertex
Cover in classes of H-free graphs.

– A dichotomy for k = 1 and arbitrary graph H: the Distance-1 Vertex
Cover problem is solvable in polynomial time in the class of H-free graphs
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if H is an induced subgraph of P4 + sP2 for some s ≥ 0, and NP-complete
otherwise.

– A dichotomy for any k ≥ 2 and arbitrary graph H: the Distance-k Vertex
Cover problem is solvable in polynomial time in the class of H-free graphs
if H is an induced subgraph of P2k+2 + sPk for some s ≥ 0, and NP-complete
otherwise.

In polynomially solvable cases, the degrees of the polynomials expressing the
running times of our algorithms depend on k and s. However, this is not the case
when H is connected. We obtain the following result.

– A dichotomy for any k ≥ 1 and connected graph H: the Distance-k Vertex
Cover problem is solvable in time O((|V (G)| + |E(G)|)2) in the class of H-
free graphs if H is an induced subgraph of P2k+2, and NP-complete otherwise.

To derive the NP-completeness results, we introduce a distance-based gener-
alization of the notion of edge dominating set and establish the NP-completeness
of the corresponding decision problems. As a corollary of our approach, we
show that for all k ≥ 1, polynomial-time solvability of the Distance-k Vertex
Cover problem in the class of strongly chordal graphs established in [8] cannot
be generalized to the class of chordal graphs, unless P = NP. Our polynomial-
time algorithms are based on properties of minimum dominating sets in Pt-free
graphs established by Camby and Schaudt [9].

Related Work. Besides vertex cover, distance-based generalizations of several
other graph concepts were studied in the literature, including matchings [8,35],
dominating sets [11,14,19,27], independent sets [4,11,14,15,21,26,30,31], and
cliques [25,29].

To the best of our knowledge, the first systematic study aimed towards devel-
oping a complexity dichotomy for distance-based generalizations of some classical
graph optimization problem was done in 2017 by Bacsó et al. [4]. They consid-
ered a natural distance generalization of the notion of independent set: given a
positive integer k, a set S of vertices in a graph G is a distance-k independent
set (also known as a k-scattered set) if any two distinct vertices in S are at
distance at least k from each other. Bacsó et al. gave a complete characteriza-
tion of graphs H such that, assuming ETH, the maximum size of a distance-k
independent set on H-free graphs can be computed in subexponential time in
the size of the input.

We remark that the notion of vertex cover has also been generalized with
respect to the length of paths that need to be intersected. A k-path vertex cover
is a set of vertices intersecting every path of order k [6,7,23,37]. An equivalent
notion, known as k-path transversal, is defined as set of vertices whose removal
leaves a graph that does not contain a path of order k [22].

Structure of the Paper. After summarizing the necessary preliminaries
in Sect. 2, we develop NP-completeness results in Sect. 3 and polynomial-time
algorithms in Sect. 4. The main results of the paper – the complexity dichotomies
– are derived in Sect. 5. Due to lack of space, proofs of results marked by � are
omitted.
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2 Preliminaries

Let G be a graph. The order of G is the number of vertices in it. For a vertex
v ∈ V (G), we denote by NG(v) (or simply N(v) if the graph is clear from
the context) the set of neighbors of v in G, by NG[v] (or simply N [v]) the set
NG(v) ∪ {v}. The degree of a vertex v is the cardinality of N(v). For a positive
integer k, we denote by Pk the path graph of order k. The length of a path or a
cycle is the number of edges in it. The girth of a graph G is the minimum length
of a cycle in G (or ∞ is G is acyclic). The distance between two vertices u and v
in G is defined as the length of a shortest path between u and v (or ∞ if there is
no u, v-path in G). Given two sets A,B ⊆ V (G), we denote by distG(A,B) the
minimum over all distances in G between a vertex in A and a vertex in B. When
clear from context, we may simply write dist(A,B). For simplicity, if A contains
a unique element a, then we may simply write dist(a,B), and similarly for B.

A distance-k vertex cover in G is a set C of vertices such that for all edges
e ∈ E(G), it holds dist(e, C) ≤ k. We denote by τk(G) the size of a minimum
distance-k vertex cover of G. For an integer k ≥ 0, the Distance-k Vertex
Cover problem is formally defined as follows.

Distance-k Vertex Cover

Instance: A graph G and an integer �.
Question: Is there a distance-k vertex cover in G with size at most � ?

In particular, Vertex Cover is the same as Distance-0 Vertex Cover.
An induced subgraph of a graph G is any graph H such that V (H) ⊆ V (G)

and E(H) = {{u, v} ∈ E(G) : u, v ∈ V (H)}. Given a graph G and a set
S ⊆ V (G), we denote by G[S] the subgraph of G induced by S, that is, the
unique induced subgraph of G with vertex set S. Given two graphs G and H,
we say that G is H-free if no induced subgraph of G is isomorphic to H. More
generally, for graphs H1, . . . , Hp, we say that G is {H1, . . . , Hp}-free if G is
Hi-free for all i ∈ {1, . . . , p}. The claw is the graph with four vertices and three
edges, all having an endpoint in common. Given two graphs G and H, we denote
by G + H their disjoint union. For a non-negative integer s, we denote by sG
the disjoint union of s copies of G.

An induced matching in a graph G is a set M of edges of G such that no two
of them share an endpoint (that is, M is a matching) and G contains no edge
whose endpoints belong to different edges of M .

The line graph of a graph G is the graph, denoted by L(G), with vertex set
E(G) in which two distinct vertices are adjacent if and only if the corresponding
edges of G have an endpoint in common. It is well known, and easily observed,
that line graphs are claw-free. A graph is chordal if it does not contain an induced
cycle of length at least four, bipartite if its vertex set can be partitioned into two
independent sets, planar if it can be drawn on the plane with no edges crossing,
and cubic if every vertex has degree three. A linear forest is a disjoint union of
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paths. The operation of subdividing en edge {u, v} in a graph G means deleting
the edge and introducing a new vertex w adjacent precisely to u and v.

Given a positive integer k and a graph G, a set S ⊆ V (G) is a distance-k
dominating set in G if every vertex in G is at distance at most k from S. A
dominating set in a graph G is a distance-1 dominating set, and a connected
dominating set is a dominating set S such that the induced subgraph G[S] is
connected.

3 NP-Completeness Results

3.1 When H Is Not a Linear Forest

There are two reasons why the forbidden induced subgraph H may fail to be
a linear forest: either because it is not a forest, that is, it contains a cycle, or
because it contains an induced claw. We first consider the case when H contains
a claw and later the case when H contains a cycle.

When H Contains a Claw. Note that Distance-0 Vertex Cover, that is,
Vertex Cover, can be solved in polynomial time for claw-free graphs [28,34].
However, as we show next, this is not the case for Distance-k Vertex Cover
when k ≥ 1 (unless P = NP). The proof goes in two steps. First, we generalize
the notion of edge dominating set to its distance-based variant, and consider the
corresponding decision problem called Distance-k Edge Dominating Set.
For k = 0 the problem coincides with the NP-complete Edge Dominating Set
problem. We establish NP-completeness also for all k ≥ 1. Then we use this
result to prove that, for every integer k ≥ 1, Distance-k Vertex Cover is
NP-complete on line graphs, which are claw-free.

For an edge e and a set of edges F , we denote by dist(e, F ) the minimum
over all distances between an endpoint of e and an endpoint of an edge in F .
Given an integer k ≥ 0 and a graph G, a set F ⊆ E(G) is a distance-k edge
dominating set if for every edge e ∈ E(G), dist(e, F ) ≤ k. The corresponding
decision problem is defined as follows.

Distance-k Edge Dominating Set

Instance: A graph G and an integer �.
Question: Does there exist a distance-k edge dominating set in G with

size at most �?

The Edge Dominating Set problem, which in our context is equivalent to
the Distance-0 Edge Dominating Set problem, is known to be NP-complete.

Theorem 1 (Yannakakis and Gavril [36]). Edge Dominating Set is NP-
complete, even for cubic bipartite graphs and cubic planar graphs.
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Construction 1. Given a graph G and an integer k ≥ 1, we define a graph G′

obtained from G as follows: for each edge {u, v} ∈ E(G), create a path Pu,v made
of 2k new vertices and connect the endpoints of Pu,v to u and v, respectively. The
path Pu,v together with the edge {u, v} is called the u,v-gadget. Note that the
u,v-gadget is an induced cycle in G′ of length 2k+2. In particular, there exists a
unique edge e′ ∈ E(G′) of the u,v-gadget such that distG′(e′, u) = distG′(e′, v) =
k. We call the edge e′ the opposite edge of the edge {u, v}. See Fig. 1 for an
example.

Fig. 1. An edge {u, v} (left) and its corresponding u,v-gagdet (right).

� Theorem 2. For every integer k ≥ 1, Distance-k Edge Dominating Set
is NP-complete, even for bipartite graphs with maximum degree 6 and for planar
graphs with maximum degree 6.

Proof sketch. Fix an integer k ≥ 1. Since distances in graphs can be computed
efficiently using breadth-first search, the Distance-k Edge Dominating Set
problem is in NP. Let G′ be the graph obtained from Construction 1 given G
and k. Note that G′ can be obtained in polynomial time. To complete the proof,
it can be shown that G contains an edge dominating set of size at most � if and
only if G′ contains a distance-k edge dominating set of size at most �. �	

Fig. 2. An example of the graphs used in the proof of Theorem 3: the input graph
G, the graph G′ obtained from G, and H the line graph of G′. Dashed edges in G′

correspond to square shaped vertices in H.
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� Theorem 3. For every fixed integer k ≥ 1, Distance-k Vertex Cover is
NP-complete for line graphs of bipartite graphs and line graphs of planar graphs,
even if the maximum degree (of the line graphs) is at most 6 if k = 1 and at
most 12 if k ≥ 2.

Proof sketch. Fix a positive integer k and let G be a graph. We construct a
graph G′ from G by adding for each vertex u ∈ V (G) a new vertex u′ and the
edge {u, u′} in G′. Let H be the line graph of G′. See Fig. 2 for an example. Note
that H can be computed in polynomial time. The rest of the proof consists in
showing that G has a distance-k edge dominating set with size at most � if and
only if H has a distance-k vertex cover with size at most �. �	

Since every line graph is claw-free, Theorem 3 implies the following result.

Corollary 1. Let H be a graph containing a claw as induced subgraph. Then
for every fixed integer k ≥ 1, Distance-k Vertex Cover is NP-complete on
H-free graphs.

When H Contains a Cycle. We start by generalizing a well-known fact,
observed first in 1974 by Poljak [32], that a double subdivision of an edge
increases the minimum size of a vertex cover by exactly one.

� Lemma 1. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained
from G by subdividing edge e exactly 2k +2 times, for some integer k ≥ 0. Then
τk(G′) = τk(G) + 1.

An iterative application of Lemma 1 leads to the following result.

� Corollary 2. Let G be a graph, let e ∈ E(G), and let G′ be the graph obtained
from G by subdividing edge e exactly p(2k+2) times, for some two integers k ≥ 0
and p ≥ 0. Then τk(G′) = τk(G) + p.

Theorem 4. Let H be a graph containing a cycle. Then for every fixed integer
k ≥ 0, Distance-k Vertex Cover is NP-complete on H-free graphs.

Proof. Let G be any graph and k a non-negative integer. Denote by g the girth
of H and let G′ be the graph obtained from G by subdividing every edge of G
exactly g(2k + 2) times. Note that G′ is obtained in polynomial time and by
Corollary 2, τk(G′) = τk(G) + g|E(G)|. Moreover, notice that G′ has no cycle
of length g, and thus is H-free. By Theorem 3, Distance-k Vertex Cover
is NP-complete, and hence the problem remains NP-complete on H-free graphs
when H contains a cycle. �	

Corollary 1 and Theorem 4 imply the following result.

Corollary 3. Let H be a graph that is not a linear forest. Then for any fixed
integer k ≥ 1, Distance-k Vertex Cover is NP-complete on H-free graphs.



244 C. Dallard et al.

3.2 When H Is a Linear Forest

We now show that Distance-k Vertex Cover remains NP-complete in the
class of H-free graphs even for certain linear forests. In particular, this is the
case when H = 2Pk+1 for k ≥ 2 and when H is either P5 or 2P3 for k = 1, even
if the input graph is chordal.

Construction 2. Given a graph G containing at least one edge and an integer
k ≥ 1, we construct a graph G′ as follows. First, we take a complete graph on a
set Q of |V (G)| new vertices such that for every vertex u ∈ V (G) there exists a
unique vertex u′ in Q. Then, for each edge {u, v} ∈ E(G), we create a u,v-ladder
as follows. We create a path Pu,v of order k and connect one of its endpoints
to both u′ and v′; then for each such vertex w of Pu,v we add a new vertex w′

and make it adjacent exactly to the vertices in N [w] (in particular, this means
that N [w′] = N [w] in the resulting graph). We call the unique edge e of the
u, v-ladder such that distG′(e, {u, v}) = k the opposite edge of the edge {u′, v′}.
See Fig. 3 for an example.

Fig. 3. An edge {u, v} (left) and its corresponding u,v-ladder (right).

Theorem 5. Distance-1 Vertex Cover is NP-complete on {P5, 2P3}-free
chordal graphs and, for all k ≥ 2, Distance-k Vertex Cover is NP-complete
on 2Pk+1-free chordal graphs.

Proof. Let G be a graph containing at least one edge and k a positive integer.
Let G′ be the graph obtained from Construction 2 given G and k. Note that
G′ can be obtained in polynomial time. Besides, it is easily observed that G′

is chordal. Notice that any induced subgraph of G′ isomorphic to Pmax{k+1,3}
contains at least one vertex in the clique Q, which implies that G′ cannot contain
2Pmax{k+1,3} as an induced subgraph, that is, if k = 1, then G′ is 2P3-free, and
if k ≥ 2, then G′ is 2Pk+1-free. Furthermore, if k = 1, then G′ is also P5-free.
To see this, consider an induced path P in G′ of order 4. Then P has both its
endpoints in V (G) \ Q and its two internal vertices in Q, as otherwise P would
not be induced. This readily implies that P is a maximal path, and thus that
G′ is P5-free.
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To complete the proof, we show that G has a vertex cover with size at most
� if and only if G′ has a distance-k vertex cover with size at most �.

Let C be a vertex cover in G with size at most � and C ′ = {u′ : u ∈ C}.
Note that C ′ ⊆ Q ⊆ V (G′); we claim that C ′ is a distance-k vertex cover in
G′. Suppose that this is not the case. Then there exists an edge f ∈ E(G′) at
distance more than k from C ′. Observe that C ′ ⊆ Q, and thus, every edge of
G′ having one endpoint in Q is at distance at most 1 from C ′. Therefore, as f
is at distance more than k from C ′, it must have both endpoints in V (G′) \ Q,
and hence belongs to an u,v-ladder for some edge {u, v} ∈ E(G). Since C is a
vertex cover in G, at least one of u or v belongs to C. We assume without loss of
generality that u belongs to C. Since f belongs to the u,v-ladder and u′ ∈ C ′, we
have distG′(f, C ′) ≤ distG′(f, u′) ≤ k, a contradiction. Thus, C ′ is a distance-k
vertex cover in G′ with size |C ′| = |C| ≤ �.

Let C ′ be a distance-k vertex cover in G′ with size at most �. Observe that if
w ∈ V (G′)\Q, then w is a vertex in a u,v-ladder for some {u, v} ∈ E(G). Observe
that, by construction of G′, every edge f of G′ with distG′(f, w) ≤ k is such that
distG′(f, u′) ≤ k. Hence, if w ∈ C ′, then the set (C ′\{w})∪{u′} is also a distance-
k vertex cover in G′ with size at most �. Hence, we may assume that C ′ ⊆ Q. Let
C = {u ∈ V (G) : u′ ∈ C ′}. Suppose that C is not a vertex cover in G. Then there
is an edge {u, v} ∈ E(G) such that u, v 
∈ C. Therefore, u′, v′ 
∈ C ′ but then the
opposite edge e of the u,v-ladder is such that distG′(e, C ′) > distG′(e, {u′, v′}) =
k, a contradiction. Hence, C is a vertex cover in G with size |C| = |C ′| ≤ �.

Since Vertex Cover is NP-complete [20], we obtain that Distance-1 Ver-
tex Cover is NP-complete on {P5, 2P3}-free chordal graphs and that, for all
k ≥ 2, Distance-k Vertex Cover is NP-complete on 2Pk+1-free chordal
graphs. �	

4 Polynomial Algorithms

In this section we identify, for each integer k ≥ 1, an infinite family of graph
classes in which Distance-k Vertex Cover can be solved in polynomial time.
Our first result will be based on the following structural property of Pt-free
graphs.

Theorem 6 (Camby and Schaudt [9]). Let t ≥ 4 be an integer, let G be a
connected Pt-free graph, and let S be any minimum connected dominating set
in G. Then the subgraph induced by S in G is either Pt−2-free or isomorphic
to Pt−2.

Theorem 6 has the following consequence for distance-k vertex covers in
P2k+2-free graphs.

Lemma 2. For every integer k ≥ 1, every connected P2k+2-free graph G has a
distance-k vertex cover that induces a path of order at most two.
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Proof. Fix a positive integer k. To prove the statement of the lemma, we will in
fact establish the following stronger statement: every connected P2k+2-free graph
G has a distance-k dominating set that induces a path of order at most two. It
follows immediately from the definitions that every distance-k dominating set is
also a distance-k vertex cover, hence this will indeed suffice.

The proof is by induction on k. Suppose first that k = 1. In this case, the
statement says that every connected P4-free graph G has a dominating set that
induces a path of order at most two. This follows from the well-known fact that
for every connected P4-free graph G with at least two vertices, the complement
of G is disconnected (see, e.g., [12]). Indeed, denoting by C any component of
the complement of G and taking u ∈ V (C) and v ∈ V (G)\V (C), the set {u, v} is
a dominating set in G that induces a path of order two. Suppose now that k > 1
and consider a connected P2k+2-free graph G. Let S be a minimum connected
dominating set in G and let G′ be the subgraph of G induced by S. Following
Theorem 6, we obtain that G′ is either P2k-free or isomorphic to P2k. If G′ is
P2k-free, then the induction hypothesis implies that G′ has a distance-(k − 1)
dominating set that induces a path of order at most two. If G′ is isomorphic
to P2k, with vertices v1, . . . , v2k in order, then the edge {vk, vk+1} is a distance-
(k−1) dominating set in G′. In either case, G′ has a distance-(k−1) dominating
set S′ that induces a path of order at most two. Since every vertex in G is either
in S or has a neighbor in S, we infer that S′ is a distance-k dominating set in
G that induces a path of order at most two. �	

In the following theorem, the running time of the algorithm is independent
of k, that is, the O notation does not hide any constants depending on k.

� Theorem 7. For every integer k ≥ 1, there is an algorithm with running
time O((|V (G)| + |E(G)|)2) that takes as input a P2k+2-free graph G and com-
putes a minimum distance-k vertex cover of G.

Proof sketch. Fix a positive integer k and let G be a P2k+2-free graph. To com-
pute a minimum distance-k vertex cover of G, we first compute the connected
components G1, . . . , Gs of G, solve the problem in each connected component
Gi, and combine the obtained solutions. By Lemma 2, each connected compo-
nent Gi of G has a distance-k vertex cover that induces a path of order at most
two. Thus, we immediately obtain a polynomial-time algorithm for computing a
minimum distance-k vertex cover of a nontrivial component Gi. We first check if
there exists a vertex u ∈ V (Gi) such that {u} is a distance-k vertex cover of Gi.
If this is the case, then we have an optimal solution; otherwise we check for each
edge {u, v} ∈ E(Gi) if {u, v} is a distance-k vertex cover of Gi. Once we find
one, we return it. We can verify, in each Gi, if a vertex or an edge is a distance-k
vertex cover using a breadth-first search, and the running time follows. �	
Remark 1. For k = 1, an improved running time of O(|V (G)| + |E(G)|) can
be obtained using a different approach: the fact that P4-free graphs have clique-
width at most two, the fact that the defining property of distance-1 vertex covers
can be expressed in MSO1 logic, and a metatheorem for MSO1 problems on
graphs of bounded clique-width of Courcelle et al. [13].
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We now consider the more general case of (P2k+2 + sPmax{k,2})-free graphs
for two integers k ≥ 1 and s ≥ 0. We first consider the case k = 1 and then the
case k ≥ 2.

� Lemma 3. For every integer s ≥ 0, every connected (P4 +sP2)-free graph G
has a distance-1 vertex cover that induces a linear forest of order at most 2s+2.

Lemma 4. For every two integers k ≥ 2 and s ≥ 0, every connected (P2k+2 +
sPk)-free graph G has a distance-k vertex cover that induces a linear forest of
order at most fk(s) where

fk(s) =
{

2 if s = 0 ,
(s + 1)k + 2 if s ≥ 1 .

Proof. Fix an integer k ≥ 2. We use induction on s. For s = 0, the statement
follows from Lemma 2.

Suppose now that s ≥ 1 and that every connected (P2k+2 + (s − 1)Pk)-
free graph has a distance-k vertex cover that induces a linear forest of order
at most fk(s − 1). Let G be a connected (P2k+2 + sPk)-free graph. If G is
(P2k+2 + (s − 1)Pk)-free, then G has a distance-k vertex cover that induces
a linear forest of order at most fk(s − 1) ≤ fk(s). On the other hand, if G
is not (P2k+2 + (s − 1)Pk)-free, then there exists a set S ⊆ V (G) inducing a
P2k+2+(s−1)Pk. Note that S induces a linear forest of order (s+1)k+2 = fk(s).
It thus suffices to show that S is a distance-k vertex cover in G. Let X = N(S)
be the set of vertices not in S and with a neighbor in S and Y = V (G) \ (S ∪X)
be the set of vertices not in S and without a neighbor in S. Let e be an edge of
G. If e has an endpoint in S ∪ X, then distG(e, S) ≤ 1 ≤ k. So let e be entirely
contained in Y . Since G is connected, there exists a shortest path P between
an endpoint of e and a vertex in S. Since G is (P2k+2 + sPk)-free, the part of
P entirely contained in Y has at most k − 1 vertices. Other than that, P has
exactly one vertex in X and exactly one in S. Thus, the length of P is at most
k, which implies distG(e, S) ≤ k. This shows that S is a distance-k vertex cover
in G and completes the proof. �	

Lemmas 3 and 4 imply that for all integers k ≥ 0 and s ≥ 0 the minimum size
of a distance-k vertex cover in a (P2k+2 + sPmax{k,2})-free graph is bounded by
a function depending only on k and s but independent of G. Thus, we can do a
complete enumeration of small subsets of vertices to find a minimum distance-k
vertex cover in such a graph, and essentially the same approach as the one used
to prove Theorem 7 using Lemma 2 can be used to prove the following theorem
using Lemmas 3 and 4.

Theorem 8. For every two integers k ≥ 1 and s ≥ 0, there is a polynomial-time
algorithm that takes as input a (P2k+2 + sPmax{k,2})-free graph G and computes
a minimum distance-k vertex cover of G.
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5 Complexity Dichotomies

Our results from Sects. 3 and 4 allow us to obtain a complexity dichotomy of
Distance-k Vertex Cover on H-free graphs, for all k ≥ 1.

Theorem 9. For every graph H, the following holds:

– Distance-1 Vertex Cover is solvable in polynomial time in the class of
H-free graphs if H is an induced subgraph of P4 + sP2, for some s ≥ 0, and
NP-complete otherwise.

– For every integer k ≥ 2, Distance-k Vertex Cover is solvable in poly-
nomial time in the class of H-free graphs if H is an induced subgraph of
P2k+2 + sPk for some s ≥ 0, and NP-complete otherwise.

Proof. Fix a graph H and let G be the class of H-free graphs. If H is not a linear
forest, then for all k ≥ 1, Corollary 3 implies that Distance-k Vertex Cover
is NP-complete on G. Suppose that H is a linear forest.

Consider first the case when k = 1. If H contains P5 or 2P3 as an induced
subgraph, then G contains the class of {P5, 2P3}-free chordal graphs, and hence
by Theorem 5 Distance-1 Vertex Cover is NP-complete on G. Otherwise, we
obtain that H is {P5, 2P3}-free. Recall that H is a linear forest. Let us denote by
t be the maximum order of a component of H and let P be a component of H
of order t. If t ≤ 2, then every component of H has order at most two. If t ≥ 3,
then, since H is 2P3-free, every component of H other than P has order at most
two. In either case, every component of H other than P has order at most two,
which implies that H is an induced subgraph of Pt + sP2 for some s ≥ 0. Since
H is P5-free, we have t ≤ 4, and hence every H-free graph is (P4 + sP2)-free.
Thus, by Theorem 8 the problem can be solved in polynomial time for graphs
in G.

Suppose now that k ≥ 2. If H contains 2Pk+1 as an induced subgraph, then
G contains the class of 2Pk+1-free chordal graphs, and hence by Theorem 5 Dis-
tance-k Vertex Cover is NP-complete on G. Again, let t denote the maximum
order of a component of H and let P be a component of H of order t. If t ≤ k,
then every component of H has order at most k. If t ≥ k + 1, then, since H
is 2Pk+1-free, every component of H other than P has order at most k. Thus,
in either case, every component of H other than P has order at most k, and
H is an induced subgraph of Pt + sPk for some s ≥ 0. Since H is 2Pk+1-free,
it is also P2k+3-free, which implies that t ≤ 2k + 2, and thus H is an induced
subgraph of P2k+2 + sPk for some s ≥ 0. It follows that every H-free graph is
(P2k+2+sPk)-free. Thus, by Theorem 8 the problem can be solved in polynomial
time for graphs in G. �	

For the case when the forbidden induced subgraph is connected, Theorems 7
and 9 imply the following dichotomy.

Corollary 4. For every connected graph H and integer k ≥ 1, the Distance-k
Vertex Cover problem is solvable in time O((|V (G)|+|E(G)|)2) in the class of
H-free graphs if H is an induced subgraph of P2k+2, and NP-complete otherwise.
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Furthermore, as explained in Remark 1, the running time can be improved
to linear for the case k = 1.

Acknowledgments. The authors wish to thank Peter Muršič for valuable discussions.
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Abstract. We consider the problem of mapping the n vertices of an
edge-weighted hypergraph to the points 1, . . . , n on the real line, so as
to minimize the weighted sum of the coordinates of right ends of all
edges. This problem naturally appears in warehouse logistics: n shelves
are arranged in one row, every shelf can host one type of items, the
edges are sets of items requested together, their weights are the request
frequencies, and items must be picked from the shelves and brought to
a collection point at the left end of the row. The problem is to place
all items so as to minimize the average length of the collection tours.
It is NP-complete even for graphs, but it can be solved in O∗(2n) time
by dynamic programming on subsets. In the present work we focus on
hypergraphs with small connected components, which also has a practical
motivation: Typical requests comprise related items from only one of
many small disjoint groups. As a first result we solve, in polynomial time,
an auxiliary problem with prescribed ordering in every component. For
the unrestricted problem we conclude some worst-case time bounds that
beat O∗(2n) for components of sizes up to 6. Some simple preprocessing
can further reduce the time in many instances. Furthermore, the case of
star graphs can be solved via bipartite matchings. Finally, there remain
various interesting open problems.

Keywords: Hypergraph linear arrangement · Dynamic programming
on subsets · Convex hull · Bipartite matching · Warehouse logistics

1 Introduction

Let G = (V,E) be a given hypergraph, consisting of a set V of vertices and a
set E of edges, which are non-empty subsets of V . (As this work mainly deals
with hypergraphs, for brevity we prefer the term “edge” to “hyperedge”.) Every
edge e ∈ E has a positive weight w(e). For edges with only one vertex, such
as e = {v}, we may simply write w(v) instead of w(e) or w({v}), and we say
that the vertex v has this weight, without risk of confusion. We will study the
following arrangement problem. We first introduce it technically, because it is
then easier to explain its motivation.
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MinSumEnds

Given: a hypergraph G = (V,E) with n vertices, and positive weights w(e) of
all edges e ∈ E.

Find: a bijective mapping π of V onto the set of integers {1, . . . , n} that min-
imizes the sum

∑
e∈E w(e) · μ(e), where μ(e) := max{π(v) : v ∈ E} for every

edge e ∈ E.

Informally, our problem is to place the n vertices of V on n distinct points
1, . . . , n on the real line, so as to minimize the weighted sum of the right ends of
all edges. We can also view π as an ordering of V from left to right.

The objective function
∑

e∈E w(e) · μ(e) can be rewritten as
∑n

i=1 i · L(i),
where L(i) denotes the total weight of all edges that end in point i, that is,
L(i) =

∑
e:μ(e)=i w(e). For any ordering π we also define a function Lπ on V by

Lπ(v) := L(i) when π(v) = i. Hence the value Lπ(v) is the total weight of all
edges having v as their rightmost vertex.

A hypergraph is called connected if, for any two vertices u and v, there exists
a sequence u = u0, e0, u1, e1, u2, . . . , uk−1, ek−1, uk = v with ui ∈ ei for all i with
0 ≤ i ≤ k − 1, and ui ∈ ei−1 for all i with 1 ≤ i ≤ k. For brevity, connected
components of a hypergraph are just called components in this paper.

The main motivation of MinSumEnds comes from efficient warehouse oper-
ations. In one scenario, n types of items shall be located in n equidistant shelves
along a wall. At a collection point to the left of all shelves, a collector (robot or
human worker) is waiting for requests. When a subset of items is requested, the
collector must retrieve the requested items from the shelves and bring them to
the collection point. Hence the length of the walk is twice the distance to the
farthest requested item, whereas the positions of the other items are irrelevant,
and so are the amounts of requested items of each type. The weighted hyper-
graph models the typical requests and their frequencies. More precisely, every
edge is a set of (types of) items in a request, and its weight is proportional to the
frequency of exactly this request. Thus, placing the items in the shalves so as to
minimize the average walking distance leads to the MinSumEnds problem.

One may doubt that the problem arises in exactly this form in practice, as
a single line of shelves is a special case, the problem may be intertwined with
other types of constraints, data on frequencies may only be rough estimates,
etc. However, combinations of workflow and layout planning in factory halls and
warehouses are definitely a subject of industrial projects, where users want to
optimize layouts for work sequences and vice versa, possibly in several iterations.
Extracting basic combinatorial optimization problems and trying to understand
their complexity is a meaningful activity accompanying the practical develop-
ments.

MinSumEnds is NP-complete even for graphs, i.e., the case when all edges
have at most two vertices. On the positive side, it can be solved in O∗(2n) time
by dynamic programming on subsets [4]. Naturally, we are interested in relevant
special cases that can be solved faster. One such practical case appears when the
items are partitioned into small disjoint groups of related items, and only these
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items are typically requested together. In such cases, the sizes of the components
of our hypergraphs are small integers, however, the frequencies of requests are
still arbitrary numbers. Therefore we will study the complexity of MinSumEnds
for weighted hypergraphs whose components have some limited fixed size k.

A problem being closely related to MinSumEnds has been studied much
more extensively: The Minimum Linear Arrangement (MLA) problem asks
to order the vertices of a graph or hypergraph so as to minimize the sum, over
all edges, of the distances between the leftmost and rightmost vertex in the edge.
Key results can be found, e.g., in [1–3,5,8–12]. (Here we do not summarize them
all.) Apparently, the use of dynamic programming on subsets for that problem
was first discovered in [3].

The vast majority of graph and hypergraph problems, including MLA, can
be solved independently on the components. A remarkable issue it that this is no
longer the case for MinSumEnds. Loosely speaking, since all vertices compete
for the best positions, there is heavy interaction between the components, which
makes the problem tricky even in hypergraphs with components of fixed size,
which we mainly consider in this work.

Our contributions can be outlined as follows. Using some exchange arguments
we solve, in polynomial time, a restricted version of MinSumEnds that we call
MinSumEnds<. In that auxiliary problem, the vertices within every component
must appear in some prescribed ordering (whereas all permutations are allowed
in MinSumEnds). The MinSumEnds< problem also has some nice geometric
interpretation in terms of convex functions. With the help of MinSumEnds< we
obtain time bounds that beat the standard O∗(2n) bound in hypergraphs with
components of at most 6 vertices. For concrete instances, the actual running
times can be further improved by excluding several candidate orderings within
the components, as candidates for optimal solutions have to pass some simple
tests with linear inequalities in the given weights. Besides small components it
is also worth considering structural restrictions. The case of star graphs can be
solved via bipartite matchings, and this idea can be generalized. We conclude
with various open problems.

2 An Exchange Property

The following lemma is simple, but it will be central to our approach.

Lemma 1. Let π be an ordering, and let P and Q be the sets of vertices at
points i + 1, . . . , i + p and i + p + 1, . . . , i + p + q, respectively. Suppose that no
u ∈ P , v ∈ Q, and e ∈ E exist with u, v ∈ e. Then we have: If the inequality

∑

u∈P

Lπ(u)/p ≥
∑

v∈Q

Lπ(v)/q

is violated, then placing the vertices of Q at points i+1, . . . , i+q and the vertices
of P at points i+ q +1, . . . , i+ q +p while preserving the orderings within P and
Q, will make the objective smaller.
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Proof. Let us swap P and Q. Since no edge contains vertices from both P and Q,
every vertex u ∈ P and v ∈ Q is the rightmost vertex of the same edges as it was
before the swap. Hence all Lπ(u) and Lπ(v) are preserved. Thus, the objective
function changes by adding the amount q

∑
u∈P Lπ(u) − p

∑
v∈Q Lπ(v). From

this, the assertion obviously follows. ��
In words, Lemma 1 says that neighbored and consecutive sets P and Q of

sizes p = |P | and q = |Q|, such that no edge contains vertices from both P and
Q, can be swapped if the mentioned inequality is violated. Hence, this inequality
must hold in any optimal ordering π. If the inequality is an equation, then P
and Q can also be swapped without destroying optimality.

3 An Auxiliary Problem with Ordered Components

Now we consider an auxiliary problem named MinSumEnds<. It is defined
exactly as MinSumEnds, but with the extra condition that the vertices within
every component C of the hypergraph must appear in π in some prescribed
ordering. That is, π(v1) < . . . < π(vk) is required, where {v1, . . . , vk} is the
ordered vertex set of C. (We do not repeat the entire formal definition, as the
objective is the same as in MinSumEnds.) Since the orderings of vertices in the
components are given, the components are already part of the input. Of course,
they must be the true components of the input hypergraph G, but consistency
can be checked in linear time.

Within any component C of the input hypergraph G, we call a subset M of
vertices of C a module if the vertices of M appear consecutively in the prescribed
ordering of C, and they remain consecutive also in every optimal ordering π of
our hypergraph G.

Note that, due to the last condition, the modules are not “obvious” from the
input; below we will show how to compute them.

We define the density of any subset M (module or not) of the vertex set of
C as D(M) :=

∑
v∈M Lπ(v)/|M |. Since the ordering of C is fixed, actually the

values Lπ(v), v ∈ M ⊆ C, do not depend on π, therefore D(M) is well defined
and easy to compute from the input. For single vertices v we write D(v) instead
of D({v}) = Lπ(v).

Lemma 2. Let M and N be disjoint modules in C with the following properties:
π(u) < π(v) for all u ∈ M and all v ∈ N , no other vertex of C is between M
and N in the ordering, and D(M) < D(N). Then M ∪ N is a module, too.

Proof. Assume for contradiction that π is some optimal ordering where the set
I of vertices between M and N is non-empty. By assumption, all vertices in I
belong to other components than C. We can uniquely partition I into subsets
called bags, where every bag is a maximal subset of vertices of I that are con-
secutive in π and belong to the same component. M and N are considered bags
as well. Let J and J ′ denote any two neighbored bags in this ordering (J to
the left of J ′). By Lemma 1, if D(J) < D(J ′) then we can swap them to make
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the objective smaller, which contradicts the optimality of π. (Since J and J ′ are
from different components, they have no common edges, hence they satisfy the
assumptions of Lemma 1, and swapping also yields a valid solution, since the
orderings in the components are not changed.) Hence the bags in the sequence
from M to N have non-increasing densities. But this contradicts D(M) < D(N).
It follows I = ∅ in every optimal ordering π. By the definition of modules this
implies that M ∪ N is a module. ��

Whenever two modules M and N satisfy the assumptions of Lemma 2, we
can merge them to the module M ∪ N according to the conclusion of Lemma 2.
Consider the following process based on this observation:

We start from the sequence of the single vertices of C (which are, trivially,
modules) in the prescribed ordering, and we merge two arbitrarily chosen neigh-
bored modules that satisfy the assumptions of Lemma 2. This step is repeated
as long as possible. The final result is a sequence of modules that we call blocks.

We claim that the sequence of blocks does not depend on the arbitrary
choices, that is, the resulting blocks are uniquely determined by the densities
D(v) of all single vertices v. Below we give a proof that also yields a geometric
characterization of blocks.

The idea is to represent any partitioning of the ordered vertex set {v1, . . . , vk}
of C into modules as a function f on the interval [0, k), defined as follows: For
every module M = {vi, . . . , vj} in this partitioning, let f(x) := D(M) for all
x ∈ [i − 1, j). Furthermore, let g(x) :=

∫ x

0
f(t) dt.

Note that g is a monotone increasing and piecewise linear continuous func-
tion, where the slopes equal the densities. The initial function f denoted f0
has values f0(x) = D(v) = Lπ(vi) for all x ∈ [i − 1, i), and for all i. Let
g0(x) :=

∫ x

0
f0(t) dt.

Yet another technical definition makes the proof convenient: On the graph
of g we mark all endpoints of the modules. Then, the effect of merging two
modules M and N to the graph of g can be figuratively described as follows.
Let p and q be the left and right endpoint, respectively, of the straight-line
segment corresponding to M and N , and let r denote the point separating these
segments. Remember that the slope increases in the point r. We unmark r and
move the two segments upwards, thereby transforming them continuously into
the straight-line segment connecting p and q, Note that only unmarked points
move upwards to the new segment. With these notations and observations we
can state:

Lemma 3. The endpoints of the blocks are exactly those points (x, g0(x)) with
integer x that are on the upper convex hull h of the graph of the function g0.

Proof. In the following, two functions are said to be in ≤ relation if their function
values are in ≤ relation for every argument.

Initially, the marked points on g0 are all points (x, g0(x)) with integer values
x, because the modules we start from are all single vertices. Trivially we have
g0 ≤ h. If g ≤ h, and we replace two incident straight-line segments in the graph
of g with increasing slopes by one straight-line segment connecting the same
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endpoints, then this modified function g still satisfies g ≤ h, since h is an upper
convex hull (and hence a concave function).

As long as g = h does not yet hold, another merge operation can be done,
and the total number of merge operations is finite (actually, at most k). Thus
we always eventually obtain g = h, regardless of the choice of merge operations
in every step.

All marked points that were strictly below the graph of h got unmarked, since
otherwise they could not have moved upwards to the graph of h. Furthermore,
marked points on the graph of h never got unmarked. Thus, exactly those marked
points that were already initially on the graph of h are still marked. Together
this yields the assertion. ��

Note that the blocks have non-increasing densities, in the prescribed ordering
in the component C. We arrive at the complexity result for our auxiliary problem:

Theorem 1. MinSumEnds< can be solved in O(e+n log n) time, for arbitrary
hypergraphs with n vertices, edges of total size e, and ordered components. More-
over, every sequence of the blocks from all components, sorted by non- increasing
densities (where ties are broken arbitrarily), is an optimal ordering.

Proof. First we compute all densities D(v), v ∈ V , in O(e) time. Then we
compute the blocks in every component, by pairwise merging of modules, starting
from the single vertices. The blocks are uniquely determined due to Lemma 3,
and with some care this part can be implemented to run in O(n) time in all
components.

Recall that the blocks are modules. Hence, in an optimal ordering, every block
is a consecutive set, and due to Lemma 1, also blocks from different components
appear in non-increasing order of densities, where the order of blocks with equal
densities is arbitrary. Thus, it only remains to sort the blocks by their densities
and concatenate them. In the worst case of many small blocks this incurs a
logarithmic factor. ��

Due to the non-increasing densities we refer to the algorithm in Theorem 1
as the sedimentation algorithm.

The arbitrary tie breaking in Theorem 1 suggests to slightly re-define the
notion of blocks as follows:

Whenever blocks from the same component have equal densities, we can place
them consecutively and merge them to one block, without missing an optimal
solution.

The advantage is that now the blocks from the same component appear with
strictly decreasing densities. From now on we use the concept of blocks in this
stricter sense, without risk of confusion.
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4 Domination Relation

Next we apply the sedimentation algorithm for MinSumEnds< to the solution of
the original MinSumEnds problem. A very naive way would be to exhaustively
try all combinations of orderings of the vertices in the components of the input
hypergraph G, solve every case in polynomial time, and finally take the solution
with the best objective value. In the following we try to reduce the large number
of orderings to examine.

In an instance of MinSumEnds<, let v1, . . . , vk again denote the vertices of
some component C in their prescribed ordering, that is, π(v1) < . . . < π(vk)
is required. Recall that the densities D(vi) uniquely determine the blocks of C,
and the D(vi) in turn depend only on this internal ordering of C. We abbreviate
the densities by di := D(vi).

Now let (d1, . . . , dk) and (d′
1, . . . , d

′
k) be two different sequences of densi-

ties (resulting from different possible orderings of C in an instance of Min-
SumEnds). We say that (d1, . . . , dk) dominates (d′

1, . . . , d
′
k) if their prefix sums

satisfy
∑j

i=1 di ≥ ∑j
i=1 d′

i for all j = 1, . . . , k, and the inequality is strict for
some index j. An equivalent characterization is that (d1, . . . , dk) is obtained from
(d′

1, . . . , d
′
k) by “moving some amounts” from some positions to other positions

to the left, i.e., with smaller indices, while preserving the sum. We also say that
the ordering of C with densities (d1, . . . , dk) dominates the ordering of C with
densities (d′

1, . . . , d
′
k). Finally, we call two orderings equivalent if they yield the

same sequence of densities; note that they do not dominate each other.
From the objective function of MinSumEnds, the following is obvious:

Lemma 4. In an optimal ordering π solving an instance of MinSumEnds, the
ordering of the vertices of any component C is not dominated by any other
ordering of the vertices of C.

In simpler words, only non-dominated orderings of components may appear
in an optimal solution π. Among equivalent orderings we need to consider only
one, since the objective value solely depends on the densities. This suggest the
following definition and observation:

A set of orderings of a component C is said to be a candidate set if every
optimal solution to MinSumEnds uses one of these orderings of C, or an equiv-
alent ordering. We refer to the orderings in a fixed candidate set as candidate
orderings.

Clearly, some candidate set for C can be obtained as follows: Take the set
of all orderings not dominated by others, but for any equivalent orderings, keep
only one arbitrarily selected representative.

An obvious idea is now to compute candidate sets in advance, which reduces
the total number of orderings to consider. We elaborate on this idea in the next
section.
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5 Hypergraphs with Small Components

One use of the concept of blocks and of the above results would be to simplify
some proofs from [6] (and rewrite them from a more general perspective). In
that work we considered the case of unweighted graphs. However, in the follow-
ing we derive new results for another class of hypergraphs, namely such with
components whose size is bounded by some constant, but where the weights are
arbitrary positive numbers.

Let {u, v} be the vertex set of some component where w(u) ≥ w(v). Then,
obviously, the ordering (u, v) dominates (v, u), unless w(u) = w(v), in which
case the orderings are equivalent. Thus, in either case we have to consider only
one candidate ordering, and since e = O(n), Theorem 1 yields immediately:

Theorem 2. MinSumEnds in weighted hypergraphs where all components have
at most two vertices can be solved in O(n log n) time.

Already components with three vertices turn out to be more tricky. However,
we will obtain some upper bounds on the number of candidate orderings. We use
the following convenient notation. Let v1, . . . , vk be the vertices of the considered
component C. We abbreviate the weights by wi := w(vi) and wij := w({vi, vj}),
and similarly, we use more subscripts for larger edges. Furthermore, we can
assume w1 ≤ . . . ≤ wk by re-indexing.

Lemma 5. Let ck denote a number with the property that every component with
k vertices admits a candidate set with at most ck orderings. Then we have:

c2 = 1, c3 ≤ 2, c4 ≤ 5, c5 ≤ 16, c6 ≤ 62.

Moreover, for any fixed k and given weights, these candidate sets can be identified
in constant time.

Proof. Before we stated Theorem 2 we have already shown c2 = 1. Generalizing
the exchange argument used there we see: Any ordering of C beginning with
(vi, vj , . . .), where i < j, is dominated by or equivalent to the ordering (vj , vi, . . .)
obtained by swapping the first two vertices.

Assume that some prefix of the ordering of C is already fixed. Let P denote
the vertex set of this prefix. We consider the residual hypergraph defined as
follows. Every vertex v ∈ P becomes an edge whose weight is the sum of all
original weights of edges with v as the rightmost vertex. Every subset e ⊆ C \P
gets the weight

∑
Q⊆P w(Q ∪ e), where w(.) denotes the original weights, and

with the understanding that a non-existing edge is the same as an edge with
zero weight. The rest of the hypergraph outside C is not affected. We remark
that C \ P in the residual hypergraph is not necessarily connected, but we will
not make use of connectivity.

Since, in MinSumEnds with the restriction that the ordering of C begins
with the assumed prefix P , the costs of all vertices in C \ P depend only on
the residual hypergraph, the exchange argument also applies to C \ P and the
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new weights. This allows us to bound the numbers ck recursively as follows. The
claimed constant time bound is trivial.

For k = 3, a candidate ordering starting with v2 must continue with v1, and
any other candidate ordering starts with v3, which yields c3 ≤ 1+c2 ≤ 1+1 = 2.
For k = 4, a candidate ordering starting with v2 must continue with v1, and the
other candidate orderings start with either v3 or v4, which yields c4 ≤ c2+2c3 ≤
1 + 4 = 5. For k = 5, a candidate ordering must start with one of (v2, v1),
(v3, v1), (v3, v2), (v4), (v5), which yields c5 ≤ 3c3 +2c4 ≤ 6+10 = 16. For k = 6,
a candidate ordering must start with one of (v2, v1), (v3, v1), (v3, v2), (v4, v1),
(v4, v2), (v4, v3), (v5), (v6), which yields c6 ≤ 6c4 + 2c5 ≤ 30 + 32 = 62. ��

Now we can beat the standard O∗(2n) time bound that holds for arbitrary
hypergraphs (via dynamic programming on subsets), in the case when all com-
ponents are small. In order to focus on the interesting exponential part only, we
use the O∗ notation that suppresses polynomial factors.

Theorem 3. MinSumEnds in weighted hypergraphs with n vertices, consisting
only of components with at most k vertices, can be solved in O∗(bn

k ) time, where
bk = c

1/k
k , in particular:

b3 ≤ 1.26, b4 ≤ 1.5, b5 ≤ 1.7412, b6 ≤ 1.9895.

Proof. The numbers come from Lemma 5. In the special case when all compo-
nents have exactly k vertices, we can apply the sedimentation algorithm to all
c
n/k
k combinations of candidate orderings of the components. The time bounds

for the sedimentation algorithm remain valid also if all components have at most
k vertices, by the monotonicity of the bk and straightforward algebra. ��

For k > 6, the time bounds obtained in this way would exceed O∗(2n).
In order to avoid bases larger than 2 despite some large components we can,
however, combine the benefits of small components with dynamic programming
on subsets. The statement of the following result looks somewhat technical, but
our aim was to make it as general as possible.

Theorem 4. Let C1, . . . , Ch be some components of a given hypergraph G, where
Ci has ki vertices. Suppose that we can, in polynomial time, compute for each
component Ci a candidate set with ai < 2ki orderings. Then some optimal order-
ing of the given hypergraph can be computed in time O∗(

∏h
i=1 ai · 2n−∑h

i=1 ki).

Proof. First we compute the mentioned candidate sets and take all
∏h

i=1 ai com-
binations of the candidate orderings therein. For every such combination we
apply Theorem 1 to compute an optimal ordering σ of C1 ∪ . . . ∪ Ch, using the
candidate orderings as prescribed orderings within the components Ci.

We observe that the vertices of C1 ∪ . . . ∪ Ch have the same ordering σ
also within an optimal ordering of the entire hypergraph G. This “context-free”
property holds since, by Theorem 1, an optimal ordering is characterized by
the blocks having non-increasing densities, and neither blocks nor their densities
depend on the remainder R of G outside C1 ∪ . . . ∪ Ch.
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To R we apply dynamic programming on subsets: We generate all possible
ordered subsets R incrementally from left to right, insert the resulting blocks
into σ, discard solutions that violate the property that also blocks in R have
non-increasing densities, and most importantly, whenever two ordered subsets
of R are identical as sets and they end at the same position in σ, we keep only
one ordering with minimal cost until that position. Correctness and time bound
are straightforward. ��

Note that the time bound in Theorem 4 is never higher than O∗(2n), but it
can be significantly smaller. Theorem 4 can be used, for instance, with C1, . . . , Ch

being the components with at most 6 vertices (due to Lemma 5), and Theorem 3
is the special case when larger components do not exist. But also large compo-
nents might have much fewer than 2ki candidate orderings due to their specific
edge weights.

6 Linear Inequalities Can Rule Out Candidate Orderings

Lemma 5 provides general upper bounds on the number of candidate orderings
in components of sizes from 3 to 6. However, the given edge weights may rule
out further candidate orderings, and thus some quick and simple preprocessing
can make the main algorithms for MinSumEnds faster, not in the worst case
but for many specific instances. In the following we illustrate these possibilities
for size 3 only, but similar measures can be taken in larger components, too.

Remember from Sect. 5 that, in a component with three vertices with weights
w1 ≤ w2 ≤ w3, at most two candidate orderings exist: (v2, v1, v3), and either
(v3, v1, v2) or (v3, v2, v1). Assume that the candidate set is, in fact, of size 2, that
is, the two sequences are neither equivalent nor is any of them dominated by
another ordering. By the characterization of dominating sequences in Sect. 4, the
resulting two sequences of densities of vertices must have the form (a, b+c+d, e)
and (a + b, c, d + e), for some non-negative numbers a, b, c, d, e. (Actually, b and
d are positive.) From these sequences we get the following necessary conditions
for a candidate set of size 2:

a = w2 and a + b = w3, hence b = w3 − w2.
e = w3 + w13 + w23 + w123.
b + c + d = w1 + w12, hence c + d = w1 + w2 + w12 − w3.
w3 + w23 ≤ w1 + w12, since otherwise (v3, v2, v1) would dominate (v2, v1, v3).

Case 1. The second candidate ordering is (v3, v1, v2), since w2+w23 ≤ w1+w13.
Then c = w1+w13, hence d = w2+w12−w3−w13, thus also w3+w13 < w2+w12.

Case 2. The second candidate ordering is (v3, v2, v1), since w1+w13 ≤ w2+w23.
Then c = w2+w23, hence d = w1+w12−w3−w23, thus also w3+w23 < w1+w12.

We conclude that the component has only one candidate ordering if some of
the derived inequalities are violated.

Getting back to the case when two candidate orderings exist: Define x to be
the distance (in π) between the first two vertices of the component, and define
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y similarly for the last two vertices. Then (v2, v1, v3) is strictly cheaper than the
other candidate ordering (v3, vi, vj), {i, j} = {1, 2}, if and only if b · x < d · y.
In particular, the ordering in the component depends only on the ratios of these
distances. Furthermore, in any optimal ordering using (v2, v1, v3), since w2 ≤
w3 + w23 ≤ w1 + w12, the vertices v2 and v1 are in the same block, thus x = 1
and therefore y > b/d.

By checking these inequalities we can, in concrete instances, efficiently rule
out certain partial solutions before or during dynamic programming when apply-
ing the algorithm from Theorem 4, and thus speed up its execution.

7 The Star Graph

So far we have focused attention on hypergraphs with small components. Another
meaningful direction is to consider hypergraphs with structural restrictions. Here
we provide such an example.

A star graph is a graph with n vertices where one vertex called the center is
joined by n−1 edges to all other vertices called leaves. As a practical motivation
of MinSumEnds in the warehouse context, suppose that the center represents
some main product, and the leaves represent optional accessoires only one of
which may be chosen and used together with the main product. The main prod-
uct as well as each accessoire may also be ordered separately. Hence all possible
requests are the vertices and edges of a star graph.

We denote the center by c and the edge weights by y(v) = w({c, v}). Recall
that c and the leaves v also have vertex weights w(c) and w(v), respectively, as
earlier.

Furthermore, let B(n,m) denote a time bound of a minimum-weight perfect
matching algorithm in bipartite graphs with n vertices on either side, and with
m edges. For instance, we have B(n,m) = O(n2 log n + nm) from [13].

Theorem 5. MinSumEnds on star graphs with n vertices can be solved witin
O(n · B(n, n2)) time.

Proof. For all n possible positions π(c) of the center c, we compute an optimal
solution with this fixed π(c), and finally we take the best of these n solutions.
For any fixed π(c) we proceed as follows.

We construct a complete bipartite graph (L,M ;F ) with vertex sets L and
M of size n − 1, and edge set F = L × M . The vertices in L represent the leaves
of the star, and the vertices in M represent the positions i ∈ {1, . . . , n} \ {π(c)}.
The weight z(v, i) of any edge {v, i} ∈ F is the cost of placing the leaf v at
position π(v) = i. It is specified by z(v, i) := i ·w(v)+π(c) · y(v) if i < π(c), and
z(v, i) := i · (w(v) + y(v)) if i > π(c). The total cost of a solution is obviously
π(c) · w(c) +

∑
v∈L z(v, π(v)). Since π(c) is fixed, it only remains to compute a

minimum-weight perfect matching in (L,M ;F ). ��
We conjecture that MinSumEnds on star graphs can be solved faster than

by doing n unrelated computations of bipartite matchings, encouraged by the
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observation that the n bipartite graphs for the different positions π(c) are only
slight variations of each other, and that their edge weights are also far from being
arbitrary, e.g., they have obvious monotonicty properties. It should be possible
to take advantage of that. In fact, the problem looks quite similar to the one
in [7] (which has applications in scheduling), but the structure of edge weights
is somewhat more complicated in our case, as M has vertices of two different
types, namely those before and after π(c). We must leave the question open.

On another front, Theorem 5 can be generalized straightforwardly: In graphs
with a vertex cover of small fixed size γ we can decide on the γ positions of its
vertices and then compute bipartite matchings for the other vertices, as they
form an independent set, and thus the costs of each vertex depends only on its
own position. This yields a time bound O(nγ · B(n, n2)).

However, we do not see a way to solve MinSumEnds on graphs with many
such simple graphs as components, as we did with small components. (This
would be interesting for the storage of several products with accessoires.)

8 More Open Problems

Driven by practical questions we have presented algorithms being faster than
standard dynamic programming on subsets, but it remains the intriguing prob-
lem whether MinSumEnds is NP-complete on weighted hypergraphs with com-
ponents of at most three vertices (or any other constant size limit). There might
exist a polynomial-time reduction from a “number problem” like Partitioning,
but we did not manage to establish one.

A potentially interesting combinatorial question related to small components
is whether the bounds in Lemma 5 are already tight. One may either refine the
recurive argument or construct examples that enforce the obtained numbers of
candidate orderings.

Besides graphs with small vertex covers, it would be worthwhile to find other
natural cases (e.g., limited integer edge costs, or components with other restric-
tions such as tree structures) that can be solved in polynomial time or by FPT
algorithms, using the concepts developed here.
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master’s thesis [14] supervised by the author, and it is also inspired by collaboration
with Raad Salman and Fredrik Ekstedt at the Fraunhofer-Chalmers Research Centre
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Abstract. Consider a generalization of the classical binary search prob-
lem in linearly sorted data to the graph-theoretic setting. The goal is to
design an adaptive query algorithm, called a strategy, that identifies an
initially unknown target vertex in a graph by asking queries. Each query
is conducted as follows: the strategy selects a vertex q and receives a
reply v: if q is the target, then v = q, and if q is not the target, then v is
a neighbor of q that lies on a shortest path to the target. Furthermore,
there is a noise parameter 0 ≤ p < 1

2
which means that each reply can be

incorrect with probability p. The optimization criterion to be minimized
is the overall number of queries asked by the strategy, called the query
complexity. The query complexity is well understood to be O(ε−2 log n)
for general graphs, where n is the order of the graph and ε = 1

2
− p. How-

ever, implementing such a strategy is computationally expensive, with
each query requiring possibly O(n2) operations.

In this work we propose two efficient strategies that keep the optimal
query complexity. The first strategy achieves the overall complexity of
O(ε−1n log n) per a single query. The second strategy is dedicated to
graphs of small diameter D and maximum degree Δ and has the aver-
age complexity of O(n + ε−2DΔ log n) per query. We point out that
we develop an algorithmic tool of graph median approximation that is
of independent interest: the median can be efficiently approximated by
finding a vertex minimizing the sum of distances to a randomly sampled
vertex subset of size O(ε−2 log n).

Keywords: Graph median · Graph searching · Noisy search

1 Introduction

Our research problems originate in the classical “twenty questions game” pro-
posed by Rényi [36] and Ulam [42]. The classical problem of binary search with
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erroneous comparisons received a considerable attention and optimal query com-
plexity algorithms are known, see e.g. [8,11,21,24,35] for asymptotically best
results. The binary search in linearly ordered data can be re-casted as a search
on a path, where each query selects a vertex q and reply gives whether the target
element is q, or is to the left or to the right of q. This leads to the graph search
problem introduced first for trees by Onak and Parys in [33] and then recently
for general graphs by Emamjomeh-Zadeh et al. in [23]. We recall a following
formal statement.

Problem formulation. Consider an arbitrary simple graph G whose one
vertex v∗ is marked as the target. The target is unknown to the query algo-
rithm. Each query points to a vertex q, and a correct reply does the following:
if v∗ = q, then the reply returns q, and if v∗ �= q, then the reply returns a
neighbor of q that belongs to a shortest path from q to v∗, breaking ties
arbitrarily (and independently for each query). We further assume that some
replies can be incorrect: each query receives an erroneous1 reply (indepen-
dently) with some fixed probability 0 ≤ p < 1

2 (the value of the noise param-
eter p is known to the algorithm). We assume the strongest model in which
an erroneous reply is adversarial, versus a randomly selected q. The goal is
to design an algorithm, also called a strategy performing as few queries as
possible.

Typically in the applications of the adaptive query problems the main con-
cern is the number of queries to be performed, i.e., their query complexity. This
is due to the fact that the queries usually model a time consuming and complex
event like making a software check to verify whether it contains a malfunc-
tioning piece of code, c.f. Ben-Asher et al. [7], or asking users for some sort of
feedback c.f. Emamjomeh-Zadeh and Kempe [22]. However, as a second measure
the computational complexity of each query comes into play and it is of practi-
cal interest to resolve the question of having an adaptive query algorithm that
keeps an optimal query complexity and optimizes the computational cost as a
second criterion. This may be especially useful in cases when queries are fast,
like communication events over a noisy channel.

The asymptotics of the query complexity is quite well understood to be
roughly log n

1−H(p) = O(ε−2 log n) (c.f. [20,23]), where n is the order of the graph,
ε = 1

2 − p, and H(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy.2 However,
it is of theoretical and practical interest to know what is the optimal complexity
of computing each particular query. This leads us to a general statement of the
type of solution we seek.

Research question. By what amount can the computational complexity of
an adaptive graph query algorithm be improved without worsening the query
complexity?

1 We note that such an erroneous reply may occur both when v∗ = q and v∗ �= q.
2 By information-theoretic arguments, any algorithm that locates the target correctly

with probability 1 − δ has to make log2 n

1−H(p)
+ Ω( log δ−1

1−H(p)
) queries. In the regime of

high probability algorithms this becomes simply Ω( log n
ε2

) queries.
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In this work we make the following assumption: a distance oracle is available to
the algorithm and it gives the graph distance between any pair of vertices. This
is dictated by the observation that the computation of multiple-pair shortest
paths throughout the search would dominate the computational complexity. On
the other hand, we note that this is only used to resolve (multiple times) the
following for a query: given a vertex q, its neighbor v and an arbitrary vertex
u, does v lie on a shortest path from q to u? Thus, some weaker oracles can be
assumed instead. We further comment on this assumption in the next section.

1.1 Motivation

To sketch potential practical scenarios of using graph queries we mention one of
examples given in [22]. These examples are anchored in the field of machine learn-
ing, and since they have the same flavor with respect as how graphs are used, we
refer to one of them. Consider a situation in which a system wants to learn a clus-
tering by asking queries. Each query presents a potential clustering to a user and if
this is not the target clustering, then as a response the user either points two clus-
ters that should be merged or points one cluster that should be split (but does
not say how to split it). Thus, the goal is to construct a query algorithm to be
used by the system. It turns out that learning the clustering can be done by ask-
ing queries on a graph: each vertex v corresponds to a clustering and a reply of the
user for v will be aligned with one of the edges incident to v. In other words, the
reply can be associated with an edge outgoing from v that lies on a shortest path
to the desired target clustering. We emphasize some properties of this approach.
First, the fact that the reply indeed reveals the shortest path to the target is an
important property of the underlying graph used by the algorithm and thus the
graph needs to be carefully defined to satisfy it. Second, the user is not aware of
the fact that such a graph-theoretic approach is used, as only a series of proposed
clustering is presented. Third, this approach is resilient to errors on the user side:
the graph query algorithms easily handle the facts that some replies can be incor-
rect (the user may make a mistake, or may not be willing to reveal the truth).3 It
has been shown [22] that in a similar way one can approach the problems of learn-
ing a classifier or learning a ranking. We note that a well defined graph is used to
prove that a particular query model is valid for a particular application, although
in these applications it is not necessary to explicitly construct a graph to navigate
the algorithm. Instead, it may be enough to have an abstract encoding that allow
us to compute the next vertex to query and to conclude the reply vertex; we refer
the reader for details to [22]. Moreover, it is desirable to approach a solution in
this way due to a large search space.

From the standpoint of complexity we can approach such scenarios in two
ways. First, one can derive an algorithm that specifically targets a particular
application, in which it may not be necessary to construct the entire graph but
instead reconstruct only what is necessary to perform each query. The second way

3 Actually, our method is slightly more general: our proofs reveal that the algorithm is
resilient to the placement of errors, and it will succeed if at most a p-fraction of replies
is erroneous, which makes it usable against users that distribute lies adversarially.
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is a general approach taken in this work: to consider the underlying graph as an
abstract data structure out of the context of particular applications. We empha-
size that examples like the ones mentioned above reveal that some applications
may be burdened by the fact that the underlying graph is large, in which case the
computational complexity, or local search procedures may be more crucial.

We finally comment on our assumption that a shortest path oracle is provided
to the algorithm. In the machine learning applications [22], the graphs may be
constructed in such a way that knowing which objects represent two vertices
is sufficient to conclude the distance between them, i.e., a low-complexity dis-
tance oracle can be indeed implemented. This can be seen as a special case of
a general approach to achieve distance oracles in practice through the so called
distance-labeling schemes (c.f. Gavoille et al. [26] and for practical approaches,
c.f. Abraham et al. and Kosowski and Viennot [3,30]). We finally note that
having the exact distances between vertices is crucial for this problem: if the
distance oracle is allowed to provide even just a 1-additive approximation of the
exact distance, then each query algorithm needs to perform Ω(n) queries for
some graphs c.f. Deligkas et al. [17]. We note that the distance oracle access can
be replaced with a multi-source distance computation (e.g. using BFS), at the
cost of replacing some of the O(n) factors in the cost functions with O(m) (the
number of edges). Alternatively, a popular assumption borrowed from compu-
tational geometry is that we operate on a metric space with a metric (distance)
function given.

1.2 Our Results and Techniques

For a query on a vertex q with a reply v, we say that a vertex u is consistent
with the reply if q = v = u, or q �= v but v lies on a shortest path between u
and q; the set of all such consistent vertices u is denoted by N(q, v) (see Fig. 1).

Our method is based on a multiplicative weight update (MWU): the algo-
rithm keeps the weights ω(v) for all vertices v, starting with a uniform assign-
ment. The weight is representing the likelihood that a vertex is the target,
although we point out that formally this is not a probability distribution. In
MWU, the weight of each vertex that is not consistent with a reply is divided
by an appropriately fixed constant Γ that depends on ε = 1

2 − p.
To keep the query complexity low, it is required that the queried vertex q fulfills

a measure of ‘centrality’ in a graph in the sense that a query to such a central
vertex results in an adequate decrease in the total weight. This is a graph-theoretic
analogue of the ‘central’ element comparison in the classical binary search. Two
functions that have been used [17,20,22] to formalize this are

Φ(v) =
∑

u∈V

d(u, v) · ω(u), and Λ(v) = max
u∈N(v)

ω(N(v, u)),

where N(v) is the set of neighbors of v in the graph, and d(u, v) is the distance
between u and v. For brevity, ω(S) =

∑
u∈S ω(u) for any S ⊆ V , and ω = ω(V ).

Definition 1. A vertex q = arg minv∈V Φ(v) is called a median.
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q
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N(q, v)

q
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v2
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N(q, v2)

N(q, v1)

N(q, v3)

Fig. 1. Set N(v, ·) for single neighbor u (on the left) and sets N(v, ·) for the remaining
neighbors of vertex v (on the right). Observe that in particular these sets might not be
disjoint—e.g. N(v, u1) and N(v, u2) share one vertex.

We note a fundamental bisection property of a median:

Lemma 1 (c.f. [23] section 2). If q is a median, then Λ(q) ≤ ω(V )/2.

Such property is key for building efficient binary-search algorithms in graphs
e.g., for the noiseless case, repeatedly querying a median of X, where X ⊆ V is
the subset of vertices that still can be a target, results in a strategy guaranteeing
at most log2 n queries. See also analysis of Algorithm 2 in [23] and the proof of
Lemma 4 in [20].

A disadvantage of using median is that it is computationally costly to find,
i.e., assuming the distance oracle it takes (deterministically) O(n2) time. More-
over, using its multiplicative approximation, that is, through a function Φ′ such
that Φ′(q) = (1 ± ε′)Φ(q) for any constant ε′ > 0, blows up the strategy length
exponentially [17] and thus this approach is not suitable. On the other hand,
approximating a Λ-minimizer is feasible, as noted also by [17].

Hence, we work towards a method of efficient median approximation through
Λ minimization. We believe that this algorithmic approach is of independent
interest and can be used in different graph-theoretic problems. It turns out that
we do not even need a multiplicative approximation of a Λ-minimizer but we only
need that Λ(q) is at most roughly half of the total weight. This is potentially
usable in algorithms using generally understood graph bisection. (For an example
of using such balanced separators for somewhat related search with persistent
errors see e.g. Boczkowski et al. [10].) Formally, motivated by Lemma 1, we relax
the notion of the median to the following.

Definition 2. A vertex q∗ is δ-close to a median, where δ > 0, if Λ(q∗) ≤(
1
2 + δ

) · ω.



270 D. Dereniowski et al.

To work-around the fact that Φ is not efficient from the algorithmic stand-
point, we introduce the following relaxation of Φ:

Φ∗(q) =
∑

v∈S

d(q, v),

where S is a random sample of vertices with probability distribution proportional
to ω (so Φ∗(q) is a random variable dependent on a choice of S). We can now
formulate our main contribution in terms of new algorithmic tools:

Median approximation. The relaxation of Φ to Φ∗ provides, with high
probability, a sufficient approximation of the median vertex in a graph.

We formalize this statement in the following way. Consider a sample size s =
8 lnn

δ2 , where n is the number of vertices of the graph and the parameter δ = Θ(ε)
is specified in Sect. 2. This allows us to say how to approximate the median
efficiently through a local condition:

Theorem 1. Let q be a vertex such that for each v ∈ N(q) it holds Φ∗(q) ≤
Φ∗(v) + δs. Then, with high probability at least 1 − n−3, the vertex q is δ-close
to a median.

Corollary 1. Let q∗ = arg minv∈V Φ∗(v). Then, the vertex q∗ is δ-close to a
median with high probability at least 1 − n−3.

Returning to our search problem, these observations are enough to both find
the right query vertex in each step, keep the strategy length low, and have a
centrality measure that is efficient in terms of computational complexity. This
leads us to the following theorem that is based on MWU with some appropriately
fixed scaling factor Γ .

Theorem 2. Let p = 1
2 − ε be the noise parameter for some 0 < ε ≤ 1

2 . There
exists an adaptive query algorithm that after asking τ = O( log n

ε2 ) queries returns
the target correctly with high probability. The computational complexity of the
algorithm is O(n log n

ε ) per query with high probability.

The algorithm behind the theorem iterates over the entire vertex set to find a
Φ∗-minimizer. We can refine this algorithm for graphs of low maximum degree Δ
and diameter D. For that we use a local search whose direct application requires
‘visiting’ DΔ vertices to get to a Φ∗-minimizer. However, we introduce two ideas
to speed it up. First, we add another approximation layer on top of Φ∗: it is not
necessary to find the exact Φ∗-minimizer but its approximation, which we do as
follows. Whenever the local search moves from one vertex u to its neighbor v
and the improvement from Φ∗(u) to Φ∗(v) is sufficiently small, then v will do
for the next query. The second one is to start the local search from the vertex
queried in the previous step. These two ideas combined lead to the second main
result.
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Theorem 3. Let p = 1
2 − ε for some 0 < ε ≤ 1

2 . There exists an adaptive
query algorithm that after asking τ = O( log n

ε2 ) queries returns the target correctly
with high probability. The average computational complexity per query is O(n +
DΔ log n

ε2 ) for graphs with diameter D and maximum degree Δ.

Recall that our computational complexities are measured assuming oracle
access to distances in graph, i.e., the distance between any pair of vertices is
available in constant time. Additionally, if one is to measure bit-complexity of
operations, the time grows by a factor of roughly O(ε−1) coming from the bound
on bit-lengths of weights used in MWU.

1.3 Related Work

Median computation is one of the fundamental ways of finding central vertices of
the graph, with huge impact on practical research [5,6,25,27,37,41]. A significant
amount of research has been devoted to efficient algorithms for finding medians
of networks [34,39,40] or approximating the notion [13,14]. We note the seminal
work of Indyk [28] which includes 1 + ε (randomized) approximation to 1-median
in time O(n/ε5) in metric spaces – we note that the form of approximation
there differs from ours, although the very-high level technique of using random
sampling is common. Chechik et al. in [15] use (non-uniform) random sampling
to answer queries on sum of distances to the queried vertices in graphs.

We also refer the reader to some recent work on the (deterministic) median
computation in median graphs, see Beneteau et al. [9] and references therein.
More related centrality measures of a graph are discussed in [1,2,12] in the
context of fine-grained complexity, showing e.g. that efficient computation of a
median vertex (in edge-weighted graphs) is equivalent under subcubic reductions
to computation of All-Pairs Shortest Paths.

Substantial amount of research has been done on searching in sorted data
(i.e., paths), which included investigations for fixed number of errors [4,35], opti-
mal strategies for arbitrary number of errors and various error models, including
linearly bounded [21], prefix-bounded [11] and noisy/probabilistic [8,29]. Also,
a lot of research has been done on how different types of queries influence the
search process—see [16] for a recent work and references therein. The mostly
studied comparison queries for paths have been extended to graphs in two ways.
The first one is a generalization to partial orders [7,31] (with some deterministic
algorithms), although this does not further generalize well for arbitrary graphs
[18]. It is worth noting that much work has been devoted to the computational
complexity of finding error-less strategies [19,31,32]. The second extension is by
using the vertex queries studied in this work, for which much less is known in
terms of the complexity. This problem becomes equivalent to the vertex ranking
problem for trees [38], but not for general graphs (see also [33]).

Similarly as in the case of the classical binary search, the graph structure
guarantees that there always exists a vertex that adequately partitions the search
space in the absence of errors [23]. The problem becomes much more challenging
as this is no longer the case when errors are present. A centrality measure that
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works well for finding the right vertex to be queried is a median used in [20,23].
However, as shown in [17], the median is sensitive to approximations in the
following way. When the algorithm decides to query a (1 + ε′)-approximation
v of the median (minimizer of Φ′ which is 1 + ε′ approximation of Φ), then
some graphs require O(

√
n) queries, where the approximation is understood as

Φ(v) ≤ (1 + ε′)minu∈V Φ(u). This results holds for the error-less case. Further-
more, the authors introduce in [17] the potential Λ (denoted by Γ therein) and
prove, also for the error-less case, that it guarantees log2 n

1−log2(1+ ε) ≈ (1 + ε) log2 n

queries, when in each step a (1 + ε)-approximation of the Λ-minimizer is queried.
However, this issue has been considered from a theoretical perspective and no
optimization considerations have been made. In particular, it was left open as to
how to reduce the query complexity at an expense of working with such approx-
imations. This, and the consideration of the noise are two our main improve-
ments with respect to [17]. We also point out that our definition of δ-closeness
to a median differs from (1 + ε)-approximations in the sense that our definition
is much less strict: a vertex q∗ that is δ-close to a median may have the property
that Λ(q∗) significantly deviates from minu∈V Λ(u).

Some complexity considerations have been touched in [22], from the perspec-
tive of targeting specific machine learning applications, where already the above-
mentioned Λ-minimizer has been used. To make the statements form that work
comparable to our results, we have two distinguish two input size measures that
apply. In [22], for a particular application an input consists of a specific machine
learning instance, and denote its size by ñ. In order to find a solution for this
instance, a graph G of size n is constructed and an adaptive query algorithm
is being run on this graph. It is assumed that log2 n is polynomial in ñ. The
diameter D and maximum degree Δ of G are both assumed in [22] to be poly-
logarithmic in ñ. A local search is used to find a vertex that approximates the
Λ-minimizer. For that, in each step a sampling is used for the approximation
purposes: for each vertex v along the local search, all its neighbors u are tested
for finding an approximation Λ, giving the complexity of O(DΔ). It is concluded
that the overall complexity of performing a single query is O(DΔpoly(log n, 1

ε )).

1.4 Outline

We proceed in the paper as follows. Section 2 provides a ‘template’ strategy
in which we simply query a vertex that is δ-close to a median. The strategy
length is there fixed carefully to meet the tail bounds on the error probability.
Then, in Sect. 3, we prove that our sample size is enough to ensure high success
probability. Section 4 observes that the overall complexity of the algorithm can
be reduced by avoiding recasting the entire sample in each step: it is enough to
replace only a small fraction of the current sample when going from one step of
the strategy to the next. We then combine these tools to prove our main theorems
in Sect. 5, where for Theorem 3 we additionally make several observations on
speeding-up the classical local search in a graph.
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2 The Generic Strategy

Results in this section are an adaptation of ones presented in [20] to the setting of
querying approximate median. We provide streamlined proofs for completeness.

As an intermediate convenient step, we recall the following adversarial error
model: given a constant r < 1/2, if the strategy length is τ , then it is guaranteed
that at most r · τ errors occurred throughout the search (their distribution may
be arbitrary). We set our parameters as follows: let η = ε/2, r = 1

2 − η, and
assume without loss of generality that η < 1/8. (We can do this, since this
increases the complexity of the algorithm by a constant factor at most.) Let
δ = η/4. With these parameters, we provide Algorithm LB-Search that runs
the multiplicative weight update with Γ = 1

1−4η for τ = 10 log2 n
η2 steps. Then

we prove (cf. Lemma 2) that this strategy length is sufficient for correct target
detection in this error model.

We remark that the vertex q is selected in line 3 in two different ways to
meet the complexities of Theorems 2 and 3. To obtain Theorem 2, we use a Φ∗-
minimizer as stated in Corollary 1. For Theorem 3 we also maintain the function
Φ∗ but a local search is used to approximate a Φ∗-minimizer. In both cases, line 3
requires a resampling that is covered in Sect. 4. We write ωt to denote the vertex
weight in a step t. (So, ω0 is the initial uniform weight assignment.)

Algorithm LB-Search: Always query a δ-close vertex to
a median.
1 ω(v) ← 1

n and �v ← 0 for each v ∈ V

2 for τ = 10 log2 n
η2 steps do

3 Let q be any vertex that is δ-close to a median
4 Query the vertex q
5 for each vertex u not consistent with the answer do
6 ω(u) ← ω(u)/Γ , where Γ = 1

1−4η

7 �u ← �u + 1
8 return the vertex v with the smallest �v

Lemma 2. If during the execution of Algorithm LB-Search over total τ
queries there were at most r · τ errors, then the algorithm outputs the target.

Proof. If a vertex v at step t satisfies ωt(v) > (12 + δ)ωt, then we say that v
is heavy at step t. We aim at proving that the overall weight decreases multi-
plicatively either by at least (1 − η)2 or Γ+1

2Γ per step. In the absence of a heavy
vertex we get the first bound, and it is an immediate consequence of the Eq. (1)
below. If we get a heavy vertex at some point, none of these bounds may be true
in this particular step (this phenomenon is inherent to the graph query model
itself) but we show below that the second one holds in an amortized way (cf.
Lemma 4).

If at step t there is no heavy vertex, then assuming vertex q was queried,
with u being an answer, we have ωt(N(q, u)) ≤ (12 + δ)ωt, since either u ∈ N(q)
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and Lemma 1 applies bounding ωt(N(q, u)) ≤ 1
2ωt, or u = q and we use the fact

that N(q, u) = {q}. Then,

ωt+1 = ωt(N(q, u)) +
ωt(V \ N(q, u))

Γ

≤
(

1
2

+ δ +
1
2 − δ

Γ

)
ωt (1)

= (1 − 2η + 4ηδ) ωt = (1 − η)2ωt.

Assume otherwise that there is vertex v that is heavy at step t.

Lemma 3. If at any step t there is a heavy vertex v, then v is the only δ-close
to a median vertex at this step.

Proof. For any u �= v, we have that Λ(u) ≥ ωt(v) > ( 12 + δ)ωt, i.e., u is not
δ-close to a median. On the other hand, Λ(v) ≤ ωt(V \{v}) < ( 12 − δ)ωt, i.e., v
is δ-close to a median. 
�
The above lemma implies that if some v is heavy, then it will be queried in
this particular step. The next lemma calculates (we omit the proof) the overall
potential drop in a series of steps in which some vertex is heavy.

Lemma 4. Consider the maximal consecutive segment of steps I where some
q is heavy. That is, we pick t1, t2 such that q is heavy in all steps t ∈ I =
{t1, . . . , t2−1} and is not heavy in steps t1−1 and t2. Then, ωt2 ≤ (

Γ+1
2Γ

)t2−t1
ωt1 .

Let q be the target, and u be the output of Algorithm LB-Search. Assume
w.l.o.g. that the algorithm run for τ ′ ≥ τ steps. Since

τ ′ ≥ 10
log2 n

η2
≥ log2 n

r log2(1 − 4η) − 2 log2(1 − η)
,

where the inequality follows from (1/2 − η) · log2(1 − 4η) − 2 log2(1 − η) ≥ 1
10η2

when 0 ≤ η ≤ 1
8 , we obtain a bound

(1 − 4η)rτ ′ ≥ (1 − η)2τ ′ · n. (2)

We assume that the algorithm outputs an incorrect vertex u, and show that
it leads to a contradiction. We consider the state of the weights after τ ′ steps.
We consider two cases.

In the first case suppose that there is no heavy vertex after τ ′ steps. We
observe that the starting weight satisfies ω0 = 1, and by the bound on the
number of errors accumulated on target vertex v∗ (it cannot be more than rτ ′),

we have ωτ ′ ≥ ωτ ′(v∗) + ωτ ′(u) > 1
n

(
1
Γ

)rτ ′
. By Eq. (1) and Lemma 4, we know

that every step contributed at least a factor (1 − η)2 or (Γ + 1)/(2Γ ) = (1 − 2η)
multiplicatively to the total weight. Thus, by (2), ωτ ′ ≤ (1 − η)2τ ′

ω0 ≤ 1
n (1 −

4η)rτ ′
= 1

n

(
1
Γ

)rτ ′
, which leads to a contradiction.
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Now consider the second case. The returned vertex u is heavy after τ ′ steps. In
this case we cannot use Lemma 4 explicitly. We proceed as follow: we append at
the end of the strategy a virtual sequence of k identical query-answers: algorithm
queries u, and receives an no-answer pointing towards q. Here, k is chosen to be
minimal such that after τ ′ + k steps u is no longer heavy (it exists, since each
such query increases �u by 1, and leaves �q unchanged). However, at the end of
τ ′ +k round �u is minimal (possibly not necessarily uniquely minimal). We note
that appending those k steps did not increase the total number of errors from
the answerer, and all of the queries were asked to a heavy vertex u. This reduces
this case to the previous one, with increased value of τ ′. 
�

We now transit from the adversarial search to the noisy setting. This is done
by using Algorithm LB-Search as a black box with η being fixed appropriately.
Recall that p = 1

2 − ε, and we will use the following dependence of η on ε (note
that by taking η smaller than ε we accommodate the necessary tail bound in
the lemma below, i.e., we ensure that the event of having more than rτ errors
is sufficiently unlikely).

Lemma 5. Run Algorithm LB-Search with r = 1
2 − η, where η = ε/2. If an

answer to each query was erroneous with probability at most p, independently,
then the algorithm outputs the target vertex with a high probability of at least
1 − n−3.

Proof. Recall τ = 10 log2 n
η2 in Algorithm LB-Search. Denote by L the overall

number of errors that have occurred during the execution of the algorithm. The
expected number of errors is p · τ . By the Hoeffding inequality,

Pr[L ≥ r · τ ] ≤ exp
(−2τ(r − p)2

)
= exp(−20 log2 n) ≤ n−3.

Thus with high probability number of errors is bounded so that we can apply
Lemma 2 (which in itself gives a deterministic guarantee). 
�

3 Sampling Guarantees

To take the ‘random sampling’ counterparts of Φ and Λ, consider a S =
{m1, . . . ,ms} to be a multiset of s vertices sampled from V with repeti-
tions, with sampling probabilities p(v) ∼ ω(v). That is, for each mi, we have
Pr(mi = v) = ω(v)

ω and choices made for mi are fully independent. To such an
S, we refer as a random sample. We then define the following potentials

Φ∗(v) =
∑

u∈S

d(u, v) and Λ∗(v) = max
u∈N(v)

|S ∩ N(v, u)|,

where the intersection of a multiset S with some set X ⊂ V is defined as a mul-
tiset S ∩ X = {mi : i ∈ {1, . . . , s} ∧ mi ∈ X} (see also Fig. 2 for an illustration).

We note a specific detail regarding these functions – we will prove and use the
fact that in order to find a vertex that is δ-close to a median (a vertex we need
to query), it is enough to pick an approximation of the Φ∗-minimizer. Note that
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v

m1
m2

m3

m4
m5

m6

u1

u2

u3

N(v, u2)

N(v, u1)

N(v, u3) S = {m1, . . . ,m6}
S ∩ N(v, u1) = {m1,m2,m3,m4}
S ∩ N(v, u2) = {m5,m6}
S ∩ N(v, u2) = {m4,m5}

Λ∗(v) = 4

Fig. 2. Illustration for the definition of Λ∗.

δ-closeness is defined in terms of Λ which has a similar meaning to Λ∗. However,
the subtlety here is due to a complexity issue—it is easier to recompute the Φ∗

upon updating the sample S.
We denote s = |S| and assume in the rest of the paper that s = 8 lnn

δ2 . In
this section we prove that this choice of s is sufficient, and then Sect. 4 deals
with the complexity issues of the sampling method. The proofs of the following
lemmas are omitted due to space limitations:

Lemma 6. For each v, Λ(v)
ω ≤ Λ∗(v)

s +δ/2 with a high probability at least 1−n−3.

Lemma 7. Let q be such that ∀v∈N(q)Φ
∗(q) ≤ Φ∗(v)+δs. Then, Λ∗(q) ≤ s(1+δ)

2 .

Hence, we can prove Theorem 1: Combining Lemma 7 and Lemma 6,

Λ(q) ≤
(

Λ∗(q)
s

+ δ/2
)

· ω ≤
(

1
2

+ δ/2 + δ/2
)

· ω

with probability at least 1 − n−3.

4 Maintaining the Sample

We now discuss the complexity of maintaining the sample S upon the ver-
tex weight updates. Given a sample set St at step t, the next sample St+1 is
computed by a call to Algorithm Resampling below. The correctness of Algo-
rithm Resampling is given by Lemma 8 whose proof is omitted due to space
limitations. Its proof follows the cases in the pseudo-code to show that both
the vertices that remain in the sample and the new ones meet the probability
requirements for a random sample.
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Algorithm Resampling: Update of the sample after step
t.
1 foreach xt ∈ St do
2 if xt is consistent with the reply in step t then
3 xt+1 ← xt

4 else
5 with probability 1/Γ do: xt+1 ← xt

6 otherwise xt+1 is drawn randomly from V with
distribution proportional to the weights ωt+1

7 Insert xt+1 to St+1

Lemma 8. Suppose that in Algorithm LB-Search, after each weight update the
current random sample S is recalculated by a call to Algorithm Resampling.
Then, with high probability at least 1−n−3, at most 2ε|S| resampling operations
occur at each step.

5 Main Theorems

We start by proving Theorem 2.

Proof (Proof of Theorem 2). First, assume without loss of generality that log n
ε2 <

n2, as otherwise the claimed one-step complexity is ε−1n log n = Ω(n2). This can
be met by an algorithm that at each step queries a median, see [23].

Run Algorithm LB-Search that performs τ = O( log n
ε2 ) queries by

Lemma 5. The algorithm maintains a sample St at each step t by using Algo-
rithm Resampling. By Corollary 1, the probability that each step of the algo-
rithm indeed uses a vertex that is δ-close to a median is 1 − n−3. After each
query, the algorithm updates the weights in time O(n), and O(εs) vertices are
re-sampled by Lemma 8, for the cost of O(n + εs log n) which is subsumed by
other terms. Thus the cost of maintaining the values of Φ∗ is O(εs) per vertex, or
O(nεs) in total, which is the dominant cost for the algorithm, with the update
being performed as:

Φ∗(v) ← Φ∗(v) −
∑

u∈St+1\St

d(u, v) +
∑

u∈St\St+1

d(u, v).

Taking a union bound over all steps, the success probability is 1 − O(n−1). 
�
Now we turn out attention to the proof of Theorem 3. Using local search

is natural and gives an improvement for low-degree low-diameter graphs. The
two ‘twists’ that we add are early termination (see the pseudo-code shown as
Algorithm Local-Search) and resuming from the vertex that is the output of
the previous local search (which is used in the proof of Theorem 3). The former
allows us to directly bound the number of iterations; cf. Lemma 9.

Lemma 9. If Algorithm Local-Search run with an input vertex v returns a
vertex v′, then the number of iterations is upper-bounded by 1 + Φ∗(v)−Φ∗(v′)

δs .
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Algorithm Local-Search: Find a local median starting
from an input vertex v

1 while true do
2 q = arg minu∈N(v) Φ∗(u)
3 if Φ∗(q) > Φ∗(v) − δs then
4 return v
5 else
6 v = q

Now we prove Theorem 3. First, w.l.o.g. assume that log n/ε2 < n, by
the same reasoning as in the proof of Theorem 2. By Lemma 5, Algorithm
LB-Search that performs τ = O( log n

ε2 ) queries. We consider the follow-
ing modification to Algorithm LB-Search. As before, the algorithm updates
weights in time O(n) and maintains a sample St at each step t (by using Algo-
rithm Resampling) in time O(n + εs log n) which is subsumed by other terms.
However, instead of choosing a vertex that is δ-close to a median in line 3, the
updated algorithm runs Algorithm Local-Search with the previously queried
vertex as an input, and sets the output vertex to be the vertex q to be queried.
In other words, at each step t, it uses Algorithm Local-Search with input vt−1

which returns vt, and queries q = vt. The algorithm initializes v0 arbitrarily.
By Theorem 1, vt is δ-close to a median. By Observation 9, we bound the

total number of iterations K done by Algorithm Local-Search by

K ≤
τ−1∑

t=0

(
1 +

Φ∗
t+1(vt) − Φ∗

t+1(vt+1)
δs

)

= τ +
Φ∗
1(v0) +

∑τ−1
t=1 (Φ∗

t+1(vt) − Φ∗
t (vt)) − Φ∗

τ (vτ )
δs

≤ τ +
sD + 2τsεD

δs
= O(Dτ),

where we used that Φ∗
t+1(vt) − Φ∗

t (vt) ≤ 2sεD holds with high probability by
Lemma 8. Each iteration in Algorithm Local-Search has complexity O(Δs)
making the total complexity of the algorithm to be O(τ(n + DΔs)). 
�

6 Open Problems

Having an algorithm that keeps an optimal query complexity and obtains a low
computational complexity, one can ask what are the possible tradeoffs between
the two? Another question is - can we further decrease the computational com-
plexity? Also, are there any possible lower bounds that can reveal the limits of
what is not achievable in the context of these problems? Regarding the centrality
measures we consider, we propose an efficient median approximation. Motivated
by this, another question is what are other possible vertex-functions that may
allow for further improvements, e.g. in the complexity?



An Efficient Noisy Binary Search in Graphs via Median Approximation 279

References

1. Abboud, A., Grandoni, F., Williams, V.V.: Subcubic equivalences between graph
centrality problems, APSP and diameter. In: SODA 2015, pp. 1681–1697 (2015).
https://doi.org/10.1137/1.9781611973730.112

2. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter sub-
quadratic algorithms for radius and diameter in sparse graphs. In: SODA 2016, pp.
377–391 (2016). https://doi.org/10.1137/1.9781611974331.ch28

3. Abraham, I., Delling, D., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimen-
sion and provably efficient shortest path algorithms. J. ACM 63(5), 41:1–41:26
(2016). https://doi.org/10.1145/2985473

4. Aigner, M.: Searching with lies. J. Comb. Theory Ser. A 74(1), 43–56 (1996).
https://doi.org/10.1006/jcta.1996.0036

5. Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am.
22(6), 725–730 (1950). https://doi.org/10.1121/1.1906679

6. Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163
(1965). https://doi.org/10.1002/bs.3830100205

7. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Comput.
28(6), 2090–2102 (1999). https://doi.org/10.1137/S009753979731858X

8. Ben-Or, M., Hassidim, A.: The Bayesian learner is optimal for noisy binary search
(and pretty good for quantum as well). In: FOCS 2008, pp. 221–230 (2008). https://
doi.org/10.1109/FOCS.2008.58
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Abstract. A 3-uniform hypergraph H consists of a set V of vertices,
and E ⊆ (

V
3

)
triples. Let a null labelling be an assignment of ±1 to the

triples such that each vertex has signed degree equal to zero. Assumed
as necessary condition the degree of every vertex of H to be even, the
Null Labelling Problem consists in determining whether H has a null
labelling. Although the problem is NP-complete, the subclasses where
the problem turns out to be polynomially solvable are of interest. In this
study we define the notion of 2-intersection graph related to a 3-uniform
hypergraph, and we prove that the existence of a Hamiltonian cycle
there, is sufficient to obtain a null labelling in the related hypergraph.
The proof we propose provides an efficient way of computing the null
labelling.

Keywords: Discrete tomography · 3-hypergraph · Null labelling ·
Hamiltonian cycle
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1 Introduction

The characterization of simple graphs from their degree sequences has been a
challenging problem whose solution dates back to the well known result of Erdös
and Gallai [7] in 1960: an integer sequence d = (d1, . . . , dn) is graphic if and only

if
n∑

i=1

di is even and

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, 1 ≤ k ≤ n.

This same problem related to hypergraphs remained open until 2018 when Deza
et al. proved its NP-completeness [6] even in the simplest case of 3-uniform
hypergraphs.
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Before this result many necessary and a few sufficient conditions are present
in the literature, and they mainly rely on a result by Dewdney [5]. As an exam-
ple, Behrens et al. [1] proposed a sufficient and polynomially testable condi-
tion for a degree sequence to be k-graphic; their result still does not provide
any information about the associated k-hypergraphs. Soon after, in [3,9,10], a
series of polynomial time algorithms was proposed to reconstruct one of the k-
hypergraphs associated to each degree sequence of some classes including that
studied in [1]. These results use tools borrowed from discrete tomography (DT),
a young discipline concerned with inverse problems. In particular, it deals with
the determination of geometrical properties of unknown objects, usually mod-
elled by binary matrices, from their projections, i.e., a quantitative measure-
ments of the number of primary constituents along prescribed directions (see
[12,13] for the main results and the open problems). So, the reconstruction of a
k-hypergraph from its degree sequence can be translated in the DT framework
as the reconstruction of a binary matrix, i.e., its incidence matrix, from horizon-
tal and vertical projections, i.e., the constant vector of entries k and the degree
sequence, respectively.

However, some relevant related questions remain open, in particular the study
of the uniqueness (up to isomorphism) of k-hypergraphs sharing the same degree
sequence. In our study, we focus on this problem by considering two hypergraphs
H1 and H2 with the same degree sequence. Their symmetric difference H1 � H2

produces a null hypergraph, when assigning a +1 label to each hyperedge of H1

and H2. Vice versa, given a null hypergraph H, call H1 the hypergraph with the
same vertex as H but only the positive hyperedges of H and H2 the same but
with only the negative hyperedges of H. It’s easy to see that H1 and H2 have
the same degree sequence.

In [14], the notion of null hypergraph has been used to study the changes of
hyperedges that allow one to move through all the 3-hypergraphs with the same
degree sequence. The present research links the null label of a k-hypergraph with
its 2-intersection graph, showing that the existence of a Hamiltonian cycle in the
2-intersection graph is sufficient to define a null label of the related k-hypergraph.

In Sect. 2, we recall the basic definition of graphs and hypergraphs, then we
introduce some useful notation used throughout the paper, together with the
notion of 2-intersection graph. Some results about null hypergraphs are also
provided. In Sect. 3, we prove some properties of the 2-intersection graph of a
k-hypergraph. Finally, we define a null labelling of a 3-hypergraph from a given
Hamiltonian cycle of its 2-intersection graph.

2 Definitions and Known Results

A graph G is defined as a pair G = (V,E) such that V = {v1, . . . , vn} is the set
of vertices and E is a collection of pairs of vertices called edges.

The notion of graph can be generalized to that of hypergraph by removing
the constraint on the cardinality of the edges: H = (V,E) is a hypergraph with
V = {v1, . . . , vn} the set of vertices and E a collection of subsets of vertices
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called hyperedges. We choose to abbreviate the vertex notation vi with its only
index i, when no misunderstandings may arise.

In the sequel, we will consider only graphs and hypergraphs that are sim-
ple, i.e., they do not allow singleton (hyper)edges or (hyper)edges that are
contained in or equal to other edges. The degree of a vertex v ∈ V is the
number of (hyper)edges containing v. The degree sequence (d1, d2, . . . , dn) of a
(hyper)graph is the list of its vertex degrees usually arranged in non-increasing
order. A hypergraph whose hyperedges have fixed cardinality is called k-uniform,
or simply a k-hypergraph, and its degree sequence is called a k-graphic sequence.
Note that the case k = 2 corresponds to graphs, and a 2-graphic sequence is
called graphic. Our study will focus on 3-hypergraphs.

Given a (hyper)graph, we can assign a labelling l with labels +1 or −1 to
each (hyper)edge, resulting in positive and negative (hyper)edges. The positive
degree of a vertex v is d+l (v), the number of positive (hyper)edges containing v.
The negative degree is d−

l (v), the number of negative (hyper)edges containing
v. The signed degree of each vertex v is dl(v) = d+l (v) − d−

l (v). The unsigned
degree is deg(v) = d+l (v) + d−

l (v). The subscript indicating the labelling will be
omitted when no misunderstandings may arise.

An assignment of ±1 to the (hyper)edges of a (hyper)graph is a null labelling
if d(v) = 0, for all vertices v. A (hyper)graph with a null labelling is said to
be a null (hyper)graph. An obvious necessary condition for a (hyper)graph to
have a null labelling is that each vertex must have even degree, i.e., it is an even
(hyper)graph.

The following lemma characterizes graphs with a null labelling.

Lemma 1. A graph G has a null labelling if and only if every connected com-
ponent is an Eulerian graph with an even number of edges.

Proof. If a graph has a null labelling, then it must has an even number of edges.
Therefore, the necessity follows from the comments preceding the lemma. To
prove sufficiency, consider a connected component which is an Eulerian graph
with an even number of edges. By following an Euler tour, assigning alternately
±1 to alternate edges, a null labelling is obtained. �

This lemma also characterizes the graphs with even degrees and an even
number of edges that do not have a null labelling: they must be disconnected
graphs such that at least two connected components have an odd number of
edges. The smallest graph with a null labelling is a cycle on four vertices, which
we denote by C4.

Moving to hypergraphs the situation becomes more complex. Let H1 and H2

be two hypergraphs with the same vertex set, and the same degree sequence
(d1, d2, . . . , dn). Assign +1 to the triples of H1 and −1 to the triples of H2,
and construct H1 � H2. It is a hypergraph with a null labelling. This raises the
question of whether there is a characterization of null hypergraphs. In [8] it is
shown that the problem of finding a null labelling even for the simplest case of
3-hypergraphs is NP-complete.
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Hypergraph Null Labelling Problem: Let H be a connected, even 3-
hypergraph. When can ±1 be assigned to the hyperedges of H to produce a
null-labelled 3-hypergraph?

The intersection graph of a 3-hypergraph H is denoted I(H). Its vertices
are the hyperedges of H. Two hyperedges are adjacent if their intersection is
non-empty. This is an extension of the idea of a line graph to 3-hypergraphs. In
[8] the following result was proved.

Theorem 1. Let H be a connected, even 3-hypergraph, in which every vertex
has degree two. Then H has a null labelling if and only if I(H) is bipartite.

However, the inspection of the intersection graph does not provide evidence,
in general, of the existence of a null labelling in the related 3-hypergraph as
shown in the following example.

Example 1. Consider the following 3-hypergraphs H1 and H2 on six vertices
and whose hyperedges, arranged in matrix form, are:

H1 =

⎡

⎢⎢⎣

1 2 3
1 4 5
2 4 6
3 5 6

⎤

⎥⎥⎦ H2 =

⎡

⎢⎢⎣

1 2 5
2 3 5
2 3 4
1 2 4

⎤

⎥⎥⎦

It is easy to check that the vector of labels l = (1,−1, 1,−1), where l(i) is
the label of the i-th hyperedge of the 3-hypergraph or, equivalently, of the i-th
row in the matrix arrangement of its hyperedges, is a null label for H2, while
H1 has no null labelling. However, H1 and H2 have the same intersection graph
K4, i.e. the complete graph on four vertices.

Relying on this fact, we modify the notion of intersection graph as follows:
the 2-intersection graph of a 3-hypergraph H is denoted I2(H) = (V2H , E2H). Its
vertices V2H = {ve1 , . . . , vem} represents the hyperedges E = {e1, . . . , em} of H.
Two hyperedges are adjacent, i.e., they belong to the same edge {vei , vej} ∈ E2H ,
if ei and ej share a pair of vertices of H (see Example 2 and the related Fig. 2).
In the sequel, we label the edge {vei , vej} ∈ E2H with the pair of vertices that
are shared by ei and ej , if needed.

3 Hypergraph and 2-Intersection Graph

Let H = (V,E) be a 3-uniform hypergraph (3-hypergraph). We study some prop-
erties of the 2-intersection graph that are relevant to obtain information about
the existence of a null labelling in the related 3-hypergraph. In particular, we
will consider Hamiltonian cycles, as they appear to be relevant to null labellings.

Question: Consider the 2-intersection graph G of a connected, even 3-
hypergraph H. Is it possible to construct a null-label from a Hamiltonian cycle
in G? We want to prove that if G is Hamiltonian then H has a null-label.

We know that a connected, even graph G is Eulerian. Its line-graph L(G)
is the intersection graph of its edges. An Euler tour in G corresponds to a
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Hamiltonian cycle in L(G), and conversely. And it also corresponds to a null
labelling of G. Thus, Hamiltonian cycles in L(G) can be used to determine null
labellings of G.

The 2-intersection graph of a 3-hypergraph H is similar to the line graph
of a graph. It is well known (see Harary [11]) that a line graph has a unique
decomposition into maximal cliques, with at most a vertex in common. Thus we
consider cliques in 2-intersection graphs I2(H) of 3-hypergraphs.

Property 1. Let H = (V,E) be a 3-hypergraph. The hyperedges e1, . . . , en ∈ E
sharing the same pair of elements form a clique in the 2-incidence graph I2(H).

This property is a direct consequence of the definition of 2-incidence graph.
There is another kind of clique in a 2-intersection graph. Define a triangle in a
3-hypergraph H to be three hyperedges of the form {1, 2, 3}, {2, 3, 4}, {3, 4, 1}.
Any two of them intersect in a pair, so they also form a triangle in I2(H).

Property 2. Let H = (V,E) be a 3-hypergraph. There are two kinds of cliques
in I2(H), namely those hyperedges all sharing a common pair, and those hyper-
edges deriving from a triangle in H.

Example 2. Consider the following hypergraph H = (V,E) in which V =
{1, . . . , 6} and E = {{3, 4, 5}, {3, 5, 6}, {1, 3, 5}, {3, 4, 6}, {2, 4, 6}, {4, 5, 6},
{1, 2, 6}, {2, 3, 5}, {1, 2, 5}, {1, 2, 4}, {1, 2, 3}, {1, 4, 6}}.

The 2-intersection graph of H is shown in Fig. 1. According to Property 1,
one can check that the edges with the same label form a clique.

Our purpose here aims at detecting a strategy that starting from a Hamil-
tonian cycle C of I2(H) allows one to define a labelling of its vertices that is a
null labelling of H.

A first naive strategy consists in alternately labelling ±1 the vertices of C to
obtain a null labelling of H. This is a strategy that works for line graphs of even
graphs. Let vei and vej be two consecutive elements of C, with ei = {u, x, y}
and ej = {v, x, y} hyperedges of H, we note that such a labelling maintains the
signed degree of x and y. On the other hand, it increases/decreases by one the
signed degree of u and v. So, we see that the alternating labelling of C does not
always provide a null labelling of H, as witnessed by the following example.

Example 3. Consider the 3-hypergraph H = (V,E) on six vertices and E =
{e1, . . . , e8}, where e1 = {1, 2, 3}, e2 = {1, 2, 4}, e3 = {1, 2, 5}, e4 = {1, 2, 6}, e5 =
{1, 3, 4}, e6 = {1, 3, 5}, e7 = {2, 3, 5}, e8 = {2, 5, 6}.

The related 2-intersection graph I2(H) in Fig. 2 has the Hamiltonian cycle
C1 = (ve1 , ve3 , ve2 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1)

It is easy to check that alternately labelling ±1 the vertices of C1, starting
with +1, we obtain the null labelling l1 = (1, 1,−1,−1,−1, 1,−1, 1) on the eight
hyperedges of H such that l1(i) is the label of ei, with 1 ≤ i ≤ 8.

Unfortunately, not every Hamiltonian cycle provides a null labelling. A sec-
ond Hamiltonian cycle C2 = (ve1 , ve2 , ve3 , ve4 , ve8 , ve7 , ve6 , ve5 , ve1) exists such
that the alternating labelling l2 = (1,−1, 1,−1,−1, 1,−1, 1) is not null on H, as
d(v4) = −2 and d(v5) = +2.
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Fig. 1. The 2-intersection graph of the 3-hypergraph H in Example 2. The edges are
labelled according to the pairs shared by their vertices.

Let us introduce some notation: suppose that vei and vej are two consecutive
vertices of the Hamiltonian cycle C of I2(H), with ei = {u, x, y} and ej =
{v, x, y}. We say, by extension, that vej contains the node v ∈ H. We see that
v �∈ ei. There may be several consecutive vertices of C that contain v. Denote
by pv = (vej1 , . . . , vejk ) the longest sub-path of C starting in vej such that every
vertex of pv contains v. Let l(pv) denote the labels of the vertices of pv, and let
σ(l(pv)) denote the sum of the elements of l(pv), and let |pv| denote the length
k − 1 of pv, i.e., its number of edges. In the case when pv contains just a single
vertex, |pv| = 0.

In this example, ei = {u, x, y} is clearly the last vertex in a path pu. Therefore
we define next(pu) = pv, for this pu and pv, i.e., given a path pu, next(pu) is
the path beginning at the first vertex following the last vertex of pu. In general,
C may contain several different sub-paths of the form pv, for each vertex v; we
indicate them by p1v, . . . , p

n
v . An example is shown in Fig. 3.

Property 3. Given an alternating labelling ±1 on the vertices of a Hamiltonian
cycle C of I2(H). For each sub-path pv = (vej1 , . . . , vejk ), the following holds:

– if pv has odd length, then σ(l(pv)) = 0, so that the labels of the hyperedges
ej1 , . . . , ejk containing v sum to zero in H. In this case the first and the last
vertex of pv have different labels;
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ve1

ve5 ve6

ve7

ve8ve4

ve2 ve3

Fig. 2. The 2-intersection graph of the 3-hypergraph considered in Example 3.

– if pv has even length, then σ(l(pv)) �= 0 and the sum of the labels of the
hyperedges ej1 , . . . , ejk containing v contribute +1 or −1 to the signed degree
of v. In this case, the extremal vertices of pv have the same label.

The proof of this property is straightforward. Figure 3 shows the 2-intersection
graph of a 3-hypergraph on six vertices and eight hyperedges. One of its Hamil-
tonian cycles and the sub-paths related to the vertices of H are highlighted. Note
that the paths in the diagram circle around the right edge of the diagram back
to the left edge.

Let us continue analyzing the properties of the alternating labelling l(C) of
a Hamiltonian cycle C of I2(H). Property 3 assures that, if the labelling l(C)
produces a signed degree dl(v) = d �= 0 for vertex v, then there exists at least
p1v, . . . , p

|d|
v subpaths with the same sum of labels. An example is seen in Fig. 3.

We define the distance between two paths pu and pv as the distance along
C between the last point of pu and the first point pv. We observe that any two
of the previous |d| subpaths have even distance. The above observations lead to
the following lemmas

Lemma 2. Let H be an even 3-hypergraph and I2(H) its 2-intersection graph.
If I2(H) has a Hamiltonian cycle C, an alternating ±1 labelling l(C) defines a
null label of H if and only if, for each v ∈ V :

i) each subpath pv has odd length; OR
ii) the number of subpaths of v having even length is even and the sum of their

labels is zero.

We emphasize that ii) expresses the condition that, for each vertex v of H,
there are the same number of subpaths of pv having label +1 as −1.

We also have the following lemma.

Lemma 3. Let H be a 3-hypergraph and C a Hamiltonian cycle of I2(H), and
let ve = {u, x, y} ∈ V2H be a vertex of I2(H). There are exactly three subpaths
containing ve, namely pu, px, and py. One of them begins at ve and one of them
ends at ve (possibly the same path begins and ends at ve).
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{2,4,5}

{1,2,5}
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p1
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p5

I2(H) :

C:

Fig. 3. A 2-intersection graph I2(H) and one of its Hamiltonian cycles C are shown.
The sub-paths pv related to the vertices of H are highlighted. Note that in each vertex
of I2(H) starts and ends two sub-paths related to two (non necessarily distinct) vertices
of H.

Proof. The next vertex of C intersects ve in two vertices, say x and y. Then
e′ = {v, x, y} is the next vertex of C. The previous vertex also intersects ve in
two vertices, wlog, either x, y or u, x. Let e′′ be the previous vertex of C. Then
either e′′ = {w, x, y} or e′′ = {u, x, w}, for some w. In the first case, we have pu
begins and ends at ve. In the second case, we have pu ends at ve and py begins.

�

In the sequel, we describe an algorithm that modifies an alternating ±1
labelling of a Hamiltonian cycle C not satisfying the conditions of Lemma 2 in
order to obtain a null labelling of H. This algorithm relies on the Switch()
operator defined as follows: given two even sub-paths pu = (vei1 , . . . , veik )
and pv = (vej1 , . . . , vej

k′ ), where pv = next(pu), and eik �= ej1 , the operator
Switch(pu, pv) produces a new labelling l′(C) by changing the signs of eik and
ej1 : l′(eik) = −l(eik) and l′(ej1) = −l(ej1); and keeping the remaining labels of
l(C) unchanged. Figure 4 shows an example of the action of Switch(p2, p5).
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{1,2,3} {2,3,4} {3,4,5} {3,5,6}

+ - + -+ -

p2 p5

Fig. 4. Example of Switch(p2, p5) between the two consecutive paths p2 and p5, i.e.,
such that p5 = next(p2).

We will start with an alternating labelling l(C), and gradually change it using
Switch().

Property 4. Let H be a 3-hypergraph, C a Hamiltonian cycle of I2(H), and l
a ±1 labelling of C. Consider a sub-path pu of C whose last element vei with
label +1, and the sub-path pv = next(pu) whose first element vej with label
−1. The operator Switch(pu, pv) modifies l into l′ so that dl′(u) = dl(u) − 2,
dl′(v) = dl(v) + 2 and all the remaining signed degrees are left unchanged.

Proof. Without loss of generality, assume that ei = {u, x, y} and ej = {v, x, y}.
It is immediate that the change of the opposite labels of ei and ej keeps the
signed degrees of x and y, while it subtracts 2 from u and adds 2 to v. As the
starting labels of ei and ej are opposite, a symmetric result holds. �

The algorithm Balance() defined below modifies a labelling l(C) of a Hamil-
tonian cycle C of I2(H) in order to change, after a sequence of successive appli-
cations of the Switch() operator, the signed degree of two input vertices u and
v of H, if possible, otherwise it gives failure.

First, we prove that the the algorithm Balance() computes a null labelling
starting from the alternating labelling l(C) in the easiest case of having only two
signed degrees u and v different from zero, in particular +2 and −2, respectively.

Lemma 4. Let H be a 3-hypergraph, C a Hamiltonian cycle of I2(H), and l
an alternating labelling of C. If u and v are the only nodes of H with signed
degree different from zero, in particular dl(u) = +2 and dl(v) = −2, then
Balance(u, v, l(C)) returns a null labelling l′(C) of H.

Proof. Since dl(u) = 2, there exists at least one subpath pu such that |pu| is
even and σ(l(pu)) = +1, i.e. it starts and ends with two elements labelled with
+1.

The While cycle starts by performing the switch between pu and pj =
next(pu) and l is updated to l′. Since l is an alternating labelling, the first element
of pj has label −1, so after Switch(pu, pj), we have dl′(u) = 0, dl′(j) = dl(j)+2,
and by Property 4, the other signed degrees do not change. Now, if |pj | is even
and j = v, then dl′(pv) = 0 and l′ is the desired null labelling.

On the other hand, if |pj | is odd, then it ends with a +1 label and its suc-
cessor next(pj) starts with a −1. So, after updating pi = pj and pj = next(pi),
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Algorithm 1. Balance(u, v, l(C))
Input: the label l(C) of a Hamiltonian cycle C, and two vertices u and v of H with
signed degrees dl(u) > 0 and dl(v) < 0.
Output: The label l′(C) such that dl′(u) = dl(u) − 2 and dl′(v) = dl(v) + 2.

pi = pu such that |pu| is even and σ(l(pu)) = +1
while true do

pj = next(pi)
Switch(pi, pj)
if |pj | is odd then

pi = pj ;
else if a non already considered p′

j exists such that |p′
j | is even and p′

j starts with
+1 label then

pi = p′
j

else
FAILURE;

end if
end while
return the final l′(C) as OUTPUT.

Switch(pi, pj) is again performed and the new l′ changes back the signed degree
of i to zero, while +2 is added to the signed degree of the new j. Note that in
this case, even if j = v, we decide to continue with the algorithm until reaching
a |pv| of even length and such that σ(l′(pv)) = −1.

If the last case |pj | is even and j �= v occurs, then we move to another new
even p′

j such that σ(l(p′
j)) = +1. Such a p′

j always exists since dl(j) = 0, and
consequently the number of even sub-paths containing j whose labels sum up to
+1 equals those whose labels sum up to −1. So, FAILURE never occurs starting
from an alternating labelling l.

Finally, the result is obtained by observing that Balance(u, v, l(C)) does not
loop since the number of subpath of C is finite and each of them is involved
in the while cycle at most once since the procedure always switches a sub-path
that ends with a +1 with a sub-path that ends with −1. �

Lemma 5. Let H = (V,E) be a 3-hypergraph, C a Hamiltonian cycle of I2(H)
and l an alternating labelling of C. If v1 and v2 are the only nodes of H with
signed degree different from zero with respect to l, say dl(u) = +2k and dl(v) =
−2k, where k ≥ 1, then H admits a null labelling.

Proof. This is obtained by k successive runs of Balance(u, v, li(C)), with 0 ≤
i < k, where li+1(C) is the labelling obtained as output of Balance(u, v, li(C)).
We set l0 = l; the output lk of Balance(u, v, lk−1(C)) provides a null labelling
of H.

We emphasize that, from the second run of Balance() until the last one, i.e.,
the k-th run, the choice of a new starting sub-path pu is always possible. In fact,
from dl(u) = +2k it follows that in l(C) the number of sub-paths of u whose
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labels sum up to +1 exceeds exactly by k those whose labels sum up to −1. A
last remark is required: since two different runs of Balance() start from different
sub-paths pu, their computations do not involve the same sub-path twice. So,
each call Switch() in the k runs of Balance() always modifies two elements of C
whose labels are alternate, as set by l(C). �

This same reasoning can be generalized when more than two vertices of H have
non null signed degree leading to our main result

Theorem 2. Let H be a 3-hypergraph. If the 2-intersection graph I2(H) is
Hamiltonian, then H admits a null labelling.

The proof of this theorem and the related computation of the null label
of H directly follow from the proofs of Lemmas 4 and 5, after observing that
we can iterate the calls of Balance(u, v, l(C)) varying u among all the vertices
with signed degree greater than zero until reaching the first vertex v among
those having signed degree less than zero. The following example will clarify the
situation.

Example 4. Consider the following 3−hypergraph H = (V,E) with V =
{1, . . . , 8} and E = {{2, 3, 5}, {2, 5, 8}, {2, 4, 8}, {1, 4, 8}, {1, 4, 7}, {1,
6, 7}, {1, 4, 6}, {1, 5, 6}, {5, 6, 7}, {1, 5, 7}, {1, 2, 7}, {1, 2, 3}, {2, 3, 6}, {3,
6, 8}, {3, 7, 8}, {3, 5, 8}}

Figure 5 shows a Hamiltonian cycle C of I2(H), and one of its alternating
labellings l(C).

The chosen labelling is not a null labelling of H. The vector of the signed
degrees of the vertices of H is

d = (−2, 2, 0, 2,−2, 0, 2,−2).

Let us perform a sequence of runs of Balance() to compute a null labelling of
H starting from l(C).

Let us start, as an example, the run Balance(2, v, l(C)) in the p2 sub-path
having {2, 3, 5} as first element. It calls Switch(p2, p1), with p1 = next(p2) and
|p1| even. Since dl(1) = −2, we perform the choice v = 1, and the switchings of
{2, 4, 8} and {1, 4, 8} leading to the labelling l1(C) such that dl1(1) = dl1(2) = 0,
leaving the remaining labels unchanged.

Let us now arbitrarily choose the vertex 7 such that dl1(7) = +2 and run
Balance(7, v, l1(C)) with the starting p7 sub-path whose first element is {5, 6, 7}.
The sub-path p3 = next(p7) has odd length so the labels of {1, 2, 7} and {1, 2, 3}
are switched and we obtain d(7) = 0 and d(3) = +2. Now p8 = next(p3) and the
labels of {2, 3, 5} and {2, 5, 8} are switched obtaining d(3) = d(8) = 0. Since |p8|
is even, the run Balance(7, v, l1(C)) ends setting v = 8. A new labelling l2(C)
is returned as output.

Two more vertices with signed degree different from zero are left, i.e., the
vertices 4 and 5. A last run of Balance(4, 5, l2(C)) is performed. Taking the
p4 subpath containing only {1, 4, 6}, we have p5 = next(p4) with |p5| even.



A Study on the Existence of Null Labelling for 3-Hypergraphs 293

{2,3,5} {2,5,8} {2,4,8} {1,4,8} {1,4,7} {1,6,7} {1,4,6} {1,5,6}

{5,6,7} {1,5,7} {1,2,7} {1,2,3} {2,3,6} {3,6,8} {3,7,8} {3,5,8}

+ - + - + +

+ + + +

- -

- - - -

p2 p1

p4p7p8

p4 p6

p7 p3

p2p2p2

p1 p6 p7

p5

Fig. 5. A Hamiltonian cycle of I2(H) and its labelling.

Therefore, switching the sign of {1, 4, 6} and {1, 5, 6} we obtain a new labelling
l3 such that dl3(4) = dl3(5) = 0 and Balance(4, 5, l2(C)) ends. Therefore, the
labelling

l3 = (−1, 1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1, 1,−1)

is a null labelling of H. Note that the order of the calls of Balance() is not
relevant in order to obtain a null labelling of H.
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Abstract. For a given shape S in the plane, one can ask what is the
lowest possible density of a point set P that pierces (“intersects”, “hits”)
all translates of S. This is equivalent to determining the covering density
of S and as such is well studied. Here we study the analogous question
for families of shapes where the connection to covering no longer exists.
That is, we require that a single point set P simultaneously pierces each
translate of each shape from some family F . We denote the lowest pos-
sible density of such an F-piercing point set by πT (F). Specifically, we
focus on families F consisting of axis-parallel rectangles. When |F| = 2
we exactly solve the case when one rectangle is more squarish than
2×1, and give bounds (within 10% of each other) for the remaining case
when one rectangle is wide and the other one is tall. When |F| ≥ 2 we
present a linear-time constant-factor approximation algorithm for com-
puting πT (F) (with ratio 1.895).

Keywords: Axis-parallel rectangle · Piercing · Approximation
algorithm

1 Introduction

In a game of Battleship, the opponent secretly places ships of a fixed shape on
an n × n board and your goal is to sink them by identifying all the cells the
ships occupy (the ships are stationary). Consider now the following puzzle: If
the opponent placed a single 2 × 3 ship, how many attempts do you need to
surely hit the ship at least once? The answer depends on an extra assumption.
If you know that the ship is placed, e.g., vertically, it is fairly easy to see that
the answer is roughly n2/6: When n is a multiple of 6, then one hit is needed
per each of the n2/6 interior-disjoint translates of the 2 × 3 rectangle that tile
the board and, on the other hand, a lattice with basis [2, 0], [0, 3] achieves the
objective. The starting point of this paper was to answer the question when it
is not known whether the ship is placed vertically or horizontally. It turns out
that the answer is n2/5 + O(n) hits (the main term comes from Theorem 1 (ii)
whereas the O(n) correction term is due to the boundary effect).

Motivated by the above puzzle, we study the following problem: Given a
family F of compact shapes in the plane, what is its translative piercing density
c© Springer Nature Switzerland AG 2021
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πT (F), that is, the lowest density of a point set that pierces (“intersects”, “hits”)
every translate of each member of the family? Here the density of an infinite point
set P (over the plane) is defined in the standard fashion as a limit of its density
over a disk Dr of radius r, as r tends to infinity. The piercing density πT (F) of
the family is then defined as the infimum over all point sets that pierce every
translate of each member of the family [5, Ch. 1], [15]. (See Sect. 1.1 for precise
definitions.) Note that unlike in the puzzle, we allow translations of each shape
in the family by any, not necessarily integer, vector.

First, we cover the case when the family F = {S} consists of a single
shape. The problem is then equivalent to the classical problem of determin-
ing the translative covering density ϑT (S) of the shape S: Indeed, determining
the translative covering density ϑT (S) amounts to finding a (sparsest possible)
point set P such that the translates {p + S | p ∈ P} cover the plane, that is,

(∀x ∈ R
2)(∃p ∈ P ) such that x ∈ p + S.

(Here “+” is the Minkowski sum.) This is the same as requiring that

(∀x ∈ R
2)(∃p ∈ P ) such that p ∈ x + (−S),

that is, the point set P pierces all translates of the shape −S. Hence ϑT (S) =
πT ({−S}) = πT ({S}). Specifically, when S tiles the plane, then the answer is
simply πT ({S}) = 1/Area(S), where Area(S) is the area of S. We note that
apart from the cases when S tiles the plane, the translative covering density
ϑT (S) is known only for a few special shapes S such as a disk or a regular
n-gon [5, Ch. 1].

For the rest of this work (apart from the Conclusions) we limit ourselves to
the case when F consists of n ≥ 2 axis-parallel rectangles. First we consider the
special case n = 2 (Theorem 1 in Sect. 2), then we consider the case of arbitrary
n ≥ 2 (Theorem 2 in Sect. 3).

Related Work. There is a rich literature on related (but fundamentally dif-
ferent) fronts dealing with piercing finite collections. One broad direction is
devoted to establishing combinatorial bounds on the piercing number as a func-
tion of other parameters of the collection, most notably the matching num-
ber [2,10,11,13,17,20,23,24,26–29] or in relation to Helly’s theorem [12,21,23];
see also the survey articles [14,24]. Another broad direction deals with the prob-
lem of piercing a given set of shapes in the plane (for instance axis-parallel rect-
angles) by the minimum number of points and concentrates on devising algorith-
mic solutions, ideally exact but frequently approximate; see for instance [7–9].
Indeed, the problem of computing the piercing number corresponds to the hit-
ting set problem in a combinatorial setting [19] and is known to be NP-hard
even for the special case of axis-aligned unit squares [18]. The theory of ε-nets
for planar point sets and axis-parallel rectangular ranges is yet another domain
at the interface between algorithms and combinatorics in this area [3,32].

A third direction that appears to be most closely related to this paper is
around the problem of estimating the area of the largest empty axis-parallel
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rectangle amidst n points in the unit square, namely, the quantity A(n) defined
below. Given a set S of n points in the unit square U = [0, 1]2, a rectangle
R ⊂ U is empty if it contains no points of S in its interior. Let A(S) be the
maximum volume of an empty box contained in U (also known as the dispersion
of S), and let A(n) be the minimum value of A(S) over all sets S of n points
in U . It is known that 1.504 ≤ limn→∞ nA(n) ≤ 1.895; see also [1,30,34,36].
The lower bound is a recent result of Bukh and Chao [6] and the upper bound
is another recent result of Kritzinger and Wiart [31]. It is worth noting that the
upper bound ϕ4/(ϕ2 + 1) = 1.8945 . . . can be expressed in terms of the golden
ratio ϕ = 1

2 (1 +
√

5). The connection will be evident in Sect. 3.

1.1 Preliminaries

Throughout this paper, a shape is a Lebesque-measurable compact subset of
the plane. Given a shape S, let Area(S) denote its area. We identify points
in the plane with the corresponding vectors from the origin. Given two shapes
A,B ⊂ R

2, we denote by A+B = {a+b | a ∈ A, b ∈ B} their Minkowski sum. A
translate of a shape S by a point (vector) p is the shape p+S = {p+ s | s ∈ S}.

In the next three definitions we introduce the (translative) piercing density
πT (F) of a family F of shapes in the plane. Then we define a certain shorthand
notation for the special case when F consists of two axis-parallel rectangles.

Definition 1 (F-piercing sets). Given a family F of shapes in the plane, we
say that a point set P is F-piercing if it intersects all translates of all the shapes
in F , that is, if

(∀S ∈ F)(∀x ∈ R
2)(∃p ∈ P ) such that p ∈ x + S.

Definition 2 (Density of a point set). Given a point set P and a bounded
domain D with area Area(D), we define the density of P over D by δ(P,D) =
|P∩D|
Area(D) .

Given a (possibly infinite and unbounded) point set P , we define its asymp-
totic upper and lower densities by

δ(P ) = lim sup
r→∞

δ(P,Dr) and δ(P ) = lim inf
r→∞ δ(P,Dr),

where Dr is the disk with radius r centered at the origin.

Definition 3 (Translative piercing density πT (F)). Fix a family F of
shapes in the plane. Then we define the (translative) piercing density by

πT (F) = inf
P is F-piercing

{δ(P )}

and the (translative) lattice piercing density πL(F) by

πL(F) = inf
P is an F-piercing lattice

{δ(P )} .
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Pairs of Axis-Parallel Rectangles. Let Rw×h denote a rectangle with width
w and height h. Here we introduce a shorthand notation for the case when
F = {Ra×b, Rc×d} consists of two axis-parallel rectangles. If a ≤ c and b ≤ d
then clearly πT (F) = πL(F) = 1/(ac) as the lattice with basis {[a, 0], [0, c]}
that pierces all translates of the smaller rectangle also pierces all translates of
the larger rectangle. Otherwise we can suppose a ≥ c and b ≤ d. Stretching
horizontally by a factor of c and then vertically by a factor of b, we have

πT (F) = c · πT ({R a
c ×b, R1×d}) = cd · πT ({R a

c ×1, R1× d
b
}).

and likewise for πL(F). Thus it suffices to determine

πT (w, h) := πT ({Rw×1, R1×h}) and πL(w, h) := πL({Rw×1, R1×h})

for w, h ≥ 1. We say that a point set (resp. a lattice) P is (w, h)-piercing if it is
{Rw×1, R1×h}-piercing. It is sometimes convenient to work with the reciprocals
AT (w, h) = 1/πT (w, h) (resp. AL(w, h) = 1/πL(w, h)) which correspond to the
largest possible per-point area of a (w, h)-piercing point set (resp. lattice). Note
that AL(w, h) ≤ AT (w, h), since the sparsest (w, h)-piercing point set perhaps
does not have to be a lattice. Also, AT (w, h) ≤ min(w, h) as translates of the
smaller rectangle tile the plane and each translate has to be pierced.

1.2 Results

The following theorem and its corollary summarize our results for piercing all
translates of two axis-parallel rectangles in R

2.

Theorem 1. Fix w, h ≥ 1.

(i) When 	w
 �= 	h
 then AT (w, h) = AL(w, h) = min{w, h}.
(ii) When 	w
 = 	h
 = k ≥ 1, set w = k + x, h = k + y for x, y ∈ [0, 1). Then

max
{

k, k + xy − k − 1
k

(1 − x)(1 − y)
}

≤ AL(w, h) ≤ AT (w, h) ≤ k + xy.

Note that the inequalities in (ii) become equalities in two different cases:
When k = 1 then AL(w, h) = AT (w, h) = k + xy and when min{x, y} = 0 (that
is, when w or h is an integer) then AL(w, h) = AT (w, h) = min{w, h} = k.

Corollary 1. Given a family F = {R1, R2} consisting of two axis-parallel rect-
angles, a 1.086-approximation of πT (F) can be computed in O(1) time. The
output piercing set is a lattice with density at most (52 −

√
2) · πT (F).

We then address the general case of piercing all translates of any finite col-
lection of axis-parallel rectangles.

Theorem 2. Given a family F = {R1, . . . , Rn} consisting of n axis-parallel
rectangles, a 1.895-approximation of πT (F) can be computed in O(n) time. The
output piercing set is a lattice with density at most (1 + 2

5

√
5) · πT (F).
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2 Piercing Two Rectangles

Proof (of Theorem 1). (i) Note that AT (w, h) ≤ min{w, h}: Indeed, any (w, h)-
piercing point set has to pierce all the translates of the rectangle with smaller
area and certain copies of that smaller rectangle tile the plane. To complete
the proof, it suffices to exhibit a suitable (w, h)-piercing lattice. Without loss of
generality suppose that 	h
 < 	w
. We will show that the lattice Λ1 with basis
u1 = [1, h − 1], v1 = [1,−1] (see Fig. 1(a)) is (w, h)-piercing. Note that the area
of the fundamental parallelogram of the lattice is (h − 1) + 1 = h, as required.

We first show that Λ1 pierces all 1 × h rectangles. Observe that the 1 × h
rectangles centered at points in Λ1 tile the plane. Denote this tiling by T . Let
now R be any 1 × h rectangle. Its center is contained in one of the rectangles in
T , say σ. Then the center of σ pierces R, as required.

We next show that Λ1 pierces all w×1 rectangles. It suffices to show that Λ1

pierces all w0 ×1 rectangles, where w0 = 	h
+1. Let R be any w0 ×1 rectangle.
Assume that R is not pierced by Λ1. Translate R downwards until it hits a point
in Λ1, say q, and then leftwards until it hits another point in Λ1, say p. Let
R′ denote the resulting rectangle. Then p is the top left corner of R′. Observe
that the top and the right side of R′ are not incident to any other point in Λ1.
Consider the lattice point s := p + u1 + (w0 − 1)v1; note that x(s) − x(p) = w0

and y(s) − y(p) = h − 1 − 	h
 ∈ [−1, 0). As such, s is contained in the right side
of R′, a contradiction. It follows that R is pierced by Λ1, as required.

(a) (b) (c)

Fig. 1. (a) A lattice Λ1 for the case �w� �= �h�. Here w = 3+ 1
4
, h = 2+ 1

2
. (b) A lattice

Λ2 with basis u2 = [1, k − 1], v2 = [1, −1] attesting that AT (k + x, k + y) ≥ k. Here
w = 3 + 1

2
, h = 3 + 1

4
. (c) A lattice Λ3 with basis u3 = [1, h − 1], v3 = [(w − 1)/k, −1]

attesting that AT (k+x, k+y) ≥ k+xy− k−1
k

(1−x)(1−y). Here w = 2+ 3
4
, h = 2+ 1

2
.

(ii) In order to prove the lower bound it suffices to exhibit suitable lattices.
We will show that the following lattices do the job: The lattice Λ2 with basis
u2 = [1, k − 1], v2 = [1,−1] (see Fig. 1(b)) attests that AT (k + x, k + y) ≥ k.
Note that the area of the fundamental parallelogram of Λ2 is (k − 1) + 1 = k,
as required. The lattice Λ3 with basis u3 = [1, h − 1], v3 = [(w − 1)/k,−1]
(see Fig. 1(c)) attests that AT (k + x, k + y) ≥ k + xy − k−1

k (1 − x)(1 − y). Note
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that the area of the fundamental parallelogram of Λ3 is (w − 1)(h − 1)/k + 1 =
(k + xy) − k−1

k (1 − x)(1 − y), as required.
For both lattices, the proof proceeds by contradiction as in part (i). Assume

that there exists an unpierced rectangle of dimensions either w × 1 or 1 × h.
Translate the rectangle downwards until it hits a point in the lattice, say q,
and then leftwards until it hits another point in the lattice, say p. For Λ2, note
that r := p + u2 lies on the right edge of the 1 × h rectangle and that s :=
p + u2 + (k − 1)v2 lies on the top edge of the w × 1 rectangle. Similarly, for Λ3

note that r := p + u3 is the top right corner of the 1 × h rectangle and that
s := p + u3 + kv3 lies on the right edge of the w × 1 rectangle. Either way, we
get a contradiction.

Finally, we show the upper bound, that is, AT (w, h) ≤ k + xy. Recall that
AT (w, h) ≤ min{w, h} = k + min{x, y}; we will obtain an improved bound
AT (w, h) ≤ k + xy by an integral calculus argument (which originates from a
probabilistic argument). Let P be a (w, h)-piercing point set, where w = k + x,
h = k+y with k ∈ N and x, y ∈ [0, 1). The desired upper bound on AT (w, h) will
follow from a lower bound on the density δ(P,Dr) = |P∩Dr|

Area(Dr)
, where Dr is the

disk with radius r centered at the origin. Fix a radius r and write Pr = P ∩ Dr.
Given a point a = (ax, ay) ∈ R

2, we denote by Ra = [ax −w, ax]× [ay −h, ay]
the w × h rectangle whose top right corner is a. For brevity, we denote R =
R(w,h) = [0, w] × [0, h]. We consider two sets of w × h rectangles: Those that
intersect Dr and those that are contained within Dr. We denote the sets of their
top right corners by X = {a ∈ R

2 | Ra ∩Dr �= ∅} and W = {a ∈ R
2 | Ra ⊂ Dr},

respectively. See Fig. 2(a).

D

R

X

(a) (b)

Fig. 2. (a) The top right corners of rectangles intersecting Dr form a region X =
Dr + R. The top right corners of rectangles contained within Dr form a region W =
Dr ∩ ([w, 0] + Dr) ∩ ([0, h] + Dr) ∩ ([w, h] + Dr). Both regions are convex and their
boundaries consist of circular arcs and line segments. (b) A w×h rectangle R = R(w,h)

(here k = 2, x = 1/3, and y = 2/3, hence w = k + x = 7/3 and h = k + y = 8/3). Its
zone Z is shaded.
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Given a rectangle Ra, we define its zone Za to be a union of k2 closed
rectangles with sizes (1 − x) × (1 − y) each, arranged as in Fig. 2(b). Note that
Area(Za) = k2(1−x)(1−y). Further, let Ia := |Pr∩Za| and Ja := |Pr∩(Ra\Za)|
be the number of points of Pr contained in Ra inside its zone and outside of it,
respectively. We make two claims about Ia and Ja.

Claim 1. If a ∈ W then (k + 1)Ia + kJa ≥ k(k + 1).

Proof. Fix a ∈ W . Since Ra ⊂ Dr, we have P ∩ Ra = Pr ∩ Ra. The key
observation is that for any point p ∈ Ra \ Za, the set Ra \ {p} contains k
pairwise disjoint rectangles of dimensions either all w × 1 or all 1 × h. We thus
must have |Pr ∩ Ra| ≥ k + 1, except when Pr ∩ Ra ⊆ Za, in which case we must
have |Pr ∩ Ra| ≥ k.

Denote I = Ia and J = Ja. There are two simple cases:

1. J ≥ 1: Then I + J ≥ k + 1, thus (k + 1)I + kJ ≥ kI + kJ ≥ k(k + 1).
2. J = 0: Then I ≥ k, thus (k + 1)I + kJ ≥ k(k + 1). ��

Claim 2. We have∫
X

Ia

Area(Z)
d a =

∫
X

Ja

Area(R \ Z)
d a = |Pr|.

Proof. Fix p ∈ Pr. Note that the set Xp = {a ∈ R
2 | p ∈ Za} of top right corners

of w ×h rectangles whose zone contains p is a subset of X congruent to Z. Thus
Area(Xp) = Area(Z). Summing over p ∈ Pr we obtain

∫
X

Ia

Area(Z)
d a =

∑
p∈Pr

Area(Xp)
Area(Z)

= |Pr|.

For Ja we proceed completely analogously. ��

Now we put the two claims together to get a lower bound on |Pr|.

Claim 3. We have |Pr| ≥ Area(W )
k+xy .

Proof. First, applying Claim 1 to all w × h rectangles Ra with a ∈ W and then
invoking W ⊂ X, we obtain

Area(W ) · k(k + 1) =
∫

W

k(k + 1) d a ≤ (k + 1)
∫

W

Ia d a + k

∫
W

Ja d a

≤ (k + 1)
∫

X

Ia d a + k

∫
X

Ja d a.

By Claim 2 and straightforward algebra we further rewrite this as

(k + 1)
∫

X

Ia d a + k

∫
X

Ja d a = |Pr| ·
(
(k + 1)Area(Z) + k Area(R \ Z)

)
= |Pr| · (k Area(R) + Area(Z)) = |Pr| · k(k + 1)(k + xy),
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where the last equality follows from

k Area(R) + Area(Z) = k(k + x)(k + y) + k2(1 − x)(1 − y) = k(k + 1)(k + xy).

The bound |Pr| ≥ Area(W )
k+xy follows by rearranging. ��

Consequently, by Claim 3 we have

δ(P,Dr) =
|Pr|

Area(Dr)
≥ Area(W )

Area(Dr)
· 1
k + xy

→r→∞
1

k + xy
,

where we used that Area(W )/Area(Dr) → 1 as r → ∞. This in turn gives

πT (w, h) = inf
P

{
lim inf
r→∞ δ(P,Dr)

}
≥ 1

k + xy
and AT (w, h) =

1
πT (w, h)

≤ k + xy

and completes the proof of Theorem 1. ��
For a visual illustration of our results, see Fig. 3.

1 2 3 4
aspect ratio w = h ≥ 1

ar
ea

A
(w

,h
)
pe

r
po

in
t triv. upper bound

upper bound
lower bound

5

(a) (b)

Fig. 3. (a) We plot AT (w, h) when �w� �= �h� and/or when �w� = �h� = 1 (orange).
When �w� = �h� ≥ 2 we plot the two lower bounds from Theorem 1, Item ii (blue).
As k → ∞, the two lower bounds coincide for x + y = 1. (b) A section corresponding
to w = h. We plot the lower bounds (blue) and the upper bound (red) on AT (w, w)
from Theorem 1, Item ii and the trivial upper bound AT (w, w) ≤ w (red, dashed).
(Color figure online)

Proof (of Corollary 1). It suffices to show that

sup
k≥2, k∈N

x,y∈[0,1)

k + xy

max
{
k, k + xy − k−1

k (1 − x)(1 − y)
} =

5 − 2
√

2
2

< 1.086.

A computer algebra system (such as Mathematica) shows that the supremum is
attained when k = 2 and when x, y are both equal to a value that makes the two
expressions inside the max{} operator equal. This happens for x = y =

√
2 − 1

and the corresponding value is (5 − 2
√

2)/2 < 1.086 as claimed. ��
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3 Piercing n Rectangles

In this section we prove Theorem 2. Let ϕ = 1
2 (1 +

√
5) be the golden ratio.

In Lemma 2 we show that a lattice Λϕ with basis u = [1, ϕ], v = [ϕ,−1] pierces all
rectangles with area ϕ4 or larger, irrespective of their aspect ratio. See Fig. 4 (a).
Theorem 2 then follows easily by rescaling Λϕ to match the smallest-area rect-
angle from the family.

(a) (b)

Fig. 4. (a) Empty rectangles amidst Λϕ. (b) A generic empty rectangle R.

Recall the well-known sequence of Fibonacci numbers defined by the following
recurrence:

Fi = Fi−1 + Fi−2, with F1 = F2 = 1. (1)

The first few terms in the sequence are listed in Table 1 for easy reference; here
it is convenient to extend this sequence by F−1 = 1 and F0 = 0.

Table 1. The first few Fibonacci numbers.

m −1 0 1 2 3 4 5 6 7 8 9 10

Fm 1 0 1 1 2 3 5 8 13 21 34 55

We first list several properties of Fibonacci numbers.

Lemma 1. The following identities hold for every integer m ≥ 1:

1. Fmϕ + Fm−1 = ϕm,
2. Fmϕ − Fm+1 = (−1)m+1ϕ−m,
3. F2m+1F2m−1 − (F2m)2 = 1.

Proof. This is straightforward to verify, for instance using the well-known for-
mula Fm = 1√

5
(ϕm − ψm), where ψ = −1/ϕ. ��
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Next we prove a lemma that establishes a key property of the lattice Λϕ.

Lemma 2. The area of every empty rectangle amidst the points in Λϕ is at
most ϕ4.

Proof. Let R be a maximal axis-parallel empty rectangle, bounded by four lat-
tice points p, q, r, s from the left, below, right and top, respectively. Refer
to Fig. 4 (b). Then pqrs is a fundamental parallelogram of the lattice; as such,
its area is ϕ2 + 1. Clearly, we may assume p = (0, 0). Further, we may assume
q = cu + dv, s = au + bv, where a, b, c, d are nonnegative integers: Indeed, since
Λϕ is invariant under rotation by 90◦, we can assume that the width of R is
at least as large as its height. Points q, s thus lie on the “funnel” (depicted in
Fig. 4 (a) dotted) within the angle formed by the vectors u, v. The coordinates
of points s, q, r and the area of the parallelogram pqrs are:

s = (a + bϕ, aϕ − b),
q = (c + dϕ, cϕ − d),
r = ((a + c) + (b + d)ϕ, (a + c)ϕ,−(b + d)),

Area(pqrs) = |(a + bϕ)(cϕ − d) − (aϕ − b)(c + dϕ)| = |(ad − bc)|(ϕ2 + 1).

Since s lies above the horizontal line through p and since q lies below it,
we have aϕ − b > 0 and cϕ − d < 0. This implies a, b, c, d > 0 and rewrites
as b

a < ϕ < d
c , so in particular ad > bc. Together with the expression for

Area(pqrs) = ϕ2 + 1 this yields |ad − bc| = ad − bc = 1. To summarize, we have

b

a
< ϕ <

d

c
and ad − bc = 1. (2)

The relation ad − bc = 1 implies that gcd(a, b) = gcd(c, d) = 1. By a result
from the theory of continued fractions [33], [22, Ch. 10], relation (2) implies that
the fractions b/a and d/c are consecutive convergents of ϕ. Moreover, it is well
known that the convergents of ϕ are ratios of consecutive Fibonacci numbers:

F0

F−1
<

F2

F1
<

F4

F3
<

F6

F5
<

F8

F7
< · · · < ϕ < · · · <

F7

F6
<

F5

F4
<

F3

F2
<

F1

F0
= ∞,

0
1

<
1
1

<
3
2

<
8
5

<
21
13

< · · · < ϕ < · · · <
13
8

<
5
3

<
2
1

<
1
0

= ∞.

Thus we can assume that b
a = F2k

F2k−1
. There are two cases:

Case 1: d
c = F2k−1

F2k−2
, and thus F2k

F2k−1
< ϕ < F2k−1

F2k−2
.

Case 2: d
c = F2k+1

F2k
, and thus F2k

F2k−1
< ϕ < F2k+1

F2k
.

(Note that in both cases we indeed have ad − bc = 1 by Lemma 1, Item 3.)
We compute Area(R) using Items 1 to 2 of Lemma 1. Let Δx and Δy denote
the side-lengths of R.
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Case 1: We have

Δx = (a + c) + (b + d)ϕ = (F2k−1 + F2k−2) + (F2k + F2k−1)ϕ

= F2k + F2k+1ϕ = ϕ2k+1,

Δy = (a − c)ϕ − (b − d) = (F2k−1 − F2k−2)ϕ − (F2k − F2k−1)

= F2k−3ϕ − F2k−2 = ϕ−(2k−3),

thus Area(R) = Δx · Δy = ϕ2k+1ϕ−(2k−3) = ϕ4, as required.

Case 2: Similarly, we have

Δx = (a + c) + (b + d)ϕ = (F2k−1 + F2k) + (F2k + F2k+1)ϕ

= F2k+1 + F2k+2ϕ = ϕ2k+2,

Δy = (a − c)ϕ − (b − d) = (F2k−1 − F2k)ϕ − (F2k − F2k+1)

= −F2k−2ϕ + F2k−1 = ϕ−(2k−2),

thus Area(R) = Δx · Δy = ϕ2k+2ϕ−(2k−2) = ϕ4, as required. ��

With Lemma 2 at hand, the proof of Theorem 2 is straightforward.

Proof (of Theorem 2). Let R ∈ F be the smallest-area rectangle among those
in F . By Lemma 2, the lattice Λϕ pierces all axis-parallel rectangles with area
at least ϕ4. Thus the rescaled lattice Λ′

ϕ =
√

Area(R)/ϕ4 · Λϕ pierces all axis-
parallel rectangles with area at least Area(R). In particular, it pierces all rect-
angles in F . Since the fundamental parallelogram of Λϕ has area ϕ2 + 1, the
fundamental parallelogram of Λ′

ϕ has area (ϕ2 + 1)/ϕ4 · Area(R) and gives an
approximation factor ϕ4/(ϕ2 + 1) = 1 + 2

5

√
5 < 1.895 as claimed. Note that

computing the smallest-area rectangle and the rescaling only take O(n) time. ��

Remarks. We have learned from the recent article of Kritzinger and Wiart [31]
that a rescaled version of the lattice Λϕ was considered several years ago by
Thomas Lachmann (unpublished result) as a candidate for an upper bound on
the minimum dispersion A(n) of an n-point set in a unit square. Yet another
lattice resembling Λϕ was studied in the same context by Ismăilescu [25].

It is easy to check that the lattice Λϕ yields the upper bound
lim infn→∞ nA(n) ≤ ϕ4/(ϕ2 + 1), i.e., matching exactly the dispersion bound
obtained by Kritzinger and Wiart using a suitable modification of the so-called
Fibonacci lattice [16]. It is worth noting that: (i) the lattice Λϕ yields the above
dispersion result with a cleaner and shorter proof; (ii) the Fibonacci lattice as
well as its modification lead to this bound only by a limiting process; and perhaps
more importantly, (iii) the upper bound in Lemma 2 on the maximum rectangle
area amidst points in this lattice holds universally across the entire plane and
not only inside a bounding box with n points (i.e., one does not need to worry
about rectangles with a side supported by the bounding box boundary).
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4 Conclusion

We list several open questions.

1. (Computational complexity.) Given a family F of n axis-parallel rectangles,
what is the computational complexity of determining the optimal density
πT (F) of a piercing set for all translates of all members in F? (For the deci-
sion problem: given a threshold τ , is there a piercing set whose density is at
most τ?) Is the problem algorithmically solvable? Is there a polynomial-time
algorithm? And how about the complexity of determining the optimal density
πL(F) of a piercing lattice for F?

2. (Exact answer for two rectangles.) For two rectangles, what is the actual value
of πT (w, h) (or its reciprocal AT (w, h)) when 	w
 = 	h
 ≥ 2? Is it the same
as πL(w, h)?

3. (Other shapes.) How about pairs of different shapes such as triangles?
4. (Congruent copies.) How about requiring that the point set pierces all con-

gruent copies of a set of shapes, not only translates? See for instance [4] where
it is shown that when F consists of a single square (or rectangle), a suitable
triangular grid gives an upper bound on the density.

5. (Discrete version.) Consider a discrete version where: (i) each shape in the
family F consists of cells of an infinite square grid; (ii) we consider translates
by integer vectors only; and (iii) instead of piercing with a point set we
pierce with a set of grid cells. What can be said about this (lowest possible)
discrete hitting density πdisc

T (F) or its reciprocal Adisc
T (F)? As one example,

we note that Theorems 1 and 2 can be adapted to the discrete setting in a
straightforward way: When F consists of two rectangles Ra×b, Rb×a, where
b = k · a + r (with k ≥ 1 and r < a), the adapted Theorem 1 yields an upper
bound Adisc

T ({Ra×b, Rb×a}) ≤ k · a2 + r2 that solves the puzzle we mentioned
in the introduction. Furthermore, when F consists of all rectangles that have
area at least K, then the adapted Theorem 2 gives an F-piercing set of cells
with density (1 + 2

5

√
5)/K. In the language of Fiat and Shamir [16], there

is a probing strategy that locates a battleship of K squares in a rectangular
sea of M squares (where M → ∞) in at most 1.895M/K probes. This is a
substantial improvement over the 3.065M/K bound from [16].
As another example, when F consists of two L-triominoes that are centrally
symmetric to each other, one can show that Adisc

T (F) = 3. In contrast, when F
consists of two (or more) L-triominoes, one of which is obtained from another
one by rotation by 90◦, one can show that Adisc

T (F) = 2.
6. (Higher dimensions.) Consider the problem in higher dimensions. When d = 3

and |F| = 2, stretching along the coordinate axis yields a non-trivial case
{(a, b, 1), (1, 1, c)} where a, b, c ≥ 1. The trivial upper bound AT (a, b, c) ≤
min{ab, c} can be matched in two “easy” cases:
(i) When c ≥ �a�·�b� then “piercing 1×1×c is free”: Briefly, in the plane z = 0
we use a lattice with basis [a, 0], [0, b] and in the planes z ∈ Z we consider
�a�·�b� “integer horizontal offsets” [u, v], u = 0, . . . , �a�−1, v = 0, . . . , �b�−1
and use them periodically (in any order).
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(ii) When c ≤ 	a
 · 	b
 then “piercing a × b × 1 is free”: Briefly, along the
line x = y = 0 we put points at k · 	a
 · 	b
 for k ∈ Z. For other vertical
lines through integer points we use 	a
 · 	b
 “integer vertical offsets” such
that every 	a
 · 	b
 horizontal grid-rectangle contains all offsets.
Together, the easy cases (i) and (ii) cover the case when a ∈ Z, b ∈ Z, c ∈ R

and the case when ab and c “differ by a lot”. Another easy case is a = 1,
when the planar bounds apply (for two rectangles with sizes 1× b and c× 1).
Finally, from the algorithmic standpoint, given a finite collection of axis-
parallel boxes in R

d, what approximations for the piercing density can be
obtained?

7. (Disconnected shapes.) What can be said about disconnected shapes? The
easiest variant seems to be when each shape is a set of integer points on the
line (or in Z

d) and we consider translates by integer vectors only. Note that the
piercing density and the lattice piercing densities may differ in this case; for
instance, when S = {0, 2} ⊂ Z, these densities are 1/2 and 1, respectively. In
view of the connection to covering mentioned in Sect. 1, it is worth mentioning
that the problem of tiling the infinite integer grid with finite clusters is only
partially solved [35]; however, covering is generally easier than tiling.

Acknowledgments. We would like to thank Wolfgang Mulzer and Jakub Svoboda
for helpful comments on an earlier version of this work.
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Abstract. Switches are operations which make local changes to the
edges of a graph, usually with the aim of preserving the vertex degrees.
We study a restricted set of switches, called triangle switches. Each tri-
angle switch creates or deletes at least one triangle. Triangle switches
can be used to define Markov chains which generate graphs with a given
degree sequence and with many more triangles (3-cycles) than is typi-
cal in a uniformly random graph with the same degrees. We show that
the set of triangle switches connects the set of all d-regular graphs on n
vertices, for all d ≥ 3. Hence, any Markov chain which assigns positive
probability to all triangle switches is irreducible on these graphs. We also
investigate this question for 2-regular graphs.

Keywords: Regular graphs · Triangles · Markov chains · Irreducibility

1 Introduction

Generating graphs at random from given classes and distributions has been
the subject of considerable research. See, for example, [1–3,5,8,10,11,15–18,21].
Generation using Markov chains has been a topic of specific interest in this
context, in particular Markov chains based on switches of various types, for
example [2,5,8,10,15–18,21]. Switches delete a pair of edges from the graph and
insert a different pair on the same four vertices. They have the important prop-
erty that they preserve the degree sequence of the graph. Thus they are useful for
generating regular graphs, or other graphs with a given degree sequence. Markov
chains also give a dynamic reconfigurability property, which is useful in appli-
cations, for example [5,10,17]. For any such Markov chain, two questions arise.
First, can it generate any graph in the chosen class? (Formally: is the Markov
chain irreducible?) Secondly, we might wish to estimate its rate of convergence
to the chosen distribution. (Formally: what is the mixing time of the chain?)
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In the applied field of social networks, the existence of triangles (3-cycles)
is seen as an indicator of mutual friendships [12,14]. Such networks can alter
in a dynamic fashion as pairs of vertices friend or unfriend each other based on
a mutual acquaintance. However, many random graph models, or processes for
producing random graphs, tend to produce graphs with few triangles. This is
true for any process which generates sparse graphs with a given degree sequence
(approximately) uniformly at random. For example, the expected number of tri-
angles is constant for d-regular graphs, when d is constant [4]. In this paper,
we study a restricted set of switches, called triangle switches, and consider any
reversible Markov chain whose transitions are exactly the triangle switches. Tri-
angle switches were introduced in [6] in the context of cubic graphs, and examples
were given of Markov chains using triangle switches with transition probabilities
assigned to encourage the formation of triangles. It was proved in [6, Section 4]
that it is possible to generate cubic graphs using this approach which have Ω(n)
triangles in O(n) steps of the Markov chain.

In this paper we address the first question posed above (“is the Markov
chain irreducible?”) for such chains on the state space of d-regular graphs, for
any d. Note that the answer to this question is independent of the probabilities
assigned to each triangle switch by the Markov chain, as it is a property of the
undirected graph underlying the Markov chain. We leave the mixing question
for future research, noting only that tight bounds on mixing time seem hard to
come by in this setting. The recent paper [21] is a notable exception.

The proofs in [6] do not easily generalise to regular graphs of arbitrary d,
though the main approach in our proof of irreducibility comes from [6]. If a
component of a d-regular graph is a clique (that is, a complete subgraph) then
it must be isomorphic to Kd+1. We call such a component a clique component.
Our approach is to show that starting from an arbitrary d-regular graph, triangle
switches can be used to increase the number of clique components. Furthermore,
we show how to alter the set of vertices in a given clique component using triangle
switches. After creating as many clique components as possible, there is at most
one additional component C, which must satisfy d + 1 < |C| < 2(d + 1). We call
such a component a fragment. We prove that triangle switches connect the set
of all fragments on a given vertex set. In the cubic case, this last step is simpler
as the only possible fragments are K3,3 and C6.

Our result can be viewed as solving a particular reconfiguration problem
for regular graphs. Reconfiguration is a topic of growing interest in discrete
mathematics. For an introduction to the topic, and a survey of results, see [19].
We note that reconfiguration problems can be as hard as PSPACE-complete, in
general. Our results show that there is a polynomial time algorithm to construct
a path of triangle switches between any two d-regular graphs on n vertices.

The plan of the paper is as follows. In Sect. 1.1, we define and review switches
and restricted switches, in particular triangle switches, and state our main result,
Theorem 1. For most of the paper we assume that d ≥ 3. In Sect. 2 we show
that the set of all fragments with a given vertex set is connected under triangle
switches. In Sect. 3, we show that triangle switches can be used to create a clique
component, starting from any d-regular graph with at least 2(d + 1) vertices. In
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Sect. 4 we show how to relabel the vertices in clique components using triangle
switches, and hence complete our proof of irreducibility. Finally, in Sect. 5, we
consider the irreducibility question for d-regular graphs with d ≤ 2. Many proofs
are sketched or omitted here. For full details see [7].

Definitions, Notation and Terminology. The notation [k] will denote the
set {1, 2, . . . , k}, for any integer k. Given a set V of vertices, let V {2} be the set
of unordered pairs of distinct elements from V . A graph G = (V,E) on vertex
set V (G) has edge set E(G) ⊆ V {2}. We usually denote |V | by n. We use the
notation xy as a shorthand for the unordered pair {x, y}, whether or not this
pair is an edge. If E′ ⊆ E and V ′ = {v ∈ V : v ∈ e ∈ E′}, then G′ = (V ′, E′)
is a subgraph of G. Given any vertex subset U ⊆ V , the subgraph G[U ] induced
by U has vertex set U and edge set E′ = U (2) ∩ E. If |U | = k and G[U ] is a
k-cycle, then we say that G[U ] is an induced Ck.

We will write G ∼= H to indicate that graphs G and H are isomorphic.
Given a graph G = (V,E), the complement of G is the graph G = (V,E) with
E = V {2} \ E. An edge of G will be called a non-edge of G.

The distance dist(u, v) between two vertices u and v is the number of edges
in a shortest path from u to v in G, with dist(u, v) := ∞ if no such path exists.
The maximum distance between two vertices in G is the diameter of G, and G
is connected if it has finite diameter. The component C of G containing v is the
largest connected induced subgraph of G which contains v.

Given a graph G = (V,E) and vertex v ∈ V , let NG(v) = {u : uv ∈ E}
denote the neighbourhood of v, and let degG(v) = |NG(v)| denote the degree of
v in G. The closed neigbourhood of v is NG[v] := NG(v) ∪ {v}. We sometimes
drop the subscript and write N(v) or N[v].

Say that G is regular if every vertex has the same degree, and if degG(v) = d
for all v ∈ V then we say that G is d-regular. As already stated, Gn,d will be
the set of all d-regular graphs with vertex set V = [n]. Note that Gn,d is non-
empty if and only if either d or n is even. This result seems to be folklore, but
is easy to prove. Necessity is implied by edge counting, and sufficiency by a
direct construction. An indirect proof can be found in [22, Prop. 1]. As usual,
Kd+1 ∈ Gd+1,d denotes the complete graph on d + 1 vertices, and Kd,d ∈ G2d,d

denotes the complete bipartite graph on d + d vertices. A graph in Gn,d with
d+1 < n < 2(d+1) will be called a fragment. Note that Kd+1 is not a fragment.

We often regard a graph G ∈ Gn,d as layered, in the following way. Let v be a
given (fixed) vertex of a d-regular graph G = (V,E), where n = |V | ≥ 2(d + 1),
and let C ⊆ V determine the component G[C] of G such that v ∈ C. We regard C
as partitioned by distance from v, with Vi = {u ∈ C : dist(v, u) = i}. Thus V0 =
{v} and V1 = N(v), so |V0| = 1 and |V1| = d. Since V2 appears frequently in the
proof, we will denote |V2| by �. By definition, C is a disjoint union C =

⋃
i≥0 Vi,

and |C| =
∑

i≥0 |Vi|. Let Gi = G[Vi] = (Vi, Ei), and note that G0 = ({v}, ∅).
Let N′(u) be the neighbourhood of u ∈ Vi in Gi, i.e. N′(u) = N(u) ∩ Vi, and let
d′(u) = |N′(u)| be the degree of u in Gi. We omit explicit reference to i in this
notation, since it is implicit from u ∈ Vi. Given u ∈ Vi, we denote the set of
non-neighbours of u in Gi by N

′
i(u).
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We will regard the edges of G[C] from Vi to Vi+1 as being directed away
from the designated vertex v. Under this convention, for u ∈ Vi, In(u) is the
neighbour set of u in Vi−1, and Out(u) is the neighbour set of u in Vi+1. Thus, if
u ∈ Vi, In(u) = N(u) ∩ Vi−1 and Out(u) = N(u) ∩ Vi+1. Then let id(u) = |In(u)|
be the in-degree of u ∈ Vi and od(u) = |Out(u)| the out-degree of u. Thus
N(u) = N′(u) + In(u) + Out(u), and d′(u) + id(u) + od(u) = d. In particular,
d′(v) = id(v) = 0, and od(v) = d. If u ∈ V1 = N(v) then id(u) = 1 and so
d′(u) + 1 + od(u) = d, and thus od(u) = d − 1 − d′(u) = |N′

1(u)|.
A pair of distinct vertices x, y ∈ Vi will be below a pair of distinct vertices

a, b ∈ Vi+1 if a ∈ Out(x) and b ∈ Out(y). In this case we also say that a, b are
above x, y. Note that, if a, b ∈ Vi+1 is not above some pair x, y ∈ Vi, there must
be a unique z ∈ Vi with a, b ∈ Out(z). We will be most interested in the case
where i = 1 and ab /∈ E2.

For other graph-theoretic definitions and concepts not given here, see [24],
for example.

1.1 Switches

As described above, an established approach to the generation of graphs with
given degrees is to use local edge transformations known as switches. The process
is irreducible if any graph in the class can be obtained from any other by a
sequence of these local transformations. Here we will consider three possibilities
for this local transformation.

In a switch, a pair of edges xy, wz of graph G = (V,E) are chosen at random
in some fashion, and replaced with the pair xw yz, provided these are currently
non-edges and that the vertices x, y, w, z are distinct. See Fig. 1. We make
no other assumptions about G[{w, x, y, z}]. Clearly switches preserve vertex
degrees, since each vertex in the switch has one edge deleted and one added, and
all other vertices are unaffected.

Taylor [20] proved that the set of graphs with given degrees is connected
under switches. (See also [23], [24, Thm. 1.3.33], where switches are called “2-
switches”, and [16] for a more constructive proof.) Cooper, Dyer and Greenhill [5]
showed rapid mixing of the switch Markov chain for regular graphs, and a gener-
alisation to some (relatively sparse) irregular degree sequences was given in [13].
Switches can easily be restricted to preserve bipartiteness, by requiring that
{w, y} (or equivalently {x, z}) belong to the same side of the bipartition. In fact,
the first use of switches as the transitions of a Markov chain was for bipartite
graphs [15].

If we wish to generate only connected graphs, we may use the flip. This is
defined in the same way as the switch, except that we specify that wy must also
be an edge. See Fig. 2. Note that a flip is a restricted form of switch which can-
not disconnect the graph. Tsuki [23] proved that the flip chain is irreducible for
3-regular connected graphs, while the corresponding result for d-regular graphs
was proved by Mahlmann and Schindelhauer [17], for any d ≥ 3. Cooper, Dyer,
Greenhill and Handley [8] subsequently showed rapid mixing for regular graphs
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x

w

y

z

switch

x

w

y

z

Fig.1. A switch

of even degree. Note that flips are not well-defined on bipartite graphs, since
{w, y} clearly cannot be on the same side of a bipartition. Mahlmann and Schin-
delhauer also considered other restricted forms of switches, where there must be
a k-edge path between w and y. The flip chain corresponds to k = 1, while the
“2-flipper” with k = 2 preserves connected bipartite graphs.

Irreducibility of the 2-flipper was proved in [17], but the idea does not seem
to have been considered subsequently.

x

w

y

z

flip
x

w

y

z

Fig.2. A flip

In [6], a different restriction of switches was introduced, designed to ensure
that every switch changes the set of triangles in the graph. The definition is as
for switches, except that x and w must have a common neighbour, which we
denote by v. This is a triangle switch, which we abbreviate as Δ-switch. Every
Δ-switch makes (creates) or breaks (destroys) at least one triangle. Again, we
make no further assumption about G[{v, w, x, y, z}]. Clearly, Δ-switches do not
preserve bipartiteness, since bipartite graphs have no triangles.

Specifically, if the 4-edge path yxvwz is present in the graph and the edges
xw, yz are absent, a make triangle switch at v, denoted Δ+-switch, deletes the
edges xy, wz and replaces them with edges xw, yz, forming a triangle on v, x, w.
The Δ+-switch is illustrated in Fig. 3, reading from left to right. Conversely, if
the edge yz and the triangle on v, x, w are present in the graph, such that the
edges xy, wz are both absent, then a break triangle switch at v, denoted Δ−-
switch, deletes the edges xw, yz and replaces them with the edges xy, wz. This
destroys the triangle on v, x, w. The Δ−-switch is illustrated in Fig. 3, reading
from right to left. Note that a Δ−-switch reverses a Δ+-switch and vice versa.

A Δ-switch which involves v and two incident edges, as in Fig. 3, will be
called a Δ-switch at v. Note that this is equivalent to a switch in the graph
H = G[V1 ∪ V2], if the graph is layered from v, and we will use this equivalence
in our arguments below.
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Fig.3. The Δ+-switch and Δ−-switch triangle switches at v

Now let Mn,d be the graph with V (Mn,d) = Gn,d and {G,G′} ∈ E(Mn,d)
if and only if G′ can be obtained from G by a single Δ-switch. Then a time-
homogeneous Markov chain with state space Mn,d will be called a Δ-switch chain
if its transition matrix P satisfies P (G,G′) > 0 if and only if {G,G′} ∈ E(Mn,d).
That is, Mn,d is the transition graph underlying any Δ-switch chain. Then our
main result is the following.

Theorem 1. Suppose that d ≥ 3. Then the graph Mn,d is connected. Equiva-
lently, any Δ-switch chain is irreducible on Gn,d.

2 Small Regular Graphs

Here we show that Δ-switches connect the set of all fragments on a given vertex
set. First we give some properties of fragments which are required in our proof.

Lemma 1. Let G be a d-regular fragment, with d ≥ 3. Then G is a connected
graph with diameter 2. ��
Remark 1. We claim only connectedness, but fragments have higher connectiv-
ity. It is not difficult to prove 2-connectedness. For each d, we have examples
with connectivity only d/2� + 1, and we believe this represents the lowest con-
nectivity. However, we make no use of this, so we do not pursue it further here.

For an even integer d ≥ 2, we construct the graph Td,d,1 as follows. Take a
copy of Kd,d with vertex bipartition (Ad, Bd), where Ad = {ai : i ∈ [d]} and
Bd = {bi : i ∈ [d]}. Let M be the matching {aibi : i ∈ [d/2]} of size d/2 between
Ad/2 and Bd/2. Form Td,d,1 from the copy of Kd,d by deleting the edges of M ,
adding a new vertex v and an edge from v to each ai and bi with i ∈ [d/2]. Then
Td,d,1 is a d-regular tripartite graph with 2d + 1 vertices and vertex tripartition
{v} ∪ Ad ∪ Bd.

For example, T2,2,1 is a 5-cycle and T4,4,1 is shown in Fig. 4.

Lemma 2. Suppose that G ∈ Gn,d where d ≥ 3 and d + 1 < n < 2(d + 1). Let
ab be an edge of G.

(i) If n < 2d then G has a triangle which contains the edge ab.
(ii) If n = 2d then ab is contained in a triangle or an induced C4 in G. Further-

more, if G is triangle-free then G ∼= Kd,d.
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b1 b2 b3 b4

a1 a2 a3 a4

v

Fig.4. The graph T4,4,1

(iii) If n = 2d + 1 then ab is contained in a triangle or an induced C4 in G.
Furthermore, if G is triangle-free then G ∼= Td,d,1. ��

We use these properties to prove the following.

Lemma 3. If d ≥ 3 and d + 1 < n < 2(d + 1) then Mn,d is connected. Equiva-
lently, the Δ-switch chain is irreducible on the set of fragments in Gn,d.

Proof (Sketch). The flip chain [8,17] is irreducible on all d-regular connected
graphs. Furthermore, Lemma 1 proves that all fragments are connected graphs.
We show that if d+1 < n < 2(d+1) then a flip can be performed using at most
three Δ-switches. That is, if G is a fragment and G′ is obtained from G by a
flip, then there is a sequence of at most three Δ-switches which takes G to G′.
The lemma then follows immediately.

There are two types of flip, as shown in Fig. 5, which we must consider sep-
arately. Solid lines are the edges and dashed lines the non-edges involved in the
flip which deletes v1v2, v3v4 and inserts v1v3, v2v4, where v1v4 is an edge. ��

v1 v2

v3 v4

(a)

v1 v2

v3 v4

(b)

Fig.5. The two types of flip

3 Creating a Clique Component Containing a Given
Vertex

The next result, which we prove in this section, is the core of our proof of
Theorem 1.

Theorem 2. Suppose that d ≥ 3 and n ≥ 2(d + 1). Given any G ∈ Gn,d and
any vertex v of G, let S = NG[v] be the closed neighbourhood of v in G. Then
there is a sequence of Δ-switches which ends in a graph G′ which has a clique
component on the vertex set S.
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Note that NG′ [v] = NG[v], that is, the closed neighbourhood of v is preserved
by this process. This property is used in Sect. 4.

3.1 Proof Strategy

Let C be the component of G containing v. We consider G(C) as being layered
from v, in a BFS manner, with layer Vi+1 above layer Vi, and with v in the bottom
layer (see Sect. 1). We prove that, provided |C| ≥ 2(d+1), there is a sequence of
Δ-switches such that V1 remains unchanged, but |E1| increases monotonically.
We repeat the following steps to add edges to E1 until G[V0 ∪ V1] ∼= Kd+1.

1. If, before any step below, the component C containing v is a fragment (that
is, if d + 1 < |C| < 2(d + 1)), use a Δ−-switch to increase the size of C to at
least 2(d + 1) without removing any edge in E1. This can be done in such a
way that G2 now contains at least one non-edge, as we will prove in Lemma 4.

2. While there is a vertex u ∈ V1 which is not adjacent to any vertex in V1 (that
is, with d′(u) = 0) make a Δ+-switch to introduce an edge incident with u in
G1. That this is always possible will be proved in Lemma 5.
After repeating this as many times as necessary, every vertex in V1 will have
an incident edge in G1. Thus, every vertex u ∈ V1 with a neighbour in V2 will
have 1 ≤ d′(u) ≤ d − 2.

3. If V2 = ∅ then G[V0∪V1] ∼= Kd+1, return the current graph as G′. Otherwise,
while there is a non-edge ab in G2, insert edges into E1 as follows:
(a) Suppose that there is a unique x ∈ V1 such that a, b ∈ V2 are in Out(x)

only. Thus id(a) = id(b) = 1. Use Lemma 6 to make a Δ+-switch which
replaces edge xb with yb for some y ∈ V1, y �= x, thus giving a pair x, y
below non-edge ab.

(b) Suppose that some pair x, y below ab is a non-edge of G1. Use a Δ+-
switch at v to switch xa, yb to xy, ab; thus increasing the number of edges
in G1, as in Lemma 7.

(c) Now suppose that every pair x, y below ab is an edge xy of G1. Choose one
such pair and use the Δ-switch at v of Lemma 8 to make xy a non-edge.
Then use a Δ-switch at v to switch xa, yb to xy, ab.

4. If � = |V2| ≥ d + 1 then there are necessarily non-edges in G2. If � = d and
|C| = 2(d + 1), then V3 = {u}, for some u, and V2 = N(u). Again there are
necessarily non-edges in G2. In either case go back to Step 3 above.

5. If we reach here, then � ≤ d and V2 is a complete graph K�. If V3 = ∅ then
|C| = 1+d+� ≤ 2d+1, a contradiction. Thus V3 �= ∅. The case |C| = 2(d+1)
was covered in Step 4, so we assume that |C| > 2(d + 1). Carry out the steps
in Lemmas 9–11 to insert a non-edge into G2, and go to Step 3 above.

3.2 Increasing the Size of C

Lemma 4. Suppose that d ≥ 3 and n > 2(d + 1). If vertex v is in a fragment
C then there is a Δ−-switch to increase the size of C to at least 2d + 3 without
changing the edges of G1. After this switch, G2 will contain a non-edge. ��
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This procedure does not increase |E1| but, as we show next, the non-edge in G2

allows us to increase |E1| with at most two further Δ-switches. Thus the process
outlined in Sect. 3.1 must terminate in a finite number of steps.

3.3 G2 Has a Non-edge

If G2 has a non-edge, we use the following lemma to increase |E1|.
Lemma 5. Suppose that d ≥ 3. Let C be the component of G which contains
v, and suppose that |C| ≥ 2(d + 1). If u ∈ V1 has d′(u) = 0 then we can use at
most two Δ-switches to insert an edge in V1 at u, without altering other edges
in E1. ��

Let ab be a non-edge of V2 above x, y ∈ V1. We will show that we can rear-
range the edges of G1 as necessary to enable a Δ-switch axvyb, replacing xa, yb
with xy, ab, inserting an edge xy into E1. Lemma 6 deals with the case where ab
lies uniquely within Out(u) for some u ∈ V1. Lemmas 7 and 8 interchange edges
and non-edges in G1 if necessary. First, we show that we can assume that every
non-adjacent pair a, b ∈ V2 is above some pair in V1.

Lemma 6. Let d ≥ 3 and d′(u) ≥ 1 for all u ∈ V1. Let a, b ∈ V2 be a pair of
distinct non-adjacent vertices such that In(a) = In(b) = {x} for some x ∈ V1.
Then there is a Δ-switch at v to move b to Out(y) for some y ∈ V1, y �= x,
without altering E2, so that a, b is above x, y.

Proof. In Fig. 6, xb is an edge and so d′(x) ≤ d − 2. Hence there is a non-edge
xw for some w ∈ V1. As d′(w) ≥ 1 there is some y ∈ V1 such that wy is an edge.
Clearly y �= x. Note that yb is a non-edge because id(b) = 1. (Pairs not shown
as an edge or non-edge can be either.) Now switch xb, wy to xw, by. ��

x w y

a b

switch

x w y

a b

Fig.6. The switch in Lemma 6, which changes N(b) ∩ V1

Lemma 7. Let ab be a non-edge of G2, above a non-edge xy in G1. Then there
is a Δ+-switch to put xy ∈ E1 without altering any other edges of E1 (Fig. 7).

Proof. Clearly axvyb is the required Δ+-switch. ��

Lemma 8. Let d ≥ 3, and let xy ∈ E1 be such that od(y) ≥ 1. Then there is a
Δ-switch which makes xy a non-edge, without changing E2 or decreasing |E1|.
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x y

a b

switch

x y

a b

Fig.7. The switch in Lemma 7 which inserts xy into E1.

Proof. Consider the graph H = G[V1 ∪V2]. Note that all u ∈ V1 have degH(u) =
d−1. Since d′(y) = d−1−od(y) ≤ d−2, but V1\{y} = d−1, there exists w ∈ V1

such that yw /∈ E1, as in Fig. 8. First suppose that xw /∈ E1. Let W = N(w)\{v}
and X = N(x)\{v, y}, so |W | = d−1, |X| = d−2. Thus there exists z ∈ W \X.
So wz ∈ E(H) and xz /∈ E(H), and there is a switch replacing xy,wz by yw, xz.
Now |E1| is unchanged but xy is a non-edge. If z ∈ V1 then two edges in G1

are added and two removed. If z ∈ V2 then one edge of G1 is added and one
is removed. No edges of G2 are changed, since only z can be in V2. Finally, if
xw ∈ E1, let W = N(w) \ {v, x} and X = N(x) \ {v, w, y}. Then |W | = d − 2
and |X| = d − 3. The argument now proceeds as above. ��

x y w

z

switch

x y w

z

Fig.8. The switch in Lemma 8, making xy a non-edge.

If ab was a non-edge above the edge xy, then both od(x), od(y) ≥ 1, so
Lemma 8 applies. After performing the Δ-switch from Lemma 8, ab will be
above the non-edge xy. Then we use Lemma 7 to re-insert xy and increase |E1|.

3.4 G2 Has No Non-edges

If G2 has no non-edges, we explain how to introduce one without changing E1.
After this we can apply the results of Sect. 3.3.

As usual, C denotes the component of G containing v. We assume that |C| ≥
2(d + 1) and that G2 is complete. If (i) V4 �= ∅ and � ≥ 2 or (ii) all vertices
of G2 have d − � edges to V3, then we can use Δ-switches to create a non-edge
in G2. This is proved in Lemmas 10 and 11 respectively. If these conditions are
not met, then Lemma 9 describes a procedure which can be repeated until all
vertices of V2 have in-degree one. As a consequence � ≥ 2, and all u ∈ V2 have
od(u) = d − (� − 1) − 1 = d − �, thus satisfying Lemma 11.
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If � ≥ d + 1 then G2 necessarily has a non-edge, so assume � ≤ d. Then
id(u) ≥ 1, for any u ∈ V2, and d′(u) = �−1 as G2 is complete. Thus od(u) ≤ d−�,
so there are at most �(d − �) edges from V2 to V3. If � = d then V3 = ∅ and so
|C| = 2d + 1, a contradiction. Similarly, if |V3| = 1 then � ≥ d as V4 = ∅, and
again we have a non-edge in G2 or a contradiction. If |C| = 2(d+1) then V2 ∪V3

is a d-regular subgraph on d + 1 vertices, which must be isomorphic to Kd+1.
But this contradicts the fact that all vertices u ∈ V2 have id(u) ≥ 1. Hence we
may assume that 1 ≤ � ≤ d − 1, |C| > 2(d + 1), and |V3| ≥ 2.

Lemma 9. Suppose that d ≥ 3 and |C| > 2(d+1). Further suppose that 1 ≤ � ≤
d − 1 and |V3| ≥ 2, with G2 complete and V4 = ∅. If some u ∈ V2 has id(u) ≥ 2
then there is a Δ+-switch which reduces id(u) by one and moves a vertex of V3

to V2, without altering E1. ��
The above process can be repeated until there is a non-edge in V2, in which

case we proceed as in Sect. 3.3, or all vertices on V2 have in-degree one. In this
case � ≥ 2, because there must be at least two vertices in V1 with out-degree at
least one, or else G[V1] = Kd and we are done.

Thus we may now assume that G2 is complete with 2 ≤ � ≤ d−1, all vertices
u ∈ V2 have id(u) = 1, and V3 �= ∅ (or else C is a fragment). Hence all u ∈ V2

have od(u) = d−1− (�−1) = d− �, and there are exactly �(d− �) edges between
V2 and V3. Use the appropriate lemma below, and proceed as in Sect. 3.3.

Lemma 10. Suppose that G2 is complete and 2 ≤ � ≤ d − 1, all vertices u ∈ V2

have id(u) = 1, and V3 �= ∅. If V4 �= ∅ then we can apply a Δ+-switch to create
a non-edge in G2 without altering E1. ��
Lemma 11. Let d ≥ 3 and |C| ≥ 2(d+1). Suppose that G2 is complete, 2 ≤ � ≤
d − 1, and all u ∈ V2 have id(u) = 1. Further suppose that V3 �= ∅ and V4 = ∅.
Then there is a Δ−-switch in G[V2 ∪ V3] which removes an edge of V2 without
altering E1. ��
Remark 2. We can bound the number of Δ-switches required to create a clique
component. The steps in Lemmas 5–8 require Θ(1) Δ-switches for each edge
inserted in G1, so Θ(d2) in total. The steps in Lemmas 9–11 also require O(1)
Δ-switches, with the exception of Lemma 9, which could possibly be executed
Θ(d) times between edge insertions in V1. Thus the total number of Δ-switches
required is Ω(d2) and O(d3). Note that this is independent of n, since at most
five layers of G are involved in the process.

4 Relabelling the Vertices of Clique Components

To complete the proof of Theorem 1, we need to show that any graph X =
(V,EX) ∈ Gn,d can be transformed to any other graph Y = (V,EY ) ∈ Gn,d with
a sequence of Δ-switches. We will do this by induction on n. It is trivially true
for n = d + 1, since Gn,d contains only one labelled graph, Kd+1. We know from
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Lemma 3 that Mn,d is connected for d + 1 < n < 2(d + 1). For n ≥ 2(d + 1), we
will assume inductively that Mn′,d is connected for all n′ < n.

Choose any v ∈ V . First, suppose that NX(v) = NY (v). We know from Sect. 3
that we can perform a sequence of Δ-switches to transform X into a graph which
is a disjoint union of a clique component on the vertex set NX [v] and a d-regular
graph X ′ with n − d − 1 vertices. Similarly, we can perform a sequence of Δ-
switches to transform Y into a disjoint union of a clique component on the vertex
set NY [v] and a d-regular graph Y ′ with n−d−1 vertices. Since NX(v) = NY (v),
it follows that X ′ and Y ′ have the same vertex set. Hence, by induction, there
is a sequence of Δ-switches that transforms X ′ into Y ′, as required.

Now suppose that NX(v) �= NY (v). Using the above procedure, we can
assume that G[NX [v]] ∼= Kd+1, and similarly for Y . We now show how to per-
form a sequence of switches, starting from X, to ensure that the neighbourhood
of v matches NY (v).

Let x ∈ NX(v) \ NY (v) and y ∈ NX(v) \ NY (v), where both x and y exist
because |NX(v)| = |NY (v)|. Since y /∈ N[v], it must be the case that y is a vertex
of X ′. Therefore, let yz be any edge of X ′ incident on y, and let w be any vertex
of N(v) \ {x}, which exists since d ≥ 3. Note that X has a triangle on the
vertices v, w, x, since G[NX [v]] ∼= Kd+1. Perform the Δ−-switch shown in Fig. 9.

v

w x
z

y
v

w x
z

y

Fig.9. Swapping x, y in NX(v)

This creates a graph, which we rename as X, such that NX(v) ← NX(v) \
{x}∪{y}. We then perform a sequence of Δ-switches to create a clique component
with vertex set NX [v], using the method of Sect. 3. After this iteration, again
renaming the new graph as X, we find that NX [v] spans a clique component
and |NX [v] ∩ NY [v]| has been increased by 1. After at most d repetitions of this
process, we have reached a new graph X such that NX(v) = NY (v). We now
follow the argument given above for that case, completing the proof.

Remark 3. It might be more efficient to incorporate this step into the procedure
described in Sect. 3. In particular, we could show that x, y can be interchanged
as soon as v and x have a common neighbour w. However, as we only need to
show that Mn,d is connected, and not that we can find shortest paths in Mn,d,
we prefer to separate these two steps, for clarity.

Remark 4. We require only one Δ-switch to interchange x, y, but we may have
to repeat this d times. Since O(d3) steps are needed to create a clique component
(see Remark 2), this gives O(d4) steps in total for each inductive step.This must
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be repeated in graphs of order n − i(d + 1) for 0 ≤ i < n/(d + 1)�, that is,
O(n/d) times. Thus in total we may need O(nd3) Δ-switches to connect X with Y .

5 Regular Graphs of Degree at Most Two

Theorem 1 excludes the cases d = 0, 1, 2. The switch chain is irreducible in
all these cases. We will briefly examine the question of connectedness of Mn,d

(equivalently, irreducibility of Δ-switch chains on Gn,d) when d = 0, 1, 2.
If d = 0 then the unique graph in Gn,0 is a labelled independent set of order n.

Hence Mn,0 is trivially connected and any Δ-switch chain is trivially irreducible.
If d = 1 then G ∈ Gn,1 is a matching and n must be even. Now |Gn,1| > 1 when
n ≥ 4 is even, but clearly no Δ-switch is possible as no element of Gn,1 contains
a triangle or a path of four edges. Thus Mn,1 is not connected when n ≥ 4 is
even (indeed, Mn,1 has no edges in this case).

For d = 2, it is not so obvious whether or not Mn,2 is connected. We will
now examine this case.

If n < 3 then Gn,2 is empty. For n ≥ 3, let ci (i = 1, 2) be the number of
cycles in G ∈ Gn,2 such that their length modulo 3 is i. Then n ≡ c1 + 2c2
(mod 3). We will say G has class (c1, c2).

If n ≥ 3 then there is at least one class in Gn,2. If n ≡ i (mod 3) (i ∈ {0, 1, 2}),
then the class (i, 0) exists. Any class is preserved under Δ-switches, since a cycle
can either be increased by length 3 by a Δ+-switch or decreased by length 3
by a Δ−-switch. Nothing else is possible. Thus two different classes cannot be
connected by Δ-switches. But any graph in the class can be transformed by Δ−-
switches to a “canonical” graph with c1 4-cycles, c2 5-cycles and (n−4c1−5c2)/3
triangles. Note that there are (k − 1)!/2 distinct labellings of the vertices of a
k-cycle.

Lemma 12. The graph Mn,2 is connected if and only if n ∈ {3, 6, 7}. Hence
any given Δ-switch chain is irreducible on Gn,2 if and only if n ∈ {3, 6, 7}. ��

We remark that for n > 10 there can be more than two classes in Gn,2. For
example, G20,2 contains the classes (5, 0) and (0, 4), as well as the two classes
(0, 1) and (2, 0) inherited from G8,2.
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9. Erdős, P., Gallai, T.: Graphs with prescribed degree of vertices. Matematikai Lapok
11, 264–274 (1960)

10. Feder, T., Guetz, A., Mihail, M., Saberi, A.: A local switch Markov chain on
given degree graphs with application in connectivity of peer-to-peer networks. In:
Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), pp. 69–76 (2006)

11. Gao, P., Wormald, N.: Uniform generation of random regular graphs. SIAM J.
Comput. 46, 1395–1427 (2017)

12. Goodreau, S.M., Kitts, J.A., Morris, M.: Birds of a feather, or friend of a friend?
Using exponential random graph models to investigate adolescent social networks.
Demography 46, 103–125 (2009)

13. Greenhill, C., Sfragara, M.: The switch Markov chain for sampling irregular graphs
and digraphs. Theoret. Comput. Sci. 719, 1–20 (2018)

14. Jin, E.M., Girvan, M., Newman, M.E.J.: Structure of growing social networks.
Phys. Rev. E 64, 046132 (2001)

15. Kannan, R., Tetali, P., Vempala, S.: Simple Markov chain algorithms for generating
random bipartite graphs and tournaments. Random Struct. Algorithms 14, 293–
308 (1999)

16. Lowcay, C., Marsland, S., McCartin, C.: Constrained switching in graphs: a con-
structive proof. In: 2013 International Conference on Signal-Image Technology and
Internet-Based Systems, pp. 599–604 (2013)

17. Mahlmann, P., Schindelhauer, C.: Peer-to-peer networks based on random trans-
formations of connected regular undirected graphs. In: Proceedings of 17th Annual
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2005),
pp. 155–164 (2005)
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1 Département d’informatique et de recherche opérationnelle (DIRO),
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Abstract. A multiply-labeled tree (or MUL-tree) is a rooted tree in
which every leaf is labeled by an element from some set X , but in which
more than one leaf may be labeled by the same element of X . MUL-trees
have applications in many fields. In phylogenetics, they can represent the
evolution of gene families, where genes are represented by the species they
belong to, the non-uniqueness of leaf-labels coming from the fact that
a given genome may contain many paralogous genes. In this paper, we
consider two problems related to the leaf-pruning (leaf removal) of MUL-
trees leading to single-labeled trees. First, given a set of MUL-trees, the
MUL-tree Set Pruning for Consistency (MULSETPC) Problem asks for
a pruning of each tree leading to a set of consistent trees, i.e. a col-
lection of label-isomorphic single-labeled trees. Second, processing each
gene tree at a time, the MUL-tree Pruning for Reconciliation (MULPR)
Problem asks for a pruning minimizing a reconciliation cost with a given
species tree. We show that MULTSETPC is NP-hard and that MULPR is
W[2]-hard when parameterized by the duplication cost. We then develop
a polynomial-time heuristic for MULPR and show its accuracy by com-
paring it to a brute-force exact method on a set of gene trees from the
Ensembl Genome Browser.

Keywords: Multilabeled tree · Phylogeny · Gene tree · Duplication ·
Reconciliation

1 Introduction

In phylogenetics, leaf-labeled rooted trees are used to represent the vertical evo-
lution of a collection X of species, genes or other units of heredity. In this context,
the leaves of a tree T are labeled with elements of X . A tree T is a multiply-
labeled tree, or MUL-tree if each element of X may label many leaves of T . A
single-labeled tree is a special case of a MUL-tree where no element of X labels
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more than one leaf of T . Single-labeled trees are usually used to represent the
evolutionary relationship between a set of species. On the other hand, a gene
tree representing the evolutionary history of a gene family, i.e. a set of homolo-
gous genes deriving from the same ancestral gene, and belonging to a set X of
species, may be represented by a tree leaf-labeled with the elements of X , a label
x indicating a gene belonging to species x [15]. Because, in addition to orthologs
(genes diverging through speciation) a gene family may also contain gene par-
alogs (deriving from duplication) in the same genome, such a representation of
a gene tree usually leads to a MUL-tree. Such trees with repeated leaf labels
are also considered within approaches to construct phylogenetic networks [17],
and have applications in other research fields such as biogeography [13], phy-
logenomics [10], the study of host-parasite cospeciation [21], data-mining [4] or
string-matching [5].

Despite this variety of application contexts, MUL-trees remain relatively
little studied compared with single-labeled trees, mainly due to the fact that
many problems that are tractable for single-labeled trees become NP-hard when
extended to MUL-trees. For example, most generalizations of the well-known
greedy consensus tree methods (strict, majority rule and singular majority rule
consensus) [3] are NP-hard in the case of MUL-trees [6,16,19].

In this paper, we focus on pruning (removing) leaves of MUL-trees in a
way leading to single-labeled trees satisfying some properties. First, given a
set of MUL-trees, we ask for a leaf-pruning of each tree leading to a set of
consistent trees, i.e. a collection of label-isomorphic single-labeled trees. We call
this problem the MUL-tree Set Pruning for Consistency (MULSETPC) Problem.
Second, we process each tree at a time (gene tree), and we ask for a pruning
minimizing a reconciliation cost with a given species tree. We call this problem
the MUL-tree Pruning for Reconciliation (MULPR) Problem.

A straightforward application is to extract, from a set of gene trees, a coherent
topological information that can then be used to produce a supertree. In a phylo-
genetic inferrence perspective this may lead to the prediction of the underlying
species tree [2,20,23,25]. Species tree reconstruction from a set of MUL-trees
is the purpose in [24] where a problem related to MULSETPC, but relying on
pruning subtrees rather than individual leaves, has been shown NP-hard [24].
A second application is the Super-Reconciliation [8,9] problem aiming at recon-
structing the evolutionary history of a set of syntenic regions, i.e. homologous
regions in a set of genomes or chromosomes that have evolved from a common
ancestor through rearrangements, but also segmental duplication and loss, and
possibly Horizontal Gene Transfer (HGT) i.e. the exchange of genetic material
between species. The model considered in [8,9] does not allow for tandem dupli-
cations, while in real datasets, syntenies usually contain gene duplicates. Coping
with this limitation is done, for the considered biological application on the opi-
oid receptor genes [9], by manually pruning the gene trees seeking for a solution
to the MULSETPC Problem. Considering the MULPR Problem on each gene tree
independently, i.e. minimizing the reconciliation cost of a pruned gene tree with
a given species tree, would be an alternative way of handling the problem of
tandem duplications.
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The paper is organized as follows. We begin by introducing the problems in
Sect. 2. We then present our complexity results by showing in Sect. 3 that the
MULTSETPC Problem is NP-complete and in Sect. 4 that the MULPR Problem
is W[2]-hard when parameterized by the duplication cost. We then, in Sect. 5,
develop a polynomial-time greedy heuristic for MULPR, and show its accuracy
in Sect. 6 by comparing it to a brute-force exact method on a set of gene trees
from the Ensembl Genome Browser. For space reason, most of the proofs are
omitted.

2 Notations

All trees are considered binary and rooted, i.e. with a special node considered as
the root. We denote by r(T ) the root, by V (T ) the node set, by L(T ) ⊆ V (T )
the leaf set and by E(T ) the edge set of a tree T . The size of a tree T denotes
the number n = |L(T )| of its leaves. An internal node is a node of V (T ) \ L(T ).
An edge of E(T ) is written as a pair (x, y) of two adjacent nodes, where x, the
closest to the root, is called the parent of y and y is called a child of x. The root
is the only node of V (T ) with no parent.

In a binary tree, each internal node x has two children that we denote xl and
xr, for “left” and “right” child of x, respectively. Notice that trees are unordered,
and thus left and right is just a convenient notation for an arbitrary ordering of
the children of x. For example, in Fig. 1, left and right will refer to the way the
tree is represented (in the tree T , node 1 has left child 1l = 2 and right child
1r = 4). The node xl (respec. xr) is called the sibling of xr (respec. xl). A node
x is an ancestor of a node y if x is on the path from y to the root; two nodes x
and y are separated if no one is an ancestor of the other. Given a node x of T ,
we write T [x] the subtree of T rooted at x.

The lowest common ancestor (LCA) in T of a subset L′ of L(T ), denoted
lcaT (L′), is the ancestor common to all nodes in L′ that is the most distant from
the root.

Pruning a leaf y of T consists in removing the leaf y together with its parent
x. If x is the root, then the sibling v of y becomes the new root; otherwise, v
is connected to the parent u of x, in other words the edges (u, x) and (x, y)
are removed and an edge (u, v) is created (see trees T1 and T1,2 in Fig. 1 for an
illustration of a leaf pruning). Conversely, grafting a leaf y consists in subdividing
an edge (u, v) of T , thereby creating a new node x between u and v, then adding
a leaf y with parent x. Given a binary tree T , an extension of T is a tree R
obtained, beginning from T , by performing a series of leaf grafting.

In this paper, we consider leaf-labeled trees, i.e. trees with each leaf labeled
with an element of the leaf-label-set L̃(T ) = X . We consider multilabeled trees
or MUL-trees, i.e. trees where each element of X may label more than one leaf
of a tree; a single-labeled tree is a special case of a MUL-tree where leaf labels
are pairwise different.

We say that a tree T displays a tree T ′ if there is a subset L′ of L(T ) such
that the tree T |L′ , obtained by pruning the leaves of L′ is label-isomorphic to
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T ′. A perfect pruning of T is a single-labeled tree T ∗ displayed by T such that
L̃(T ∗) = L̃(T ). Notice that, as T ∗ can be obtained from T by a set of leaf
pruning, each node in T ∗ has a corresponding node in T . In other words, we can
consider that V (T ∗) ⊆ V (T ). A node x ∈ V (T ) \ V (T ∗) is said to be removed
from T . For example in Fig. 1, T1,2 displays both T1 and T2 after pruning; the
node u of T1,2 corresponds to the nodes u in both T1 and T2; the node x is
removed from T1.

Fig. 1. (1) The MULSETPC Problem illustrated for two trees T1 and T2 on X =
{a, b, c, d, e}. The dotted and gray letters represent the leaf pruning in T1 and T2

leading to two consistent trees, represented by the tree T1,2. (2) The MULPR Problem
illustrated for the gene tree T and the species tree S. Letters at internal nodes of T
represent the genome-labeling corresponding to the lca-mapping, while rectangles and
circles represent the event-labeling of T corresponding to the lca-labeling, a rectangle
representing a duplication and a circle a speciation event. We have D(T, S) = 5. The
dotted and gray letters represent the leaf pruning leading to a perfect pruning T ∗ of
minimum duplication cost. The only duplication remaining in T ∗ is the one filled in
white.

A set M of single-labeled trees with possibly overlapping leaf-label-sets is
consistent if we can find a tree on the union of leaf-label-sets displaying them all.
For example, T1 and T2 after pruning in Fig. 1 are consistent as they are displayed
by T1,2. The consistency problem of rooted trees has been largely studied. For
trees to be consistent, each triplet of data should exhibit the same topology in all
trees. The BUILD algorithm [1] can be used to test, in polynomial-time, whether
a collection of rooted trees is consistent.

2.1 Gene Tree, Species Tree and Reconciliation

A tree is a species tree if its set of leaves represent species, and is a gene tree if
its set of leaves represent genes. We will make no difference between a leaf and
the unit (genome or gene) it refers to. Thus, a tree S is a species tree if L(S) = Σ
is a set of species, and a tree T is a gene tree if L(T ) = Γ is a gene family, i.e.
a set of genes where each gene x of Γ belongs to a species s(x) ∈ Σ, called the
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genome-labeling of x. Notice that any marker or unit can be considered instead
of genes, as the theoretical results and algorithmic developments of this paper do
not consider any specific feature about genes. Moreover, in this paper, the genes
are simply identified by the genome they belong to. More precisely, two genes x
and y of Γ such that s(x) = s(y) = s are identified by two leaves of T labeled
s. In other words, L̃(T ) = X where X ⊆ Σ is the set of genomes with a gene
in Γ . A gene tree is a MUL-tree and a species tree is a single-labeled tree. For
example, in Fig. 1, the three leaves of the gene tree T labeled a correspond to
three genes belonging to genome a, represented as one leaf of the species tree S.

Each internal node of S refers to a speciation event at the origin of the
bifurcation, while each internal node of T may refer to a speciation (Spec), a
duplication (Dup), a HGT event or other events, though in this paper we restrict
the evolutionary model to speciations and duplications. When the type of event
is known for each internal node, the gene tree T is said to be event-labeled . Infer-
ring the event labeling of a gene tree T and the scenario of gene gain and loss
explaining the difference between T and S is the purpose of the gene-tree-species-
tree-reconciliation approach [12,14]. A Reconciliation of T with respect to S is
usually defined as an event-labeled extension of T , where added branches repre-
sent lost (or missing) genes. In particular, a reconciliation minimizing the number
D(T, S) of Duplications (the D-distance) or the number DL(T, S) of Duplica-
tions and Losses (the DL-distance) can be computed from the lca-labeling of T ,
defined as follows (see an illustration on the trees T and S of Fig. 1).

Definition 1 (DL-Reconciliation). The lca-labeling of a gene tree T with
respect to a species tree S (or simply lca-labeling of T if no ambiguity) is the
triplet 〈T, s, elca〉 where s is an extension of the genome labeling to the internal
nodes of T defined as s(x) = lcaS({s(x′) : x′ ∈ L(T [x])}) (s is called the lca-
mapping), and elca is the function from V (T ) \ L(T ) to {Spe,Dup} such that,
for any x ∈ V (T ) \ L(T ):

– If s(xl) and s(xr) are separated in S then elca(x) = Spe;
– otherwise elca(x) = Dup, representing a duplication in s(x).

A well known result of the reconciliation literature is that the D-distance is
the number of nodes of T labeled as duplication from the lca-mapping, more
precisely:

D(T, S) = |{x ∈ V (T ) \ L(T ) : elca(x) = Dup}|
Moreover, both the D-distance and the DL-distance can be computed in

linear time [26].

2.2 Problem Statements

We consider two problems related to MUL-tree pruning. First, let M = {T1≤i≤n}
be a set of trees where each Ti is a tree on Xi, i.e. such that L̃(Ti) = Xi. Then
M is said to be a set of trees on X = ∪1≤i≤nXi. The MULSETPC Problem for
a set of MUL-trees, is defined as follows (Fig. 1(1)).
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MUL-tree Set Pruning for Consistency (MULSETPC) Problem:
Instance: A set M of MUL-trees on X .
Question: ∃? a perfect pruning of each tree of M resulting in a set of consistent
trees.

Second, focusing on a single tree, we seek for a perfect pruning minimizing
the D-distance with respect to a given species tree S. The MULPR Problem (in
its decision version) is formally defined as follows (Fig. 1(2)).

MUL-tree Pruning for Reconciliation (MULPR) Problem:
Instance: A MUL-tree T on X , a species tree S on X , and a positive integer k.
Question: ∃? a perfect pruning of T having D-distance at most k with respect
to S.

We begin by analysing, in the next two sections, the complexity of
MULSETPC and MULPR. We then present a heuristic for the optimization ver-
sion of MULPR.

3 Complexity of MUL-Tree Set Pruning for Consistency

In this section, we show, by reducing from the 3-SAT Problem, that MULSETPC
is NP-complete. First, observe that the MULSETPC Problem is in NP. In fact,
given a choice of leaves to prune in each tree to obtain perfect prunings, the
pruned trees can be obtained in polynomial time, and the BUILD algorithm [1]
can then be used, also in polynomial time, to check whether the pruned trees
are consistent.

We recall here the definition of the 3-SAT Problem.

Problem 1. 3-SAT

Instance: A set of clauses C = (C1 ∧ C2 ∧ · · · ∧ Cz) on a finite set �L =
{l1, l2, . . . , lm} of variables where each Ci, 1 ≤ i ≤ z, is a clause of the form
(x ∨ y ∨ w) with {x, y, w} ⊆ {l1, l2, . . . , lm, l1, l2, . . . , lm}.

Question: ∃? a truth assignment satisfying C.

We recall that x ∈ {l1, l2, . . . , lm, l1, l2, . . . , lm} is a literal. Given an instance
I = (C, �L) of the 3-SAT problem, we compute in polynomial time a corresponding
instance I ′ = (M,X ) of MULSETPC. First, the leaf-label-set X is computed as
follows:

– For each literal x ∈ {l1, l2, . . . , lm, l1, l2, . . . , lm}, X contains a label x;
– For each clause Ci ∈ C, 1 ≤ i ≤ z, X contains a label Vi, a label Fi and a

label hi.

Now, the set M of MUL-trees is computed as follows:

– We add to M, for each variable lj ∈ �L, 1 ≤ j ≤ m, the following MUL-trees
Tl,j,1, Tl,j,2, Tl,j,3:
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Tl,j,1

lj F1
... Fz

V1
...

Vz
lj

Tl,j,2

lj F1
... Fz

V1
...

Vz
lj

Tl,j,3

lj F1
... Fz

V1
...

Vz Vz ...
V1 Fz ... F1 lj

We also add, for each clause Ci = (x ∨ y ∨ w) ∈ C, 1 ≤ i ≤ z, the following
MUL-trees TC,i,1, TC,i,2:

TC,i,1

x w hi y
Fi

Vi w
Vi Fi w hi

y

TC,i,2

w hi
y

We next show that I is a satisfiable instance of the 3-SAT problem if and
only if its corresponding instance I ′ of MULSETPC admits a perfect pruning in
a set of consistent trees. The idea is that a pruning of the trees Tl,j,1, Tl,j,2, Tl,j,3,
with 1 ≤ j ≤ m, encodes a truth assignment to the variable lj . In particular,
we can show that a perfect pruning of Tl,j,3 removes either all the leaves with
labels F1, . . . , Fz, V1, . . . , Vz of the left subtree (corresponding to variable lj set
to true) or all the leaves with labels F1, . . . , Fz, V1, . . . , Vz of the right subtree
(corresponding to the variable lj set to false). Then we show that, in order to
obtain a perfect pruning of TC,i,1, 1 ≤ i ≤ z, consistent with the perfect pruning
of other subtrees in I ′, there must exist a perfect pruning of a tree Tl,j,3, with
1 ≤ j ≤ m, associated with a literal x ∈ {lj , lj} in Ci that encodes an assignment
that satisfies x.

Lemma 1. Let I be a satisfiable instance of the 3-SAT problem. Then its cor-
responding instance I ′ of MULSETPC admits a perfect pruning leading to a set
of consistent trees.

Lemma 2. Let I be an unsatisfiable instance of the 3-SAT problem. Then its
corresponding instance I ′ of MULSETPC does not admit a perfect pruning leading
to a set of consistent trees.

Note that, by construction, the instances of MULSETPC in the reduction
only contain trees with at most three leaves labeled by the same label. From
this remark, and since 3-SAT is NP-complete [18], these two lemmas lead to the
following result.
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Theorem 1. The MULSETPC Problem is NP-complete even if each label is
present at most 3 times in each tree.

4 Complexity of MUL-Tree Pruning for Reconciliation

In this section, we study the parameterized complexity of MULPR. We denote by
k the D-distance between a perfect pruning of T and S and we prove that MULPR
is W[2]-hard when parameterized by k, by giving a parameterized reduction
from the SET COVER Problem. We refer the reader to [7,11] for details on
parameterized reductions. We recall here the definition of SET COVER.

Problem 2. SET COVER

Instance: A set U = {u1, . . . , uz} of z elements and a collection I = {I1, . . . , Im}
of sets, where each Ii, 1 ≤ i ≤ m, is a subset of U , a positive integer h.

Question: ∃? a collection I ′ ⊆ I consisting of at most h subsets such that for
each element ui ∈ U , with 1 ≤ i ≤ z, there exists a set in I ′ containing ui.

Next, given an instance of SET COVER, we construct a corresponding
instance of MULPR. We first define the leaf-label-set X as follows:

X = {a, b, c} ∪ {li : 1 ≤ i ≤ z}
Now, the species tree S is a rooted caterpillar tree on X , with the leaf-order

a, l1, l2, . . . , lz, b, c:
S

a l1 ... lz
b c

The MUL-tree T is built from a set of subtrees that are then connected.
First, for each set Ii, with 1 ≤ i ≤ m, we define a subtree T (Ii), which is rooted
caterpillar on leaf-set Li = {lj : uj ∈ Ii} such that T (Ii) = S|Li. Assuming
Li = {li,1, . . . , li,t}, it holds that

T (Ii)

li,1 li,2 ... li,t

Finally, the tree T is defined by connecting subtrees T (Ii), 1 ≤ i ≤ m,
together with leaves labeled by a, b, c, to a path from the root to the leaf labeled
by b; this path is called the spine of T . The tree T is defined as follows:

T

b c T (I1)
...

T (Im)
a

First, we prove a property of tree T and of a pruning of T .
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Lemma 3. Given an instance (U, I) of SET COVER, consider the corresponding
instance (T, S) of MULPR. Then (1) in a perfect pruning T ∗ of T , each node on
the spine of T ∗ between the ancestor of b, c (not included) and the root of T ∗ is
a duplication and (2) each internal node of a subtree T ∗(Ii), 1 ≤ i ≤ m, in T ∗

is a speciation.

We are now able to prove the main result of the reduction. The idea is that
the pruning removes all the subtrees T (Ii), 1 ≤ i ≤ m, that do not encode sets
in the set cover.

Lemma 4. Given an instance (U, I) of SET COVER, consider the corresponding
instance (T, S) of MULPR. There exists a cover I ′ of U consisting of at most h
sets if and only if there exists a perfect pruning T ∗ of T that induces at most
h + 1 duplications.

Lemma 4 shows that we have designed a parameterized reduction from SET
COVER, which is W[2]-hard when parameterized by h [22]. The described reduc-
tion is also a polynomial time many-one reduction. Thus it allows us to prove
that MULPR is NP-hard, since SET COVER is known to be NP-hard [18], and
W[2]-hard when parameterized by k.

Theorem 2. MULPR is NP-hard and W[2]-hard when parameterized by k.

5 A Greedy Heuristic for the MULPR Problem

In this section, we present a polynomial time heuristic for the MULPR Problem.
It is based on a greedy approach selecting an appropriate duplication node x in
the event-labeled gene tree T to be removed or turned into a speciation node
(by removing leaves of T [x]), and iterating until no duplication can be removed
or turned into speciation anymore.

Algorithm 1: MULPR(T, S)

1 CurrentMinDupTree ← T ; CurrentMinDup ← D(T, S);
2 Do
3 MinDup ← CurrentMinDup
4 MinDupTree ← CurrentMinDupTree
5 For all duplication nodes x of the lca-labeling 〈MinDupTree, s, elca〉

Do
6 If DupRem(T, S, x) Then
7 T ′ ← DupRemTree(T, S, x)
8 If D(T ′, S) < CurrentMinDup Then
9 CurrentMinDup ← D(T ′, S);

CurrentMinDupTree ← T ′
10

11

12

13 While CurrentMinDup �= MinDup;
14 Return CurrentMinDupTree
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More precisely, the algorithm is based on a resolution of the following
problem.

MUL-tree Duplication Removal (DupRem) Problem:

Instance: An lca-labeling 〈T, s, elca〉 of T with respect to S and a duplication
node x, i.e. a node of T such that elca(x) = Dup.

Question: ∃? a perfect pruning T ∗ of T obtained by fixing x, i.e. such that x is
either removed (node removal) or converted to a speciation node (label fixing)
in the lca-labeling of T ∗.

At each step, Algorithm 1 tests all the duplication nodes x of T and fixes the
one leading, after fixing x, to a tree T ′ with the smallest D(T ′, S) value. The
algorithm stops when no duplication can be fixed. It uses the DupRem Algorithm
returning the boolean value corresponding to the answer to the DupRem Problem
for a given duplication node x of T , and the DupRemTree Algorithm returning
the tree after fixing x, defined below.

5.1 Solving the DupRem Problem

The heart of the MULTPR Algorithm is the resolution of the DupRem decision
problem for a given duplication node x of T . Denote s = s(x) and α, β the chil-
dren of s. Deciding whether x can be fixed requires considering all the following
possibilities for leaves removal (the DupRem Algorithm):

• Removal of a full subtree T [xi], where i ∈ {l, r}, inducing the removal of the
node x. This is possible if L̃(T [xi]) ⊆ L̃(T ′) where T ′ is the tree T with T [xi]
removed. For example, in Fig. 1, the duplication node 3 of T can be removed
by removing the whole left subtree of 3, as L̃(T [3l]) = {a, d}, and both a and
d are present elsewhere in the tree.

• Pruning leaves in T [xl] and T [xr] leading to two subtrees T ′[xl] and T ′[xr]
containing only leaf labels in S[α] for one subtree, and only leaf labels in
S[β] for the other subtree, which makes x a speciation node. For example,
in Fig. 1, the duplication node 1 of T can be turned to a speciation node by
pruning the leaves labeled d, e and f in the subtree T [1l].

• Pruning leaves of T [xl] and T [xr] so that x is mapped lower in the species
tree (either to α or β), in which case the algorithm is called recursively to test
whether x can be converted to a speciation mapped lower than s. For example,
in Fig. 1, the duplication node 2 of T mapped to k can neither be removed
nor turned to a speciation node, but can be mapped to i by removing the
leaves of T [2] labeled by d, e and f . The node is then turned to a speciation
node in a next iteration of the algorithm.

Lemma 5. Given an lca-labeling 〈T, s, elca〉 of T with respect to S and a dupli-
cation node x of T , DupRem Algorithm returns True if and only if the answer
to the DupRem Problem with input (〈T, s, elca〉, x) is True.
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Let n be the size of T (its number of leaves). To show that the DupRem
Algorithm has linear running time, we show that it is possible to preprocess
the trees T and S in O(n) time so that we can then verify in O(1) time if
pruning a set of leaves of T [x], for a given node x, leads to a tree on L̃(T ) = X .
First, notice that L(T ), L(T [xl]) and L(T [xr]) can be computed in O(n) with
a postorder traversal of T . Now, consider a triplet < B1, B2, B3 > of boolean
values assigned to each node v of S[s(x)], defined as follows:

– B1 is set to True if the tree T ′ obtained by pruning all the leaves of T [xl]
with labels in L̃(S[v]) is leaf-labeled by X and false otherwise;

– B2 is set to True if the tree T ′ obtained by pruning all leaves of T [xr] with
labels in L̃(S[v]) is leaf-labeled by X and false otherwise;

– B3 is set to True if the tree T ′ obtained by pruning all leaves of T [xl] and
T [xr] with labels in L̃(S[v]) is leaf-labeled by X and false otherwise.

Lemma 6. Given an lca-labeling 〈T, s, elca〉 of T with respect to S and an inter-
nal node x of T , the triplet < B1, B2, B3 > associated to x can be computed in
O(n) time.

Rewriting the conditions of the DupRem Algorithm using the values B1, B2,
B3 associated to the considered node x, we are now able to prove its linear-time
computation.

Lemma 7. The DupRem Algorithm computes a solution of DupRem in O(n)
time.

5.2 The DupRemTree Algorithm

For a given duplication node x of T for which the DupRem Algorithm returns
True, many pruning of T may lead to fixing x. For example, in Fig. 1, the duplica-
tion node 1 of T can be fixed, either by removing its right subtree, or by pruning
the leaves labeled d, e and f in its left subtree. Notice that different pruning
may lead to trees of different duplication cost, as fixing a node x may fix other
duplications. For example, fixing the node 3 of T in Fig. 1 by pruning its left
subtree leads to fixing the node 5 (5 is removed). The DupRemTree Algorithm
tests all the possibilities (i.e. all the conditions in the DupRem Algorithm leading
to the answer True), and chooses the pruning of minimum duplication cost, i.e.
the one leading to fixing the most duplication nodes.

We are now ready to prove the main result of this section.

Theorem 3. Algorithm 1 computes a pruning T ∗ of T in O(nd2) time, where
n is the size of T and d is the number of duplication nodes of the lca-labeling
〈T, s, elca〉.

Proof. At each step, computing the number of duplication nodes can be done
in O(n) [26]. For each of the d duplication nodes, Algorithm 1 applies the
DupRemTree Algorithm for fixing (if it is possible) the largest number of dupli-
cation nodes. Finding if a certain duplication node can be fixed (the DupRem
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Algorithm) can be done in O(n) time from Lemma 7 and, if it is the case, prune
the tree to fix it (the DupRemTree Algorithm) can also be done in time O(n).
Therefore, each iteration of Algorithm 1 can be computed in time O(nd). In the
worst case, Algorithm 1 executes d iterations and fixes one duplication node for
each iteration, thus the overall time complexity of Algorithm 1 is O(nd2). �

5.3 Gene Tree Preprocessing

To optimize Algorithm 1, we start by preprocessing T by removing duplication
nodes for which the answer to the DupRem problem is obviously True, and such
that there exists an optimal prefect pruning T ∗ of T with those duplications
removed. It is the case, for example, of the lowest duplications inside a termi-
nal branch of a species tree, such as the duplication 5 in the tree T of Fig. 1
leading to two gene copies in genome a. Obviously, removing one a or the other
is equivalently good. We use Algorithm 2 to preprocess the tree T by calling
PreprocessT (T, S, r(T )).

It is straightfoward to see that such leaf pruning is the optimal way to prune
these subtrees and that it can be done in time O(nd) where n is the size of T
and d is the number of duplication nodes of the lca-labeling 〈T, s, elca〉.

Algorithm 2: PreprocessT (T, S, x)

1 If x is not a leaf Then
2 PreprocessT (T, S, xl)
3 PreprocessT (T, S, xr)
4 If x is a duplication node of the lca-labeling 〈T, s, elca〉 Then
5 If D(T [xl], S) == 0 and D(T [xr], S) == 0 Then
6 If T [xl] displays T [xr] Then
7 Prune all leaves of T [xr] in T
8

9 If T [xr] displays T [xl] Then
10 Prune all leaves of T [xl] in T
11

12

13

14

6 Results

We run the MULPR heuristic on trees from the Ensembl Genome Browser, the
goal being to test its accuracy against the optimal solution computed by sim-
ply trying all possible perfect prunings T ′ of T after preprocessing T using
Algorithm 2.

We tested our heuristic on a set of silverside fish gene trees from the Ensembl
Genome Browser. To keep the execution time reasonable, we restricted the trees
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to a set of 12 species (Nothobranchius furzeri, Kryptolebias marmoratus, Fun-
dulus heteroclitus, Cyprinodon variegatus, Xiphophorus couchianus, Xiphophorus
maculatus, Gambusia affinis, Poecilia mexicana, Poecilia formosa, Poecilia latip-
inna, Poecilia reticulata and Oryzias melastigma). Out of the Ensembl Genome
Browser gene trees (release 102), 16369 trees contain at least two of our species.
We kept all those gene trees, pruned all the leaves that do not belong to our
selected species, preprocessed them and then computed the solution obtained by
MULPR (Algorithm 1) for each tree. The total number of duplication nodes for
all the trees after the preprocessing was 49756. This number decreased to 22532
with the MULPR algorithm.

Due to the exponential running time of the exact algorithm (described above)
we were able to run it in a reasonable time only on trees with at most 32 leaves
after the preprocessing. This reduces the set of trees from 16369 to 15089 trees.
Among those, the preprocessing returned a tree with at least one duplication
node for 11902 trees, for which MULPR returned an optimal solution 90.2% of
the time. The solution returned by the preprocessing was optimal for 10519 trees.
Out of the 4570 trees for which the preprocessing did not returned an optimal
solution, MULPR returned an optimal solution 3407 times so for 74.6% of those
trees. It returned a solution with one more duplication node than the optimal
solution for 21.3% of those trees, a solution with two more duplication nodes for
3.7% of those trees, and it never returned a solution with more than four more
duplication nodes.

Figure 2 illustrates the accuracy of the heuristic on the considered trees,
depending on the number of duplication nodes of the input trees after pre-
processing. More precisely, for a given number of duplications d (x-axis), let

Fig. 2. Results of the exact and MULPR algorithms depending on the number of dupli-
cations (x-axis) in the input trees, after preprocessing (see the text for details). The
y-axis gives the mean ratio ρ(d) of the number of duplication nodes in the optimal
pruning to the number of duplication nodes in the pruning returned by MULPR, for
trees with d duplications after preprocessing (see text for details).
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Td = {T1, · · · , Tkd
} be the set of trees with d duplications remaining after the

proprocessing and let E(Ti) and MULPR(Ti) be the Duplication-cost of the
perfect pruning of Ti obtained, respectively, with the exact and MULPR algo-
rithms. Let τ(Ti) = E(Ti)

MULPR(Ti)
if MULPR(Ti) �= 0 and τ(Ti) = 1 otherwise (in

that case we consider the ratio to be 1 because the solution is optimal). Then

ρ(d) =
(
∑

1≤i≤kd
τ(Ti))

kd
(y-axis).

We see that the accuracy of the heuristic does decrease when the number
of duplication nodes increases, but it still managed to return good solutions
having most of the times less than 40% more duplication nodes than the optimal
solution.

7 Conclusion

We have considered two problems related to the leaf-pruning of MUL-trees lead-
ing to single-labeled trees. MULSETPC asks for a pruning of each tree in a
set of MUL-trees leading to a set of consistent trees, while MULPR asks for a
pruning of a MUL-tree that minimizes the duplication cost with a given species
tree. We have shown that MULTSETPC is NP-complete and that MULPR is
W[2]-hard when parameterized by the duplication cost. We have developed a
polynomial-time heuristic for MULPR and have shown that the method is accu-
rate, presenting experiments on a set of gene trees from the Ensembl Genome
Browser.

There are some interesting open problems related to the complexity of
MULSETPC and MULPR. First, what is the computational complexity of
MULSETPC when the set M consists of a constant number of trees? For MULPR,
our parameterized reduction can be modified to prove that the problem is not
approximable within factor (1 − ε) ln |X |, for any ε > 0, but it is not clear
whether there are approximation algorithms reaching a ln |X | approximation
factor. Finally, since our heuristic for MULPR returns in many cases optimal or
near-optimal solutions, it would be nice to understand if there are restrictions
of the problem for which the heuristic is optimal.

From a biological point of view, it is important to further investigate whether
the genes remaining after pruning are those best representing the evolution and
functional conservation of gene families. While, for the MULSETPC Problem,
this would allow applications for the reconstruction of species trees or synteny
trees from gene families with duplicates, for the MULPR Problem could be used
for the development of eukaryote-wide Hidden Markov Models (HMM), to allow
most reliable protein identification.

Availability. Algorithm implementation available at http://www.iro.umontreal.ca/
∼mabrouk/.

http://www.iro.umontreal.ca/{~}mabrouk/
http://www.iro.umontreal.ca/{~}mabrouk/
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Abstract. We study a primitive vehicle routing-type problem in which a fleet
of n unit speed robots start from a point within a non-obtuse triangle Δ, where
n ∈ {1, 2, 3}. The goal is to design robots’ trajectories so as to visit all edges
of the triangle with the smallest visitation time makespan. We begin our study
by introducing a framework for subdividing Δ into regions with respect to the
type of optimal trajectory that each point P admits, pertaining to the order that
edges are visited and to how the cost of the minimum makespan Rn(P ) is deter-
mined, for n ∈ {1, 2, 3}. These subdivisions are the starting points for our
main result, which is to study makespan trade-offs with respect to the size of
the fleet. In particular, we define Rn,m(Δ) = maxP∈Δ Rn(P )/Rm(P ), and
we prove that, over all non-obtuse triangles Δ: (i) R1,3(Δ) ranges from

√
10 to

4, (ii) R2,3(Δ) ranges from
√

2 to 2, and (iii) R1,2(Δ) ranges from 5/2 to 3. In
every case, we pinpoint the starting points within every triangle Δ that maximize
Rn,m(Δ), as well as we identify the triangles that determine all infΔ Rn,m(Δ)
and supΔ Rn,m(Δ) over the set of non-obtuse triangles.

Keywords: 2-dimensional search and navigation · Vehicle routing · Triangle ·
Make-span · Trade-offs

1 Introduction

Vehicle routing problems form a decades old paradigm of combinatorial optimization
questions. In the simplest form, the input is a fleet of robots (vehicles) with some start-
ing locations, together with stationary targets that need to be visited (served). Feasible
solutions are robots’ trajectories that eventually visit every target, while the objective is
to minimize either the total length of traversed trajectories or the time that the last target
is visited.

Vehicle routing problems are typically NP-hard in the number of targets. The case of
1 robot in a discrete topology corresponds to the celebrated Traveling Salesman Prob-
lem whose variations are treated in numerous papers and books. Similarly, numerous
vehicle routing-type problems have been proposed and studied, varying with respect to
the number of robots, the domain’s topology and the solutions’ specs, among others.
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A full version of the paper is available on arXiv [10].
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We deviate from all previous approaches and we focus on efficiency trade-offs, with
respect to the fleet size, of a seemingly simple geometric variation of a vehicle routing-
type problem in which targets are the edges of a non-obtuse triangle. The optimization
problem of visiting all these three targets (edges), with either 1, 2 or 3 robots, is com-
putationally degenerate. Indeed, even in the most interesting case of 1 robot, an optimal
solution for a given starting point can be found by comparing a small number of can-
didate optimal trajectories (that can be efficiently constructed geometrically). From a
combinatorial geometric perspective, however, the question of characterizing the points
of an arbitrary non-obtuse triangle with respect to optimal trajectories they admit when
served by 1 or 2 robots, e.g. the order that targets are visited, is far from trivial (and in
fact it is still eluding us in its generality).

In the same direction, we ask a more general question: Given an arbitrary non-
obtuse triangle, what is the worst-case trade-off ratio of the cost of serving its edges
with different number of robots, over all starting points? Moreover, what is the smallest
and what is the largest such value as we range over all non-obtuse triangles? Our main
contributions pertain to the development of a technical geometric framework that allows
us to pinpoint exactly the best-case and worst-case non-obtuse triangles, along with the
worst-case starting points that are responsible for the extreme values of these trade-off
ratios. To the best of our knowledge, the study of efficiency trade-offs with respect to
fleet sizes is novel, at least for vehicle routing type problems or even in the realm of
combinatorial geometry.

1.1 Motivation and Related Work

Our problem is related to a number of topics including vehicle routing problems, the
(geometric) traveling salesman problem, and search and exploration games. Indeed, the
main motivation for our problem comes from the so-called shoreline search problem,
first introduced in [4]. In this problem, a unit robot is searching for a hidden line on
the plane (unlike our problem in which the triangle edges are visible). The objective
is to visit the line as fast as possible, relative to the distance of the line to the initial
placement of the robot. The best algorithm known for this problem has performance of
roughly 13.81, and only very weak (unconditional) lower bounds are known [3]. Only
recently, the problem of searching with multiple robots was revisited, and new lower
bounds were proven in [1,8].

As it is common in online problems, a typical argument for a lower bound for the
shoreline problem lets an arbitrary algorithm perform for a certain time until the hidden
item is placed at a location that cannot have been visited before by the robot. The lower
bound then is obtained by adding the elapsed time with the distance of the robot to the
hidden item (the line), since at this point one may only assume that the (online) algo-
rithm has full knowledge of the input. Applying this strategy to the shoreline problem,
one is left with the problem of identifying a number of lines, as close as possible to the
starting point of the robot, and then computing the shortest trajectory of the robot that
could visit them all, exactly as in our problem. In the simplest configuration that could
result strong bounds, one would identify three lines, forming a non-obtuse triangle. The
latter is also the motivating reason we restricted our attention to non-obtuse triangles
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(a second reason has to do with the optimal visitation cost of 3 robots, which for non-
obtuse triangles is defined as the maximum distance over all triangle edges, treated as
lines).

Our problem could also be classified as a vehicle routing-type problem, the first of
which was introduced in [6] more than 60 years ago. The objective in vehicle routing
problems is typically to minimize the visitation time (makespan) or the total distance
traveled for serving a number of targets given a fleet of (usually capacitated) robots,
see surveys [12,15] for early results. Even though the underlying domain is usually
discrete, geometric vehicle type problems have been studied extensively too, e.g. in [7].
Over time, the number of proposed vehicle routing variations is so vast that surveys for
the problem are commonly subject-focused; see surveys [11,13,14] for three relatively
recent examples.

Famously, vehicle routing problems generalize the celebrated traveling salesman
problem (TSP) where a number of targets need to be toured efficiently by one vehicle.
Similarly to vehicle routing, TSP has seen numerous variations, including geometric [2,
9], where in the latter work targets are lines. The natural extension of the problem to
multiple vehicles is known as the multiple traveling salesman problem [5], a relaxation
to vehicle routing problems where vehicles are un-capacitated. The latter problem has
also seen variations where the initial deployment of the vehicles is either from a single
location (single depot), as in our problem, or from multiple locations.

1.2 A Note on Our Contributions and Paper Organization

We introduce and study a novel concept of efficiency/fleet size trade-offs in a special
geometric vehicle routing-type problem that we believe is interesting in its own right.
Deviating from the standard combinatorial perspective of the problem, we focus on
the seemingly simple case of visiting the three edges of a non-obtuse triangle with
n ∈ {1, 2, 3} robots. Interestingly, the problem of characterizing the starting points
within arbitrary non-obtuse triangles with respect to structural properties of the optimal
trajectories they admit is a challenging question. More specifically, one would expect
that the latter characterization is a prerequisite in order to analyze efficiency trade-
offs when serving with different number of robots, over all triangles. Contrary to this
intuition, and without fully characterizing the starting points of arbitrary triangles, we
develop a framework that allows us (a) to pinpoint the starting points of any triangle at
which these (worst-case) trade-offs attain their maximum values, and (b) to identify the
extreme cases of non-obtuse triangles that set the boundaries of the inf and sup values
of these worst-case trade-offs.

This is an extended abstract of our work. Due to space limitations we only present
the backbone of our arguments, along with the critical intermediate lemmata that are
invoked toward proving our main results. The full version of the paper is available
online [10]. The paper organization of the extended abstract is as follows. In Sect. 2.1
we give a formal definition of the problem we study, and we quantify our main contribu-
tions. Then, in Sect. 2.2 we establish some of the necessary terminology and we present
some preliminary and important observations. The technical analysis starts in Sect. 3.
First, in Sect. 3.1 we study the simpler problem of visiting only two triangle edges with
one robot. It is followed by Sect. 3.2, were we find optimal trajectories for visiting all
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three triangle edges by one robot in a predetermined order. That brings us to Sect. 4
where we characterize triangle regions with respect to the optimal visitation strategies
they admit, for 3 (Sect. 4.1), 2 (Sect. 4.2) and 1 robots (Sect. 4.1). Equipped with that
machinery, we outline in Sect. 5 how our main contributions are proved. More specifi-
cally, Sect. 5.1, Sect. 5.2 and Sect. 5.3 discuss trade-offs between 1 and 3, 2 and 3, and
1 and 2 robots, respectively. Finally in Sect. 6 we conclude with some open questions.

2 Our Results and Basic Terminology and Observations

2.1 Problem Definition and Main Contributions

We consider the family of non-obtuse triangles D , equipped with the Euclidean dis-
tance. For any n ∈ {1, 2, 3}, any given triangle Δ ∈ D , and any point P in the triangle,
denoted by P ∈ Δ, we consider a fleet of n unit speed robots starting at point P . A
feasible solution to the triangle Δ visitation problem with n robots starting from P is
given by robots’ trajectories that eventually visit every edge of Δ, that is, each edge
needs to be touched by at least one robot in any of its points including the endpoints.
The visitation cost of a feasible solution is defined as the makespan of robots’ trajectory
lengths, or equivalently as the first time by which every edge is touched by some robot.
By Rn(Δ, P ) we denote the optimal visitation cost of n robots, starting from some
point P ∈ Δ. When the triangle Δ is clear from the context, we abbreviate Rn(Δ, P )
simply by Rn(P ).

In this work we are interested in determining visitation cost trade-offs with respect
to different fleet sizes. In particular, for some triangle Δ ∈ D (which is a compact set
as a subest of R2), and for 1 ≤ n < m ≤ 3, we define

Rn,m(Δ) := max
P∈Δ

Rn(Δ, P )
Rm(Δ, P )

.

Our main technical results pertain to the study of Rn,m(Δ) as Δ ranges over
all non-obtuse triangles D . In particular, we determine infΔ∈D Rn,m(Δ) and
supΔ∈D Rn,m(Δ) for all pairs (n,m) ∈ {(1, 3), (2, 3), (1, 2)}. Our contributions are
summarized in Table 1.1

Table 1. Our main contributions.

R1,3(Δ) R2,3(Δ) R1,2(Δ)

infΔ∈D

√
10

√
2 2.5

supΔ∈D 4 2 3

1 Note that the entries in column 1 are not obtained by multiplying the entries of columns 2,3.
This is because the triangles that realize the inf and sup values are not the same in each
column.
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For establishing the claims above, we observe that infΔ∈D maxP∈Δ
Rn(Δ,P )
Rm(Δ,P ) = α

is equivalent to that

∀Δ ∈ D , ∃P ∈ Δ,
Rn(Δ, P )

Rm(Δ, P )
≥ α and ∀ε > 0, ∃Δ ∈ D , ∀P ∈ Δ,

Rn(Δ, P )

Rm(Δ, P )
≤ α + ε.

Similarly, supΔ∈D maxP∈Δ
Rn(Δ,P )
Rm(ΔP ) = β is equivalent to that

∀Δ ∈ D , ∀P ∈ Δ,
Rn(Δ, P )

Rm(Δ, P )
≤ β and ∀ε > 0, ∃Δ ∈ D , ∃P ∈ Δ,

Rn(Δ, P )

Rm(Δ, P )
≥ β − ε.

Therefore, as a byproduct of our analysis, we also determine the best and the worst
triangle cases of ratios Rn,m(Δ), as well as the starting points that determine these
ratios. In particular we show that (i) the extreme values of R1,3(Δ) are attained as Δ
ranges between “thin” isosceles and equilateral triangles, and the worst starting point is
the incenter, (ii) the extreme values of R2,3(Δ) are attained as Δ ranges between right
isosceles and equilateral triangles, and the worst starting point is again the incenter,
and (iii) the extreme values of R1,2(Δ) are attained as Δ ranges between equilateral
and right isosceles triangles, and the worst starting point is the middle of the shortest
altitude.

2.2 Basic Terminology and Some Useful Observations

The length of segment AB is denoted by ‖AB‖. An arbitrary non-obtuse triangle will
be usually denoted by �ABC, which we assume is of bounded size. More specifically,
without loss of generality, we often consider �ABC represented in the Cartesian plane
in standard analytic form, with A = (p, q), B = (0, 0) and C = (1, 0).

The cost of optimally visiting a collection of line segments C (triangle edges) with 1
robot starting from point P is denoted by d(P,C ). For example, when C = {AB,BC}
we write d(P, {AB,BC}). When, for example, C = {AB} is a singleton set, we
slightly abuse the notation and for simplicity write d(P,AB) instead of d(P, {AB}).
Note that if the projection P ′ of P onto the line defined by points A,B lies in segment
AB, then d(P,AB) = ‖PP ′‖, and otherwise d(P,AB) = min{‖PA‖ , ‖PB‖}. The
following observation follows immediately from the definitions, and the fact that we
restrict our study to non-obtuse triangles.

Observation 1. For any non-obtuse triangle Δ = �ABC, and P ∈ Δ, we have

(i) R3(Δ, P ) = max{d(P,AB), d(P,BC), d(P,CA)}.

(ii) R2(Δ, P ) = min

⎧
⎨

⎩

max{d(P,AB), d(P, {BC,CA})}
max{d(P,BC), d(P, {AB,CA})}
max{d(P,CA), d(P, {BC,AB})}

⎫
⎬

⎭

(iii) R1(Δ, P ) = d(P, {AB,BC,CA}).

Motivated by our last observation, we also introduce notation for the cost of ordered
visitations. Starting from point P , we may need to visit an ordered list of (2 or 3) line
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segments in a specific order. For example, we write d(P, [AB,BC,AC]) for the opti-
mal cost of visiting the list of segments [AB,BC,AC], in this order, with 1 robot. As
we will be mainly concerned with �ABC edge visitations, and due to the already intro-
duced standard analytic form, we refer to the trajectory realizing d(P, [AB,BC,AC])
as the (optimal) LDR strategy (L for “Left” edge AB, D for “Down” edge BC, and R
for “Right” edge AC). We introduce analogous terminology for the remaining 5 permu-
tations of the edges, i.e. LRD, RLD, RDL, DRL, DLR. Note that it may happen that in
an optimal ordered visitation, robot visits a vertex of the triangle edges. In such a case
we interpret the visitation order of the incident edges arbitrarily. For ordered visitation
of 2 edges, we introduce similar terminology pertaining to (optimal) LD, LR, RL, RD,
DR and DL strategies.

In order to obtain the results reported in Table 1, it is necessary to subdivide any
triangle Δ into sets of points that admit the same optimal ordered visitations (e.g. all
points P in which an optimal R1(Δ, P ) strategy is LRD). For n ∈ {2, 3} robots, the
subdivision is also with respect to the cost Rn(Δ, P ). Specifically for n = 2, the sub-
division is also with respect to whether the cost R2(Δ, P ) is determined by the robot
that is visiting one or two edges (see Observation 1). We will refer to these subdivisions
as the R1, R2, R3 regions. For each n ∈ {1, 2, 3}, the Rn regions will be determined
by collection (loci) of points between neighbouring regions that admit more than one
optimal ordered visitations.

Angles are read counter-clockwise, so that for example for �ABC in standard
analytic form, we have ∠A = ∠BAC. For aesthetic reasons, we may abuse notation
and drop symbol ∠ from angles when we write trigonometric functions. Visitation tra-
jectories will be denoted by a list of points 〈A1, . . . , An〉 (n ≥ 2), indicating a move-
ment along line segments between consecutive points. Hence, the cost of such trajectory
would be

∑n
i=2 ‖AiAi−1‖.

3 Preliminary Results

3.1 Optimal Visitations of Two Triangle Edges

As a preparatory step, first consider the simpler problem of visiting two distinguished
edges of a triangle Δ = ABC, starting from a point within the triangle.

When ∠A ≥ π/3, we define the concept of its optimal bouncing subcone, which
is defined as a cone of angle 3∠A − π and tip A, so that ∠A and the subcone have
the same angle bisector. When ∠A = π/3, then the optimal bouncing subcone is a
ray with tip A that coincides with the angle bisector of ∠A. Whenever ∠A < π/3 we
define its optimal bouncing subcone as the degenerate empty cone. The following two
observations are used repeatedly in our results.

Observation 2. If P is in the optimal bouncing subcone of ∠A, then
d(P, {AB,AC}) = ‖PA‖.

For a point P ∈ �ABC outside the optimal bouncing subcone of ∠A, we define
the (two) optimal bouncing points M,N of the ordered [AB,AC] visitation as follows.
Let C ′ be the reflections of C around AB. Let also P ′ be the projection of P onto AC ′.
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Then, M is the intersection of PP ′ with AB and N is the projection of M onto AC.
Note that equivalently, M,N are determined uniquely by requiring that (i) ∠BMP =
∠NMA, and (ii) ∠ANM = π/2 (see also Fig. 1).

Observation 3. If P is outside the optimal bouncing subcone of ∠A, then
d(P, {AB,AC}) = ‖PM‖ + ‖MN‖, where M,N are the optimal bouncing points of
ordered [AB,AC] visitation.

(a) Optimal trajectory for visiting {AB ,AC } for
∠A /3, starting outside the optimal bounc-
ing subcone.

(b) Arbitrary non-obtuse ABC shown with its
LRD bounce indicator line and its LRD subopt
indicator line.

Fig. 1. Figures 1a and 1b.

3.2 Optimal (Ordered) Visitation of Three Triangle Edges

In this section we discuss optimal LRD visitations of non-obtuse �ABC, together
with optimality conditions when serving with one robot. Optimality conditions for the
remaining 5 ordered visitations are obtained similarly. In order to determine the optimal
LRD visititation, we obtain reflection C ′ of C across AB, and reflection B′ of B across
C ′A, see also Fig. 1b.

From C ′ and A, we draw a lines ε, ζ, both perpendicular to C ′B′ which may (or
may not) intersect �ABC. We refer to line ε as the LRD bounce indicator line. We also
refer to line ζ as the LRD subopt indicator line. Each of the lines identify a halfspace
on the plane. The halfspace associated with ε on the side of vertex A will be called the
positive halfspace of the LRD bounce indicator line or in short the positive LRD bounce
halfspace, and its complement will be called the negative LRD bounce halfspace. The
halfspace associated with ζ on the side of vertex B will be called the positive halfspace
of the LRD subopt indicator line, or in short the positive LRD subopt halfspace, and
its complement will be called the negative LRD subopt halfspace.

For a point P in the positive LRD bounce and subopt halfspaces, let P ′ be its projec-
tion onto C ′B′. Let E,F be the intersections of PP ′ with AB,AC ′, respectively. Let
also H be the reflection of F across AB. Points E,H,G will be called the optimal LRD
bouncing points for point P . The points are also uniquely determined by requiring that
∠BEP = ∠HEA and that HG is perpendicular to BC. For a point R in the negative
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LRD bounce halfspace and in the positive subopt halfspace, let J be the intersection
of RC ′ with AB. Point J will be called the degenerate optimal LRD bouncing point,
which is also uniquely determined by the similar bouncing rule ∠BJR = ∠CJA.
Finally, let A′, A′′ be the projection of A onto B′C ′, BC, respectively.

The next lemma refers to such points P,R together with the construction of Fig. 1b.
Its proof uses the observations of Sect. 3.1 and follows easily by noticing that the opti-
mal LRD visitation is in 1-1 correspondence with the optimal visitation of segment
B′C ′ using a trajectory that passes from segment AB.

Lemma 1. The optimal LRD visitation trajectory, with starting points P,R, T , is:

– trajectory 〈P,E,H,G〉, provided that P is in the positive LRD bounce and subopt
halfspaces,

– trajectory 〈R, J,C〉, provided that R is in the negative LRD bounce halfspace and
in the positive subopt halfspace,

– trajectory 〈T,A,A′′〉, provided that T is in the negative LRD subopt halfspace.

4 Computing theRn Regions, n = 1, 2, 3

By Observations 2, 3 and Lemma 1, we see that optimal visitations of 2 or 3 edges have
cost equal to (i) the distance of the starting point to a line (reflection of some triangle
edge), or (ii) the distance of the starting point to some point (triangle vertex) or (iii) the
distance of the starting point to some triangle vertex plus the length of some triangle
altitude. In this section we describe the Rn regions of certain triangles, n ∈ {1, 2, 3}.
For this, we compare optimal ordered strategies, and the subdivisions of the regions are
determined by loci of points that induce ordered trajectories of the same cost. As these
costs are of type (i), (ii), or (iii) above (and considering all their combinations) the loci
of points in which two ordered strategies have the same cost will be either some line
(line bisector or angle bisector), or some conic section (parabola or hyperbola).

4.1 Triangle Visitation with 3 Robots - The R3 Regions

Consider Δ ∈ D with vertices A,B,C. For every P ∈ Δ, any trajectories require
time at least the maximum distance of P from all edges, in order to visit all of them.
This bound is achieved by having all robots moving along the projection of P onto the
3 edges, and so we have R3(P ) = max{d(P,AB), d(P,BC), d(P,CA)}, as also in
Observation 1. Next we show how to subdivide the region of Δ with respect to which
of the 3 projections is responsible for the optimal visitation cost. For this, we let I
denote the incenter (the intersection of angle bisectors) of Δ. Let also K,L,M be the
intersections of the bisectors with edges BC,CA and AB, respectively, see also Fig. 2.

Lemma 2. For every starting point P ∈ Δ, we have that

R3(Δ, P ) =

⎧
⎨

⎩

d(P,AB) , provided thatP ∈ CLIK
d(P,BC) , provided thatP ∈ AMIL
d(P,CA) , provided thatP ∈ BKIM

.
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Fig. 2. The R3 regions of an arbitrary non-obtuse �ABC. AK,BL,CM are the angle bisectors
of ∠A,∠B,∠C, respectively. Recall that the incenter I is equidistant from all triangle edges.

4.2 Triangle Visitation with 2 Robots - The R2 Regions

In this section we show how to subdivide the region of any non-obtuse triangle Δ ∈ D
into subregions with respect to the optimal trajectories and their costs, for a fleet con-
sisting of 2 robots. The following technical lemma describes a geometric construction.

Lemma 3. Consider non-obtuse �ABC along with its incenter I . Let K,M be the
intersections of angle bisectors of A,C with segments BC,AB respectively. From
K,M we consider cones of angles A,C respectively, having direction toward the inte-
rior of the triangle, and placed so that their bisectors are perpendicular to BC,AB,
respectively. Then, the extreme rays of the cones intersect at some point F in line seg-
ment BI .

Motivated by Lemma 3, we will be referring to the subject point F in the line seg-
ment BI as the separator of the angle B bisector. Similarly, we obtain separators J,H
of angles C,A bisectors, respectively, see also Fig. 3a. In what follows, we will be refer-
ring to the (possibly non-convex) hexagon MFKJLH as the R2 (hexagon) separator
of �ABC.

(a) The R2 hexagon separator of ABC . (b) The refined R2 mixed-hexagon separator of
ABC , where ∠B /3.

Fig. 3. Figures 3a and 3b.

The remaining of the section refers to non-obtuse triangle Δ = �ABC as
in Fig. 3a, where in particular MFKJLH is the R2 separator of Δ. Assume that
∠B ≥ π/3. It can be shown that for every point P either in MF or FK which
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are outside the optimal bouncing subcone of angle B, we have that d(P,AC) =
d(P, {BC,AB}). For points within the subcone, the optimal trajectory to visit
{BC,AB} would be to go directly to B. So for points P within the optimal bouncing
subcone, condition d(P,AC) = d(P, {BC,AB}) translates into that P is equidistant
from AC and B. Hence, P lies in a parabola with AC being the directrix and B being
the focus. Next, we refer to that parabola as the separating parabola of B.

Motivated by the previous observation, we introduce the notion of the refined R2

mixed-hexagon separator of triangle Δ as follows. For every angle of Δ which is more
than π/3, we replace the portion of the R2 hexagon separator within the optimal bounc-
ing subcone of the same angle by the corresponding separating parabola. In Fig. 3b we
display an example where only one angle is more than π/3. Combined with Observa-
tion 1 (ii), we can formalize our findings as follows.

Lemma 4. For every starting point on the boundary of the refined R2 mixed-hexagon
separator of a triangle Δ, the cost of visiting only the opposite edge equals the cost of
visiting the other two edges. For every starting point P outside the R2 separator, R2(P )
equals the distance of P to the opposite edge. Moreover, for every starting point P in
the interior of the refined R2 separator, R2(P ) is determined by the cost of visiting two
of the edges of Δ.

(a) The R2 regions of the equilateral triangle,
see also Corollary 1 and Lemma 5 for detailed
description.

(b) TheR2 regions of the right isosceles, see also
Corollary 2 and Lemma 6 for detailed descrip-
tion. The coloured region identifies the refined
R2 mixed-hexagon separator.

Fig. 4. Figures 4a and 4b. (Color figure online)

Lemma 4 implies the following corollaries pertaining to specific triangles �ABC.
In both statements, and the associated figures, I is the incenter of the triangles, and
points K,L,M are defined as in Fig. 2.

Corollary 1 (Hexagon separator of equilateral triangle). Consider equilateral Δ =
�ABC, see Fig. 4a. Let W,Z, Y be the intersections of AK,BL,CM respectively
(also the separators of angle A bisector, angle B bisector, and angle C bisector, respec-
tively). Then, the R2 hexagon separator of Δ is MZKY LW , which is also triangle
MKL. More specifically, for all P ∈ �AML, we have that R2(Δ, P ) = d(P,BC).
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Corollary 2 (Mixed-hexagon separator of right isosceles). Consider right isosceles
Δ = �ABC, see Fig. 4b. The separator of angle A bisector is incenter I . Let also
F, J be the separators of angle B bisector and angle C bisector, respectively. Then, the
R2 hexagon separator of Δ is IMFKJL. The parabola with directix BC and focus
A, intersecting AK at Q and passing through M,L is the separating parabola of A.
Hence, for every point P ∈ Δ above the parabola, we have R2(Δ, P ) = d(P,BC), as
well as for every point X in tetragon MBKF , we have R2(Δ,X) = d(X,AC).

Describing the subdivisions within the refined R2 mixed-hexagon separator for
arbitrary triangles is a challenging task. On the other hand, by Observation 1 (ii) and
Lemma 4 the cost within the separator is determined by the cost of visiting just two
edges. Also, by Observations 2, 3 the cost of such visitation can be described either as
a distance to a line or to a point. We conclude that, within the R2 separator, the subdi-
visions are determined by separators that are either parts of lines or parabolas (loci of
points for which the cost of visiting some two edges are equal). Hence, for any fixed tri-
angle, an extensive case analysis pertaining to pairwise comparisons of visitations costs
can determine all R2 subdivisions (and the challenging ones are within the refined sep-
arator). In what follows we summarize formally the subdivisions only of two triangle
types, focusing on the visitation cost of all starting points within the (refined) hexagon
separators.

Lemma 5 (R2 regions of an equilateral triangle). Consider equilateral Δ =
�ABC, as in Corollary 1, see Fig. 4a. Then for every starting point P ∈ �MWI ,
we have that R2(Δ, P ) = d(P, [AB,AC]). The remaining cases of starting points
within the hexagon separator MZKY LW follow by symmetry.

Lemma 6 (R2 regions of a right isosceles triangle). Consider right isosceles Δ =
�ABC, as in Corollary 2, see Fig. 4b. Consider parabola with directrix the line pass-
ing through B that is perpendicular to BC (also the reflection of BC across AB) and
focus A, passing through M,K and intersecting BL at point T (define also S as the
symmetric point of T across AK). That parabola is the locus of points P for which
‖PA‖ = d(P, [AB,BC]). Let also A′ be the reflection of A across BC. Consider
parabola with directrix BA′ and focus A, passing through T and intersecting AK at
point U . That parabola is the locus of points P for which ‖PA‖ = d(P, [BC,AB]).
Therefore, if P is a starting visitation point, we have that:

– R2(Δ, P ) = ‖PA‖, for all P in mixed closed shape MTUSLQ (grey shape in
Fig. 4b),

– R2(Δ, P ) = d(P, [AB,BC]), for all P in mixed closed shape MFT (blue shape
in Fig. 4b),

– R2(Δ, P ) = d(P, [BC,AB]), for all P in mixed closed shape FKUT (red shape
in Fig. 4b).

The visitation costs with starting points in the remaining subdivisions of the refined R2

mixed-hexagon separator, green and purple regions in Fig. 4b, follow by symmetry.
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4.3 Triangle Visitation with 1 Robot - The R1 Regions

In this section we show how to partition the region of an arbitrary non-obtuse �ABC
into sets of points P with respect to the optimal strategy of R1(P ). There are 6 pos-
sible visitation strategies for d(P, {AB,AC,AB}), one for each permutation of the
edges indicating the order they are visited (ordered visitations). Clearly, it is enough to
describe, for each two ordered visitations, the borderline (separator) of points in which
the two visitations have the same cost. By Lemma 1, any such ordered visitation cost is
the distance of the starting point either to a point, or to a line, or a distance to a line plus
the length of some altitude. Since the R1 regions are determined by separators, i.e. loci
of points in which different ordered visitations induce the same costs, it follows that
these separators are either lines, or conic sections. Therefore, by exhaustively pairwise-
comparing all ordered visitations along with their separators, we can determine the R1

regions of any triangle. Next, we explicitly describe the R1 regions only for three types
of triangles that we will need for our main results. For the sake of avoiding redundan-
cies, we omit any descriptions that are implied by symmetries.

(a) The R1 regions of
an equilateral triangle.

(b) The R1 regions of a right
isosceles triangle.

(c) The R1 regions of
an isosceles triangle
ABC with small ∠A.

Fig. 5. Figures 5a, 5b and 5c.

The next lemma describes the R1 regions of an equilateral triangle, as in Fig. 5a.

Lemma 7 (R1 regions of an equilateral triangle). Consider equilateral triangle
�ABC with angle bisectors AK,BL,CM and incenter I . Then, the angle bisectors
are the loci of points in which optimal ordered visitations have the same cost. More-
over, for every starting point P ∈ �AMI , the optimal strategy of R1(Δ, P ) is LRD
visitation.

The next lemma describes the R1 regions of a right isosceles, as in Fig. 5b. Curve
FJ is part of the parabola with directrix the relfection of BC across A and focus the
reflection of A across BC. Curve BF is part of the parabola with directrix a line parallel
to AB which is ‖AB‖ away from AB, and focus the reflection of A across BC. Curve
CJ is part of the parabola with directrix a line parallel to AC which is ‖AC‖ away
from AC, and focus the reflection of A across BC. CE (not shown in the figure) is the
bisector of ∠C, and segment EF is part of the reflection of that bisector across AB.
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BH is the bisector of ∠C, and segment HJ is part of the reflection of that bisector
across AC. Segment AN is part of the altitude corresponding to A.

Lemma 8 (R1 regions of a right isosceles triangle). Consider right isosceles Δ =
�ABC, and starting point P . Then, the optimal visitation strategy for R1(Δ, P ) is:

– an LRD visitation, if P ∈ AEFN ,
– an LDR visitation if P ∈ BFE, and
– both an DRL,DLR visitation if P ∈ BCJF (trajectory visits {AB,AC} at point

A).

Next we consider a “thin” isosceles Δ = �ABC with ∠A ≤ π/3, as in Fig. 5c.
(Eventually we will invoke the next lemma for ∠A → 0.) AK is the altitude cor-
responding to A. CD,BG are the altitudes corresponding to AB,AC, respectively.
CE,BF (not shown) are the extreme rays of the optimal bouncing subcone corre-
sponding to C,B, respectively. H is the intersection of AK with BG (and CD), i.e.
the orthocenter of the triangle. Segment EJ (as part of a line) is the reflection of EC
(as part of a line) across AB. Segment FJ (as part of a line) is the reflection of BF (as
part of a line) across AC.

Lemma 9 (R1 regions of a thin isosceles triangle). Consider isosceles Δ = �ABC,
with ∠A ≤ π/3 and starting point P . Then, the optimal visitation strategy for
R1(Δ, P ) is:

– an LRD visitation if P ∈ AEJ ,
– both LRD and LDR (optimal strategy is to visit first AB and then move to C), if

P ∈ EDHJ ,
– an LDR visitation, if P ∈ DBH , and
– a DLR visitation if P ∈ BKH .

5 Visitation Trade-Offs

In this section we outline how we obtain our main results, as reported in Table 1. For
this we invoke the lemmata we already established, along with the following claims
(requiring lengthy and technical proofs) pertaining to optimal visitation costs of some
special starting points. For the remaining of the section, we denote by I the incenter of
�ABC. All three following lemmata refer to non-obtuse �ABC.

Lemma 10. If ∠C is the largest angle, then R2(I) = ‖IC‖.

Lemma 11. If ∠A is the largest angle, then R1(I) = ‖IA′‖, where A′ is the reflection
of A across BC.

Lemma 12. Let ∠A ≥ ∠B ≥ ∠C, and T be the middle point of the altitude corre-
sponding to the largest edge BC. Then the optimal R1(T ) strategy is of LRD type, and
has cost

1
2
(2 − cos(2 A)) sin(B) sin(C) csc(B + C).
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5.1 Searching with 1 vs 3 Robots

First we sketch the proof of supΔ∈D R1,3(Δ) = 4. The lower bound for
supΔ∈D R1,3(Δ) is given by the following lemma that utilizes Lemma 2 and
Lemma 11.

Lemma 13. Let Δ be an equilateral triangle. Then, R1(I)/R3(I) = 4.

The remaining of the section is devoted in proving a tight upper bound for
supΔ∈D R1,3(Δ). Without loss of generality, we also assume that the starting point
P lies within the tetragon (4-gon) AMIL, see also Fig. 2.

In order to provide the promised upper bound, we propose a heuristic upper bound
for R1(P ), as follows. Consider the projections P1, P2, P3 of P onto AB,BC and CA
respectively. Then, three (possibly) suboptimal visitation trajectories for one robot are
TC(P ) := 〈P, P1, P, C, 〉, TA(P ) := 〈P, P2, P,A〉, TB(P ) := 〈P, P3, P,B〉, that is
R1(P ) ≤ min{TA(P ), TB(P ), TC(P )}. The upper bound proof follows by following
lemma.

Lemma 14. If ∠A ≤ π/3, then min{TB(P ), TC(P )}/R3(P ) ≤ 4. If ∠A ≥ π/3, then
TA(P )/R3(P ) ≤ 4.

Next we outline how we obtain that infΔ∈D R1,3(Δ) =
√

10. First, using Lemma 2
and Lemma 9 we show that infΔ∈D R1,3(Δ) ≤ √

10.

Lemma 15. For isosceles ABC with base BC, we have
lim∠A→0 maxP∈ABC

R1(P )
R3(P ) =

√
10.

Next, we invoke Lemma 2 and Lemma 11 in order to show that infΔ∈D R1,3(Δ) ≥√
10.

Lemma 16. For any triangle Δ ∈ D we have R1(I)/R3(I) ≥ √
10.

5.2 Searching with 2 vs 3 Robots

First we outline the proof of that supΔ∈D R2,3(Δ) = 2. For this, and using Lemma 2
and Lemma 10, we establish that supΔ∈D R2,3(Δ) ≥ 2.

Lemma 17. For the equilateral triangle we have R2(I)/R3(I) = 2.

The remaining of the section is devoted in proving that supΔ∈D R2,3(Δ) ≤ 2. In
that direction, we consider a triangle Δ = ABC along with its incenter I , see also
Fig. 2.

In order to provide the promised upper bound, we propose a heuristic upper bound
for R2(P ). The two robots visit all edges as follows; one robot goes to the vertex cor-
responding to the largest angle (visiting the two incident edges), and the second robot
visits the remaining edge moving along the projection of P along that edge. The heuris-
tic is used the to show the following.

Lemma 18. For any Δ ∈ D and starting point P , we have R2(P )/R3(P ) ≤ 2.
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Next we outline how we prove that infΔ∈D R2,3(Δ) =
√

2. Using Lemma 2 and
Lemma 6 we can show that infΔ∈D R2,3(Δ) ≤ √

2.

Lemma 19. Let �ABC be a right isosceles. Then, we have maxP∈ABC
R2(P )
R3(P ) =

√
2.

Then, by invoking Lemma 10 we show that infΔ∈D R2,3(Δ) ≥ √
2.

Lemma 20. For any Δ ∈ D , we have R2(I)/R3(I) ≥ √
2.

5.3 Searching with 1 vs 2 Robots

Finally, we outline how we prove that supΔ∈D R1,2(Δ) = 3. Using a simple heuristic
upper bound for R1, we can show the following.

Lemma 21. For any Δ ∈ D and any starting point P ∈ Δ, we have R1(P )/R2(P ) ≤
3.

The lower bound for supΔ∈D R1,2(Δ) is attained for the right isosceles tri-
angle (and for certain starting point). Indeed, using Lemma 12 we show that
supΔ∈D R1,2(Δ) ≥ 3.

Lemma 22. Let ABC be a right isosceles triangle with right angle A. Let also P be
the middle point of the altitude corresponding to angle A. Then, R1(P )/R2(P ) = 3.

It remains to sketch the proof of infΔ∈D R1,2(Δ) = 5/2. For this, using Lemma 5
and Lemma 7 we prove that infΔ∈D R1,2(Δ) ≤ 5/2.

Lemma 23. For the equilateral triangle Δ, we have maxP∈Δ R1(P )/R2(P ) = 5/2.

Then, using Lemma 12, we prove that infΔ∈D R1,2(Δ) ≥ 5/2.

Lemma 24. For any �ABC ∈ D , let T be the middle point of the altitude correspond-
ing to the largest edge. Then, we have R1(T )/R2(T ) ≥ 5/2.

6 Conclusions

We considered a new vehicle routing-type problem in which (fleets of) robots visit all
edges of a triangle. We proved tight bounds regarding visitation trade-offs with respect
to the size of the available fleet. In order to avoid degenerate cases of visiting the edges
with 3 robots, we only focused our study on non-obtuse triangles. The case of arbi-
trary triangles, as well as of other topologies, e.g. graphs, remains open. We believe
the definition of our problem is of independent interest, and that the study of efficiency
trade-offs in combinatorial problems with respect to the number of available processors
(that may not be constant as in our case), e.g. vehicle routing type problems, will lead
to new, deep and interesting questions.
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Abstract. A tree is one of the most fundamental structures of networks and has
good properties on layouts, while it is weak from a fault-tolerant point of view.
Motivated by these points of view, we consider an augmentation problem for
a tree to increase fault-tolerance while preserving its good properties on book-
embeddings. A k-arbor-connected graph is defined to be a graph which has k
spanning trees such that for any two vertices, the k paths between them in the
spanning trees are pairwise edge-disjoint and internally vertex-disjoint. A mini-
mally k-arbor-connected graph is a k-arbor-connected graph G such that deleting
any edge from G does not preserve k-arbor-connectedness. A k-arbor-connected
graph has the abilities to execute fault-tolerant broadcastings and protection rout-
ings as a communication network. The pagenumber of a graph is the minimum
number of pages required for a book-embedding of the graph. We show that for
any tree T of order n and for any k at most the radius of T , by adding new edges to
T , a minimally k-arbor-connected graph T ∗ with pagenumber k can be obtained
in O(kn) time. Since any k-arbor-connected graph cannot be embedded in k − 1
pages, T ∗ is optimal with respect to not only the number of edges added to T but
also the number of pages required for a book-embedding. We also show that the
restriction on the upper bound on k can be removed if T is a caterpillar. Besides,
we show that for k ≤ 3 and for any tree T of order at least 2k, a minimally k-
arbor-connected graph with pagenumber k which contains T as a subgraph can
be obtained in linear time. We moreover extend our result for a tree to a cactus
for k greater than half of the maximum length of a cycle in the cactus, and to a
unicyclic graph for any k at most the radius of the graph.

Keywords: Arbor-connectedness · Augmentation · Cactus · Pagenumber ·
Trees

1 Introduction

Throughout the paper, a graph means a simple undirected graph. Let G = (V, E) be a
graph. The order of G is |V(G)|. The complement G of G is the graph with vertex set
V(G) such that uv ∈ E(G) if and only if uv � E(G). For a subset E′ of E(G), we say
that G is augmented to the graph G′ = (V, E ∪ E′) by adding every edge in E′. Given a
condition on graphs, an augmentation problem for a graph G is to find a minimum set
E′′ ⊆ E(G) such that the augmented graph G′′ = (V, E ∪ E′′) satisfies the condition.
c© Springer Nature Switzerland AG 2021
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For S � V(G) (respectively, F ⊆ E(G)), G − S (respectively, G − F) denotes the
graph obtained from G by deleting every element of S (respectively, F), where G − {a}
is abbreviated to G − a. A graph G is k-connected (respectively, k-edge-connected) if
for any S � V(G) (respectively, F ⊆ E(G)) with |S | < k < |V(G)| (respectively, |F| < k),
G − S (respectively, G − F) is connected. Since the notion of connectedness is fun-
damental and naturally has applications in fault-tolerance of networks, there are many
augmentation results for the subject until now. In particular, augmenting a graph to
be k-connected (respectively, k-edge-connected) was solved in [12] (respectively, [21])
for every fixed k. For any k, augmenting a k-connected graph to be (k + 1)-connected
was shown to be polynomially solvable in [20]. Apart from connectedness, geomet-
ric properties are also fundamental in the study of graphs, and in fact there are many
results on connectivity augmentation of graphs with geometric constraints (see [11]).
In particular, Kant and Bodlaender [14] have shown that the problem of augmenting a
connected planar graph to be 2-connected while preserving the planarity is NP-hard.
Besides, Kant [13] has shown such a problem can be solved in linear time if we restrict
ourselves to outerplanar graphs. Rutter and Wolff [19] have also proved that the prob-
lem of augmenting a connected planar graph to be 2-edge-connected while preserving
the planarity is NP-hard. For a connected plane geometric graph G, Abellanas et al.
[1] have studied bounds on the number of edges required to be added to G to obtain
2-connected or 2-edge-connected plane geometric graphs.

Concerning fault-tolerance of networks, the notion of completely independent span-
ning trees is known. Let T1,T2, . . . ,Tk be spanning trees in a connected graph G. If for
any two vertices of G, the paths between them in T1,T2, . . . ,Tk are pairwise edge-
disjoint and internally vertex-disjoint, then T1,T2, . . . ,Tk are completely independent
spanning trees in G. Completely independent spanning trees can be applied to fault-
tolerant broadcastings [8] and protection routings [17]. A graph G is k-arbor-connected
if there exist k completely independent spanning trees in G. A minimally k-arbor-
connected graph is a k-arbor-connected graph G such that for any e ∈ E(G), G−e is not
k-arbor-connected. Figure 1 illustrates an example of a 2-arbor-connected graph. Com-
pletely independent spanning trees T1,T2, . . . ,Tk in G can be characterized as edge-
disjoint spanning trees such that for any v ∈ V(G), v has degree at least two in at most
one spanning tree Ti. Thus, for any given spanning trees, we do not have to check the
paths between every pair of vertices in order to confirm that the trees are completely
independent. Arbor-connectedness of graphs has been studied for graph classes related
to interconnection networks (e.g., see [5,7,16]). It has also been shown that every max-

Fig. 1. A 2-arbor-connected graph G and completely independent spanning trees T1 and T2 in G.
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Fig. 2. A 3-page book-embedding of a graph G, where a line above the spine, a line below the
spine, and the dotted line denote an edge assigned to the first page, the second page, and the third
page, respectively. Since G is not planar, the pagenumber of G is determined to be 3.

imal 4-connected planar graph is 2-arbor-connected [9] and G is 	 nk 
-arbor-connected
if the minimum degree of G is at least n − k, where 3 ≤ k ≤ n

2 [10]. Although any
k-arbor-connected graph is k-connected, it has been proved in [18] that for any k ≥ 2,
there exists a k-connected graph which is not 2-arbor-connected. This fact is in contrast
to the theorem by Nash-Williams that any 2k-edge-connected graph contains k edge-
disjoint spanning trees. From an algorithmic point of view, it has been shown that the
problem of deciding whether a given graph is 2-arbor-connected is NP-complete [9].

A book is a structure consisting of a line called the spine and half planes called
pages sharing the spine as a common boundary. A k-page book-embedding of a graph
G is defined by a placement of the vertices of G on the spine, i.e., a vertex-ordering σ
of V(G), and an assignment of the edges of G to pages so that no two edges assigned
to the same page cross, where two edges uv and xy cross under σ if σ(u) < σ(x) <
σ(v) < σ(y). The pagenumber pn(G) of G is the minimum number of pages for a
book-embedding of G. Figure 2 illustrates an example of a 3-page book-embedding of
a graph. Book-embeddings have applications in fault-tolerant VLSI layouts [6], graph
layout, and other areas and there are many results on the subject until now. In particular,
it has been shown in [4] that a graph G can be embedded in one page (respectively, two
pages) if and only if G is outerplanar (respectively, a subgraph of a planar Hamiltonian
graph). Besides, Yannakakis [23,24] proved that every planar graph can be embedded in
four pages and there are planar graphs that require four pages in any book embedding1.
The problem of deciding whether the pagenumber of a given planar graph is two is
NP-complete [6,22].

A tree is one of the most fundamental structures of graphs, while it is weak from
a fault-tolerant point of view since it can be disconnected by deleting only one vertex.
On the other hand, a tree has good properties on layouts, e.g., the pagenumber of a tree
is one. Motivated by these points of view, we consider an augmentation problem for a
tree to be k-arbor-connected while preserving its good property on book-embeddings.
We then show that any tree T of order n can be augmented to a minimally k-arbor-
connected graph T ∗ with pagenumber k for any k at most the radius of T in O(kn) time.

1 After more than 30 years, the full details of the constructions of planar graphs that need four
pages were presented in [25]. The lower bound of four was also proved independently in [3].
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From the fact that any graph with pagenumber one is outerplanar, it follows that every
graph of order n with m edges needs at least �m−nn−3  pages for its book-embedding. This
means that any k-arbor-connected graph cannot be embedded in k − 1 pages, i.e., the
pagenumber of any k-arbor-connected graph is at least k. Thus, the augmented graph T ∗
is optimal with respect to not only the number of edges added to T but also the number
of pages required for a book-embedding. The graph T ∗ also has a property that T ∗ is
decomposed into completely independent spanning trees T1,T2, . . . ,Tk such that each
Ti can be embedded in one page under the same vertex-ordering. We also show that the
restriction on the upper bound on k can be removed if T is a caterpillar. Besides, we
show that for k ≤ 3, any tree T of order at least 2k can be augmented to a minimally
k-arbor-connected graph with pagenumber k in linear time. We moreover extend our
result for a tree to a cactus for k greater than half of the maximum length of a cycle in
the cactus, and to a unicyclic graph for any k at most the radius of the graph.

This paper is organized as follows. Section 2 presents terminology and fundamental
results used in the paper. Our main augmentation result for trees is given in Sect. 3.
Section 4 presents augmentation results for connected graphs for large k, caterpillars,
and trees for k ≤ 3. Sections 5 and 6 extend the result in Sect. 3 to cacti and unicyclic
graphs, respectively. Section 7 concludes the paper with several remarks.

2 Preliminaries

For two sets A and B, A\B denotes the set difference {x | x ∈ A, x � B}. For a subset
S ⊆ V(G), the subgraph ofG induced by S is denoted by 〈S 〉G, i.e., 〈S 〉G = G−(V(G)\S ).
Given a set F of edges, the graph induced by F is denoted by 〈F〉, i.e., V(〈F〉) =
{u | uv ∈ F} and E(〈F〉) = F. For a graph G and F′ ⊆ E(G), G + F′ denotes the graph
(V(G), E(G) ∪ F′). A leaf of G is a vertex with degree one, while an internal vertex
of G is a vertex with degree greater than one. The set of leaves (respectively, internal
vertices) in G is denoted by VL(G) (respectively, VI(G)). Let n′(G) = |VI(G)|.

In order to augment a tree to a minimally k-arbor-connected graph, we use the fol-
lowing characterization of completely independent spanning trees.

Theorem 1. [8] Spanning trees T1,T2, . . . ,Tk in G are completely independent if and
only if for any 1 ≤ i < j ≤ k, E(Ti) ∩ E(T j) = ∅ and VI(Ti) ∩ VI(T j) = ∅.

The distance dG(u, v) of vertices u and v in a connected graph G is the length of
a shortest path between u and v in G. The eccentricity eG(w) of a vertex w in G is
defined to be maxv∈V(G) dG(w, v). The diameter diam(G) of G is maxw∈V(G) eG(w), while
the radius rad(G) of G is minw∈V(G) eG(w). A central vertex of G is a vertex v with
eG(v) = rad(G). The center of G is the set of central vertices of G. The center of a tree T
consists of one vertex (respectively, two vertices) if diam(T ) is even (respectively, odd).
A star (respectively, double-star) is a tree T with n′(T ) ≤ 1 (respectively, n′(T ) = 2). A
caterpillar is a tree T such that T − VL(T ) is a path.

The complete graph of order n is denoted by Kn. Let Kp,q denote the complete
bipartite graph with partite sets of cardinalities p and q. For convenience, one of p and
q may be zero. In such a case, the corresponding partite set is considered as an empty set
and Kp,q is regarded as an empty graph; namely, Kp,0 � Kp and K0,q � Kq. A cut-vertex
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of G is a vertex whose deletion increases the number of components of G. A block of G
is a maximal connected subgraph of G without a cut-vertex. A cactus is a graph whose
every block is either a cycle or K2. A cactus in which every cycle is a triangle is called
a triangular cactus. A unicyclic graph is a graph with exactly one cycle. A quasi-cycle
is a unicyclic graph G such that G − VL(G) is a cycle.

Let T be a tree rooted at a vertex r. The �-ancestor p�(v) of a vertex v in T is a
vertex w which is on the path from r to v such that dT (v,w) = �. If w is the �-ancestor
of v, then v is an �-descendant of w. In particular, the 1-ancestor of v is the parent of
v and a 1-descendant of w is a child of w. The set of �-descendants of w is denoted by
D�(w). The lowest common ancestor lcaT (u, v) of u and v in T is a common ancestor w
of u and v in T such that there is no descendant of w which is a common ancestor of u
and v. The height h(T ) of T is maxv∈V(T ) dT (r, v).

Let σ be a vertex-ordering of G, i.e., a bijection from V(G) to {1, 2, . . . , |V(G)|}.
When σ(u) < σ(v), we may write u <σ v. For u, v ∈ S ⊆ V(G), if u <σ v such that there
is no vertex w ∈ S with u <σ w <σ v, then u and v are consecutive in S under σ and we
write u �σ,S v. When S = V(G), we may write u �σ v. For any u, v ∈ S , if there is no
vertex w′ ∈ V(G) \ S with u <σ w′ <σ v, then the vertices in S are consecutive under σ.

3 Augmenting a Tree

Theorem 2. Any tree T of order n can be augmented to a minimally k-arbor-connected
graph T ∗ with pagenumber k for any 2 ≤ k ≤ rad(T ) in O(kn) time.

Proof. If diam(T ) is odd, then let x and y be the central vertices of T . Note that xy ∈
E(T ). Otherwise, let x be the central vertex of T and let y a vertex adjacent to x such
that y is on a path between x and a vertex v with dT (x, v) = rad(T ). Let T+ be the tree
obtained from T by adding a new vertex z, joining it to x and y, and deleting the edge xy.
In what follows, ancestors and descendants of a vertex are defined based on T+ rooted
at z unless otherwise stated. For any vertex u in T , Tu denotes the subtree rooted at u in
T+. By the definitions of x and y, it holds that h(Tx) = rad(T ) ≥ h(Ty) ≥ rad(T ) − 1.

Fig. 3. Constructions of T+, σ+, σ, Vi, and Wi for k = 3.
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Let σ+ : V(T+) �→ {1, 2, . . . , n + 1} be a depth-first search ordering of T+ from z.
Then, let σ : V(T ) �→ {1, 2, . . . , n} be the vertex-ordering of T defined to be σ(v) =
σ+(v)−1. Now we divide V(T ) into rad(T )+1 subsets based on the distance of a vertex
and the root z. Namely, let Vi = Di+1(z) for 0 ≤ i ≤ rad(T ). Note that |Vi ∩ V(Tx)| ≥ 1
and |Vi ∩ V(Ty)| ≥ 1 for any 0 ≤ i < rad(T ). Let Wt =

⋃
i mod k=t Vi for each 0 ≤ t < k.

Figure 3 illustrates an example of T , T+, σ+, σ, Vi, and Wi for k = 3.
We next divide E(T ) \ {xy} into k subsets E1, E2, . . . , Ek defined as follows: for each

1 ≤ i ≤ k,

– Ei = {vw | v ∈ Wi−1, w ∈ D1(v)}.
The set of added edges in our augmentation is divided into three types defined as fol-
lows: for each 1 ≤ i ≤ k,

– Ai = {vw | v ∈ Wi−1, w ∈ Dj(v), 2 ≤ j ≤ k},
– Bi = {uw | u, v ∈ Vi−1, u �σ,Vi−1 v, σ

−1(maxu′∈V(Tu) σ(u′)) <σ w ≤σ v},
– B′i = {uw | u = σ−1(maxu′∈Vi−1 σ(u′)),w <σ σ−1(minu′∈Vi−1 σ(u′)) or σ−1

(maxu′∈V(Tu) σ(u′)) <σ w}.
Note that B1 = {xy}. Thus, T = 〈E1 ∪ E2 ∪ · · · Ek ∪ B1〉. Based on these sets, we define
Ti as 〈Ei ∪ Ai ∪ Bi ∪ B′i〉 for 1 ≤ i ≤ k. We then show that T1,T2, . . . ,Tk are completely
independent spanning trees in T ∗ = 〈E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk)〉 such that each Ti

can be embedded in one page under σ, which implies that the augmented graph T ∗ is a
minimally k-arbor-connected graph with pagenumber k which contains T .

The graph 〈Ei〉 is a disjoint union of trees with height 1 whose central vertices are
in Wi−1. The augmented graph 〈Ei ∪ Ai〉 is a disjoint union of |Vi−1| trees, each of which
is obtained from the trees with height 1 in 〈Ei〉 by joining each vertex in Wi−1 and all its
�-descendants for 2 ≤ � ≤ k. Thus, V(〈Ei ∪ Ai〉) = V(T )\∪0≤ j<i−1Vj. The |Vi−1| trees are
connected by the edges uv for u�σ,Vi−1 v in Bi, and moreover all the vertices in ∪0≤ j<i−1Vj

are joined to a vertex in Vi−1 by other edges in Bi∪B′i . Therefore, 〈Ei∪Ai∪Bi∪B′i〉 is a
tree with vertex set V(T ). Note that any edge in Bi∪B′i joins a vertex w in ∪0≤ j<i−1Vj and
a vertex in Vi−1 which is not a descendant of w. In each Ti, every vertex in V(T )\Wi−1 is
directly joined to a vertex in Wi−1 which means that every vertex in V(T )\Wi−1 is a leaf

Fig. 4. Constructions of T1, T2, and T3, where normal lines, dotted lines, bold lines, and bold
dotted lines denote the edges in Ei, Ai, Bi, and B′i , respectively.
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of Ti and VI(Ti) ⊆ Wi−1. Since Wi ∩Wj = ∅ for any 0 ≤ i < j < k, VI(Ti) ∩ VI(T j) = ∅
for any 1 ≤ i < j ≤ k. Now assume that e ∈ E(Ti) ∩ E(T j) for some i < j. Then, e
is incident to a vertex u in Wi−1 and a vertex v in Wj−1. If uv ∈ Bi ∪ B′i , then u ∈ Vi−1

and v must be in V� where 0 ≤ � < i which is a contradiction. Thus, uv ∈ Ai such that
u ∈ Vkt+i−1, v ∈ Vkt+ j−1 for some t ≥ 0. This means that u is an ancestor of v. However,
no ancestor of v is joined to v as a leaf of T j. Therefore, E(Ti) ∩ E(T j) = ∅ for any
1 ≤ i < j ≤ k. Consequently, T1,T2, . . . ,Tk are completely independent spanning trees.
Figure 4 illustrates T1,T2, and T3 for the example in Fig. 3.

The graph 〈Ei ∪ Ai〉 is a disjoint union of |Vi−1| trees S 1, S 2, . . . , S |Vi−1 | such that the
vertex set of each S i corresponds to the vertex set of a subtree rooted at a vertex in Vi−1.
From a property of a depth-first search, for any subtree S i, the vertices in V(S i) are
consecutive under σ. Thus, it can be inductively shown (on the height) that S i can be
embedded in one page under σ. No vertex in ∪0≤ j<i−1Vj is placed between two vertices
of S t for each t. Thus, any edge in Bi∪B′i and any edge in Ei∪Ai do not cross. Besides,
〈Bi ∪ B′i〉 is a union of stars in which any internal vertex is in Vi−1. From the definitions
of Bi and B′i , it follows that 〈Bi ∪ B′i〉 can be embedded in one page under σ. Therefore,
each tree Ti can be embedded in one page under the same vertex-ordering σ. Figure 5
illustrates the 3-page book-embedding of T ∗ = 〈E(T1) ∪ E(T2) ∪ E(T3)〉 for the trees
T1,T2,T3 in Fig. 4.

Fig. 5. The 3-page book-embedding of the 3-arbor-connected graph consisting of T1, T2, and T3

shown in Fig. 4, where all the edges in T1, T2, and T3 are assigned to the first page, the second
page, and the third page, respectively.
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The vertices x and y are on a longest path in T . Thus, they can be computed in
linear time by applying a breadth-first search twice. The vertex ordering σ follows from
σ+ which is obtained by applying a depth-first search to T+ from z. In the depth-first
search, p1(v) and σ−1(maxu′∈V(Tv) σ(u′)) can also be found for each vertex v. Applying
a breadth-first search from z, we can partition V(T ) into V0,V1, . . . ,Vrad(T ). Thus, Vi−1

and Wi−1 for 1 ≤ i ≤ k can be found in O(n) time. Based on V0,V1, . . . ,Vk−1, and σ, the
ordering relation �σ,Vi−1 , σ−1(minu′∈Vi−1 σ(u′)), and σ−1(maxu′∈Vi−1 σ(u′)) for 1 ≤ i ≤ k
can be computed in O(n) time. Thus, Bi and B′i for 1 ≤ i ≤ k can be computed in O(kn)
time. Here, Ei and Ai can be rewritten as follows:

– Ei = {p1(v)v | v � {x, y}, v ∈ Wi mod k},
– Ai = {p j(v)v | v ∈ V(T ), p j(v) ∈ Wi−1, 2 ≤ j ≤ k}.

For each vertex v, p j(v) for 1 ≤ i ≤ k can be found in O(k) time. Therefore, Ei and Ai

for 1 ≤ i ≤ k can be computed in O(kn) time. Consequently, T1,T2, . . . ,Tk can be found
in O(kn) time. ��

For a path of order n, the upper bound on k in Theorem 2 is 	 n2 
. Note that the
complete graph of order n is 	 n2 
-arbor-connected; namely, there is no (	 n2 
 + 1)-arbor-
connected graph of order n.

We here remark that in the proof of Theorem 2, other constructions can be employed
if we do not insist on the upper bound on k. Select a path P with |V(P)| ≥ 3 and consider
the |V(P)| subtrees each of which is rooted at a vertex in P (instead of two subtrees
Tx and Ty). Then, we can construct a minimally k-arbor-connected graph where k is
at most the maximum j such that there exist two vertices in P both of which have a
( j− 1)-descendant. In fact, we employ such a construction to prove Lemma 3 in Sect. 4
and Theorem 6 in Sect. 6.

4 Augmenting a Connected Graph for Large k

In this section, we first introduce a special k-arbor-connected graph. Based on the graph,
we present a general augmentation result for large k.

Definition 1. Let k and � be integers such that 1 ≤ k ≤ � ≤ n
2 . Let Gk,�,n be the

graph of order n obtained from two complete bipartite graphs Kk,�−k with partite
sets Vk = {v0, v1, . . . , vk−1}, W�−k = {vk, vk+1, . . . , v�−1} and Kk,n−�−k with partite sets
V ′k = {v�, v�+1, . . . , v�+k−1}, W ′n−�−k = {v�+k, v�+k+1, . . . , vn−1} by connecting every pair of
vertices in Vk ∪ V ′k.

Lemma 1. The graph Gk,�,n is a minimally k-arbor-connected graph with pagenumber
k for any 2 ≤ k ≤ n

2 .

Proof. Let T be a tree of order n with vertex set {v0, v1, . . . , vn−1} and edge set {v0vi | 1 ≤
i ≤ �} ∪ {v�v j | � + 1 ≤ j < n}. Namely, T is a double-star. Define the vertex ordering
σ as v0 <σ v1 <σ · · · <σ vn−1. Clearly, T can be embedded in one page under σ.
Define Tp = 〈{v(i+p) mod nv( j+p) mod n | viv j ∈ E(T )}〉 for 0 ≤ p < k. Then, we can see that
〈E(T0)∪E(T1)∪· · ·∪E(Tk−1)〉 = Gk,�,n. (To see this, it is convenient to draw the spine as
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a circle and the edges inside the circle.) It can be checked that T0,T1, . . . ,Tk−1 are edge-
disjoint and each Ti can be embedded in one page under σ. Since VI(Ti) = {vi, v�+i} for
0 ≤ i < k, T0,T1, . . . ,Tk−1 are completely independent. Therefore, Gk,�,n is a minimally
k-arbor-connected graph with pagenumber k. ��
Lemma 2. Let G be a connected graph of order n. If n′(G) ≤ 2k ≤ n, then a positive
integer q such that Gk,q,n contains G′ isomorphic to G can be found in linear time.

Proof. If n′(G) = 0, then n = 2 and G is isomorphic to G1,1,2. Suppose that n′(G) ≥ 1.
Partition VI(G) into two subsets X and X′ so that |X| ≤ |X′| ≤ |X| + 1. If n′(G) is odd,
then we select a leaf u of G and add it to X. Let r = � n′(G)

2  = |X| = |X′|. Let Y and Y ′ be
the sets of leaves (except for u) adjacent to a vertex in X and X′, respectively. Let s = |Y |
and s′ = |Y ′|. Without loss of generality, we may assume that s ≤ s′. By letting X, Y ,
X′, and Y ′ correspond to Vr, Ws, V ′r , and W ′s′ of Gr,r+s,n, respectively, we can see that
Gr,r+s,n contains G′ isomorphic to G. By definition, it holds that Gr,r+s,n ⊂ Gr+1,r+s,n ⊂
· · · ⊂ Gr+s,r+s,n ⊂ Gr+s+1,r+s+1,n ⊂ · · · ⊂ G	 n2 
,	 n2 
,n. Since n′(G) ≤ 2k, r ≤ k. Thus, Gk,q,n

contains G′ isomorphic to G for q = r+ s (respectively, q = k) if k ≤ r+ s (respectively,
k > r + s). Since r and s can be computed in linear time, we have q in linear time. ��

From Lemmas 1 and 2, we have the following theorem.

Theorem 3. Any connected graph G of order n can be augmented to a minimally k-
arbor-connected graph with pagenumber k for any n′(G)

2 ≤ k ≤ n
2 in O(kn) time.

Note that the restriction on k in Theorem 3 is the lower bound, while that in Theorem
2 is the upper bound. The gap in the ranges of k in Theorems 2 and 3 disappears when
n′(T )

2 ≤ rad(T ) + 1. For any caterpillar T , it holds that rad(T ) = 	 n′(T )
2 
 + 1. Thus, the

following corollary is obtained.

Corollary 1. Any caterpillar of order n can be augmented to a minimally k-arbor-
connected graph with pagenumber k for any 2 ≤ k ≤ n

2 in O(kn) time.

We next show that except for paths, the upper bound on k in Theorem 2 can be
slightly improved for trees with even diameter.

Lemma 3. Any tree T with even diameter except for a path can be augmented to a
minimally (rad(T ) + 1)-arbor-connected graph with pagenumber (rad(T ) + 1) in O(kn)
time.

Proof. Let x be the central vertex of T and k = rad(T ). Let � be the minimum distance
from x to a vertex with degree at least 3. Let x′ be a vertex with degree at least 3
such that dT (x, x′) = �. Note that x′ = x if � = 0. Regarding x as the root of T ,
let D1(x′) = {w1, . . . ,wt} (respectively, {w1, . . . ,wt+1}) if � > 0 (respectively, � = 0).
Without loss of generality, we may assume that Dk−1(wt+1) � ∅ if � = 0 and rad(T ) ≥ 2.
Letσ be a depth-first search ordering for T from x such thatσ(x′) = �+1, wi�σ,D1(x′)wi+1

for 1 ≤ i < t, and wt �σ,D1(x′) wt+1 if � = 0. Based on σ and T (instead of T+), we
construct T1,T2, . . . ,Tk similarly to the proof of Theorem 2. Note that even if |V0| ≥ 3,
the construction in Theorem 2 works well such that ∪1≤i≤kEi = E(T ) \ {xv | v ∈ D1(x)}
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and V(Ti) = V(T ) \ {x}. Let T0 = 〈{xv | v ≤σ wt} ∪ {wtv | wt <σ v}〉 and T ′i = 〈E(Ti) ∪
{σ−1(maxv∈Vi−1 σ(v))x}〉 for 1 ≤ i ≤ k. Each of these trees can be embedded in one page
under σ. Let h = � mod k+ 1. Since VI(T0) = {x,wt}, VI(T0)∩VI(T ′i ) = ∅ for any i � h.
Any edge xv where v ≤σ wt is not used in T ′i for any i, since wt <σ σ

−1(maxv∈Vi−1 σ(v)).
Any edge wtv where wt <σ v is also not used in T ′i for i � h. Thus, E(T0)∩E(T ′i ) = ∅ for
any i � h. Hence, T0,T ′1, . . . ,T

′
k except for T ′h are k completely independent spanning

trees in their union T�. Define T ′′h by modifying T ′h as follows:

T ′′h =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

T ′h −{wtu | wtu ∈ Eh ∪ Ah ∪ Bh} + {wt−1u | wtu ∈ Eh ∪ Ah ∪ Bh} if � < k,
T ′h −{wtu | wtu ∈ Eh ∪ Ah} ∪ {pk(wt)wt}
+{wt−1u | wtu ∈ Eh ∪ Ah} ∪ {wt−1wt} if � ≥ k.

Then, VI(T ′′h ) ∩ VI(T ′i ) = ∅ for i � h and VI(T ′′h ) ∩ VI(T0) = ∅. Note that any edge in
{wt−1u | wtu ∈ Eh ∪ Ah ∪ Bh} (respectively, {wt−1u | wtu ∈ Eh ∪ Ah} ∪ {wt−1wt}) is not
used in T0 and any T ′i for i � h if � < k (respectively, � ≥ k). Since T ′′h can be embedded
in one page under σ and E(T ) ⊂ E(T ′′h ) ∪ E(T�), 〈E(T ′′h ) ∪ E(T�)〉 is a minimally
(k + 1)-arbor-connected graph with pagenumber k + 1 which contains T .

Applying a breadth-first search from x, � and x′ can be found and wt can be defined.
By Theorem 2, T1,T2, . . . ,Tk are constructed in O(kn) time. According to the definition,
T0 can be constructed in O(n) time. Each tree T ′i is obtained from Ti by adding only one
edge, while the tree T ′′h is obtained from T ′h by modifying O(n) edges. Thus, we have a
desired graph in O(kn) time. ��

A tree T with radius 1 is a star, i.e., n′(T ) ≤ 1, while a tree T with radius 2 and
odd diameter is a double-star, i.e., n′(T ) = 2. For a tree with radius 2 and even diameter
except for a path, we can apply Lemma 3. Thus, from Theorems 2 and 3 and Lemma 3,
we have the following.

Theorem 4. For k ≤ 3, any tree of order n ≥ 2k can be augmented to a minimally
k-arbor-connected graph with pagenumber k in linear time.

In particular, the case k = 2 in Theorem 4 implies a planarity preserving augmenta-
tion of a tree.

Corollary 2. Any tree of order n ≥ 4 can be augmented to a planar minimally 2-arbor-
connected graph in linear time.

5 Augmenting a Cactus

Theorem 5. Any cactus G of order n can be augmented to a minimally k-arbor-
connected graph with pagenumber k for any �G2 < k ≤ rad(G) in O(kn) time, where
�G is the maximum length of a cycle in G.

Proof. Let G be a cactus of order n. Note that for any distinct cycles C and C′ in G,
E(C) ∩ E(C′) = ∅. Let x be a central vertex of G and y a vertex adjacent to x such that
y is on a path between x and a vertex v with dG(x, v) = rad(G). Let G+ be the graph
obtained from G − xy by adding a new vertex z with edges xz and yz. Besides, let T+
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be a breadth-first search tree of G+ from z. For each cycle C in G, there is exactly one
edge in E(C) \ (E(T+) ∪ {xy}) and we denote by f (C) the edge. Consider a depth-first
search ordering σ+ for the vertices of T+ from z such that for any f (C) = aCbC with
dT+(z, a) ≥ dT+ (z, b), aC <σ+ bC and every vertex v with aC <σ+ v <σ+ bC is either
a descendant of aC or an ancestor of bC . Then, we define σ as σ(v) = σ+(v) − 1 for
any v ∈ V(G). Similarly to the proof of Theorem 2, we also define Ei, Ai, Bi, B′i , and
Ti = 〈Ei ∪ Ai ∪ Bi ∪ B′i〉 for 1 ≤ i ≤ k. Consider f (C) = aCbC with aC <σ bC .
If aC ∈ Vi−1 where 1 ≤ i ≤ k, then the edge f (C) is used in Ti since f (C) ∈ Bi.
Note that if xy is on a cycle C′, then f (C′) ∈ ∪1≤i≤kBi. Suppose that aC ∈ Vkt+i−1

where t ≥ 1 and 1 ≤ i ≤ k. Let rC be the k-ancestor of aC . Since k ≥ 	 �G2 
 + 1, the
subtree rooted at rC contains the vertex lcaT+(aC , bC) where rC � lcaT+(aC , bC). Now
let M(C) = {w | σ−1(maxv∈V(TaC ) σ(v)) <σ w ≤σ bC}. Note that {rCw | w ∈ M(C)} ⊆ Ai.
Replace Ti with Ti − {rCw | w ∈ M(C)} + {aCw | w ∈ M(C)}. Let T ′1,T

′
2, . . . ,T

′
k be the

spanning trees finally obtained by doing such a modification for each cycle C. Since
any edge in {aCw | w ∈ M(C)} is not used in E(T1) ∪ E(T2) ∪ · · · ∪ E(Tk), the resultant
spanning trees T ′1,T

′
2, . . . ,T

′
k are completely independent spanning trees such that their

union contains G. Besides, each T ′i can be embedded in one page under σ.
It has been shown in [15] that the center of a cactus can be found in linear time.

Thus, x (and also y) can be found in linear time. By applying a breadth-first search toG+

from z, we can find f (C) for each cycle C and label the end-vertices so that dT+ (z, aC) ≥
dT+(z, bC). Besides, for each cycle C, we can find lcaT+(aC , bC) and recognize all the
edges of C in O(k) time. Let a′C (respectively, b′C) be the vertex adjacent to lcaT+(aC , bC)
on the path from lcaT+(aC , bC) to aC (respectively, bC). We then apply a depth-first
search in which for each cycleC, each edge p1(v)v on the path from a′C to aC is traversed
as the last edge in {p1(v)w | w ∈ D1(p1(v))} for the search of Ta′C and just after the search
of Ta′C , the traversal proceeds through b′C and then the path from b′C to bC . Such a depth-
first search generates σ+ satisfying the above two properties in O(n) time. For each
edge f (C), the corresponding modification can be done in O(k) time. Since the number
of cycles in G is at most 	 n−1

2 
, we can obtain a desired graph in O(kn) time. ��
As a corollary, we have an augmentation result for triangular cacti.

Corollary 3. Any triangular cactus G of order n can be augmented to a minimally
k-arbor-connected graph with pagenumber k for any 2 ≤ k ≤ rad(G).

6 Augmenting a Unicyclic Graph

Theorem 6. Any unicyclic graph G of order n can be augmented to a minimally k-
arbor-connected graph with pagenumber k for any 2 ≤ k ≤ rad(G) in O(kn) time.

Proof. Let G be a unicyclic graph of order n. Let C = (v1, v2, . . . , vm, v1) be the cycle of
G. Since a unicyclic graph is a cactus, it is sufficient to show the case that k ≤ m

2 . Let
T = G − v1vm. Suppose that m is even. Let q = m−2

2 mod k.
Case 1: q � 0. Let x = vm

2
and y = vm

2 +1. In the proof of Theorem 2, by employing
a depth-first search ordering σ such that v1 <σ vm and each edge p1(v)v on paths from
x to v1 and from y to vm is traversed as the last edge in {p1(v)w | w ∈ D1(p1(v))}, we
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construct a minimally k-arbor-connected graph T ∗. For the spanning tree Tq+1 ⊂ T ∗,
by replacing each edge vm

2 −qw in Bq+1 (respectively, vm
2 +q+1w in B′q+1) with the edge

v1w (respectively, vmw) and then replacing the edge v1w for vm
2 −q �σ,Vq w with v1vm, we

obtain a desired graph.
Case 2: q = 0. Define T+4 as the tree obtained from T by deleting the three edges in

the path (vm
2 −1, vm

2
, vm

2 +1, vm
2 +2), adding the new vertex z, and joining z to each vertex in

the path. Based on T+4 instead of T+ in the proof of Theorem 2, we construct T ∗ under
the condition vm

2 −1 <σ vm
2
<σ vm

2 +1 <σ vm
2 +2 and each edge p1(v)v on paths from vm

2 −1

to v1 and from vm
2 +2 to vm is traversed as the last edge in {p1(v)w | w ∈ D1(p1(v))}. Note

that in this construction, V0 = {vm
2 −1, vm

2
, vm

2 +1, vm
2 +2}, B1 = {vm

2 −1vm
2
, vm

2
vm

2 +1, vm
2 +1vm

2 +2}
and {v1, vm} ⊆ Wk−1. By modifying Tk in a similar fashion for Tq+1 in Case 1, we have
a desired graph.

Suppose that m is odd. Let r = m−3
2 mod k. Define T+3 (respectively, T+5 ) as the tree

obtained from T by deleting the two edges in the path (vm+1
2 −1, vm+1

2
, vm+1

2 +1) (respectively,
four edges in the path (vm+1

2 −2, vm+1
2 −1, vm+1

2
, vm+1

2 +1, vm+1
2 +2)), adding the new vertex z,

and joining z to each vertex in the path. Similarly to Case 1 (respectively, Case 2),
we have the desired result by considering T+3 (respectively, T+5 ) and modifying Tr+1

(respectively, Tk) if r � 0 (respectively, r = 0).
In any case, the corresponding modification can be done in O(n) time. Thus, we

have a desired graph in O(kn) time. ��
For any quasi-cycle G, it holds that 	 n′(G)

2 
 ≤ rad(G) ≤ 	 n′(G)
2 
 + 1. Thus from

Theorems 3 and 6, we have the following corollary.

Corollary 4. Any quasi-cycle of order n can be augmented to a minimally k-arbor-
connected graph with pagenumber k for any 2 ≤ k ≤ n

2 .

7 Concluding Remarks

For S 1, S 2 ⊂ V(G) such that S 1 ∩ S 2 = ∅, 〈S 1, S 2〉G denotes the bipartite subgraph of G
induced by partite sets S 1 and S 2, i.e., 〈S 1, S 2〉G = 〈S 1 ∪ S 2〉G − E(〈S 1〉G) ∪ E(〈S 1〉G).
A minimally k-arbor-connected graph can be characterized as follows.

Proposition 1. A graph G is a minimally k-arbor-connected graph if and only if V(G)
is partitioned into k subsets V1,V2, . . . ,Vk such that 〈Vi〉G is a tree for any 1 ≤ i ≤ k
and 〈Vi,Vj〉G is a disjoint union of unicyclic graphs for any 1 ≤ i < j ≤ k.

Proof. Let G be a minimally k-arbor-connected graph. Then, G can be decomposed
into completely independent spanning trees T1,T2, . . . ,Tk. Let Vi = VI(Ti) for 1 ≤ i < k
and Vk = VI(Tk) ∪ (∩1≤i≤kVL(Ti)). Since VI(Ti) ∩ VI(T j) = ∅ for any i < j, V(G) is
partitioned into V1,V2, . . . ,Vk. Clearly, 〈Vi〉G is a tree for each i. For any v ∈ Vi and
any j � i, v is a leaf of T j and then we denote by ρ j(v) the neighbor of v in T j. In
〈Vi,Vj〉G, a walk (v, ρ j(v), ρi(ρ j(v)), ρ j(ρi(ρ j(v))), . . .) starting from v ∈ Vi eventually
reaches a cycle. This implies that every component of 〈Vi,Vj〉G is a unicyclic graph.
Thus, 〈Vi,Vj〉G is a disjoint union of unicyclic graphs.

Suppose that V(G) is partitioned into k subsets V1,V2, . . . ,Vk such that 〈Vi〉G is a
tree for any i and 〈Vi,Vj〉G is a disjoint union of unicyclic graphs for any i < j. For each
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component H in 〈Vi,Vj〉G, we can orient every edge so that the outdegree of every vertex
is one. Based on such an orientation, we can connect each vertex in Vi (respectively, Vj)
to 〈Vj〉G (respectively, 〈Vi〉G) as a leaf. In this way, we have k completely independent
spanning trees in G. Since we use all the edges of G for such spanning trees, G is a
minimally k-arbor-connected graph. ��

As a corollary of Proposition 1, a characterization of a k-arbor-connected graph
shown in [2] is obtained; namely, a graph G is k-arbor-connected if and only if V(G) is
partitioned into k subsets V1,V2, . . . ,Vk such that 〈Vi〉G is connected for any 1 ≤ i ≤ k
and 〈Vi,Vj〉G has no tree component for any 1 ≤ i < j ≤ k.

Using the characterization in Proposition 1, we can obtain the following proposition.

Proposition 2. Any tree of order n can be augmented to a minimally k-arbor-connected
graph for any 2 ≤ k ≤ n

2 .

Given a graph G with a vertex-ordering σ of a t-page book-embedding of G, let
P be the path with V(P) = V(G) and E(P) = {σ−1(i)σ−1(i + 1) | 1 ≤ i < n, i �
� n2 } ∪ {σ−1(1)σ−1(� n2  + 1)}. Let P∗ be the augmented graph according to the proof of
Theorem 2. Then, 〈E(G) ∪ E(P∗)〉 is a k-arbor-connected graph with pagenumber at
most t + k. From this observation, we have the following results.

Proposition 3. Any graphG of order n can be augmented to a k-arbor-connected graph
with pagenumber at most pn(G) + k for any 2 ≤ k ≤ n

2 .

Corollary 5. Any tree of order n can be augmented to a k-arbor-connected graph with
pagenumber at most k + 1 for any 2 ≤ k ≤ n

2 .

Based on the results in this paper, we may pose the following conjecture which
strengthens Proposition 2 and Corollary 5. Conjecture 1 holds for special trees such as
caterpillars and trees with at most 8 internal vertices, and for the case that k ≤ 3.

Conjecture 1. Any tree of order n can be augmented to a minimally k-arbor-connected
graph with pagenumber k for any 2 ≤ k ≤ n

2 .

It would be interesting to consider augmentation problems for a tree to a k-arbor-
connected graph while preserving other good properties on layouts.
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Approximation Algorithms for Hitting
Subgraphs

Noah Brüstle, Tal Elbaz, Hamed Hatami(B), Onur Kocer, and Bingchan Ma

School of Computer Science, McGill University, Montreal, Canada

Abstract. Let H be a fixed undirected graph on k vertices. The H-
hitting set problem asks for deleting a minimum number of vertices from
a given graph G in such a way that the resulting graph has no copies of
H as a subgraph. This problem is a special case of the hypergraph vertex
cover problem on k-uniform hypergraphs, and thus admits an efficient
k-factor approximation algorithm. The purpose of this article is to inves-
tigate the question that for which graphs H this trivial approximation
factor k can be improved.

Keywords: Hitting sets · Subgraph elimination · Vertex cover

1 Introduction

All graphs considered in this article are finite simple undirected graphs. Given
a fixed graph H, a subset of the vertices of a graph G is called an H-hitting set
if it intersects every (not necessarily induced) copy of H in G. In other words,
removing these vertices from G results in an H-free graph. The H-hitting set
problem asks for the size of the smallest H-hitting set in a given graph G. When
H is a single edge, this is the infamous vertex cover problem, which is one of the
most studied problems in the area of algorithmic graph theory. Another closely
related problem is the feedback vertex set problem, in which the goal is to remove
a smallest set of vertices from G so that the resulting graph contains no cycles.
Note that here, instead of a single graph H, we wish to eliminate a family of
graphs, namely all cycles. The vertex cover problem and the feedback vertex
set problem are both NP-complete, however they both admit efficient 2-factor
approximation algorithms.

The H-hitting set problem, as well as its analogue for the induced subgraph
setting, have been studied for other specific graphs H such as paths [2,3,9,11,12],
stars [7], and cliques [7]. It is not difficult to see that for any nonempty graph
H, the H-hitting set problem is NP-complete (See Theorem 6 below). On the
other hand, this problem is a special case of the hypergraph vertex cover problem
for k-uniform hypergraphs where k = |V (H)|, and thus admits an efficient k-
factor approximation. That is, while there is a copy of H in G, delete all the
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vertices of this copy, and repeat until the remaining graph becomes H-free.
Since these detected copies of H are all vertex-disjoint, any H-hitting set needs
to remove at least one vertex from each copy. Hence the number of vertices that
are removed by the algorithm is at most k times the optimal solution. For the
case of the vertex cover problem, it is widely believed that this simple algorithm
is essentially optimal, in the sense that for no fixed constant ε > 0, an efficient
(2 − ε)-factor approximation algorithm exists. In fact it is shown by Khot and
Regev [10] that if the so called unique games conjecture (UGC for short) is
true, then the existence of an efficient (2 − ε)-factor approximation algorithm
would imply P = NP. In fact their result overrules the existence of an efficient
(k − ε)-factor approximation algorithms for the k-uniform hypergraph vertex
cover problem. This raises the following natural question.

Question 1. For which graphs H on k vertices, there is a constant ε > 0 such
that the H-hitting set problem admits an efficient (k − ε)-factor approximation
algorithm?

We shall refer to such graphs as approximate-easy. It is shown in [8] that there
is an efficient 23

11 -factor approximation algorithm for the P3-hitting set problem,
where here and throughout the paper, Pk denotes the path on k-vertices. This
was improved in [12] to a 2-factor algorithm by showing that the 2-factor primal-
dual approximation algorithm of [5] for the feedback vertex set problem can be
adapted to the P3-hitting set problem. Subsequently, it is shown in [4] that the
same ideas can be extended to give a 3-factor approximation algorithm for the
P4-hitting set problem. Lee [11] showed that for every k, there is an efficient
O(log(k))-approximation algorithm for the Pk-hitting set, and in particular for
sufficiently large k, the path Pk is approximate-easy. Similarly, it is shown in
[7] that the star Sk, consisting of a vertex that is connected to k other ver-
tices, admits an O(log(k))-approximation algorithm, and thus is approximate-
easy provided that k is sufficiently large.

Let us now turn to negative results. The hardness of approximation for the
H-hitting set problem has been studied extensively by Guruswami and Lee [7].
They prove that if H is a 2-vertex connected graph, then the H-hitting problem
does not admit a (k − 1 − ε)-approximation algorithms unless BPP �= NP. Since
Guruswami and Lee’s goal was not to classify the approximate-easy graphs, they
preferred to focus on achieving the slightly weaker bound of k − 1 − ε and not
rely upon the correctness of the UGC. However as they remark in their article,
assuming the UGC conjecture, their approach can lead to the stronger (k − ε)
lower-bound that is relevant to our investigation.

Theorem 1. [7] Assuming the unique games conjecture and NP �⊆ BPP, no
2-vertex connected graph is approximate-easy.

The reason that Theorem 1 relies on the assumption NP �⊆ BPP rather
than P �= NP is that the reduction in the proof is obtained by a randomized
algorithm. Since Theorem 1 was claimed in [7] without a proof, we present its
proof in Sect. 3.2. Prior to this work, the only graphs that were known to be
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approximate-easy were paths and stars. In the following theorem, we show that
in fact all trees are approximate-easy.

Theorem 2. Let T be a tree on k nodes. The T -hitting set problem admits an
efficient (k − 1

2 )-factor approximation algorithm.

Since our focus is only on the classification of approximate-easy graphs, we
have not tried to optimize the approximation factor in Theorem 2. The proof of
Theorem 2 can be applied to a wider class of graphs. These are the graphs that
contain a vertex-cut that has certain properties (See Theorem 5). Inspired by
these results and Theorem 1 we conjecture the following.

Conjecture 1. H is approximate-easy if and only if it is not 2-vertex connected.

The smallest example of an H for which we do not yet have a definite answer
is the graph consisting of a triangle and a cycle of length 4 that share a single
vertex.

Hitting Set Problem for Induced Subgraphs: The hitting set problem can be
defined analogously for induced subgraphs. In this case, the goal is to remove
the minimum number of vertices from G, so that the remaining graph does
not have any induced copies of H. As in the case of the non-induced hitting
set, there is a trivial |V (H)|-factor approximation algorithm, and thus one can
analogously define the notion of induced-approximate-easy. In Sect. 3.3 we show
that the proof of Theorem 1 can be modified to imply a similar result for the
induced case.

Theorem 3. Assuming the unique games conjecture and NP �⊆ BPP, if H or its
complement is a 2-vertex connected graph, then H is not induced-approximate-
easy.

In particular P5 as well as many other trees are not induced-approximate-
easy since their complements are 2-vertex connected, and thus the sets of
approximate-easy and induced approximate-easy graphs are distinct.

2 The Algorithms

To develop our approximation algorithms, we need to consider the more general
setting of the problem where G is a vertex-weighted graph. More precisely, we
are given a graph G where every vertex has a non-negative weight, and the goal
is to find the smallest possible total weight among H-hitting sets in G.

Phase I: Initial Simplification Using Good Subgraphs: Suppose that we are trying
to develop a t-factor approximation algorithm for the H-hitting set problem.
First note that we can remove the vertices with weight 0 at no cost. The next
important idea is the concept of t-good graphs that is formally introduced in [6]
but it is also implicit in some of the earlier algorithms.
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Definition 1. A graph K is called t-good for the H-hitting set problem if it
is possible to assign non-negative weights to the vertices of K such that every
H-hitting set in K has weight at least 1

t of the total weight.

In other words, there is a choice of weights wK : V (K) → R
≥0 for which,

even picking all the vertices of K is a t-factor approximation of the H-hitting set
problem1. The key idea behind this notion is that if a weighted graph (G,wG)
contains a copy of K on the vertices with strictly positive weights, then we can
make progress on G in the following manner. With an abuse of notation let wK

also denote the extension of wK to all the vertices of G by assigning weight 0
to the vertices that are not in that copy of K. Let λ = minv:wK(v) �=0

wG(v)
wK(v) , and

let w1 = λwK and w2 = wG − w1. Note that both w1 and w2 are non-negative
functions, and furthermore w2 assigns a weight of zero to at least one vertex
in the copy of K. Let S be a t-factor H-hitting set for (G,w2). Note that by
the goodness property of K, S is also automatically a t-factor H-hitting set for
(G,w1). Since wG = w1 +w2, we conclude that S is also a t-factor H-hitting set
for (G,wG). This suggests the following approach. Let K = K1, . . . ,K� be a set
of t-good graphs for the H-hitting set problem.

Algorithm 1: Simplification of the problem using good subgraphs.
Data: On input (G,w)
while there is a copy of some K ∈ K in G with strictly positive weights do

Set λ = minv:wK(v) �=0
w(v)

wK(v) ;
Replace w with w − λwK ;

end
Let wfin denote the final weights.

Note that at every iteration of the algorithm, the weight of at least one
more vertex of G decreases to 0, so the above algorithm terminates. The above
discussion shows that in order to find a t-factor H-Hitting set for (G,w), it
suffices to find a t-factor H-hitting set for (G,wfin).

Let X be the set of the vertices that are assigned weight 0 by wfin. We can
include the vertices of X in a hitting set at no cost. Moreover G−X is K-free for
all K ∈ K. Depending on K, this could potentially restrict the structure of G−X
significantly, and allow us to find a t-factor H-hitting set Y for (G − X,wfin)
efficiently. Then we can output X ∪ Y as a t-factor H-hitting set for (G,w).

Phase II: Improved Factor Based On Colouring Hypergraphs: After the initial
simplification in Phase I, we will end up with a weighted graph G that is K-free
for all graphs K ∈ K, where K is our set of good graphs. In the second phase,
we will use the K-freeness of G to find a desired colouring of the vertices of G
that enables us to solve the hitting set problem efficiently with an approximation
factor that is strictly less than |V (H)|. This is based on some known results for
approximating the hypergraph vertex cover problem as described below.
1 Our notion of goodness is slightly stronger than that of [6] as we do not consider

minimality.
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Consider the following setting. Let H = (V,E,w) be a vertex-weighted hyper-
graph where every edge is of size at most k, and w : V → R

+. The minimum
vertex cover problem in this setting is the solution to the following integer linear
program:

min
∑

v∈V w(v)xv

s.t.
∑

v:v∈e xv ≥ 1 ∀e ∈ E
xv ∈ {0, 1} ∀v ∈ V

Let us denote the solution to this problem as τ(H). We can relax this to a linear
program

min
∑

v∈V w(v)xv

s.t.
∑

v:v∈e xv ≥ 1 ∀e ∈ E
xv ≥ 0 ∀v ∈ V

Let τ∗(H) denote the cost of the optimal solution to this linear program. This
is known as the fractional cover number of H. Finally note that by the linear
program duality, this is equal to the solution to the following linear program,
which solves the maximal fractional matching problem.

max
∑

e∈E ye

s.t.
∑

e:v∈e ye ≤ w(v) ∀v ∈ V
ye ≥ 0 ∀e ∈ E

Definition 2. A hypergraph H is called t-colourable if there exists a t-colouring
of the vertices of H such that every edge of size at least 2 contains at least 2
different colours.

The following theorem is adapted from Aharoni et al. [1], who demonstrated a
bound on the ratio of τ and τ∗ for t-colourable hypergraphs. We modify their
arguments to present an explicit efficient approximation algorithm for τ , and
furthermore generalize it to the case of weighted vertices.

Theorem 4. Let H be a graph on k vertices, and t ≥ k be an integer. There is
an efficient k(1− 1

t )-factor approximation algorithm that solves the H-hitting set
problem for a weighted graph G if is provided with a t colouring of the vertices
of G such that no copy of H in G is monochromatic.

Proof. Suppose that we have such a t-colouring of G, and let H be the hyper-
graph defined by the vertices of G and the edges e ∈ E corresponding to the
copies of H in G. We will show that we are able to find a set of vertices of total
weight at most k(1 − 1

t )τ(H) that covers H.
Let V be the set of vertices in G which are contained in some copy Hi of H in

G, and let H′ = (V,E) be the hypergraph with vertex set V and the hyperedges
corresponding to the copies of H in G. Let g : V → R

+ be a minimal fractional
cover of H′ and f : E → R

+ be a maximal fractional matching in H′ with values
|g| = |f | = τ∗.
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We consider two cases.

1. g(v) > 0 for every v ∈ V .
According to the complementary slackness conditions,

w(V ) =
∑

v∈V

w(v) =
∑

v∈V

∑

e�v

f(e) =
∑

e∈E

f(e)|e ∩ V |

≤
∑

e∈E

f(e)k = k
∑

e∈E

f(e) = kτ∗(H),

and thus

τ∗(H) ≥ w(V )
k

. (1)

On the other hand, the union of any (t − 1) colours of H is obviously a cover
of H, so

τ(H) ≤ t − 1
t

w(V ). (2)

Let S ⊆ V be the largest colour class in our colouring. We may then obtain
a discrete (1 − 1/t)k approximation of the fractional H-Hitting Set Problem
by choosing the vertices V \S.

2. There exists a v ∈ V such that g(v) = 0.
We argue by induction on the number of vertices in G. Consider an edge e
corresponding to a copy of H containing v. Since

∑
v∈v g(e) ≥ 1, there must

be a vertex v′ in e such that g(v′) > 1
k−1 .

Note that g restricted to V \v′ is clearly a valid fractional covering of G\v′

as every e in G\v′ must clearly also be covered in G. Clearly, we also have a
valid t-colouring of G\v′. Thus, we may obtain a (1− 1/t)k approximation of
the fractional H-Hitting Set Problem on G\v′ by our induction hypothesis,
which will have total weight no greater than (1 − 1/t)k

∑
v∈V \v′ w(v). Let J

be the set of vertices selected in this manner.
Now adding v′ to J yields a desired cover. Indeed clearly J ∪ {v′} is a cover,
and since g(v′) ≥ 1

k−1 ≥ 1
(1−1/t)k , we have |J ∪ v′| ≤ (1 − 1/t)kτ∗.

In other cases the statement of theorem follows as τ ≥ τ∗.

The proof of Theorem 4 gives us the following approximation algorithm:

Algorithm 2: ColorSimp
Data: On input (G,H, c)
Let V be the set of vertices of G that are in a copy of H in G. Let G′ be
the hypergraph defined on V with edges e ∈ E, the copies of H in G. Let
g : V → R

+ be a minimal fractional cover of G′. if g(v) > 0,∀v ∈ V then
Let J = arg maxS⊆V |c(s)=c(r)∀s,r∈S |S|; return V \ J

else
Choose v ∈ V, g(v) = 0;
Choose e ∈ E with v ∈ e;
Let v′ = arg maxu∈e(g(v));
Let G∗ be the graph G without v′ and any of its adjacent edges.
return v′ ∪ ColorSimp(G∗,H, c)

end
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Our approach for designing approximation algorithms for the H-hitting set
problem is to find a set K of good graphs for H such that every K-free graph
G admits a colouring (that can be found efficiently). Then we can apply Phase
I to the initial graph to simplify the graph to a K-free graph, and then apply
Theorem 4 to obtain a desired H-hitting set.

2.1 The Approximate-Easy Graphs

In this section, we will apply the method that was developed in Sect. 2 to estab-
lish that trees are approximate-easy. Our proof implies that a broader class of
graphs are approximate-easy. In order to define this class, we need to introduce
the notion of a semi-symmetric cut vertex.

A rooted graph is a graph G where one vertex v is distinguished as the root.
We say that a rooted graph (H,u) is a subgraph of a rooted graph (G, v) if there
is an edge-preserving injection from V (H) to V (G) that maps u to v.

Definition 3. Let H be a graph consisting of m connected graph F1, . . . , Fr, all
sharing a single vertex v, and otherwise having distinct vertices. We call v a
semi-symmetric cut-vertex of H if there exists distinct i, j ∈ [r] such that Fi is
a subgraph of Fj as a v-rooted graph.

a
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2

1
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Fig. 1. On the left: c is a semi-symmetric cut-vertex in a graph H as the c-rooted
subgraph induced by (c, d, e, f) contains the c-rooted subgraph induced by (c, a, b) as a
subgraph. On the right: This graph is at least k − 1

2
good for H where H is the graph

displayed on the left side.

Theorem 5. Every graph H containing a semi-symmetric cut-vertex is neces-
sarily approximate easy. More precisely, there is an efficient (|V (H)|− 1

2 )-factor
approximation algorithm for the H-hitting set problem.
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Proof. Let v be a semi-symmetric cut-vertex in H, and let F1, . . . , Fr be as in
Definition 3, and without loss of generality let us assume that F1 is a subgraph
of F2 as v-rooted graphs. Denote k = |V (H)|. Construct a new graph H ′ from
H by attaching an additional copy of F2 to v, say F ′

2. We will show that H ′ is(
k − |F1|−1

2

)
good for H. This can be easily verified by assigning a weight of

1
2 to all vertices in V (F1) ∪ V (F2) ∪ V (F ′

2)\{v}, and a weight of 1 to all other
vertices in H. Note that every H-hitting set in H ′ either includes one of the
vertices with weight 1, or at least two of the vertices with weight 1

2 . Since the
total weight is k − |F1|−1

2 , we conclude that H ′ is a(k − |F1|−1
2 )-good for H.

Next we run the algorithm in Sect. 2 with H ′ as the only good graph. We
will arrive at an H ′-free weighted graph G′. It remains to obtain a (k− 1

2 )-factor
approximation of the H-hitting set problem for G′.

We say that a copy of H in G′ is centred at u ∈ V (G′) if u can correspond
to the semi-symmetric cut-vertex v in this copy of H. We call u ∈ V (G′) central
if some copy of H is centred at u. Similarly we say that a copy of F2 is centred
at u if u can correspond to v in F2.

For each central vertex u in G′, select an arbitrary copy Hu of H centred at
u. Let Su be the set of vertices inside Hu excluding u. Every copy of F2 centred
at u must intersect Su, since otherwise we would be able to extend Hu to a copy
of H ′ in the H ′-free graph G′.

We now construct a directed graph D with vertices V (G′), and the directed
edges (u,w) for any central vertex u, and every w ∈ Su. Note that D has maximal
out-degree k − 1.

Claim. Every directed graph of maximum out-degree m admits a proper (2m +
1)-colouring.

Proof. Since the sum of the in-degrees is equal to the sum of the out-degrees,
such a graph must contain at least one vertex with total degree at most 2m. We
can remove this vertex, colour the rest of the graph inductively, and then colour
this vertex with one of the available colours.

We may thus colour D with at most 2(k − 1) + 1 < 2k colours. Colour all
vertices in G′ accordingly. This is a valid 2k-hypergraph colouring of the vertices
in G′ with hyperedges corresponding to the copies of H in G′. Every copy H0 of
H contains a central vertex u. Since there might be other copies of H centred
at u, H0 might not be the copy used to define Su, however it still contains a
copy of F2 centred at t, and thus it has at least one element in Su. This vertex
is coloured differently than t, and thus H0 is at least 2-coloured.

Applying Theorem 4, we obtain a k− k
2k = k− 1

2 approximation of the hitting
set problem for the copies of H in G′.

Corollary 1. Every graph H with at least three vertices and at least one vertex
of degree 1 is approximate-easy, and has an approximation factor of at most
k − 1

2 .
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Proof. Let u be a vertex of degree 1, and let v be the vertex adjacent to u. If
H has at least three vertices, v must be of minimum degree 2; v is necessarily
a semi-symmetric cut vertex with the single edge uv as our choice of Fi, and
any other adjacent component as Fj in Definition 3. We may apply the previous
theorem.

Corollary 2. Every tree T on at least 3 vertices is approximate-easy, and has
an approximation factor of at most k − 1

2 .

3 Hardness Results

In this section, we present our results regarding the hardness of the H-hitting
set problem. In Theorem 6 below, we prove that unless H is an empty graph,
the H-hitting set problem is NP-complete. We note in Theorem 7 that the same
argument implies the NP-completeness of the induced H-hitting set problem for
every H. Next in Sect. 3.2 we present the proof of Theorem 1 by using a simplified
version of Guruswami-Lee’s [7] argument to show that 2-vertex connected graphs
are not approximate-easy. Finally, in Sect. 3.3, we prove Theorem 3, by adapting
the proof of Theorem 1 to the induced setting to show that if H or its complement
is 2-vertex connected, then H is not induced approximate-easy.

3.1 NP-Completeness

Theorem 6. The H-hitting set problem is NP-complete for every connected
graph H with at least two vertices.

Theorem 6 follows immediately from Lemma 1 and Lemma 2 below.

Lemma 1. The H-hitting set problem is NP-complete if H is a connected graph
with minimum degree 2,

Proof. The proof is by a reduction from the Vertex Cover Problem. Let G be an
instance of the vertex cover problem.

It is well known that every connected graph can be uniquely decomposed
into a tree of its maximal 2-connected components, called block-cut tree. Let J
be a 2-connected subgraph corresponding to a leaf of the block-cut tree of H.
Note that J contains at most one cut-vertex, and since the minimum degree of
G is 2, there must be an edge e0 in J such that neither of the endpoints of e0 is
a cut-vertex in H.

We construct a graph G′ by “gluing” a copy He of H onto every edge e of
G via the edge e0: More precisely, we take the disjoint union of the two graphs
and identify2 the two edges e and e0. We will show that solving the H-hitting
problem on G′ allows us to solve the vertex cover problem on the original graph
G.
2 We arbitrarily choose a start and an end point for both e0 and e, and identify the

starts together, and the ends together.
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First note that every vertex cover S for G is an H-hitting set for G′ as
removing the vertices in S from G′ eliminates all the edges in G, and moreover if
u is a vertex in V (G)\S, then since neither of the endpoints of e was a cut-vertex,
u cannot belong to any copy of H in G′ − S.

For the other direction, consider an H-hitting set T in G′, and let S =
T ∩ V (G). Let E ⊆ E(G) be the set of the edges in G that are not covered
by S. Note that for every e ∈ E, T must contain at least one vertex from He.
Hence |T | ≥ |S| + |E|, and the latter is obviously an upper bound on the size of
a minimum vertex cover for G.

We conclude that the size of a minimum vertex cover in G is equal to the
size of the smallest H-hitting set in G′.

Next in Lemma 2 we establish NP-completeness for the case where H contains
a vertex of degree 1.

Lemma 2. The H-hitting set problem is NP-complete if H is a connected graph
with minimum degree 1,

Proof. Again the proof is by a reduction from the vertex cover problem. Let G
be an instance of the vertex cover problem. Let v0 be a vertex of degree 1 in H,
and let u0 be the unique neighbour of v0. Let F = H − v0.

This time, we obtain a graph G′ by gluing a copy of F on every vertex of G
via the vertex u0. More formally, for every vertex u of G, we add a disjoint copy
Fu of F , and unify u and u0.

Let S be a vertex cover for G. Removing S from G′ turns it into a disjoint
union of copies of F , which is H-free. Thus S is an H-hitting set for G′.

For the other direction, consider an H-hitting set T in G′, and let S =
T ∩ V (G). Let R ⊆ V (G) be the set of the vertices in G that are involved in the
remaining edges in G − S. Note that S ∪ R is a vertex cover for H. For every
u ∈ R, T must contain at least one vertex from Fu. Hence |T | ≥ |S ∪ R|.

We conclude that the size of smallest H-hitting set in G′ is equal to the size
of a minimum vertex cover in G.

The proofs of Lemma 2 and 1 apply to the induced case as well. We conclude
that Theorem 6 also holds for the induced H-hitting set problem.

Theorem 7. The induced H-hitting set problem is NP-complete for every con-
nected graph H with at least two vertices.

3.2 Guruswami-Lee’s Hardness Result: Theorem 1

In this section, we present Guruswami-Lee’s hardness of approximation result
albeit with minor modifications. The starting point is the hardness of the hyper-
graph vertex cover.

Theorem 8. [10] Fix an integer k > 2, and let ε ∈ (0, 1). Given a k-uniform
hypergraph H = (VH, EH), assuming the UGC and P �= NP, there is no polyno-
mial time algorithm that distinguishes the following cases.
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– Completeness: There exist disjoint subsets V1, . . . , Vk ⊆ VH, each with 1−ε
k

fraction of vertices, such that each hyperedge has at most one vertex in each
Vi. Note that in this case, every Vi together with the vertices in V0 := VH \
(V1 ∪ . . . ∪ Vk) form a vertex cover with ( 1−ε

k + ε) fraction of vertices.
– Soundness: Every subset of VH with a less than (1 − ε) fraction of vertices

does not intersect at least one hyperedge. Equivalently, every subset C of ε-
fraction of vertices wholly contains a hyperedge.

In order to deduce a hardness result for the H-hitting set problem from The-
orem 8, naturally one would think of replacing each hyperedge e = (v1, . . . , vk)
of H with a copy of H. However, this can lead to a problem as one might create
unintentional copies of H that come from a combination of different hyperedges.
Thus a vertex cover for H might not necessarily correspond to an H-hitting set
for the constructed graph. To overcome this problem, we will replace each vertex
of H with a large “cloud” of vertices, and for each hyperedge e = (v1, . . . , vk) we
randomly implant several copies of H on the clouds of these vertices.

Theorem 9. Let H be a 2-vertex connected graph on k vertices, and let ε >
0. Assuming the UGC, unless NP ⊆ BPP, no polynomial time algorithm can
distinguish between the following two cases for a graph G.

– Completeness: There is an H-hitting set with 1
k + ε fraction of the vertices.

– Soundness: Every set with 2ε fraction of the vertices contains at least one
copy of H.

In particular, for every δ > 0, no efficient algorithm can approximate the H-
hitting set problem with an approximation factor of k − δ.

Proof. Let H be the k-uniform hypergraph from Theorem 8. We will construct a
polynomial size random graph G such that with probability at least 7/8, it will
satisfy the following property: approximating the H-hitting set problem on G
would distinguish the two cases in Theorem 8. Since G is randomly constructed,
we can only conclude the hardness result under the assumption that NP �⊆ BPP.

Without loss of generality we will assume VH = [k]. Given the k-uniform
hypergraph H, we put an arbitrary order on the vertices of every hyperedge
e = (v1, . . . , vk) of H.

We may assume that n = |VH| is sufficiently large as a function of ε and k, as
otherwise the hypergraph vertex cover problem on H could be solved efficiently.
Let B = B(n, ε, k) be a sufficiently large number that polynomially depends on
n to be determined later. Let λ = λ(k, ε) be a positive integer to be determined
later as well. The random graph G is defined in the following manner:

– VG = VH × [B]. That is we replace every vertex v of the hypergraph H with
B new vertices. We refer to cloud(v) := {v} × [B] as the cloud of v.

– For every edge e = (v1, . . . , vk) ∈ EH, we plant λB copies of H in G. For
j = 1, . . . , λB repeat:
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• Pick (�1, . . . , �k) ∈ [B]k uniformly at random and plant a copy of H on
(v1, �1), . . . , (vk, �k) by mapping the i-th vertex of H to (vi, �i). We put a
tag of [e, j] on all the edges of this copy of H.

The above procedure produces a random graph G, together with a map
ψ : EG → EH × [λB] representing the tag of each edge in G. Note that G
can have multiple edges between two vertices. While we can replace these edges
with a single edge without affecting the set of H-hitting sets, for the sake of the
presentation, it will be convenient to keep them as multiple edges.

We refer to the planted copies of H in G as intended copies. Note that a copy
of H in G is intended if and only if all the edges in the copy have the same tag.
However G might also have other copies of H, which we refer to as unintended.

Completeness: Suppose that H satisfies the conditions of the completeness case
of Theorem 8. Let S = (V0∪V1)×[B]. Since (V0∪V1) is a vertex cover in H, S hits
every intended copy of H. We will show that with probability at least 3/4, there
will be only few unintended copies of H that do not intersect S. Consequently, we
can hit those copies by adding few extra vertices to S. Consider an unintended
copy of H in G given by a map φ : [k] → VG. Since this copy is unintended,
there are p > 1 different tags t1, . . . , tp on its edges. Let Ii ⊆ [k] be the set of the
vertices of H that are incident to the edges with the tag ti in that copy. Since
H is 2-vertex connected, each Ii has at least two vertices that belong to some
other Ij as well. This implies |I1| + . . . + |Ip| ≥ k + p.

There are (nB)k choices for φ, and fixing p, there are at most
p|E(H)|(λB|EH|)p choices for the tags on the edges of this copy of H. For a
fixed φ and fixed tags, the probability that the corresponding tagged copy of H
is in G is B−(|I1|+...+|Ip|) ≤ B−k−p. We conclude that the expected number of
unintended copies of H is at most

|E(H)|∑

p=2

(nB)kp|E(H)|(λB|EH|)pB−k−p ≤ λk2
nk2

.

Taking B = λk2
nk2

, we see that the expected number of unintended copies of
H is B, which is very small compared to |V (G)| = nB. Assuming n > k

ε and
applying Markov’s inequality, the probability that there are more than 4B ≤
ε
knB = ε

k |V (G)| unintended copies of H in G is at most 1
4 . Thus, with probability

at least 3
4 , there is an H-hitting set in G of size at most

|S| + 4B ≤
(

1 − ε

k
+ ε

)

|VG| +
( ε

k

)
|VG| =

(
1
k

+ ε

)

|VG|,

as desired.

Soundness: Next suppose that H satisfies the conditions of the soundness case of
Theorem 8. First we show that with probability at least 7/8, the random graph
G satisfies the following property: For every edge e = (v1, . . . , vk) ∈ EH, for any
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choice of subsets Ai ⊆ cloud(vi) with |Ai| ≥ εB for all i ∈ [k], there is a copy
of H on the induced subgraph of G on A1 ∪ . . . ∪ Ak. Indeed, for any choice of
e and Ai’s, the probability that none of the λB planted copies of H that are
created by e fall into this set is at most

(1 − εk)λ ≤ e−λBεk .

Applying a union bound over e and Ai’s, we can bound this probability by

|EH|2kBe−λBεk ≤ 1/8,

for λ ≥ kε−k.
Now consider a G that satisfies the above property, and let D ⊆ VG be a set

with at least 2ε fraction of the vertices. Let C ⊆ VH be the set of vertices v ∈ H
such that |cloud(v)∩D| ≥ εB. Since |D| ≥ 2ε|V (G)|, we know that |C| ≥ ε|VH|,
and thus there is a hyperedge e in C. Consequently, there is a copy of H in D.

3.3 Hitting Sets for Induced Subgraphs: Proof of Theorem 3

In this section we present the proof of Theorem 3 by proving an analogue of
Theorem 9 for induced hitting sets.

Theorem 10. Let H be a 2-vertex connected graph on k vertices. Assuming the
UGC, unless NP ⊆ BPP, no polynomial time algorithm can distinguish between
the following two cases for a graph G.

– Completeness: There is an induced H-hitting set with 1
k + ε fraction of the

vertices.
– Soundness: Every set with 3ε fraction of the vertices contains at least one

induced copy of H.

In particular, for every δ > 0, no efficient algorithm can approximate the induced
H-hitting set problem with an approximation factor of k − δ.

Proof. Create the random graph G precisely as in the proof of Theorem 9. There-
fore, we can see that there are |EH|λB intended copies of H. However, some of
these copies might not remain induced copies of H due to possible intersections
with other intended copies. We call an intended copy of H in G destroyed if
it is not an induced copy of H. Note that this happens exactly when another
intended copy of H plants an edge between two vertices that are not supposed to
be connected in this copy. As it is explained below, the proof follows by showing
that with high probability the number of destroyed copies is small.

Completeness: In Theorem 9, it was proven that with probability at least 3
4 ,

there is an (not necessarily induced) H-hitting set of size at most ( 1
k + ε)|V (G)|

in G. Since an H-hitting set is also an induced H-hitting set, the completeness
follows.
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Soundness: In this case, we need to show that the number of destroyed intended
copies of H is small. For e ∈ EH and i ∈ {1, 2, . . . , λB}, let He,i denote the i-th
intended copy of H in G arising from e. Note that for He,i to be destroyed, there
must be another pair (e′, j) such that e′ �= e, and He,i and He′,j intersect in at
least two vertices. Note that He,i cannot be destroyed by another He,j .

Let the random variable X denote the number of destroyed copies. From the
above discussion, X is obviously bounded by the number of (e, i, e′, j) such that
e �= e′ and He,i and He′,j intersect in at least two vertices. Hence by linearity of
expectation

E[X] ≤
∑

e�=e′

∑

i,j

Pr[|V (He,i) ∩ V (He′,j)| ≥ 2].

For fixed e, e′, i, j, in order to have |V (He,i) ∩ V (He′,j)| ≥ 2, the hyperedges
e and e′ must intersect in at least two vertices u, v ∈ VH, and moreover He,i

and He′,j must have landed on the same vertices in cloud(u) and cloud(v).
There are at most k2 choices for u and v, and given u and v, the probability that
these copies land on the same vertices on both clouds is exactly 1/B2. Hence by
applying the union bound on all the possible choices of u, v ∈ e ∩ e′, we have
Pr[|V (He,i) ∩ V (He′,j)| ≥ 2] ≤ k2/B2. We conclude that

E[X] ≤ |EH|2(λB)2
k2

B2
= |EH|2λ2k2. (3)

Now, using Markov’s inequality, the probability that more than 10|EH|2λ2k2

intended copies are destroyed is at most 1
10 . Thus with probability at least 9

10 ,
the number of the vertices that are involved in destroyed copies of H is at most
k × (10|EH|2λ2k2) ≤ ε|V (G)|. Now consider a subset of V (G) of size at least
3ε|V (G)|. Then 2ε|V (G)| of these vertices are not in any destroyed copies, and
thus by the proof of Theorem 9, they contain an intended copy of H. This copy
is induced as it is not part of any destroyed copy.
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8. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex
cover and dissociation number of graphs. Theor. Comput. Sci. 412(50), 7009–7017
(2011)
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Abstract. Given two messages – as linear sequences of letters, it is
immediate to determine whether one can be transformed into the other
by simple substitution cipher of the letters. On the other hand, if the let-
ters are carried as labels on nodes of topologically isomorphic unordered
trees, determining if a substitution exists is referred to as marked tree
isomorphism problem in the literature and has been show to be as hard as
graph isomorphism. While the left-to-right direction provides the cipher
of letters in the case of linear messages, if the messages are carried by
unordered trees, the cipher is given by a tree isomorphism. The num-
ber of isomorphisms between two trees is roughly exponential in the size
of the trees, which makes the problem of finding a cipher difficult by
exhaustive search. This paper presents a method that aims to break the
combinatorics of the isomorphisms search space. We show that in a linear
time (in the size of the trees), we reduce the cardinality of this space by
an exponential factor on average.

Keywords: Labeled unordered trees · Tree isomorphism ·
Substitution cipher

1 Introduction

A simple substitution cipher is a method of encryption that transforms a
sequence of letters, replacing each letter from the original message by another
letter, not necessarily taken from the same alphabet [7].

Assume you have at your disposal two messages of the same length, and
you want to determine if there exists a substitution cipher that transforms one
message onto the other. This question is easily solved, as the cipher is induced
by the order of letters. One letter after the other, you can build the cipher
by mapping them, until (i) either you arrive at the end of the message, and
the answer is Yes, (ii) either you detect an inconsistency in the mapping and
the answer is No. Actually, this procedure induces an equivalence relation on
messages of the same length: two messages are equivalent (isomorphic) if and
only if there is a cipher that transforms one message onto the other. See Fig. 1
for an illustration.
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Message 1

Message 2

Induced cipher

B C A A

β γ α α

A B C

α β γ

Message 1

Message 2

Induced cipher

B C C A

β γ α α

A B C

α β γ

Fig. 1. Simple substitution cipher induced by the order of letters on two examples, one
where the two messages are isomorphic (left), and one where there are not (right). In
the latter, the last letter of both messages is ignored as an inconsistency is detected at
the penultimate letter.

In this article, we are interested in the analogous problem of determining
whether two messages are identical up to a substitution cipher, but instead of
a linear sequence, the letters are placed as labels on nodes of unordered trees –
i.e. for which the order among children of a same node is not relevant.

Instead of requiring that the two messages are of same length – as it was
the case for sequences, we require that the two trees are isomorphic, i.e. they
share the same topology. The reading order of letters is not induced by the
sequence but by a tree isomorphism, that is a bijection between the nodes of
both trees, that respect topology constraints. While the reading order is unique
for sequences, for trees, the number of isomorphisms is given by a product of
as many factorials as the number of nodes of the tree (see upcoming Eq. (1)
and illustrative Fig. 4). Although this number depends highly on the topology,
ignoring pathological cases, it is usually extremely large. To give an order of
magnitude, for a million replicates of random recursive trees [14] of size 100, the
average number of tree isomorphisms is 6.88×108 – with a median of 2.21×105.
The tree ciphering isomorphism problem can then be precised as:

“Given two isomorphic unordered trees, is there any tree isomorphism that
induces a substitution cipher of the labels of one tree onto the other?”

This question induces an equivalence relation on trees: two topologically iso-
morphic unordered trees with labels are equivalent if and only if there exists a
tree isomorphism that induces a substitution cipher on the labels that transforms
one tree onto the other – see Theorem 1. The problem is formally introduced in
this paper in Sect. 2, while an example is provided now in Fig. 2.

Determining if two trees are topologically isomorphic can be achieved within
linear time via the so-called AHU algorithm [1, Ex. 3.2]. Determining if two
labeled trees are isomorphic under the definition above is, on the other hand,
a difficult problem. It is an instance of labeled graph isomorphism – see [13]
and [6] – that was introduced under the name marked tree isomorphism in [4,
Section 6.4], where it has been proved graph isomorphism complete, i.e. as hard
as graph isomorphism. The latter is still an open problem, where no proof of
NP-completeness nor polynomial algorithm is known [10].

One classic family of algorithms trying to achieve graph isomorphism are
color refinement algorithms, also known as Weisfeiler-Leman algorithms [12].
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A

B B

A C

α

β β

α γ

T1 T2

A

B B

A C

α

β β

α γ

T1 T2

Induced cipher
A B C

α β γ

A

B B

A C

α

β β

α γ

T1 T2

Induced cipher
A B C

α β γ

Fig. 2. Two messages encoded as labels on unordered trees T1 and T2 (top). T1 and
T2 are topologically identical. There exist two tree isomorphisms between T1 and T2,
one inducing a simple substitution cipher (below, left) and the other one that does not
(below, right). In the latter, the full tree isomorphism is not parsed as an inconsistency
is detected before. Overall, the two labeled trees T1 and T2 are isomorphic since at
least one tree isomorphism leads to a substitution cipher.

Both graphs are colored according to some rules, and the color histograms are
compared afterwards: if they diverge, the graphs are not isomorphic. However,
this test is incomplete in the sense that there exist non-isomorphic graphs that
are not distinguished by the coloring. The distinguishability of those algorithms
is constantly improved – see [8] for recent results – but does not yet answer the
problem for any graph. Actually, AHU algorithm for topological tree isomor-
phism can be interpreted as a color refinement algorithm.

To address the tree ciphering isomorphism problem, one strategy is to explore
the space of tree isomorphisms and look for one that induces a ciphering, if
it exists. As stated earlier and as discussed in Sect. 2, such a search space is
factorially large. This paper does not seek to solve the tree ciphering isomorphism
problem, but rather to break the combinatorial complexity of the search space.

In Sect. 3, we present an algorithm fulfilling this objective. Even if it uses
AHU algorithm, our method does not involve a color refinement process. Actu-
ally, we adopt a strategy that is more related to constrained matching problems
in bipartite graphs [5,9]. In details, since we are building two isomorphisms
simultaneously – one on trees and the other on labels – that must be compati-
ble, the general idea is to use the constraints of one to make deductions about
the other, and vice versa. For instance, whenever two nodes must be mapped
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together, so are their labels, and therefore you can eliminate all potential tree
isomorphisms that would have mapped those labels differently. When no more
deductions are possible, our algorithm stops. To complete (if feasible) the two
isomorphisms, and to explore the remaining space, different strategies can be
considered, including, for example, backtracking. However, this is not the pur-
pose of this paper which aims to break the combinatorial complexity of the space
of tree isomorphisms compatible to substitution ciphering.

Finally, in Sect. 4, we show that our algorithm runs in linear time – at least
experimentally. Moreover, we show on simulated data that it reduces on average
the cardinality of the search space of an exponential factor – which shows the
great interest of this approach especially considering its low computational cost.

2 Problem Formulation

2.1 Tree Isomorphisms

A (rooted) tree is a connected directed graph without cycle such that (i) there
exists a special node called the root, which has no parent, and (ii) any node
different from the root has exactly one parent. The parent of a node u is denoted
by P(u), where its children are denoted as C(u). Trees are said to be unordered
if the order among siblings is not significant. In a sequel, we use tree to designate
a unordered rooted tree.

The degree of a node is defined as deg(u) = #C(u), and the degree of a tree is
deg(T ) = maxu∈T deg(u). The leaves L(T ) of a tree T are all the nodes without
any children. The depth D(u) of a node u is the length of the path between u
and the root. The depth D(T ) of T is the maximal depth among all nodes. For
any node u of T , we define the subtree T [u] rooted in u as the tree composed of
u and all of its descendants.

Let T1 and T2 be two trees.

Definition 1. A bijection ϕ : T1 → T2 is a tree isomorphism if and only if, for
any u, v ∈ T1, if u is a child of v in T1, then ϕ(u) is a child of ϕ(v) in T2; in
addition, roots must be mapped together.

We can define Isom(T1, T2) as the set of all tree isomorphisms between T1 and
T2. If this set is not empty, then T1 and T2 are topologically isomorphic and we
denote T1 ≡ T2. It is well known that ≡ is an equivalence relation over the set
of trees [11, Chapter 4]. Figure 3 provides an example of tree isomorphism.
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a

bc

d ef g

h

T1

1

2 3

4 5 6 7

8

T2

u ∈ T1 a b c d e f g h

ϕ(u) ∈ T2 1 3 2 6 7 5 4 8

Fig. 3. Two topologically isomorphic trees T1 and T2 (left) and an example of tree
isomorphism ϕ ∈ Isom(T1, T2) (right). Nodes are labeled and colored for ease of com-
prehension.

The class of equivalence of node u ∈ Ti under ≡ – denoted by [u] – is the
set of all nodes v ∈ Ti such that Ti[u] ≡ Ti[v]. So-called AHU algorithm [1,
Ex. 3.2] assigns in a bottom-up manner to each node u of both trees a color that
represents [u]. The algorithm can thereby conclude in linear time whether two
trees are isomorphic, if and only if their roots are identically colored.

2

2

2

Fig. 4. A tree T .
Nodes susceptible to
be swapped are boxed
together, leading to
N≡(T ) = (2!)3 = 8.

Any tree isomorphism ϕ : T1 → T2 maps u ∈ T1 onto
v = ϕ(u) ∈ T2 only if [u] = [v]. Thus, all tree isomor-
phisms can be – recursively from the root – obtained by
swapping nodes (i) of same equivalence class and (ii) chil-
dren of a same node. Consequently, the number of tree
isomorphisms between T1 and T2 depends only on the
class of equivalence of T1 (equivalently T2), and will be
denoted by N≡(T1). For any tree T , we have

N≡(T ) =
∏

u∈T

∏

q∈{[v]:v∈C(u)}
(#{v ∈ C(u) : [v] = q})!. (1)

An example is provided in Fig. 4.

2.2 Tree Cipherings

We now assume that each node of a tree carries a label. Let T be a tree and
u ∈ T ; we denote by u the label of node u. The alphabet of T , denoted by A(T ),
is defined as A(T ) = ∪u∈T u. We say that T is a labeled tree.

Let T1 and T2 be two topologically isomorphic labeled trees and ϕ ∈
Isom(T1, T2). ϕ naturally induces a binary relation Rϕ over sets A(T1) and A(T2),
defined as

∀x ∈ A(T1),∀y ∈ A(T2), x Rϕ y ⇐⇒ ∃u ∈ T1, (x = u) ∧ (y = ϕ(u)).

Figure 5 illustrates this induced binary relation on an example.
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A

BC

C BA C

D

T1

α

γ α

γ α γ β

γ

T2

A

B

C

D

α

β

γ

A(T1) A(T2)

Fig. 5. Two topologically isomorphic labeled trees (left) and the induced binary rela-
tion (right). The tree isomorphism ϕ is displayed through node colors – cf. Fig. 3.

Such a relation Rϕ is said to be a bijection if and only if for any x ∈ A(T1),
there exists a unique y ∈ A(T2) so that x Rϕ y, and conversely if for any
y ∈ A(T2), there exists a unique x ∈ A(T1) so that x Rϕ y. This is not the
case of the relation induced by the example in Fig. 5, since C and D are both in
relation to γ, and also B is in relation to both α and β.

When Rϕ is a bijection, we can define a bijective function fϕ : A(T1) → A(T2)
by fϕ(x) = y ⇐⇒ x Rϕ y. This function is called a substitution cipher (fol-
lowing the analogy developed in the introduction) and verifies ∀u ∈ T1, fϕ(u) =
ϕ(u).

Definition 2. ϕ ∈ Isom(T1, T2) is said to be a tree ciphering if and only if Rϕ

is a bijection; in which case we denote T1
ϕ−→ T2.

Let us denote by Cipher(T1, T2) the set of tree cipherings between T1 and T2. If
Cipher(T1, T2) is not empty, then we write T1 ∼ T2 and say that T1 and T2 are
isomorphic by substitution ciphering, since the following results holds.

Theorem 1. ∼ is an equivalence relation over the set of labeled trees.

Proof. The proof is deferred to Appendix A.

Remark 1. It is possible to be more restrictive on the choices of substitution
ciphers. Let (G, ◦) be a subgroup of the bijections between A(T1) and A(T2).
Then, if we replace “Rϕ is a bijection” in Definition 2 by “Rϕ∈ G”, the induced
relation ∼G is also an equivalence relation. With G = {Id}, T1 ∼G T2 means
T1 ≡ T2 plus equality of labels. It is actually the definition adopted for labeled
tree isomorphism in [3, Section 5.1].

Determining if T1 ∼ T2 implies to find ϕ ∈ Isom(T1, T2) such that ϕ is also
in Cipher(T1, T2). Therefore, the cardinality of the search space is given by (1),
and is potentially exponentially large compared to the size of the trees. In the
sequel of the paper, we present an algorithm that aims to break this cardinality.
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3 Breaking down the Combinatorial Complexity

Let be two labeled trees T1 and T2. To build a tree ciphering between T1 and
T2 (if only it exists), a strategy is to ensure that T1 ≡ T2, and then explore
Isom(T1, T2), whose cardinality is given by (1). Since AHU algorithm [1, Ex. 3.2]
solves the problem of determining whether T1 ≡ T2 in linear time, as well as
assigning to each node u its equivalence class [u] under ≡, we use AHU as a
preprocessing step.

In the case of linear messages, illustrated in Fig. 1, the isomorphism on labels
is induced by the reading order, starting with the first letter. In our case, we
know that the roots have to be mapped together and we start here. At each step
of the algorithm, we will add elements to the two bijections we aim to build: ϕ
for the nodes and f for the labels. We present in Subsection 3.1 how to update
those bijections, with the ExtBij procedure.

Besides, the topological constraints imposed by tree isomorphism allow to
sort the nodes of the trees and to group them by susceptibility to be mapped
together. In Subsect. 3.2, we introduce two concepts, bags and collections, that
reflects this grouping mechanism. The actual mapping of nodes is performed by
the procedure MapNodes, introduced in Subsect. 3.3.

Finally, the precise course of the algorithm is presented in Subsect. 3.4. Start-
ing by grouping all the nodes together, we successively add topological filters to
refine the groups of nodes. Whenever possible, if a filter allows us to deduce that
two nodes should be mapped together, we do so, thus reducing the cardinality of
the remaining possibilities. The last filter checks constraints on labels and allows
a last phase of deductions, before concluding the algorithm – whose analysis is
discussed in Sect. 4.

3.1 Extension of a Bijection

During the execution of the algorithm, we construct two mappings: ϕ for the
nodes, and f for the labels. They start as empty mappings ∅ �→ ∅, and will be
updated through time. They must remain bijective at all times, and the rules
for updating them are presented here.

A partial bijection ψ from E to F is an injective function from a subset Sψ of
E to F . Let a ∈ E and b ∈ F ; suppose we want to determine if the couple (a, b)
is compatible with ψ – in the sense that it respects (or does not contradict) the
partial bijection. First, if a ∈ Sψ, then b must be equal to ψ(a). Otherwise, if
a �∈ Sψ, then b must not be in the image of ψ, i.e. ∀s ∈ Sψ, ψ(s) �= b. If those
conditions are respected, then (a, b) is compatible with ψ; furthermore, if a �∈ Sψ,
then we can extend ψ on Sψ ∪ {a} by defining ψ(a) = b so that ψ remains a
partial bijection. Formally, for any a ∈ E and b ∈ F , with ψ a partial bijection
from E to F , we define

ExtBij(a, b, ψ) =
(
a ∈ Sψ =⇒ ψ(a) = b

) ∧ (
a �∈ Sψ =⇒ ∀s ∈ Sψ, ψ(s) �= b

)
;

so that ExtBij(a, b, ψ) returns � if and only if the couple (a, b) is compatible
with the partial bijection ψ. For the sake of brevity, we assume that the function
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ExtBij also extends the partial bijection in the case a �∈ Sψ by defining ψ(a) = b
– naturally only if the function returned �.

ExtBij will be used in the sequel to update both partial bijections ϕ (from
T1 to T2) and f (from A(T1) to A(T2)). However, if one uses the restricted
substitution ciphers presented in Remark 1, one must design a specific version
of ExtBij to update f , accounting for the desired properties.

3.2 Bags and Collections

Remark that if two nodes u ∈ T1 and v ∈ T2 are mapped together via ϕ, then
they must share a number of common features: (i) D(u) = D(v), (ii) [u] = [v],
(iii) fϕ(u) = v, and (iv) ϕ(P(u)) = P(v). Our goal is to gather together nodes
that share such common features. For this purpose, we introduce the concepts
of bags and collections.

We recall that a partition P of a set X is a set of non-empty subsets Pi of
X such that every element x ∈ X is in exactly one of these subsets Pi. Let P
(resp. Q) be a partition of the nodes of T1 (resp. T2).

A bag B is a couple (Pi, Qj) such that Pi ∈ P,Qj ∈ Q and #Pi = #Qj

– this number is denoted by #B. A bag contains nodes that share a number
of common features, and are therefore candidates to be mapped together. If
a bag is constructed such that Pi and Qj each contain a single element, then
those elements should be unambiguously mapped together – via the function
MapNodes that will be introduced in the next subsection. Formally, this rule
is expressed as:

Deduction Rule 1. While there exist bags B = (Pi, Qj) with Pi = {u} and
Qj = {v}, call MapNodes(u, v, ϕ, f) – and delete B.

A collection C gathers several Pi’s and Qj ’s, that are candidates to form
bags. Formally, C : N → 2P × 2Q with C(n) = ({Pi, i ∈ I}, {Qj , j ∈ J}) –
possibly I = J = ∅ – such that, denoting the components by C1(n) and C2(n),

(i) ∀n,#C1(n) = #C2(n);
(ii) ∀n,∀Pi ∈ C1(n),#Pi = n and ∃a ∈ A(T1),∀u ∈ Pi, u = a;
(iii) ∀n,∀Qj ∈ C2(n),#Qj = n and ∃b ∈ A(T2),∀v ∈ Qj , v = b.

We denote by #C(n) the common cardinality of (i); and Pi and Qj the common
labels of (ii) and (iii). Note that the number of n’s such that #C(n) > 0 is finite.

The elements of Ci(n), since they share the same cardinality n, are candidates
to form bags together. If #C(n) = 1, we can form a bag with the two elements
of C1(n) and C2(n):

Deduction Rule 2. While there exist collections C and integers n for which
C(n) = ({Pi}, {Qj}); if ExtBij(Pi, Qj , f), create bag (Pi, Qj) and delete C(n)
– otherwise stop and conclude that T1 �∼ T2.

As it will be described later on, each subset Pi or Qj will belong to either a
bag or a collection. Any node u will either be already mapped in ϕ, or attached
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to one bag or collection through the partitions. We denote by p(u) the function
that returns the bag or collection in which u belongs to, if any. We denote by B

the set of all bags, and by C the set of all collections.

3.3 Mapping Nodes

We now present with Algorithm 1 the function MapNodes that performs the
mapping between nodes, while updating ϕ, f,B and C. The latter two, B and
C, are considered to be “global” variables and are therefore not included in the
pseudocode provided.

Once two nodes u and v are mapped, the topology constraints impose that
P(u) and P(v) are mapped together, if not already the case, but also C(u) and
C(v). These children are either (i) already mapped – and there is nothing to do,
or (ii) in bags or collections potentially containing other nodes with which they
can no longer be mapped – since their parents are not. In the latter case, it is then
necessary to separate the children of u and v from these bags and collections.
The procedure SplitChildren aims to do that, in the following manner. For
each Pi (resp. Qj) in the current partitions of nodes such that Pu = Pi∩C(u) �= ∅
(resp. Qv = Qj ∩ C(v) �= ∅):

– Either (Pi, Qj) forms a bag, in which case we delete it and create instead two
new bags formed by (Pu, Qv) and (Pi \ Pu, Qj \ Qv).

– Either there exists a collection C so that Pi ∈ C1(n) and Qj ∈ C2(n) – with
n = #Pi = #Qj . In which case, we remove them from their set Ci(n), and
add instead Pu (resp. Qv) to C1(q) (resp. C2(q)) – with q = #Pu = #Qv –
and Pi \ Pu (resp. Qj \ Qv) to C1(n − q) (resp. C2(n − q)). Note that this
splitting operation changes the sets Ci(·) and therefore we need to apply
Deduction Rule 2 to check whether some bags are to be created or not.

Algorithm 1: MapNodes

Input: u ∈ T1, v ∈ T2, ϕ, f
if ExtBij(u, v, f) and ExtBij(u, v, ϕ) then

Delete u from p(u) and v from p(v)
SplitChildren(u, v)
if ϕ(P(u)) = P(v) then

Return �
else

Return MapNodes(P(u), P(v), ϕ, f)

else
Return ⊥

At any time, if MapN-
odes returns ⊥, then we can
immediately conclude that
T1 �∼ T2 and stop. Similarly,
if the procedure SplitChil-
dren leads to the creation of
a pathological object (e.g. a
bag where #Pi �= #Qj), we
can also conclude that T1 �∼
T2 and stop. We can conclude
that T1 ∼ T2 only when all
nodes have been mapped.
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3.4 The Algorithm

Let T1 and T2 be two labeled trees; we assume that T1 ≡ T2. Let ϕ : ∅ �→ ∅ and
f : ∅ �→ ∅. We start with no collections and a single bag containing all nodes of
T1 and T2. The general idea is to build a finer and finer partition of the nodes
(by applying successive filters), and mapping nodes whenever possible to build
the two isomorphisms considered – if they exist: ϕ and f .

Depth. We partition the only bag B = (T1, T2), defining Ti(d) = {u ∈ Ti :
D(u) = d} for d = 0, . . . ,D(Ti). We delete B from B and for each d, we cre-
ate a new bag (T1(d), T2(d)). Then, apply Deduction Rule 1. Note that since
SplitChildren modifies bags after mapping two nodes, the number of bags
meeting the prerequisite of the mapping deduction rule can vary through the
iterations. At this step, since the roots are the only nodes with depth of 0, they
must be mapped together, and the deduction rule is then applied at least once.

Parents and Children Signature. For each bag B = (S1, S2) in B, we par-
tition S1 and S2 by shared parent, i.e. we define Si(v) = {u ∈ Si : P(u) = v}.
For any such a parent v, we define its children signature σ(v) as the multi-
set σ(v) = {[u] : u ∈ C(v)}. Nodes from S1(v) and S2(v′) should be mapped
together only if σ(v) = σ(v′). We then group the nodes by signature – losing
at the same time the parent information, but which will be recovered through
the function MapNodes – and define Si(s) = ∪σ(v)=sSi(v). We then create new
bags (S1(s), S2(s)) for each such s, and finally delete B.

Once all bags have been partitioned, apply again Deduction Rule 1.

Equivalence Class Under ≡. For each remaining bag B = (S1, S2) in B, we
partition S1 and S2 by equivalence class under ≡, i.e. we define Si(c) = {u ∈
Si : [u] = c}. We then create new bags (S1(c), S2(c)) for each such c, and finally
delete B.

Once all bags have been partitioned, apply again Deduction Rule 1.

Labels. For each remaining bag B = (S1, S2) in B, we now look at the labels of
nodes in S1 and S2. We define Si(a) = {u ∈ Si : u = a}. Some of these labels
may have been seen previously and may be already mapped in f , in which case
we can form bags with the related sets Si(a). Formally, we apply the following
deduction rule.

Deduction Rule 3. While there exist two sets (of same cardinality) S1(a) and
S2(b) with f(a) = b, create bag (S1(a), S2(b)). If only one of the two sets exists
(S1(a) with a ∈ Df or S2(b) with b ∈ If ) but not its counterpart, we can conclude
that T1 �∼ T2 and stop.

The remaining Si(a) are to be mapped together. However, since we do not
know the mapping between their labels, we cannot yet regroup them in bags.
We create instead a collection C that contains all those Si(a), and delete bag B.
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Once all bags have been partitioned, either in new bags or in collections,
apply Deduction Rule 2. Since this rule maps new labels between them, new bags
may be created by virtue of Deduction Rule 3. Consequently, Deduction Rule 3
should be applied every time a bag is created by Deduction Rule 2 – including
during the SplitChildren procedure. Finally, apply again Deduction Rule 1.

4 Analysis of the Algorithm

The analysis presented here is based on theoretical considerations and numerical
simulations of labeled trees. For several given n and A, we generated 500 couples
(T1, T2) as follows. To create T1, we generate a random recursive tree [14] of size
n, and assign a label, randomly chosen from the alphabet A, to each node. We
build T2 as a copy of T1, before randomly shuffling the children of each node.
In this case, T1 ∼ T2. To get T1 �∼ T2, we choose a node u of T2 at random and
replace its label by another one, drawn among A(T1) \ {u} – this is the most
difficult case to determine if T1 �∼ T2. The results are gathered in Figs. 6 and 8
and discussed later in the section. Remarkably, in terms of computation times
and combinatorial complexity, they seem to mostly depend on n, and not #A.

4.1 The Algorithm Is Linear

In spite of an intricate back and forth structure between nodes, bags and col-
lections (notably through deduction rules and the SplitChildren procedure),
our algorithm is linear, in the following sense.

Proposition 1. The number of calls to the function MapNodes is bounded by
the size of the trees.

Proof. Each call to MapNodes strictly reduces by one, in each tree, the num-
ber of nodes remaining to be mapped – and thus present among the bags and
collections. As a result, MapNodes cannot be called more times than the total
number of nodes – including the recursive calls of MapNodes on the parents.

It is important to note, however, that this does not guarantee the overall lin-
earity of the algorithm. Indeed, the complexity of a call to MapNodes depends
on the number of deductions that will be made, notably though the SplitChil-
dren procedure.

Nevertheless, it seems that this variation regarding the deductions is com-
pensated globally, since experimentally, as shown in Fig. 6a, in the case T1 ∼ T2,
it appears quite clearly that the total computation time for the preprocessing
phase is linear in the size of the trees. In the case T1 �∼ T2, the algorithm allows
to conclude negatively in a sublinear time on average – as shown in Fig. 6b.
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(a) Computation time when T1 ∼ T2.
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(b) Computation time when T1 �∼ T2.

Fig. 6. Computation time (in s) for the execution of the algorithm of Subsect. 3.4,
according to the size of the considered trees. The different sizes of alphabet are displayed
with different colors. In Fig. 6a, the red triangles indicate the average value of the
corresponding computation time in the case T1 ∼ T2 (estimated from Fig. 6b)

4.2 The Algorithm Reduces the Complexity by an Exponential
Factor on Average

At any moment during the execution of the algorithm, given B and C, we can
deduce the current size of the search space. Indeed, for each bag B, there are
(#B)! ways to map the nodes between them (not all of them necessarily leading
to a tree isomorphism); for a collection C and for given n, there are (#C(n))!
ways to create bags, each giving n!#C(n) possible mappings. The overall number
of mappings associated to C(n) is then given by (n!)#C(n)(#C(n))!. Let us define
the size of the current search space as

N(B,C) =
∏

B∈B

(#B)!
∏

C∈C

(
∏

n

(n!)#C(n)(#C(n))!

)

Applying the deduction rules does not reduce this number at first sight – since
we transform into bags collections with #C(n) = 1 and we map nodes when
#B = 1. On the other hand, each call to SplitChildren reduces this number.
Indeed, for each bag or collection where a child of the mapped nodes appears,
this object is divided into two parts, breaking the associated factorial:

– A bag with (p+ q) elements cut into two bags of size p and q reduces the size
of the space by a factor of

(
p+q

p

)
.

– An element of C(p + q) cut into two elements of size p and q induces that
#C(n) decreases by 1, and both #C(p) and #C(q) increase by 1. Overall, the
size of the search space is modified by a factor of

(
p+q

p

) #C(p+q)
(#C(p)+1)(#C(q)+1) .

Each filter during the execution of the algorithm, that consists in splitting each
bag into several ones has also the same effect on the overall cardinality. We can
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measure the evolution of the size of the search space by looking at the log-ratio
r(B,C), defined as follows – with N≡(T1) as in (1):

r(B,C) = log10
N(B,C)
N≡(T1)

The search space is reduced if and only if r(B,C) is a negative number. It should
be noted that we start the algorithm with a space size of (#T1)!, i.e. much more
than N≡(T1): the initial log-ratio is then positive. Note that despite having
an initial search space bigger than Isom(T1, T2), the algorithm cannot build a
bijection that is not a tree isomorphism. The first topological filters (depth,
parents, equivalence class) bring the log-ratio close to 0 – as illustrated in Fig. 7
with 500 replicates of random trees of size 100 and an alphabet of size 5.

In more details, if we denote by rfinal(B,C) the log-ratio after the last filter
on labels, Fig. 8 provides a closer look at the results, and we can see that apart
from pathological exceptions obtained with small trees, the log-ratio is always a
negative number, so the algorithm does reduce the search space.

Fig. 7. Evolution of r(B,C) when
T1 ∼ T2.

Fig. 8. rfinal(B,C) when T1 ∼ T2, accord-
ing to the size of the considered trees. The
different sizes of alphabet are displayed
with different colors.

As a conclusion, we observe that the search space is reduced on average of an
exponential factor and that this factor seems linear in the size of the tree. In
other words, it seems that the larger the trees considered, the more exponentially
the search space is reduced – which is a remarkable property and justifies the
interest of our method, especially given its low computational cost.

Implementation. The algorithm presented in this paper has been implemented
as a module of the Python library treex [2].
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A Proof of Theorem 1

We begin with some preliminary reminders. Let R be a relation over sets E and
F . R is a bijection if and only if ∀x ∈ E,∃!y ∈ F, x R y and ∀y ∈ E,∃!x ∈ E,
x R y.

Let R be a relation over sets E and F ; the converse relation R−1 over sets
F and E is defined as y R−1 x ⇐⇒ x R y. If R is a bijection, then so is R−1.

Let R be a relation over sets E and F ; and S a relation over sets F and G.
The composition of R and S, denoted by S ◦ R, is a relation over E and G, and
defined as x (S ◦ R) z ⇐⇒ ∃y ∈ F, (x R y) ∧ (y S z). If R and S are bijections,
then so is S ◦ R.

We now begin the proof. Let T1, T2 and T3 be trees such that T1
ϕ−→ T2

and T2
ψ−→ T3. It should be clear that trivially, T1

Id−→ T1. We aim to prove the
following:

T1
ψ◦ϕ−−−→ T3 and T2

ϕ−1

−−→ T1.

First of all, it is trivial that ψ ◦ ϕ ∈ Isom(T1, T3). The proof then follows
directly from the reminders above and the two following lemmas:

Lemma 1. Rψ◦ϕ = Rψ◦ Rϕ.

Proof. Let x ∈ A(T1) and z ∈ A(T3). It suffices to show

x Rψ◦ϕ z ⇐⇒ ∃y ∈ A(T2), x Rϕ y ∧ y Rψ z.

=⇒ There exists u ∈ T1 so that x = u and z = (ψ ◦ ϕ)(u). Let v = ϕ(u) and
y = v; then u Rϕ v, so x Rϕ y; similarly v Rψ ψ(v) leads to y Rψ z.

⇐= There exists u ∈ T1 so that u = x and y = ϕ(u). Let v = ϕ(u). As
y Rψ ψ(v), then ψ(v) = z and it follows x Rψ◦ϕ z.

Lemma 2. Rϕ
−1= Rϕ−1 .

Proof. Let x ∈ A(T1) and y ∈ A(T2). It suffices to show x Rϕ y ⇐⇒ y Rϕ−1 x.

=⇒ There exists u ∈ T1 so that x = u and y = ϕ(u). Let v = ϕ(u). Since
u = ϕ−1(v), y Rϕ−1 x.

⇐= There exists v ∈ T2 so that v = y and x = ϕ−1(v). Let u = ϕ−1(v). Since
v = ϕ(u), x Rϕ y.
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Abstract. We consider the Euclidean 2-center problem for a set of n
disks in the plane: find two smallest congruent disks such that every disk
in the set intersects at least one of the two congruent disks. We present a
deterministic algorithm for the problem that returns an optimal pair of
congruent disks in O(n2 log3 n/log logn) time. We also present a random-
ized algorithm with O(n2 log2 n/log logn) expected time. These results
improve the previously best deterministic and randomized algorithms,
making a step closer to the optimal algorithms for the problem. We
show that the same algorithms also work for the 2-piercing problem and
the restricted 2-covering problem on disks.

Keywords: Euclidean 2-center · Disk covering · Parametric search

1 Introduction

The k-center problem for a set P of n points is to find k smallest congruent balls
such that every point in P is contained in one of the k balls. For k = 1, the
problem can be solved in O(n) time for any fixed dimension [17]. For any fixed
k it can be solved in O(nO(

√
k)) time for n points in the plane [15].

The special case of the problem for k = 2 in the plane, also known as the pla-
nar 2-center problem, has been studied extensively in 1990’s. Its decision version
was considered by Hershberger and Suri in 1991 [14]. Agarwal and Sharir gave
an O(n2 log3 n)-time algorithm [2] for the problem. A major breakthrough was
made by Sharir who gave the first algorithm with near-linear time, O(n log9 n),
for the planar 2-center problem [19]. Since then, a fair amount of work has been
done to improve the running time to the optimal. Eppstein gave an O(n log2 n)-
time algorithm for the case that the optimal disks are well-separated, and showed
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Ω(n log n)-time lower bound for any deterministic algorithm for the problem [12].
Chan [6] gave an O(n log2 n log2 log n)-time algorithm for the problem in 1999
using parametric search. Then there was little improvement for more than 20
years until Wang [22] gave an O(n log n log log n)-time algorithm for the case
of the optimal disks being close to each other in 2020. Shortly after this, Choi
and Ahn [8] gave an O(n log n)-time algorithm for the case, improving Wang’s
result. Finally, Cho and Oh [7] gave an O(n log n)-time algorithm for the remain-
ing well-separated case, improving Eppstein’s O(n log2 n)-time algorithm. Thus,
there is an O(n log n)-time algorithm for the planar 2-center problem, matching
the lower bound.

The planar k-center problem was also studied under the L1 distance, and
there are algorithms with running times O(n) for k = 2, 3 [11,20], and O(n log n)
for k = 4 [20]. The planar k-center problem under the L1 distance for k ≥ 5 can
be solved in O(nk−4 log n) time [18].

There are fair amounts of work on some variations of the 2-center problem.
For example, 2-center problems for points whose centers lie outside input obsta-
cles [13], for weighted points [10], and for a convex polygon [21] in the plane,
and 2-center problems for points in three dimensions [1].

(a) (b) (c)

C1 C2

C2

C1

p1 p2

Fig. 1. (a) The disk 2-center problem on disks in the plane: every input disk intersects
C1 or C2. (b) The restricted disk 2-cover problem on disks in the plane: every disk is
fully contained in C1 or C2. (c) The 2-piercing problem on disks in the plane: every
disk intersects p1 or p2.

Motivated by facility location problems for mobile demand points and geo-
metric optimization for imprecise points, we consider a generalization of the
2-center problem in which given a set D of n disks of nonnegative radii in the
plane, find two smallest congruent disks C1 and C2 satisfying D ∩ (C1 ∪C2) �= ∅
for every D ∈ D. We call this problem the 2-center problem on disks.

This problem was studied by Ahn et al. [3]. They gave a deterministic algo-
rithm that returns an optimal pair of congruent disks in O(n2 log4 n log log n)
time, and a randomized algorithm with O(n2 log3 n) expected time. They showed
that their algorithms also work for the restricted 2-cover problem and the 2-
piercing problem on disks in the plane. In the restricted 2-cover problem on
disks, every disk in D must be fully contained in one of two smallest congruent
disks. In the 2-piercing problem on disks, every disk in D must be pierced by
one of two optimal points. See Fig. 1 for an illustration of these problems.
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Our Results. We present a deterministic algorithm with O(n2 log3 n/ log log n)
time and a randomized algorithm with O(n2 log2 n/ log log n) expected time for
the 2-center problem and the restricted 2-cover problem on n disks in the plane.
Our algorithms improve the previously best known deterministic algorithm by
O(log n log2 log n) factor and randomized algorithm by O(log n log log n) fac-
tor. Our deterministic algorithm also works for the 2-piercing problem with
O(n2 log2 n/ log log n) time.

Our approach is different to the previous one in a few aspects. For a disk D
and a real value r ≥ 0, the disk inflated by r from D, denoted by D(r), is centered
at the center of D and its radius is the radius of D plus r. The algorithms by
Ahn et al. [3] use an arrangement of the inflated disks of input disks and a
segment tree in sequential decision algorithm, and apply Megiddo’s parametric
search [16] in optimization. Our algorithms use a point-line dual arrangement of
centers of disks and a collection of search trees in a sequential decision algorithm
and apply Cole’s parametric search [9] in optimization.

The sequential decision algorithm by Ahn et al. works as follows.

1. Construct an arrangement B of the inflated disks such that each face of B is
the intersection of some inflated disks.

2. Construct a path π traversing all faces in B.
3. Construct a binary segment tree T over π that, given a face f in B, returns

O(log n) regions whose intersection is the intersections of the inflated disks
disjoint from f .

4. Check for each face f (one center c1 lying in f) traversed by π if the regions
returned from the query with f on T have a nonempty intersection. If it is
nonempty, the inflated disks not pierced by c1 are pierced by a point (the
other center c2) in the intersection.

We use a dual arrangement A of the disk centers and construct a dual directed
tree TE of A. Our sequential decision algorithm traverses the tree in directions of
inserting inflated disks one by one and finds the centers. Our sequential decision
algorithm works as follows.

1. Construct a point-line dual arrangement A of the disk centers such that each
face of A represents the inflated disks whose centers lie in one side of a line
in primal space.

2. Construct a directed tree TE such that there is a one-to-one correspondence
between the tree nodes and the faces of A, and each edge is directed from a
node to a neighboring node of lower level in A.

3. Construct a collection Tt of t-ary search trees that, given a face f in A, returns
O(log n/log log n) regions whose common intersection is the intersection of the
inflated disks represented by f .

4. Check for each face f while traversing TE if the inflated disks represented by
f have a nonempty intersection and the remaining inflated disks also have a
nonempty intersection, using Tt and an insertion-only convex programming.
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Our algorithm uses Cole’s parametric search with an O(n2 log2 n/log log n)-
time sequential decision algorithm and an O(log n)-time parallel decision algo-
rithm using O(n2 log2 n/log2 log n) processors, after O(n2 log3 n/log log n)-time
preprocessing. The improvement of the sequential decision algorithm comes from
the insertion-only convex programming and the data structure Tt. The parallel
decision algorithm constructs Tt in the preprocessing phase and the convex pro-
gramming runs in parallel. Putting them together using Cole’s parametric search,
we get an O(n2 log3 n/log log n)-time algorithm. A randomized algorithm with
O(n2 log2 n/log log n) expected time can be obtained by combining our sequen-
tial decision algorithm and Chan’s optimization technique [5].

2 Preliminaries

We give some basic observations, definitions, and notations, some of which are
from the previous work [3].

Observation 1 (Observation 1 in [3]). Let (C1, C2) be a pair of optimal
covering disks. Let � be the bisector of the segment connecting the centers of C1

and C2. Then, Ci ∩ D �= ∅ for every D ∈ D whose center lies on the same side
of � as the center of Ci, for i = {1, 2}.

We can obtain similar observations for the 2-center problem and the 2-piercing
problem. For a line � in the plane, let B� be a bipartition of D to D� and
Dc

� = D\D�, where D� is the set consisting of disks in D with centers lying
strictly below �. Based on Observation 1, B� defines a subproblem consisting of
two 1-center problems such that the smallest radius for the subproblem is the
larger one of the two radii from the 1-center problems.

For a real value r ≥ 0, let D(r) be the set of the inflated disks D(r) on disks
D ∈ D. Then the decision version of the 2-center problem on D with radius r
reduces to the 2-piercing problem on D(r). Given a real value r, the decision
2-center problem on D is to determine whether r ≥ r∗ or not, where r∗ is the
radius of the two smallest congruent disks of the 2-center problem on D. In other
words, it is to determine whether the 2-piercing problem on D(r) has a solution
or not.

Cole’s Parametric Search. For an optimization problem, let Ts denote the
time complexity of a sequential decision algorithm, and let Tp denote the time
complexity of a parallel decision algorithm using P processors. If these algorithms
satisfy the requirement for applying Cole’s parametric search [9], we can obtain
an algorithm for the problem that runs in O(PTs + Ts(Tp + log P )) time.

Convex Programming. To determine whether the intersection of input convex
sets is empty, we use convex programming. If convex programming has a feasible
solution, then the intersection of input convex sets is nonempty.

Given compact convex subsets in the plane, each representing a constraint,
and an objective function, a point that satisfies the constraints and minimizes
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the objective function value can be found using convex programming. There
are two types of primitive operations in convex programming: finding the left-
most feasible point of two constraints, and determining whether a given point is
contained in a constraint.

Lemma 1. A problem with k convex constraints can be solved in O(Tc + log k)
time using convex programming, with O(k2) processors, where Tc denotes the
time per primitive operation.

Proof. The leftmost point in the intersection of the constraints is either the
leftmost point of a constraint or the leftmost point in the intersection of two
constraints. We compute all leftmost points, each defined by a pair of constraints,
in O(Tc) time using O(k2) processors. Then we find the rightmost point over the
leftmost points in O(log k) time using O(k2) processors. Finally, we check if the
point is contained in every constraint in O(Tc) time using O(k) processors.

Lemma 2. Given a convex program with k constraints and the leftmost point v∗

of the intersection of the constraints, the operation of adding a new constraint
to the convex programming can be handled such that the leftmost point in the
intersection of the k + 1 constraints can be found in O(kTc) time, where Tc

denotes the time per primitive operation.

Proof. The leftmost point in the intersection of the k + 1 constraints is either
v∗ or a point v′ on the boundary of the newly added constraint. The point v′

is the rightmost one among k points, each of which is the leftmost point in the
intersection of the newly added constraint with one of the k constraints. The k
leftmost points can be found in O(kTc) time. Then we check if v∗ and v′ are
contained in every constraint in O(kTc) time.

In the following, we consider the 2-piercing problem on inflated disks in D(r).

3 The 2-Piercing Problem on Disks

In this section, we present an algorithm for the 2-piercing problem on a set
E = {E1, E2, . . . , En} of n disks in the plane. For a disk set X, let I(X) denote
the intersection of the disks in X. If there is a bipartition B� such that both
I(E�) and I(Ec

� ) are nonempty, the 2-piercing problem on E has the solution,
where E� is the set consisting of disks in E with centers lying strictly below �,
and Ec

� = E \ E�. For each bipartition B�, we perform the emptiness test which
determines whether I(E�) �= ∅ and I(Ec

� ) �= ∅.

Dual Arrangement, Bipartitions, and Levels. We construct the dual
arrangement A for the centers of the disks in E by the following point-line dual-
ity transform: For a point p := (px, py) in the primal plane, its dual p̄ is the line
p̄ := (y = pxx − py) in the dual plane. Likewise, for a line � := (y = �xx + �y)
in the primal plane, its dual �̄ is the point �̄ := (�x,−�y) in the dual plane.



Intersecting Disks Using Two Congruent Disks 405

Fig. 2. (a) Three disks E1, E2, E3 with centers at c1 = (−0.6,−0.08), c2 = (−1.9,−4.2),
c3 = (1.7,−0.16) in the plane. (b) Three dual lines c̄1: y = −0.6x + 0.08, c̄2: y =
−1.9x + 4.2, c̄3: y = 1.7x + 0.16 form the dual arrangement of the centers of disks in
(a). (c) Dual graph GE of the dual arrangement A. The level of a node in GE is the
level of its corresponding face in A. (d) Directed tree TE from dual graph GE .

See Fig. 2(a,b). The duality transform preserves incidence (p ∈ � if and only if
�̄ ∈ p̄) and order (p lies above � if and only if �̄ lies above p̄) [4]. Thus, A is the
arrangement induced by n lines in the dual plane, each of which is the dual of
the center of an input disk. The level of a point in A is the number of lines in
A lying on or below the point. For a face f of A, let �̄ be a point in f but not
on the upper boundary chain of f . We define the level of f to be the level of �̄.
Let Ef denote the set of the disks in E such that the dual lines of their centers
lie strictly above �̄. Observe that Ef = E�, and let Ec

f = E\Ef . Thus, they form
the bipartition of the centers of input disks induced by � in the primal plane.

3.1 Dual Directed Tree

Let GE be a directed acyclic graph such that there is a one-to-one correspondence
between the nodes of GE and the faces in A, and two nodes u,w of GE are
connected by a directed edge (u,w) from u to w if and only if the faces fu and
fw corresponding to u and w, respectively, share a boundary edge and the level
of fu is larger than the level of fw. There is a one-to-one correspondence between
the bipartitions and the nodes of GE . For a node u in GE , let Eu = Ef for face f
of A corresponding to u, and let Ec

u = E\Eu. For each edge (u,w) of GE , Ew\Eu

consists of exactly one disk, and (u,w) corresponds to the disk in Ew\Eu. In
Fig. 2(c), each directed edge is labeled with the disk corresponding to the edge.

Let vr be the node of GE that has no incoming edge. We construct from GE ,
a directed tree TE rooted vr that spans all vertices of GE , by choosing only one
incoming edge for each node of GE . See Fig. 2(d). For two nodes u,w, let p(u,w)
denote the directed path from u to w in TE , if exists.
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3.2 t-ary Search Trees

Let t be a parameter to be set later. For each leaf node v of TE , we construct a
t-ary search tree Tt(v) in bottom-up manner such that the leaf nodes of Tt(v) are
ordered from left to right, each corresponding to an edge in p(vr, v) in order from
vr to v, the leftmost t leaf nodes have the same parent node and the next t leaf
nodes have the same parent node, and so on. This construction goes recursively
to higher levels, and each nonleaf node has at most t child nodes. Thus, Tt(v)
has height h = O(logt n). See Fig. 3.

The path p(vr, v) represents a sequence of disks, each corresponding to an
edge of the path. The data structure Tt(v) supports queries that given a path
p(vr, w) for a node w in p(vr, v), returns h = O(logt n) subpaths that together
form p(vr, w), and h intersections of disks, each corresponding to a subpath.

We construct a collection of t-ary search trees, one for each leaf node of
TE , avoiding duplications of nodes as follows. First, we apply depth-first search
(DFS) at vr of TE , which gives us an order of the edges of TE , traversed by
DFS. These edges are the leaf nodes of the collection, ordered from left to right
following the order by DFS. Then we construct t-ary trees, in the order of the
leaf nodes of TE visited by DFS. For two leaf nodes v, v′ with v visited before
v′, let vsplit denote the lowest common ancestor node of p(vr, v) and p(vr, v

′).
Then the path p(vr, vsplit) is the longest common subpath of the paths. To avoid
duplications, Tt(v′) simply maintains a pointer to the part of Tt(v) corresponding
to p(vr, vsplit) with respect to t value, instead of constructing the part again. Let
Tt denote the collection of all t-ary search trees. See Fig. 3(b) for an illustration.

Fig. 3. (a) Dual directed tree TE . (b) T2 for all leaf nodes in TE . T2(6) is constructed
on p(0, 6) (thick path in (a)). Blank nodes in trees store no intersection of disks.
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3.3 Intersections of Disks for Paths

For a path p(u,w), let I(u,w) denote the intersection of the disks corresponding
to p(u,w). Observe that I(vr, w) = I(Ew). For a node ν in Tt(v), let ν− be the
left sibling node of ν, ν+ the node next (right) to ν at the same level, and rc(ν)
the rightmost child node of ν in Tt(v). The leaf node ν of Tt(v) corresponding to
an edge e of p(vr, v) stores the intersection I(ν) = I(ν−) ∩ De if ν− is defined,
and I(ν) = De otherwise, where De is the disk corresponding to e. A nonleaf
node ν stores I(ν) if the subtree rooted at ν+ is a perfect t-ary tree. We set
I(ν) = I(ν−) ∩ I(rc(ν)) if ν− is defined, and I(ν) = I(rc(ν)) otherwise. See
Fig. 3(b) for an illustration.

For a node ν, if I(ν) is stored at ν, I(ν) = I(w,w′) for path p(w,w′) such
that the edge of p(w,w′) incident to w corresponds to the leftmost leaf node in
the subtree rooted at the parent node of ν, and the edge of p(w,w′) incident
to w′ corresponds to the rightmost leaf node in the subtree rooted at ν. Thus,
I(ν) =

⋂
De for all edges e in p(w,w′).

Lemma 3. Given a real value r ≥ 0, we can construct Tt together with the
intersections of disks stored at nodes in O(tn2 logt n) time using O(tn2 logt n)
space.

Proof. We construct Tt(v)’s for leaf nodes v of TE in bottom up manner. Consider
a path p(vr, v) and a node ν ∈ Tt(v). If ν− is defined and the subtree rooted
at ν+ is a perfect t-ary tree, I(ν−) and I(rc(ν)) are stored at ν− and rc(ν),
respectively.

For a nonleaf node ν of Tt(v) at height h, if I(ν) is stored at ν, the subtree
rooted at ν+ is a perfect t-ary tree with th leaf nodes. Thus, at height h, there
are O(n2/th) nodes ν in Tt that store the intersections of disks with |I(ν)| =
O(th+1). Since the intersection I(ν) at height h can be computed in O(th+1)
time, Tt together with the intersections stored at nodes can be constructed in
O(

∑logt n
h=0 th+1(n2/th)) = O(tn2 logt n) time and space.

Lemma 4. Given a node w in TE , we can find a set W of O(logt n) nodes in
Tt such that ∩ν∈WI(ν) = I(Ew).

Proof. Note that I(vr, w) = I(Ew). We consider I(vr, w) instead of I(Ew). Let v
be a leaf node of TE such that w is a node in p(vr, v). Let ew be the edge incident
to w in p(vr, w). Let π(w) be the path in Tt(v) from the root to the leaf node
νw corresponding to ew.

Then I(vr, w) is the intersection of I(νw) and I(ν−
h ) for all h (0 ≤ h ≤ logt n)

if ν−
h is defined, where ν−

h is the left node of the node in π(w) at height h. If a
nonleaf node ν−

h is defined but I(ν−
h ) is not stored in ν−

h , I(ν−
h ) = I((ν−

h )−) ∩
I(rc(ν−

h )). If I(rc(ν−
h )) is not stored at rc(ν−

h ), rc(ν−
h ) is the second to the last

node at height h − 1, and thus rc(ν−
h ) and ν−

h−1 are the same node, and I(ν−
h−1)

can be used for I(rc(ν−
h )).

Therefore, we always get at most two intersections at each height of Tt(v)
such that their common intersection is I(vr, w), and we can get a set W of
O(logt n) nodes such that ∩ν∈WI(ν) = I(vr, w).
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3.4 Algorithm

We determine whether I(Eu) and I(Ec
u) nonempty using Tt, for all nodes u ∈ TE .

For each leaf node in Tt (path in TE), the path corresponding to the leaf node
is decomposed to O(logt n) subpaths such that each subpath is represented by a
node in Tt while traversing TE . We determine whether a path whose correspond-
ing intersection is empty by convex programming. While traversing TE , we add
disks one by one, which is the special case of adding a constraint in Lemma 2. If
there is a node u ∈ TE such that both I(Eu) and I(Ec

u) are nonempty, then the
2-piercing problem has a solution. Using Tt (Lemmas 3 and 4), convex program-
ming (Lemma 2) and setting t = logε n, we can solve the 2-piercing problem in
O(n2 log2 n/log log n) time using O(n2 log1+ε n) space for any constant 0 < ε ≤ 1.

Theorem 1. Given a set of n disks in the plane, we can compute two points
p1 and p2 such that every input disk contains p1 or p2 in O(n2 log2 n/log log n)
time using O(n2 log1+ε n) space for any constant 0 < ε ≤ 1.

Proof. By Lemma 3, we can construct Tt in O(tn2 logt n) time using O(tn2 logt n)
space. While traversing TE from root vr, we find the leftmost point of I(Eu) for
each node u in TE . The intersection I(Eu) = I(vr, u) is the intersection of I(vr, w)
and I(w, u), where w is the parent node of u in TE . When we traverse node u,
the leftmost point of I(vr, w) is already computed, and we can get a set W
consisting of O(logt n) nodes such that the common intersection of I(ν)’s for all
ν ∈ W is I(vr, w) by Lemma 4. Then, we can compute the leftmost point of
I(Eu) using the leftmost point of I(vr, w) and I(ν)’s for all ν ∈ W by Lemma 2.
Since the boundary of I(ν) consists of O(n) circular arcs, the primitive operation
in Lemma 2 takes time Tc = O(log n). Combining Lemma 2 and Tc = O(log n),
we obtain an O(n2 log2 n/log t)-time algorithm. By setting t = logε n for any
constant ε with 0 < ε ≤ 1, the algorithm runs with O(n2 log2 n/log log n) time
using O(n2 log1+ε n) space.

4 The 2-Center Problem on Disks

Our algorithms use parametric search which requires a sequential decision algo-
rithm and a parallel decision algorithm. Our sequential decision algorithm and
parallel decision algorithm mainly consist of two parts: (1) Constructing the
search trees for emptiness tests. (2) Applying the emptiness test for every
bipartition.

4.1 Sequential Decision Algorithm

In this section, we consider the decision 2-center problem with a real value r ≥ 0
on D in the plane. We can get a solution to the problem by applying an algorithm
for the 2-piercing problem on inflated disks in D(r).
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By solving the 2-piercing problem on the inflated disk in D(r), we can solve
the decision 2-center problem with a given value r on D.

Theorem 2. Given a set of n disks in the plane and a real value r ≥ 0, we
can determine whether there are two congruent disks C1 and C2 of radius r such
that every input disk intersects C1 or C2 in O(n2 log2 n/log log n) time using
O(n2 log1+ε n) space for any constant ε with 0 < ε ≤ 1.

4.2 Parallel Decision Algorithm

We describe a parallel decision algorithm. Recall that r∗ is the radius of the
two smallest congruent disks of the 2-center problem on D. We first describe
a sequential preprocessing algorithm for finding an interval (ra, ra+1] such
that ra < r∗ ≤ ra+1 and Tt has the same combinatorial structure for any
r ∈ (ra, ra+1], that is, for each intersection stored at nodes of Tt, the circu-
lar arcs along the boundary are in the same order. Then we describe how to
parallelize the emptiness test algorithm to apply Cole’s parametric search.

Sequential Preprocessing Algorithm. The sequential preprocessing algo-
rithm consists of the construction of Tt for all r ≥ 0 and binary search to find
the interval (ra, ra+1]. Let Fi ⊂ R

3 be a frustum such that the bottom base
of Fi is Di ∈ D lying in the plane z = 0, and the intersection of Fi and the
plane z = r is Di(r), for i = 1, ..., n. The data structure Tt for all r ≥ 0 can be
constructed by storing the intersections of frustums at nodes of Tt, instead of
the intersections of disks.

Lemma 5. Given a set of n disks in the plane, we can construct Tt for all
r ≥ 0 in O(tn2 log2t n · log t) time. The space complexity of Tt for all r ≥ 0 is
O(tn2 logt n).

Proof. To construct Tt for all r ≥ 0, we compute the intersections of frustums,
instead of the intersections of disks. It takes O(s log s) time to compute the
intersection of two intersections of frustums of O(s) complexity. So, we can
construct Tt for all r ≥ 0 in O(

∑logt n
h=0 th+1 log th+1n2/th) = O(tn2 log2t n · log t)

time. The space complexity of Tt for all r ≥ 0 is the same as the space complexity
of Tt for a fixed r.

By Lemma 5, there are O(tn2 logt n) curves in the intersections of the frus-
tums stored in Tt for all r ≥ 0. We make an array R := (r1, ..., rO(tn2 logt n)) rep-
resenting the z-values at which the combinatorial structure changes. See Fig. 4
for an illustration. We use binary search on R to find an interval (ra, ra+1]
such that ra < r∗ ≤ ra+1 and Tt has the same combinatorial structure for any
r ∈ (ra, ra+1]. Each comparison of binary search determining whether ri ≥ r∗

can be done in O(n2 log2 n/log log n) time.
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Fig. 4. There are four frustums. The light gray region represents the plane with a
fixed r-value. The dark gray region represents the intersection of four inflated disks by
the r-value of the light gray region. (a) The combinatorial structure consists of four
arcs. (b) The combinatorial structure changes at ri such that the structure in any r
in (ri−1, ri] consists of three arcs and the structure in any r in (ri,∞) consists of four
arcs.

Lemma 6. Given a set of n disks in the plane, we can find interval (ra, ra+1]
in O(n2 log3 n/log log n) time such that ra < r∗ ≤ ra+1 and Tt has the same
combinatorial structure for any r ∈ (ra, ra+1] and for t = O(log n).

Proof. We first construct Tt for all r ≥ 0 using Lemma 5. In each step of binary
search, we find a median r in the array R and determine if r ≥ r∗. Finding a
median in an array can be done in O(|R|). The size of R gets halved in each
binary search step. It takes O(n2 log2 n/log log n) time to determine if r ≥ r∗ by
Theorem 2. Thus, in total it takes O(n2 log3 n/log log n + tn2 log2t n · log t) time
for finding the interval (ra, ra+1] satisfying the property in the lemma.

Parallel Decision Algorithm. From the sequential preprocessing, we get Tt

for an interval (ra, ra+1] such that it has the same combinatorial structure for
any r ∈ (ra, ra+1] and r∗ ∈ (ra, ra+1]. Using Tt, we parallelize the process of
determining I(Eu) = ∅ and I(Ec

u) = ∅ for all nodes u ∈ TE . Observe that each
of I(Eu) and I(Ec

u) is represented by O(logt n) intersections of disks. We can
determine whether the common intersection of O(logt n) intersections is empty
by using parallel convex programming as in Lemma 1. The parallel decision
algorithm takes O(log n) time using O(n2 log2 n/log2 log n) processors.

Theorem 3. Given a set of n disks in the plane and a real value r ≥ 0, we can
determine whether there are two congruent disks C1 and C2 of radius r such that
every input disk intersects C1 or C2 in O(log n) time using O(n2 log2 n/log2 log n)
processors, after O(n2 log3 n/log log n)-time preprocessing.

Proof. By Lemma 6, we can construct Tt in O(n2 log3 n/log log n) time for the
search the interval (r1, r2] and t = O(log n). We determine whether the inter-
section of the selected intersections is empty or not, by parallel convex linear
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programming in Lemma 1. For k = O(logt n) and Tc = O(log n), the parallel
emptiness test takes O(log n+log logt n) time using O(n2 log2t n) processors. Set-
ting t = O(log n), we have O(log n) time using O(n2 log2 n/log2 log n) processors,
after O(n2 log3 n/log log n)-time preprocessing.

4.3 Optimization Algorithms

Using Cole’s parametric search [9], an optimal solution can be found in O(PTs +
Ts(Tp + log P )) time. Here Ts = O(n2 log2 n/log log n), Tp = O(log n), P =
O(n2 log2 n/log2 log n), and therefore it can be done in O(n2 log3 n/log log n)
time.

Theorem 4. Given a set of n disks in the plane, we can compute two smallest
congruent disks C1 and C2 such that every input disk intersects C1 or C2 in
deterministic O(n2 log3 n/log log n) time.

Proof. Our parallel algorithm satisfies the bounded fan-in/fan-out requirement
of Cole’s parametric search. Using Cole’s parametric search, an optimal solution
can be found in O(PTs +Ts(Tp +log P )) time. Here Ts = O(n2 log2 n/log log n),
Tp = O(log n), P = O(n2 log2 n/log2 log n), and therefore, the time complexity
is O(n2 log3 n/log log n).

A randomized algorithm which runs in O(n2 log2 n/log log n) expected time
can be done by combining our sequential decision algorithm and Chan’s opti-
mization technique [5].

Theorem 5. Given a set of n disks in the plane, we can compute two smallest
congruent disks C1 and C2 such that every input disk intersects C1 or C2 in
O(n2 log2 n/log log n) expected time.

Proof. Let D be a set of n disks in the plane, and let D1, . . . ,D7 be seven disjoint
subsets of size at most 
n/7� satisfying D =

⋃7
i=1 Di. Let R(X) be the radius

of two smallest congruent disks such that every disk in X intersects one of the
two congruent disks. Observe that the two congruent disks are determined by
at most six disks of X. Then R(D) = max{R(D\D1), R(D\D2), ..., R(D\D7)}.
Therefore, by applying the Chan’s optimization technique [5], we obtain a ran-
domized algorithm that computes r∗ in time linear to the running time of the
sequential decision algorithm. By Theorem 2, we can conclude that this random-
ized algorithm takes O(n2 log2 n/log log n) expected time.

4.4 Restricted 2-Cover Problem

In the restricted 2-cover problem on disks in the plane, every input disk must
be fully contained in one of the two optimal (smallest) congruent disks. The
algorithm for the 2-center problem on disks in the plane also works for the
restricted 2-cover problem. In the restricted 2-cover problem on disks, we define
the r-inflated disk of a disk D as the disk with radius r−rD centered at the center
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of D, where rD is the radius of disk D. Then we apply the decision algorithm
for the 2-piercing problem on the r-inflated disks. The rest of the algorithm is
the same as the algorithm for the 2-center problem on disks.

Corollary 1. Given a set of n disks in the plane, we can compute two smallest
congruent disks C1 and C2 such that every input disk is fully contained in either
C1 or C2 in deterministic O(n2 log3 n/log log n) time.

Corollary 2. Given a set of n disks in the plane, we can compute two smallest
congruent disks C1 and C2 such that every input disk is fully contained in either
C1 or C2 in O(n2 log2 n/log log n) expected time.
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Abstract. The well-known Disjoint Paths problem is to decide if a
graph contains k pairwise disjoint paths, each connecting a different ter-
minal pair from a set of k distinct pairs. We determine, with an exception
of two cases, the complexity of the Disjoint Paths problem for H-free
graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is
known to be polynomial-time solvable on the class of all graphs for every
k ≥ 1. The latter does no longer hold if we need to connect vertices from
terminal sets instead of terminal pairs. We completely classify the com-
plexity of k-Disjoint Connected Subgraphs for H-free graphs, and
give the same almost-complete classification for Disjoint Connected
Subgraphs for H-free graphs as for Disjoint Paths.

1 Introduction

A path from s to t in a graph G is an s-t-path of G, and s and t are called its
terminals. Two pairs (s1, t1) and (s2, t2) are disjoint if {s1, t1} ∩ {s2, t2} = ∅. In
1980, Shiloach [19] gave a polynomial-time algorithm for testing if a graph with
disjoint terminal pairs (s1, t1) and (s2, t2) has vertex-disjoint paths P 1 and P 2

such that each P i is an si-ti path. This problem can be generalized as follows.

Disjoint Paths
Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).

Question: Does G have pairwise vertex-disjoint paths P 1,. . . ,P k such that P i

is an si-ti path for i ∈ {1, . . . , k}?

Karp [12] proved that Disjoint Paths is NP-complete. If k is fixed, that is, not
part of the input, then we denote the problem as k-Disjoint Paths. For every
k ≥ 1, Robertson and Seymour proved the following celebrated result.
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Fig. 1. An example of a yes-instance (G,Z1, Z2) of (2-)Disjoint Connected Sub-
graphs (left) together with a solution (right).

Theorem 1 ([18]). For all k ≥ 2, k-Disjoint Paths is polynomial-time solv-
able.

The running time in Theorem 1 is cubic. This was later improved to quadratic
time by Kawarabayashi, Kobayashi and Reed [13].

As Disjoint Paths is NP-complete, it is natural to consider special graph
classes. The Disjoint Paths problem is known to be NP-complete even for
graph of clique-width at most 6 [8], split graphs [9], interval graphs [15] and line
graphs. The latter result can be obtained by a straightforward reduction (see,
for example, [8,9]) from its edge variant, Edge Disjoint Paths, proven to be
NP-complete by Even, Itai and Shamir [5]. On the positive side, Disjoint Paths
is polynomial-time solvable for cographs, or equivalently, P4-free graphs [8].

We can generalize the Disjoint Paths problem by considering terminal
sets Zi instead of terminal pairs (si, ti). We write G[S] for the subgraph of a
graph G = (V,E) induced by S ⊆ V , where S is connected if G[S] is connected.

Disjoint Connected Subgraphs
Instance: a graph G and pairwise disjoint terminal sets Z1, . . . , Zk.
Question: Does G have pairwise disjoint connected sets S1, . . . , Sk such

that Zi ⊆ Si for i ∈ {1, . . . , k}?

If k is fixed, then we write k-Disjoint Connected Subgraphs. We refer to
Fig. 1 for a simple example of an instance (G,Z1, Z2) of 2-Disjoint Connected
Subgraphs. Robertson and Seymour [18] proved in fact that k-Disjoint Con-
nected Subgraphs is cubic-time solvable as long as |Z1| + . . . + |Zk| is fixed
(this result implies Theorem 1). Otherwise, van ’t Hof et al. [22] proved that
already 2-Disjoint Connected Subgraphs is NP-complete even if |Z1| = 2
(and |Z2| may have arbitrarily large size). The same authors also proved that 2-
Disjoint Connected Subgraphs is NP-complete for split graphs. Afterwards,
Gray et al. [7] proved that 2-Disjoint Connected Subgraphs is NP-complete
for planar graphs. Hence, Theorem 1 cannot be extended to hold for k-Disjoint
Connected Subgraphs.
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• • • • • • •

Fig. 2. The graph H = 3P1 + P4.

We note that in recent years a number of exact algorithms were designed for
k-Disjoint Connected Subgraphs. Cygan et al. [4] gave an O∗(1.933n)-time
algorithm for the case k = 2 (see [17,22] for faster exact algorithms for spe-
cial graph classes). Telle and Villanger [20] improved this to time O∗(1.7804n).
Recently, Agrawal et al. [1] gave an O∗(1.88n)-time algorithm for the case k = 3.
Moreover, the 2-Disjoint Connected Subgraphs problem plays a crucial role
in graph contractibility: a connected graph can be contracted to the 4-vertex path
if and only if there exist two vertices u and v such that (G−{u, v}, N(u), N(v))
is a yes-instance of 2-Disjoint Connected Subgraphs (see, e.g. [14,22]).

A class of graphs that is closed under vertex deletion is called hereditary.
Such a graph class can be characterized by a unique set F of minimal forbidden
induced subgraphs. Hereditary graphs enable a systematic study of the com-
plexity of a graph problem under input restrictions: by starting with the case
where |F| = 1, we may already obtain more general methodology and a better
understanding of the complexity of the problem. If |F| = 1, say F = {H} for
some graph H, then we obtain the class of H-free graphs, that is, the class of
graphs that do not contain H as an induced subgraph (so, an H-free graph can-
not be modified to H by vertex deletions only). In this paper, we start such a
systematic study for Disjoint Paths and Disjoint Connected Subgraphs,
both for the case when k is part of the input and when k is fixed.

Our Results

By combining some of the aforementioned known results with a number of new
results, we prove the following two theorems in Sects. 3 and 4, respectively. In
particular, we generalize the polynomial-time result for Disjoint Paths on P4-
free graphs to hold even for Disjoint Connected Subgraphs. See Fig. 2 for an
example of a graph H = sP1 + P4; we refer to Sect. 2 for undefined terminology.

Theorem 2. Let H be a graph. If H ⊆i sP1 + P4, then for every k ≥ 2, k-
Disjoint Connected Subgraphs on H-free graphs is polynomial-time solv-
able; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Theorem 3. Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4,
then Disjoint Connected Subgraphs is polynomial-time solvable for H-free
graphs; otherwise even Disjoint Paths is NP-complete.

Theorem 2 completely classifies, for every k ≥ 2, the complexity of k-Disjoint
Connected Subgraphs on H-free graphs. Theorem 3 determines the com-
plexity of Disjoint Paths and Disjoint Connected Subgraphs on H-free



Disjoint Paths and Connected Subgraphs for H-Free Graphs 417

graphs for every graph H except if H ∈ {3P1, 2P1 + P2, P1 + P3}. In Sect. 5 we
reduce the number of open cases from six to three by showing some equivalencies.

In Sect. 6 we give some directions for future work. In particular we prove that
both problems are polynomial-time solvable for co-bipartite graphs, which form
a subclass of the class of 3P1-free graphs and give exact algorithms for both
problems based on Held-Karp type dynamic programming techniques [2,10].

2 Preliminaries

We use H ⊆i H ′ to indicate that H is an induced subgraph of H ′, that is, H can
be obtained from H ′ by a sequence of vertex deletions. For two graphs G1 and
G2 we write G1 + G2 for the disjoint union (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
We denote the disjoint union of r copies of a graph G by rG. A graph is said to
be a linear forest if it is a disjoint union of paths.

We denote the path and cycle on n vertices by Pn and Cn, respectively. The
girth of a graph that is not a forest is the number of edges of a smallest induced
cycle in it.

The line graph L(G) of a graph G has vertex set E(G) and there exists an
edge between two vertices e and f in L(G) if and only if e and f have a common
end-vertex in G. The claw K1,3 is the 4-vertex star. It is readily seen that every
line graph is claw-free. Recall that a graph is H-free if it does not contain H as
induced subgraph. For a set of graphs {H1, . . . , Hr}, we say that a graph G is
(H1, . . . , Hr)-free if G is Hi-free for every i ∈ {1, . . . , r}.

A clique is a set of pairwise adjacent vertices and an independent set is a
set of pairwise non-adjacent vertices. A graph is split if its vertex set can be
partitioned into two (possibly empty) sets, one of which is a clique and the other
is an independent set. A graph is split if and only if it is (C4, C5, P4)-free [6]. A
graph is a cograph if it can be defined recursively as follows: any single vertex is
a cograph, the disjoint union of two cographs is a cograph, and the join of two
cographs G1, G2 is a cograph (the join adds all edges between the vertices of G1

and G2). A graph is a cograph if and only if it is P4-free [3].
A graph G = (V,E) is multipartite, or more specifically, r-partite if V can

be partitioned into r (possibly empty) sets V1, . . . , Vr, such that there is an edge
between two vertices u and v if and only if u ∈ Vi and v ∈ Vj for some i, j with
i �= j. If r = 2, we also say that G is bipartite. If there exist an edge between
every vertex of Vi and every vertex of Vj for every i �= j, then the multipartite
graph G is complete.

The complement of a graph G = (V,E) is the graph G = (V, {uv | u, v ∈
V, u �= v and uv /∈ E}). The complement of a bipartite graph is a cobipartite
graph. A set W ⊆ V is a dominating set of a graph G if every vertex of V \W
has a neighbour in W , or equivalently, N [W ] (the closed neighbourhood of W )
is equal to V . We say that W is a connected dominating set if W is a dominating
set and G[W ] is connected.
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3 The Proof of Theorem 2

We consider k-Disjoint Connected Subgraphs for fixed k. First, we show a
polynomial-time algorithm on H-free graphs when H ⊆i sP1 +P4 for some fixed
s ≥ 0. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P4-free graphs, or equiv-
alently, cographs. This lemma is well known and follows immediately from the
definition of a cograph: in the construction of a connected cograph G, the last
operation must be a join, so there exists cographs G1 and G2, such that G
obtained from adding an edge between every vertex of G1 and every vertex of
G2. Hence, the spanning complete bipartite graph of G has non-empty partition
classes V (G1) and V (G2).

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning
complete bipartite subgraph.

Two instances of a problem Π are equivalent when one of them is a yes-instance
of Π if and only if the other one is a yes-instance of Π. We note that if two
adjacent vertices will always appear in the same set of every solution (S1, . . . , Sk)
for an instance (G,Z1, . . . , Zk), then we may contract the edge between them at
the start of any algorithm. This takes linear time. Moreover, H-free graphs are
readily seen (see e.g. [14]) to be closed under edge contraction if H is a linear
forest. Hence, we can make the following observation.

Lemma 2. For k ≥ 2, from every instance of (G,Z1, . . . , Zk) of k-Disjoint
Connected Subgraphs we can obtain in polynomial time an equivalent
instance (G′, Z ′

1, . . . , Z
′
k) such that every Z ′

i is an independent set. Moreover,
if G is H-free for some linear forest H, then G′ is also H-free.

We can now prove the following lemma.

Lemma 3. Let H be a graph. If H ⊆i sP1 +P4, then for every k ≥ 1, k-Disjoint
Connected Subgraphs on H-free graphs is polynomial-time solvable.

Proof. Let H ⊆i sP1+P4 for some s ≥ 0. Let (G,Z1, . . . , Zk) be an instance of k-
Disjoint Connected Subgraphs, where G is an H-free graph. By Lemma 2,
we may assume without loss of generality that G is connected and moreover that
Z1, . . . , Zk are all independent sets.

We first analyze the structure of a solution (S1, . . . , Sk) (if it exists). For
i ∈ {1, . . . , k}, we may assume that Si is inclusion-wise minimal, meaning there
is no S′

i ⊂ Si that contains Zi and is connected. Consider a graph G[Si]. Either
G[Si] is P4-free or G[Si] contains an induced rP1 + P4 for some 0 ≤ r ≤ s − 1.
We will now show that in both cases, Si is the (not necessarily disjoint) union
of Zi and a connected dominating set of G[Si] of constant size.

First suppose that G[Si] is P4-free. As G[Si] is connected and Zi is indepen-
dent, we apply Lemma 1 to find that Si\Zi contains a vertex u that is adjacent
to every vertex of Zi. Hence, by minimality, Si = Zi∪{u} and {u} is a connected
dominating set of G[Si] of size 1.
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Now suppose that G[Si] has an induced rP1 + P4 for some r ≥ 0, where we
choose r to be maximum. Note that r ≤ s − 1. Let W be the vertex set of the
induced rP1 +P4. Then, as r is maximum, W dominates G[Si]. Note that G[W ]
has r + 1 ≤ s connected components. Then, as G[Si] is connected and W is a
dominating set of G[Si] of size r + 4 ≤ s + 3, it follows from folklore arguments
(see e.g. [21, Prop. 6.3.24]) that G[Si] has a connected dominating set W ′ of size
at most 3s + 1. Moreover, by minimality, Si = Zi ∪ W ′.

Hence, in both cases we find that Si is the union of Zi and a connected
dominating set of G[Si] of size at most t = 3s + 1; note that t is a constant, as
s is a constant.

Our algorithm now does as follows. We consider all options of choosing a
connected dominating set of each G[Si], which from the above has size at most
t. As soon as one of the guesses makes every Zi connected, we stop and return
the solution. The total number of options is O(ntk), which is polynomial as k
and t are fixed. Moreover, checking the connectivity condition can be done in
polynomial time. Hence, the total running time of the algorithm is polynomial.

��
The proof our next result is inspired by the aforementioned NP-completeness
result of [22] for instances (G,Z1, Z2) where |Z1| = 2 but G is a general graph.

Lemma 4. The 2-Disjoint Connected Subgraphs problem is NP-complete
even on instances (G,Z1, Z2) where |Z1| = 2 and G is a line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT. Let φ =
φ(x1, . . . , xn) be an instance of 3-SAT with clauses C1, . . . , Cm. We construct
a corresponding graph G = (V,E) as follows. We start with two disjoint paths
P and P̄ on vertices pi, xi, qi and p̄i, x̄i, q̄i, respectively, where xi, x̄i correspond
to the positive and negative literals in φ, respectively. To be more precise, we
define:

P = p1, x1, q1, p2, x2, q2, . . . , pn, xn, qn, and P = p̄1, x̄1, q̄1, . . . , p̄n, x̄n, q̄n,

We add the two edges e = p1p̄1, and f = qnq̄n. For i = 1, . . . , n − 1, we also add
edges qip̄i+1 and q̄ipi+1. We now replace each xi by vertices xj1

i , xj2
i , . . . xjr

i , where
j1, . . . , jr are the indices of the clauses Cj that contain xi. That is, we replace
the subpath pi, xi, qi of P by the path pi, x

j1
i , xj2

i , . . . xjr
i , qi. We do the same

path replacement operation on P̄ with respect to every x̄i. Finally, we add every
clause Cj as a vertex and add an edge between Cj and xj

i if and only if xi ∈ Cj ,
and between Cj and x̄j

i if and only if x̄j ∈ Cj . This completes the description of
G = (V,E). We refer to Fig. 3 for an illustration of our construction.

We now focus on the line graph L = L(G) of G. Let Z1 = {e, f} ⊆ E = V (L)
and let Z2 consist of all vertices of L that correspond to edges in G that are
incident to some Cj . Note that Z1 and Z2 are disjoint. Moreover, each clause Cj

corresponds to a clique of size at most 3 in L, which we call the clause clique
of Cj . We claim that φ is satisfiable if and only if the instance (L,Z1, Z2) of
2-Disjoint Connected Subgraphs is a yes-instance.
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C1◦

p1• x1
1◦ ◦ ◦ q1• p2• x1

2◦ ◦ ◦ q2• p3• ◦ ◦ q3•

p̄1•

e

x̄1
1◦ ◦ ◦ q̄1• p̄2• ◦ ◦ ◦ q̄2• p̄3• x̄1

3◦ ◦ q̄3•

f

Fig. 3. The construction described with edges added for the clause C1 = (x1 ∨x2 ∨ x̄3).

First suppose that φ is satisfiable. Let τ be a satisfying truth assignment
for φ. In G, we let P 1 denote the unique path whose first edge is e and whose
last edge is f and that passes through all xj

i ∈ V if xi = 0 and through all x̄j
i if

xi = 1. In L we let S1 consist of all vertices of L(P 1); note that Z1 = {e, f} is
contained in S1 and that S1 is connected. We let P 2 denote the “complementary”
path in G whose first edge is e and whose last edge is f but that passes through
all xj

i if and only if P 1 passes through all x̄j
i , and conversely (i = 1, . . . , n). In

L, we put all vertices of L(P 2), except e and f , together with all vertices of
Z2 in S2. As τ satisfies φ, some vertex of each clause clique is adjacent to a
vertex of P 2. Hence, as P 2 is a path, S2 is connected and we found a solution
for (L,Z1, Z2).

Now suppose that (L,Z1, Z2) is a yes-instance of 2-Disjoint Connected
Subgraphs. Then V (L) can be partitioned into two vertex-disjoint connected
sets S1 and S2 such that Z1 ⊆ S1 and Z2 ⊆ S2. In particular, L[S1] contains a
path P 1 from e to f . In fact, we may assume that S1 = V (P 1), as we can move
every other vertex of S1 (if they exist) to S2 without disconnecting S2.

Note that P 1 corresponds to a connected subgraph that contains the adjacent
vertices p1 and p̄1 as well as the adjacent vertices qn and q̄n. Hence, we can modify
P 1 into a path Q in G that starts in p1 or p̄1 and that ends in qn or q̄n. Note that
Q contains no edge incident to a clause vertex Cj , as those edges correspond to
vertices in L that belong to Z2. Hence, by construction, Q “moves from left to
right”, that is, Q cannot pass through both some xj

i and x̄j
i (as then Q needs to

pass through either xj
i or x̄j

i again implying that Q is not a path).
Moreover, if Q passes through some xj

i , then Q must pass through all vertices
xjh
i . Similarly, if Q passes through some x̄j

i , then Q must pass through all vertices
x̄jh
i . As Q connects the edges p1p̄1 and qnq̄n, we conclude that Q must pass, for

i = 1, . . . , n, through either every xjh
i or through every x̄jh

i . Thus we may define
a truth assignment τ by setting

xi =

{
1 if Q passes through all x̄j

i

0 if Q passes through all xj
i .
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We claim that τ satisfies φ. For contradiction, assume some clause Cj is not
satisfied. Then Q passes through all its literals. However, then in S2, the vertices
of Z2 that correspond to edges incident to Cj are not connected to other vertices
of Z2, a contradiction. This completes the proof of the lemma. ��
A straightforward modification of the reduction of Lemma 5 gives us Lemma 6.
We can also obtain Lemma 6 by subdividing the graph G in the proof of Lemma 4
twice (to get a bipartite graph) or p times (to get a graph of girth at least p).

Lemma 5 ([22]). 2-Disjoint Connected Subgraphs is NP-complete for
split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Lemma 6. 2-Disjoint Connected Subgraphs is NP-complete for bipartite
graphs and for graphs of girth at least p, for every integer p ≥ 3.

We are now ready to prove Theorem 2.

Theorem 2 (restated). Let H be a graph. If H ⊆i sP1+P4, then for every k ≥
1, k-Disjoint Connected Subgraphs on H-free graphs is polynomial-time
solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Proof. If H contains an induced cycle Cs for some s ≥ 3, then we apply Lemma 6
by setting p = s+1. Now assume that H contains no cycle, that is, H is a forest.
If H has a vertex of degree at least 3, then H is a superclass of the class of
claw-free graphs, which in turn contains all line graphs. Hence, we can apply
Lemma 4. In the remaining case H is a linear forest. If H contains an induced
2P2, we apply Lemma 5. Otherwise H is an induced subgraph of sP1 + P4 for
some s ≥ 0 and we apply Lemma 3. ��

4 The Proof of Theorem 3

We first prove the following result, which generalizes the corresponding result of
Disjoint Paths for P4-free graphs due to Gurski and Wanke [8]. We show that
we can use the same modification to a matching problem in a bipartite graph.

Lemma 7. Disjoint Connected Subgraphs is polynomial-time solvable for
P4-free graphs.

Proof. For some integer k ≥ 2, let (G,Z1, . . . , Zk) be an instance of Disjoint
Connected Subgraphs where G is a P4-free graph. By Lemma 2 we may
assume that every Zi is an independent set. Now suppose that (G,Z1, . . . , Zk)
has a solution (S1, . . . , Sk). Then G[Si] is a connected P4-free graph. Hence, by
Lemma 1, G[Si] has a spanning complete bipartite graph on non-empty partition
classes Ai and Bi. As every Zi is an independent set, it follows that either Zi ⊆ Ai

or Zi ⊆ Bi. If Zi ⊆ Ai, then every vertex of Bi is adjacent to every vertex of Zi.
Similarly, if Zi ⊆ Bi, then every vertex of Ai is adjacent to every vertex of Zi.
We conclude that in every set Si, there exists a vertex yi such that Zi ∪ {yi} is
connected.
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The latter enables us to construct a bipartite graph G′ = (X ∪Y,E′) where X
contains vertices x1, . . . , xk corresponding to the set Z1, . . . , Zk and Y is the set
of non-terminal vertices of G. We add an edge between xi ∈ X and y ∈ Y if and
only if y is adjacent to every vertex of Zi. Then (G,Z1 . . . Zk) is a yes-instance of
Disjoint Connected Subgraphs if and only if G′ contains a matching of size k.
It remains to observe that we can find a maximum matching in polynomial time,
for example, by using the Hopcroft-Karp algorithm for bipartite graphs [11]. ��

The first lemma of a series of four is obtained by a straightforward reduction
from the Edge Disjoint Paths problem (see, e.g. [8,9]), which was proven
to be NP-complete by Even, Itai and Shamir [5]. The second lemma follows
from the observation that an edge subdivision of the graph G in an instance
of Disjoint Paths results in an equivalent instance of Disjoint Paths; we
apply this operation a sufficiently large number of times to obtain a graph of
large girth. The third lemma is due to Heggernes et al. [9]. We modify their
construction to prove the fourth lemma.

Lemma 8. Disjoint Paths is NP-complete for line graphs.

Lemma 9. For every g ≥ 3, Disjoint Paths is NP-complete for graphs of
girth at least g.

Lemma 10 ([9]). Disjoint Paths is NP-complete for split graphs, or equiva-
lently, (C4, C5, 2P2)-free graphs.

Lemma 11. Disjoint Paths is NP-complete for (4P1, P1 + P4)-free graphs.

Proof. We reduce from Disjoint Paths on split graphs, which is NP-complete
by Lemma 10. By inspection of this result (see [9, Theorem 3]), we note that
the instances (G, {(s1, t1), . . . , (sk, tk)}) have the following property: the split
graph G has a split decomposition (C, I), where C is a clique, I an independent
set, C and I are disjoint, and C∪I = V (G), such that I = {s1, . . . , sk, t1, . . . , tk}.
Now let G′ be obtained from G by, for each terminal si, adding edges to sj and
tj for all j �= i. Then consider the instance (G′, {(s1, t1), . . . , (sk, tk)}).

We note that G′[C] is still a complete graph, while G′[I] is a complete graph
minus a matching. It is immediate that G′ is 4P1-free. Moreover, any induced
subgraph H of G′ that is isomorphic to P4 must contain at least two vertices of
I and at least one vertex of C. If H contains two vertices of C, then as G′[C]
is a clique, H contains two non-adjacent vertices in I. Similarly, if H contains
one vertex of C (and thus three vertices of I), then H contains two non-adjacent
vertices in I. Since C is a clique in G′ and every (other) vertex of I is adjacent
in G′ to any pair of non-adjacent vertices of I, it follows that G′ is P1 + P4-free
as well.

We claim that (G, {(s1, t1), . . . , (sk, tk)}) is a yes-instance if and only if
(G′, {(s1, t1), . . . , (sk, tk)}) is a yes-instance. This is because the edges that
were added to G to obtain G′ are only between terminal vertices of differ-
ent pairs. These edges cannot be used by any solution of Disjoint Paths for
(G′, {(s1, t1), . . . , (sk, tk)}), and thus the feasibility of the instance is not affected
by the addition of these edges. ��
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We are now ready to prove Theorem 3.

Theorem 3 (restated). Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If
H ⊆i P4, then Disjoint Connected Subgraphs is polynomial-time solvable
for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Proof. First suppose that H contains a cycle Cr for some r ≥ 3. Then Disjoint
Paths is NP-complete for the class of H-free graphs, as Disjoint Paths is
NP-complete on the subclass consisting of graphs of girth r + 1 by Lemma 9.
Now suppose that H contains no cycle, that is, H is a forest. If H contains a
vertex of degree at least 3, then the class of H-free graphs contains the class
of claw-free graphs, which in turn contains the class of line graphs. Hence, we
can apply Lemma 8. It remains to consider the case where H is a forest with no
vertices of degree at least 3, that is, when H is a linear forest.

If H contains four connected components, then the class of H-free graphs
contains the class of 4P1-free graphs, and we can use Lemma 11. If H contains
an induced P5 or two connected components that each have at least one edge,
then H contains the class of 2P2-free graphs, and we can use Lemma 10. If H
contains two connected components, one of which has at least four vertices, then
H contains the class of (P1 + P4)-free graphs, and we can use Lemma 11 again.
As H /∈ {3P1, 2P1 + P2, P1 + P3}, this means that in the remaining case H is an
induced subgraph of P4. In that case even Disjoint Connected Subgraphs
is polynomial-time solvable on H-free graphs, due to Lemma 7. ��

5 Reducing the Number of Open Cases to Three

Theorem 3 shows that we have the same three open cases for Disjoint Paths
and Disjoint Connected Subgraphs, namely when H ∈ {3P1, P1+P3, 2P1+
P2}. We show that instead of six open cases, we have in fact only three.

Proposition 1. Disjoint Paths and Disjoint Connected Subgraphs are
equivalent for 3P1-free graphs.

Proof. Every instance of Disjoint Paths is an instance of Disjoint Con-
nected Subgraphs. Let (G,Z1, . . . , Zk) be an instance of Disjoint Con-
nected Subgraphs where G is a 3P1-free graph. By Lemma 2 we may assume
that each Zi is an independent set. Then, as G is 3P1-free, each Zi has size at
most 2. So we obtained an instance of Disjoint Paths. ��
Proposition 2. Disjoint Paths on (P1 +P3)-free graphs and Disjoint Con-
nected Subgraphs on (P1 + P3)-free graphs are polynomially equivalent to
Disjoint Paths on 3P1-free graphs.

Proof. We prove that we can solve Disjoint Connected Subgraphs in poly-
nomial time on (P1 +P3)-free graphs if we have a polynomial-time algorithm for
Disjoint Paths on 3P1-free graphs. Showing this suffices to prove the theorem,
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as Disjoint Paths is a special case of Disjoint Connected Subgraphs and
3P1-free graphs form a subclass of (P1 + P3)-free graphs.

Let (G,Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs,
where G is a (P1 + P3)-free graph. Olariu [16] proved that every connected
P1 + P3-free graph is either triangle-free or complete multipartite. Hence, the
vertex set of G can be partitioned into sets D1, . . . , Dp for some p ≥ 1 such that

– every G[Di] is 3P1-free or the disjoint union of complete graphs, and
– for every i, j with i �= j, every vertex of Di is adjacent to every vertex of Dj .

Using this structural characterization, we first argue that we may assume that
each Zi has size 2, making the problem an instance of Disjoint Paths. Then we
show that we can either solve the instance outright or can alter G to be 3P1-free.

First, we argue about the size of each Zi. By Lemma 2 we may assume that
every Zi is an independent set and is thus contained in the same set Dj . If G[Dj ]
is 3P1-free, then this implies that any Zi that is contained in Dj has size 2. If
G[Dj ] is a disjoint union of complete graphs, then each vertex of a Zi that is
contained in Dj belongs to a different connected component of Dj and Zi ∪ {v}
is connected for every vertex v /∈ Dj . As at least one vertex v /∈ Dj is needed
to make such a set Zi connected, we may therefore assume that for a solution
(S1, . . . , Sk) (if it exists), Si = Zi ∪{v} for some v /∈ Dj . The latter implies that
we may assume without loss of generality that every such Zi has size 2 as well.

If p = 1, then each connected component of G is 3P1-free, and we are done.
Hence, we assume that p ≥ 2. In fact, since any two distinct sets Di and Dj are
complete to each other, the union of any two 3P1-free graphs induces a 3P1-free
graph. Therefore we may assume without loss of generality that only G[D1] might
be 3P1-free, whereas G[D2], . . . , G[Dp] are disjoint unions of complete graphs.

Recall that Zi = {si, ti} for every i ∈ {1, . . . , k} and we search for a solution
(P 1, . . . , P k) where each P i is a path from si to ti. First suppose si and ti
belong to D1. Then P i has length 2 or 3 and in the latter case, V (P i) ⊆ D1.
Now suppose that si and ti belong to Dh for some h ∈ {2, . . . , k}. Then P i has
length exactly 2, and moreover, the middle (non-terminal) vertex of P i does not
belong to Dh.

We will now check if there is a solution (P 1, . . . , P k) such that every P i has
length exactly 2. We call such a solution to be of type 1. In a solution of type 1,
every P i = siuti for some non-terminal vertex u of G. If si and ti belong to
Dh for some h ∈ {2, . . . , p}, then u ∈ Dj for some j �= i. If si and ti belong to
D1, then u ∈ Dj for some j �= 1 but also u ∈ D1 is possible, namely when u is
adjacent to both si and ti.

Verifying the existence of a type 1 solution is equivalent to finding a perfect
matching in a bipartite graph G′ = A ∪ B that is defined as follows. The set A
consists of one vertex vi for each pair {si, ti}. The set B consists of all non-
terminal vertices u of G. For {si, ti} ⊆ D1, there exists an edge between u and
vi in G′ if and only if in G it holds that u ∈ Dh for some h ∈ {2, . . . , p} or u ∈ D1

and u is adjacent to both si and ti. For {si, ti} ⊆ Dh with h ∈ {2, . . . , p}, there
exists an edge between u and vi in G′ if and only if in G it holds that u ∈ Dj
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for some j ∈ {1, . . . , p} with h �= j. We can find a perfect matching in G′ in
polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

Suppose that we find that (G, {s1, t1}, . . . , {sk, tk}) has no solution of type 1.
As a solution can be assumed to be of type 1 if G[D1] is the disjoint union of
complete graphs, we find that G[D1] is not of this form. Hence, G[D1] is 3P1-
free. Recall that G[Dj ] is the disjoint union of complete graphs for 2 ≤ i ≤ p.
It remains to check if there is a solution that is of type 2 meaning a solution
(P 1, . . . , P k) in which at least one P i, whose vertices all belong to D1, has
length 3.

To find a type 2 solution (if it exists) we construct the following graph G∗.
We let V (G∗) = A1 ∪ A2 ∪ B1 ∪ B2, where

– A1 consists of all terminal vertices from D1;
– A2 consists of all non-terminal vertices from D1;
– B1 consists of all terminal vertices from D2 ∪ · · · ∪ Dp; and
– B2 consists of all non-terminal vertices from D2 ∪ · · · ∪ Dp.

Note that V (G∗) = V (G). To obtain E(G∗) from E(G) we add some edges (if
they do not exist in G already) and also delete some edges (if these existed in
G):

(i) for each {si, ti} ⊆ B1, add all edges between si and vertices of B2, and
delete any edges between ti and vertices of B2;

(ii) add an edge between every two terminal vertices in B1 that belong to dif-
ferent terminal pairs; and

(iii) add an edge between every two vertices of B2.

We note that G∗[D1] is the same graph as G[D1] and thus G∗[D1] is 3P1-free.
Moreover, G∗[B1∪B2] is 3P1-free by part (i) of the construction. Hence, as there
exists an edge between every vertex of A1 ∪ A2 and every vertex of B1 ∪ B2 in
G and thus also in G∗, this means that G∗ is 3P1-free. It remains to prove that
(G, {s1, t1}, . . . , {sk, tk}) and (G∗, {s1, t1}, . . . , {sk, tk}) are equivalent instances.

First suppose that (G, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).
Assume that the number of paths of length 3 in this solution is minimum over all
solutions for (G, {s1, t1}, . . . , {sk, tk}). We note that (P 1, . . . , P k) is a solution
for (G∗, {s1, t1}, . . . , {sk, tk}) unless there exists some P i that contains an edge
of E(G)\E(G∗). Suppose this is indeed the case. As G∗[D1] = G[D1] and every
edge between a vertex of A1 ∪ A2 and a vertex of B1 ∪ B2 also exists in G∗,
we find that the paths connecting terminals from pairs in D1 are paths in G∗.
Hence, si and ti belong to Dh for some h ∈ {2, . . . , p} and thus P i = siuti where
u is a vertex of Dj for some j ∈ {2, . . . , p} with j �= h.

As we already found that (G, {s1, t1}, . . . , {sk, tk}) has no type 1 solution,
there is at least one P i′ with length 3, so P i′ = si′vv′ti′ is in G[D1]. However, we
can now obtain another solution for (G, {s1, t1}, . . . , {sk, tk}) by changing P i into
sivti and P i′ into si′uti′ , a contradiction, as the number of paths of length 3 in
(P 1, . . . , P k) was minimum. We conclude that every P i only contains edges from
E(G)∩E(G∗), and thus (P 1, . . . , P k) is a solution for (G∗, {s1, t1}, . . . , {sk, tk}).
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Now suppose that (G∗, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , P k).
Consider a path P i. First suppose that si and ti both belong to B1. Then we
may assume without loss of generality that P i = siuti for some u ∈ A2. As B1

only contains terminals from pairs in D2 ∪ . . . ∪ Dp, the latter implies that P i

is a path in G as well. Now suppose that si and ti both belong to A1. Then we
may assume without loss of generality that P i = siuti for some non-terminal
vertex of V (G) = V (G∗) or P i = siuu′ti for two vertices u, u′ in A2 ⊆ D1.
Hence, P i is a path in G as well. We conclude that (P 1, . . . , P k) is a solution for
(G, {s1, t1}, . . . , {sk, tk}). This completes our proof. ��

6 Conclusions

We first gave a dichotomy for Disjoint k-Connected Subgraphs in
Theorem 2: for every k, the problem is polynomial-time solvable on H-free graphs
if H ⊆i sP1 + P4 for some s ≥ 0 and otherwise it is NP-complete even for k = 2.
Two vertices u and v are a P4-suitable pair if (G − {u, v}, N(u), N(v)) is a yes-
instance of 2-Disjoint Connected Subgraphs. Recall that a graph G can be
contracted to P4 if and only if G has a P4-suitable pair. Deciding if a pair {u, v}
is a suitable pair is polynomial-time solvable for H-free graphs if H is an induced
subgraph of P2 +P4, P1 +P2 +P3, P1 +P5 or sP1 +P4 for some s ≥ 0; otherwise
it is NP-complete [14]. Hence, we conclude from our new result that the pres-
ence of the two vertices u and v that are connected to the sets Z1 = N(u) and
Z2 = N(v), respectively, yield exactly three additional polynomial-time solvable
cases.

We also classified, in Theorem 3, the complexity of Disjoint Paths and
Disjoint Connected Subgraphs for H-free graphs. Due to Propositions 1
and 2, there are three non-equivalent open cases left and we ask the following:

Open Problem 1. Determine the computational complexity of Disjoint
Paths on H-free graph for H ∈ {3P1, 2P1+P2} and the computational complex-
ity of Disjoint Connected Subgraphs on H-free graphs for H = 2P1 + P2.

The three open cases seem challenging. We were able to prove the following
positive result for a subclass of 3P1-free graphs, namely cobipartite graphs, or
equivalently, (3P1, C5, C7, C9, . . .)-free graphs (proof omitted).

Theorem 4. Disjoint Paths is polynomial-time solvable for cobipartite
graphs.

Finally, we briefly mention exact algorithms. Using Held-Karp type dynamic
programming techniques [2,10], we can obtain exact algorithms for Disjoint
Paths and Disjoint Connected Subgraphs running in time O(2nn2m) and
O(3nkm), respectively (proofs omitted). Faster exact algorithms are known for
k-Disjoint Connected Subgraphs for k = 2 and k = 3 [1,4,20], but we are
unaware if there exist faster algorithms for general graphs.

Open Problem 2. Is there an exact algorithm for Disjoint Paths or Dis-
joint Connected Subgraphs on general graphs where the exponential factor
is (2 − ε)n or (3 − ε)n, respectively, for some ε > 0?
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Abstract. We study the k-knapsack and l-matroid constrained prophet
secretary problem, which is a combinatorial prophet secretary problem
whose feasible domain is the intersection of k-knapsack constraints and
l-matroid constraints. Here, the prices of the items and the structure of
the matroids are deterministic and known in advance, and the values of
the items are stochastic and their distributions are known in advance.
We derive a constant-factor approximation algorithm for this problem.
We adapt Ehsani et al. (2018)’s technique for the matroid constraint to
the knapsack constraint via continuous relaxation. For this purpose, we
prove an “exchange property” of the knapsack constraint.

Keywords: Online algorithm · Prophet secretary problem · Knapsack

1 Introduction

1.1 Background and Motivation

The combinatorial prophet secretary problem [10] is the following stochastic
online optimization problem: Let E be a finite set of items, D ⊆ 2E be a feasible
domain, and �v = (ve)e∈E ∈ R

E
≥0 be a random variable, representing the values of

items, whose entries follow some known distributions independently. The items
arrive one-by-one in uniform random order. When e ∈ E arrives, we observe the
realized value of ve and irrevocably pick e or ignore e. The objective of the prob-
lem is to design a strategy that selects a feasible set X ∈ D with large objective
value v(X) =

∑
j∈X vj in expectation, with respect to the random arrival order

and the realization of �v.
A special case of the above problem, where D consists of the set of singletons, is

called the prophet secretary problem, and was introduced as an “intersection prob-
lem” of the prophet inequality problem [15,16,18] and the secretary problem [9].
Here, in the former case, we know the distribution of values but we cannot assume
the arrival order is random, and in the latter case, we can assume the arrival order
is random but we do not know the distribution of the values. The above combina-
torial prophet secretary problem was introduced by Ehsani et al. [10].
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Table 1. Approximation ratio of the algorithm. (k, l)-th entry shows the approximation
ratio of k-knapsack l-matroid constraint.

- 0 1 2 3 4 5 6 7

1 0.2134 0.1729 0.1419 0.1187 0.1014 0.0895 0.0800 0.0723

2 0.1441 0.1159 0.0982 0.0860 0.0764 0.0686 0.0622 0.0569

3 0.1056 0.0884 0.0756 0.0665 0.0605 0.0555 0.0512 0.0476

4 0.0818 0.0707 0.0621 0.0553 0.0500 0.0465 0.0435 0.0408

5 0.0662 0.0586 0.0525 0.0475 0.0434 0.0400 0.0377 0.0357

6 0.0554 0.0499 0.0454 0.0416 0.0384 0.0357 0.0333 0.0317

7 0.0476 0.0435 0.0400 0.0370 0.0345 0.0323 0.0303 0.0286

The prophet secretary problem attracts attention [2,6,7,10,11] because, by
comparing the prophet problem and the secretary problem, we can see the
“value” of knowing distributions and/or the random ordering. By definition, we
can expect that the prophet secretary problem has a better approximation ratio
than the corresponding prophet inequality and secretary problems. In fact, if we
can select at most one item (i.e., original prophet secretary setting), the prophet
secretary problem admits an approximation ratio of 1 − 1/e + 1/27 ≈ 0.669 [7],
whereas the optimal approximation ratio in the prophet inequality problem
is 1/2 [16] and the optimal approximation ratio in the secretary problem is
1/e ≈ 0.367. Similarly, if the constraint is a matroid, the approximation ratio
in the prophet secretary problem is 1 − 1/e ≈ 0.638 [10], whereas the optimal
approximation ratio in the prophet inequality problem is 1/2 [14] and the best-
known approximation ratio in the secretary problem is O(log log rank) in the
secretary setting [12,17], where rank is the rank of the matroid. Note that the
latter is conjectured to be O(1) [4].

In this study, we consider the prophet secretary problem on knapsack-related
constraints, say, k-knapsack and l-matroid intersection constraint. Here, the
prices of the items are deterministic and known in advance, and the values
of the items are stochastic and their distributions are known in advance. The
knapsack constraint has not been studied in the prophet secretary setting, and it
has a technical difficulty in applying the existing framework (see Sect. 1.4). This
study aims to establish a new technique to overcome the difficulty and derive an
algorithm with a constant-factor approximation ratio.

1.2 Our Contribution

In this study, we prove the following theorem.

Theorem 1. There is an algorithm for the k-knapsack l-matroid prophet secre-
tary problem that has the approximation ratio listed in Table 1 (see Theorem 2
for the formula to compute the table). Specifically, the approximation ratio is
Ω(1/(k + l)).
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The theorem is proved by setting a threshold ε > 0 and splitting items into
a “small” part whose weights are at most ε and a “large” part whose items
have the weights greater than ε. Our main technical contribution is an improved
approximation ratio for the small part (Lemma 7). If we consider only multiple
knapsack constraint, this result is simplified as follows.

Corollary 1. There is an algorithm for the k-knapsack prophet secretary prob-
lem that has the approximation ratio of (1 − ε)(1 − e−k)/k, where ε is an upper
bound of the weights of the items.

1.3 Comparison with Existing Results and Discussion

First, we compare our result with the existing results on k-knapsack l-matroid
setting. Feldman et al. [13] provided an online contention resolutions scheme
with constant selectability for this setting, which means the approximation algo-
rithm of the same factor under the prophet inequality setting. In their algorithm,
combining constraints affects the approximation ratio multiplicatively and thus,
approximation ratio is exponential with respect to k. Since the approximation
ratio of our algorithm is Ω(1/(k + l)), our result outperforms their result.

Next, we compare our result with the existing results on the single knapsack
case (k = 1 and l = 0). The approximation ratio of Feldman et al. [13]’s algo-
rithm is 3/2 − √

2 ≈ 0.086. Dütting et al. [8] provided an algorithm with the
approximation ratio of 1/5 = 0.2 under the prophet inequality setting. Babaioff
et al. [3] provided an algorithm with the approximation ratio of 1/10e ≈ 0.036
under the secretary setting and Albers et al. [1] gave the current best approxi-
mation ratio 0.150. Thus, as expected, we see that the prophet secretary setting
gives a better approximation ratio than the less information cases. However, if
we adapt the proof in [8] to the secretary prophet setting, we can obtain a better
approximation ratio as follows.

Proposition 1. There is an algorithm for the knapsack constrained prophet sec-
retary problem that has the approximation ratio of 0.222.

Our result is inferior to their result because of the following reason. Their algo-
rithm also set a threshold ε > 0 and split the items into a small and a large parts.
Their approximation ratio for the small part is (1 − ε)/(2 − ε), which is better
than our ratio of (1 − ε)(1 − e−1) in Corollary 1 when ε = 1/2. For ε = 1/2, the
large part is equivalent to the original prophet secretary problem and current
best approximation ratio is 1 − 1/e + 1/27 [7]. Proposition 1 is obtained com-
bining these bounds. See Sect. 4 for the proof. Note that our result outperforms
their result if we can assume that all items have weight at most 1/3. Further-
more, for the small part our approximation ratio (1 − ε)(1 − e−1) outperforms
Albers et al.’s [1] one 1 − (1 − ε)−1 log(2 − ε) on the secretary setting for any
ε ≤ 1/2. Therefore, combining their result with the large part does not yields
the better approximation ratio.

Finally, we compare our result with the existing results on the multiple knap-
sack case (k ≥ 2). This constraint is a special case of the k-sparse packing integer



Prophet Secretary for k -Knapsack and l-Matroid Intersection 431

Algorithm 1 Ehsani et al.’s framework
1: Draw n random numbers from U [0, 1] and arrange them by t1 < · · · < tn
2: A = ∅
3: for j ∈ V do
4: Observe vj
5: if A ∪ {j} ∈ D and vj ≥ α(tj)bj(A) then
6: A ← A ∪ {j}
7: end if
8: end for
9: return A

programming (PIP) constraint. Dütting et al. [8] proposed an algorithm with the
approximation ratio of 1/8k if all the items have weights at most 1/2. Our result
(Corollary 1) gives (1−e−k)/(2k) approximation, which outperforms their result
for all k ≥ 2.

1.4 Proof Strategy

To obtain an algorithm for knapsack constraint, we extend Ehsani et al.’s tech-
nique in the matroid constraint case [10]. We first explain their technique. Then,
we explain the difficulty of our problem and how to overcome the difficulty.

Prophet Secretary for Matroid Constraint. A matroid is a pair (V, I) of a finite
set V and a set family I ⊆ 2V such that I contains the emptyset ∅, I is
downward-closed, and for any X,Y ∈ I such that |X| < |Y |, there exists
i ∈ Y \ X such that X ∪ {i} ∈ I.

Their algorithm is presented in Algorithm 1. It assigns “arrival time” to each
items, and it maintains an adaptive threshold α(tj)bj(A) based on the time and
current solution. The algorithm includes the j-th item to the solution if its value
vj is greater than the threshold.

The threshold function consists of two parts: α and b. Here, b is defined by

bj(A) = E[R(A,�v) − R(A ∪ {j}), �v)], (1)

where R denotes an auxiliary function defined by

R(A,�v) = max

⎧
⎨

⎩

∑

j∈X\A

vj : X ∈ D, A ⊆ X

⎫
⎬

⎭
. (2)

Intuitively, bj(A) is the “damage” of including j to a solution A. α is a monotone
decreasing function that represents a discount factor.

Ehsani et al. used the following inequality to analyze the performance of their
algorithm:

∑

j∈Y

(R(A,�v) − R(A ∪ {j}, �v)) ≤ R(A,�v). (3)
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This inequality follows from Brualdi’s lemma (Lemma 5). Using this inequality,
they proved that the algorithm achieves an approximation ratio of 1 − e−1 by
setting α(t) = 1 − e−t.

Difficulty with the Knapsack Constraint and How to Overcome the Difficulty. In
general, if we obtain an inequality that has the same LHS of (3) and the RHS of
(3) multiplied by a constant factor, we obtain another constant approximation
ratio of the corresponding prophet secretary problem. Thus, we need to achieve
such an inequality for the knapsack constraint.

In the matroid case, this inequality is derived from the exchange property
(i.e., adding one item requires the removal of only one item). However, in the
knapsack constraint case, there is a scenario that adding a small item requires
us to exclude a large item. This makes it difficult to obtain such an inequality.
We solve this difficulty by modifying the definition of R (and hence b) via a
continuous relaxation of the problem.

In Sect. 2, we provide a precise condition of the auxiliary function R that
allows us to achieve an approximation ratio of the prophet secretary problem. In
Sect. 3, we prove that continuous relaxation of the knapsack constraint admits
an exchange property that extends (3); this is the main technical contribution
of this paper. Finally, in Sect. 4, we provide the proof of the main theorem by
combining these results.

2 Auxiliary Function R via Continuous Relaxation

The following lemma states the requirement of the auxiliary function R.

Lemma 1. Suppose that for each A and �v there exists �x(A,�v) ∈ [0, 1]V \A such
that

1. xj(A,�v) > 0 implies A ∪ {j} ∈ F , where F is the set of feasible solutions to
the original problem.

2.
∑

j bj(A,�v)xj(A,�v) ≤ μR(A,�v), where R(A,�v) =
∑

j∈V \A vjxj(A,�v) and
bj(A,�v) = R(A,�v) − R(A ∪ {j}, �v).

3. R(∅, �v) = �v��x(∅, �v) is a γ-approximation to the original problem.

Then, Algorithm 1 with bj(A) = E[bj(A,�v)] is a γ(1 − e−μ)/μ approximation.

Proof. Let X be the solution obtained by the algorithm. We decompose the
objective value as

∑

j∈X

vj =
∑

j∈X

(
vj − α(tj)bj(Atj )

)

utility

+
∑

j∈X

α(tj)bj(Atj )

revenue

, (4)

where At represents the solution at the time immediately before t. We call the
first and second terms on the right-hand side utility and revenue, respectively.
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We first evaluate the revenue. Let r(t) = E [R(At, �v)] and suppose j ∈ X.
Then, for a sufficiently small ε > 0, we have

Revenue(tj + ε) − Revenue(tj) = α(tj)bj(Atj ) (5)
= α(tj)(R(Atj , �v) − R(Atj+ε, �v)), (6)

where Revenue(t) represents the revenue before time t, i.e.,
∑

tj≤t α(tj)bj(Atj ).
By taking the integral and expectation, we have

E [Revenue] = −
∫ 1

0

α(t)r′(t)dt. (7)

Next, we evaluate the utility. Because the algorithm picks element j only if
vj ≥ α(tj)bj(Atj ), the utility is represented by

Utilityj =
(
vj − α(tj)bj(Atj )

)+ 1[{j} ∪ Atj ∈ F ] (8)

≥ (
vj − α(tj)bj(Atj )

)+
x(Atj , �v) (9)

≥ (
vj − α(tj)bj(Atj )

)
x(Atj , �v) (10)

where Utilityj represents the j-th summand of the utility and x+ represents x if
x ≥ 0 and 0 otherwise. Here, in the first inequality, we used the first assumption
of the lemma.

Before taking the expectation on t = tj ∈ [0, 1], we remove the dependence
of At on tj . In particular, we claim

E [(vj − α(t)bj(At)) xj(At, �v)|tj = t] ≥ E [(vj − α(t)bj(At)) xj(At, �v)] . (11)

We prove this by the same argument as [10, Lemma 17]. If tj ≥ t or j 
∈ At, it
holds in equality because At does not depend on tj . Otherwise, i.e., if tj < t and
j ∈ At, the right hand side is zero. Therefore, the claim is proved.

Now, by taking the expectation on t and the summation over j, we have

E [Utility] ≥
∑

j∈V

∫ 1

0

E [(vj − α(t)bj(At)) xj(At, �v)|tj = t] dt (12)

≥
∑

j∈V

∫ 1

0

E [(vj − α(t)bj(At)) xj(At, �v)] dt (13)

= E

⎡

⎣
∫ 1

0

⎛

⎝R(At, v) − α(t)
∑

j

bj(At)xj(At, �v)

⎞

⎠ dt

⎤

⎦ (14)

≥ E

[∫ 1

0

(1 − α(t)μ) R(At, �v)dt

]

(15)

=
∫ 1

0

(1 − α(t)μ) r(t)dt. (16)
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Here, in the fourth line, we used the second assumption of the lemma.
By combining these inequalities, we obtain

E [Utility] + E [Revenue] ≥
∫ 1

0

(−α(t)r′(t) + (1 − α(t)μ)r(t)) dt (17)

= α(0)r(0) − α(1)r(1) +
∫ 1

0

(α′(t) − μα(t) + 1) r(t)dt.

(18)

We let α(t) as the solution of the differential equation

α′(t) − μα(t) + 1 = 0, α(1) = 0, (19)

which eliminates the second and third terms in (18). The closed form of α is
given by

α(t) =
1 − eμ(t−1)

μ
. (20)

Thus, we obtain

Utility + Revenue ≥ α(0)r(0) =
1 − e−μ

μ
· γOPT. (21)

Here, OPT denotes the optimal value of the original problem and we used the
third condition that r(0) is a γ-approximation of the original problem.

3 Exchange Lemma for Knapsack Constraint

We want to apply Lemma 1 to the knapsack constraint to obtain our main
theorem. The second condition of the lemma is shown via the exchange property
of the constraints.

In this section, we prove an exchange lemma for the knapsack constraint. We
first prove the following technical lemma, which is the fractional version of the
inequality (3) for the knapsack case.

Lemma 2. Let �c ∈ R
n
≥0, �y ∈ R

n
≥0, and C ∈ R≥0 such that C ≥ cj for all j ∈ [n]

and C ≥ ∑n
j=1 cjyj. If ρ : [0, C] → R≥0 is a monotone non-decreasing function,

we have
n∑

j=1

∫ cj

0

ρ(t)yjdt ≤
∫ C

0

ρ(t)dt. (22)
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Proof. Without loss of generality, we assume c1 ≤ c2 · · · ≤ cn. Let l ∈ [n] be the
smallest index such that yl + · · · + yn ≤ 1. Then, we have

n∑

j=1

∫ cj

0

ρ(t)yjdt =
n∑

j=1

∫ cj

cj−1

ρ(t)(yj + · · · + yn)dt (23)

=

l−1∑

j=1

∫ cj

cj−1

ρ(t)(yj + · · · + yn)dt

(a)

+
n∑

j=l

∫ cj

cj−1

ρ(t)(yj + · · · + yn)dt

(b)

,

(24)

where c0 = 0 for convention. We evaluate (a) and (b) separately. For (a), we
have

(a) ≤
l−1∑

j=1

∫ cj−1+(cj−cj−1)(yj+···+yn)

cj−1

ρ(t)dt ≤
∫ ∑l−1

j=1(cj−cj−1)(yj+···+yn)

0

ρ(t)dt.

(25)

Here, the first inequality follows from the monotonicity of ρ; the second inequality
follows from the fact that the adjacent integral ranges are overlapping. Further,
aligning the ranges to the right to resolve the overlaps increases the integral
because of the monotonicity of ρ. For integral (b),

(b) ≤
n∑

j=l

∫ cj

cj−(cj−cj−1)(yj+···+yn)

ρ(t)dt ≤
∫ C

C−∑n
j=l(cj−cj−1)(yj+···+yn)

ρ(t)dt.

(26)

Here, the first inequality follows from the monotonicity of ρ; the second inequali-
ties follows from the fact that adjacent integral ranges have gaps and filling such
gaps by aligning to the right increases the integral because of the monotonicity
of ρ.

The upper endpoint of the integral in (25) is at most the lower endpoint of
the integral in (26) because C ≥ ∑n

j=1 cjyj =
∑n

j=1(cj − cj−1)(yj + · · · + yn).
Thus, by filling the gap, we obtain the result.

Remark 1. The above proof can be understood geometrically. We regard ρ(t)
as a density over the plane that depends on the x-coordinate; the right side is
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denser than the left side. The right-hand side of (22) is the weighted area of the
rectangle of width C and height one, and the left-hand side of (22) is the weighted
area of the shaded region in the first figure below. The proof deforms the shaded
region to fit the rectangle for the right-hand side using the monotonicity of the
density.

A knapsack polytope P is defined by

P =
{
�x ∈ [0, 1]V : �c��x ≤ 1

}
(27)

for some �c ∈ [0, 1]V . Now, we prove the exchange lemma for knapsack polytope.

Lemma 3 (Fractional Exchange Lemma for Knapsack Constraint). Let
P be a knapsack polytope and �v ∈ R

V be a nonnegative vector. For j ∈ V , let
�ej be the j-th unit vector. For all �x, �y ∈ P , there exists vectors �χj for each
j ∈ supp(y) such that the following conditions hold.

1. �0 ≤ �χj ≤ �x,
2. �x − �χj + �ej ∈ P ,
3.

∑

j∈V

yj�v
��χj ≤ �v��x.

Proof. Without loss of generality we assume that v1/c1 ≤ · · · ≤ vm/cm. Let
tp =

∑p
i=1 cixi. For convention, we define t0 = 0. We define �ν(t) for t ∈ (0, tm]

by

�ν(t) =
�ep

cp
, t ∈ (tp−1, tp], (28)

If
∑j

i=1 cixi ≤ cj , we set lj = cj and

�χj =
∫ lj

t=0

�ν(t)dt. (29)
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Otherwise, we set lj = (1 − xj)cj and

�χj =
∫ lj

t=0

�ν(t)dt + xj�ej . (30)

For both cases, the first condition clearly holds because �ν(t) ≥ 0 (element-wise
inequality), and the integral of �ν(t) is �x. The second condition holds because of
the identity

∫ lj

t=0

�c��ν(t)dt =
∫ lj

t=0

1dt = lj . (31)

Now, we prove the third condition. Let Y ′ be the set of indices j in the “other-
wise” case. Let ρ(t) = �v��ν(t). Because the items are ordered by their efficiency,
ρ(t) is a monotone non-decreasing function. Therefore, by Lemma 2, we have

∑

j

yj�v
��χj =

∑

j

∫ lj

t=0

yjρ(t)dt +
∑

j∈Y ′

∫ tj

t=tj−1

yjρ(t)dt (32)

≤
∫ ∑

j yj lj

t=0

ρ(t)dt +
∫ ∑

j yjcj

t=
∑

j yj lj

ρ(t)dt = OPT. (33)

The following lemma is a fractional version of Lemma 18 in [10].

Lemma 4 (Fractional exchange lemma for a matroid constraint). Let
(V, I) be a matroid. Let �x, �y ∈ [0, 1]V be vectors such that supp(�x), supp(�y) ∈ I.
Then, there exists vectors �χj for each j ∈ supp(y) such that

1. �0 ≤ �χj ≤ �x,
2. supp(�x − �χj + �ej) ∈ I,
3.

∑

j∈V

yjv
� �χj ≤ �v��x.

The proof uses the following result, called Brualdi’s lemma.

Lemma 5 (Brualdi [5]). Let (V, I) be a matroid. For any basis A,B ∈ I,
there exists a bijection π between A \ B to B \ A such that A \ {j} ∪ {π(j)} ∈ I.

Proof (Proof of Lemma 4). By Brualdi’s lemma, we obtain a bijection π from
supp(�y) to supp(�x) such that supp(�x) ∪ {j} \ {π(j)} ∈ I for all j ∈ supp(�y). Let
�χj = xπ(j)�eπ(j). Then, we have

∑

j∈V

yjv
��χj ≤

∑

j∈supp(�y)

v��χj =
∑

j∈supp(�y)

vπ(j)xπ(j) = �v��x. (34)

We can extend these lemmas for the k-knapsack and l-matroid constraint
case as follows.
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Corollary 2 (Fractional exchange Lemma for k-Knapsack and l-
Matroid Constraint). Let P1, . . . , Pk be knapsack polytopes, (V, I1), . . . , (V,
Il) be matroids, and �v ∈ R

V be a nonnegative vector. For all �x, �y ∈ P1 ∩ · · · ∩Pk

such that supp(�x), supp(�y) ∈ I1 ∩ · · · ∩ Il, there exists vectors �χj for each
j ∈ supp(y) such that the following conditions hold.

1. �0 ≤ �χj ≤ �x,
2. �x − �χj + �ej ∈ P1 ∩ · · · ∩ Pk,
3. supp(�x − �χj + �ej) ∈ I1 ∩ · · · ∩ Il,
4.

∑

j∈V

yjv
� �χj ≤ (k + l)�v��x.

Proof. We choose �χ1
j , . . . , �χ

k
j for the knapsack constraints 1, . . . , k using

Lemma 3. Further, we choose �χ
′1
j , . . . , �χ

′l
j for the matroid constraints 1, . . . , l

using Lemma 4. Then, we define �χj = �χ1
j ∨ · · · ∨ �χk

j ∨ �χ
′1
j ∨ . . . �χ

′l
j , where ∨

denotes the element-wise maximum. Then, it is easy to see that these vectors
satisfy the conditions.

4 Final Proof

Let ε > 0 be a parameter determined later. Let VL be the set of items such that
for at least one knapsack constraint, the weight is greater than ε and VS = V \VL.
We first obtain an approximation ratio of the case when VS = ∅ (LargeCase).

Lemma 6 (No Small Items). If VS = ∅, there exists an algorithm that has
an approximation ratio of (1 − e−t)/t, where t = k(�1/ε� − 1).

Proof. First, we mention that, in this case, any feasible solution has the cardi-
nality of at most t. Let F be the feasible domain. For all A ⊆ V and �v, we define
�x(A,�v) by the indicator vector of argmaxX{∑

j∈X vj : A ∪ X ∈ F}. Since such
set X has the cardinality of at most t, we have

∑

j

bj(A,�v)�x(A,�v) ≤
∑

j

R(A,�v)�x(A,�v) ≤ tR(A,�v). (35)

Therefore, by Lemma 1, Algorithm 1 with an appropriate α has an approxima-
tion ratio (1 − e−t)/t.

Next, we obtain an approximation ratio of the case when VL = ∅ (SmallCase).

Lemma 7 (No Large Items). If VL = ∅, there exists an algorithm that has
an approximation ratio of (1 − ε) (1 − e−(k+l))/(k + l).

Proof. We introduce a polytope Pp(A, ε) for each item subset A and knapsack
constraint p defined by

Pp(A, ε) =

⎧
⎨

⎩
�x ∈ [0, 1]V \A :

∑

j∈V \A

cp
jxj ≤ 1 − ε −

∑

j∈A

cp
j

⎫
⎬

⎭
. (36)
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We define �x(A,�v) the optimal solution to the problem

maximize
∑

j∈V \A

vjxj

subject to �x ∈ P1(A, ε) ∩ · · · ∩ Pk(A, ε),
supp(�x) ∈ I1 ∩ · · · ∩ Il.

(37)

We apply Lemma 1 for this vector. By the definition of Pp(A, ε) and the assump-
tion that there are no large items, this vector satisfies Condition 1 in Lemma 1.
By Corollary 2, this vector satisfies Condition 2 with μ = (k + l) and Condition
3 with γ = 1 − ε. Therefore, by Lemma 1, Algorithm 1 with an appropriate α
provides an approximation ratio of (1 − ε)e−(k+l)/(k + l).

By combining these two cases, we obtain the following theorem.

Theorem 2. There exists a constant-factor approximation algorithm for the k-
knapsack and l-matroid prophet secretary problem. The approximation ratio is
given by

max
p∈Z>0

βLβS

βL + βS
, (38)

where

βL =
1 − e−(p−1)k

(p − 1)k
, βS =

(1 − 1/p)(1 − e−(k+l))
k + l

. (39)

Proof. Let 0 < ε ≤ 1 be a parameter determined later. Let βL(ε) and βS(ε) be
the approximation ratio in Lemma 6 and Lemma 7, respectively. With proba-
bility βS(ε)/(βL(ε) + βS(ε)), we run the algorithm for LargeCase by ignoring all
elements whose size is less than or equals to ε; otherwise, we run the algorithm
for SmallCase by ignoring all elements whose size is greater than ε. The expected
value of this algorithm is

ALG =
βS(ε)

βL(ε) + βS(ε)
(LargeCase) +

βL(ε)
βL(ε) + βS(ε)

(SmallCase) (40)

≥ βS(ε)
βL(ε) + βS(ε)

βL(ε)(Large part of OPT) (41)

+
βL(ε)

βL(ε) + βS(ε)
βS(ε)(Small part of OPT) (42)

=
βL(ε)βS(ε)

βL(ε) + βS(ε)
OPT, (43)

where ALG denotes the value of the output of the algorithm. Without loss of
generality, because of the form of βL(ε) and βS(ε), we can choose ε = 1/p for
some integer p. Thus, the theorem is proved.
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This theorem immediately proves our main theorem (Theorem 1) where
Table 1 is obtained by a numerical calculation. Setting ε = 1/2 yields the lower
bound Ω(1/(k + l)) of the approximation ratio. If there is no matroid contraint,
we obtain a closed form of the approximation ratio as follows.

Corollary 3. If there is no matroid constraint, i.e., l = 0, the optimal p is given
by p = 3 if k = 1 and p = 2 otherwise. The corresponding approximation ratios
are (2e2 − 2)/(7e2 + 3e) ≈ 0.213 and (1 − e−k)/3k.

Finally, for the self-completeness of the paper, we prove Proposition 1.

Proof (Proof of Proposition 1). The proof follows the similar strategy as the
above. We let ε = 1/2 and split the items into small and large. For the small
case, we use the algorithm of [8], which has the approximation ratio of 1/3. For
the large case, we use the algorithm of [7], which has the approximation ratio of
1 − 1/e + 1/27. By combining these results, we obtain (28e − 27)/(111e − 81) ≈
0.222.
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Abstract. The Minimum Eccentricity Shortest Path Problem
consists in finding a shortest path with minimum eccentricity in a given
undirected graph. The problem is known to be NP-complete and W[2]-
hard with respect to the desired eccentricity. We present fpt algorithms
for the problem parameterized by the modular width, distance to cluster
graph, the combination of distance to disjoint paths with the desired
eccentricity, and maximum leaf number.

Keywords: Graph theory · Minimum eccentricity shortest path ·
Parameterized complexity · Fixed-parameter tractable

1 Introduction

The Minimum Eccentricity Shortest Path (MESP) problem asks, given
an undirected graph and an integer k, to find a shortest path with eccentricity
at most k—a shortest path (between its endpoints) whose distance to all other
vertices in the graph is at most k. The shortest path achieving the minimum
k may be viewed as the “most accessible”, and as such, may find applications
in communication networks, transportation planning, water resource manage-
ment, and fluid transportation [7]. Some large graphs constructed from reads
similarity networks of genomic data appear to have very long shortest paths
with low eccentricity [17]. Furthermore, MESP can be used to obtain the best
to date approximation for a minimum distortion embedding of a graph into the
line [7] which has applications in computer vision [16], computational biology
and chemistry [11,12]. The eccentricity of MESP is closely tied to the notion of
laminarity (minimum eccentricity of the graph’s diameter) [1].

MESP was introduced by Dragan and Leitert [7] who showed that it is NP-
hard on general graphs and constructed a slice-wise polynomial (XP) algorithm,
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M. Kučera–Work of this author was supported by the Student Summer Research Pro-
gram 2020 of FIT CTU in Prague, and by grant SGS20/212/OHK3/3T/18.
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vertex cover # max leaf #

neighborhood diversity twin cover # tree depth

dist. to cluster graph

dist. to disjoint paths

feedback vertex set #modular width

Fig. 1. Hasse diagram of the boundedness relation between structural parameters
explored in this paper and related ones. An edge between a parameter A above and a
parameterB belowmeans that wheneverA is bounded for some graph class, then so isB.
The parameters for which MESP is FPT are in green (dark if the result is described in
this paper, light if implied by those described). Yellow represents a parameter for which
MESP is FPT in combination with the desired eccentricity. The complexity for parame-
ters in gray is open. (Color figure online)

which finds a shortest path with eccentricity at most k in a graph with n vertices
and m edges in O(n2k+2m) time. They also presented a linear-time algorithm
for trees. Additionally, they developed a 2-approximation, a 3-approximation,
and an 8-approximation algorithm that runs in O(n3) time, O(nm) time, and
O(m) time, respectively. Birmelé et al. [1] further improved the 8-approximation
to a 3-approximation, which still runs in linear time. Dragan and Leitert [8]
showed that MESP can be solved in linear time for distance-hereditary graphs
(generalizing the previous result for trees) and in polynomial time for chordal and
dually chordal graphs. Later, they proved [9] that the problem is NP-hard even
for bipartite subcubic planar graphs, and W[2]-hard with respect to the desired
eccentricity for general graphs. Furthermore, they showed that in a graph with
a shortest path of eccentricity k, a minimum k-dominating set can be found in
nO(k) time. A related problem of finding shortest isometric cycle was studied
by Birmelé et al. [3]. Birmelé et al. [2] studied a generalization of MESP, where
the task is to decompose a graph into subgraphs with bounded shortest-path
eccentricity, the hub-laminar decomposition.

Our Contribution. We continue the research direction of MESP in structured
graphs [8], focusing on parameters which can measure the amount of structure
present in the graph. As treewidth, the most famous of such measures, remains
out of reach, we focus on parameters providing even more structure (see [14] for
an overview of some graph measures). We provide fpt algorithms for the problem
with respect to the modular width, distance to cluster graph, distance to disjoint
paths combined with the desired eccentricity, and maximum leaf number (see
Fig. 1 for an overview of our results).

Outline. In Sect. 2, we provide necessary notations and formal definitions. In
Sect. 3, we describe our parameterized algorithms. In Sect. 4, we discuss possible
future work.

Proofs omitted in this extended abstract due to space restrictions can be
found in the full version of the paper, preprint is available on ArXiv [13].



444 M. Kučera and O. Suchý

2 Preliminaries

We consider finite connected unweighted undirected simple loopless graphs.
We refer to Diestel [6] for graph notions.
For a graph G = (V,E) we denote n = |V | and m = |E|. We denote G[S]

the induced subgraph of G on vertices S ⊆ V and G\S = G[V \S].
We denote an ordered sequence of elements s = (s1, . . . , s|s|). For two

sequences s = (s1, . . . , s|s|), t = (t1, . . . , t|t|) we denote their concatenation

s � t = (s1, . . . , s|s|, t1, . . . , t|t|).

A path is a sequence of vertices where every two consecutive vertices are
adjacent. The first and last vertices of the path are called its endpoints. A path
between u and v or u-v-path is a path with endpoints u and v. The length of a
path P is the number of edges in it, i.e., |P | − 1. A u-v-path is shortest if it has
the least length among all u-v-paths. The distance dG(u, v) between two vertices
u, v ∈ V is the length of the shortest u-v-path.

The distance between a vertex u ∈ V and a set of vertices S ⊆ V is dG(u, S) =
mins∈S dG(u, s). The eccentricity of a set S ⊆ V is eccG(S) = maxu∈V dG(u, S).
For a path P , we use P instead of V (P ) for its set of vertices, if there is no risk
of confusion, e.g., dG(u, P ) = dG(u, V (P )) and eccG(P ) = eccG(V (P )).

For vertex u ∈ V we denote NG(u) = {v | {u, v} ∈ E} the open neighbor-
hood, NG[u] = NG(u) ∪ {u} the closed neighborhood, and Nk

G[u] = {v ∈ V |
dG(u, v) ≤ k} the closed k-neighborhood of u.

In this paper, we focus on the following problem.

Minimum Eccentricity Shortest Path Problem (MESP)
Input: An undirected graph G, desired eccentricity k ∈ N.
Question: Is there a path P in G which is a shortest path between its
endpoints with eccG(P ) ≤ k?

A parameterized problem Π is fixed parameter tractable (FPT) with respect
to a parameter k if there is an algorithm solving any instance of Π with size n
in f(k) · nO(1) time for some computable function f . Such an algorithm is called
a parameterized or an fpt algorithm. See Cygan et al. [5] for more information
on parameterized algorithms.

In this paper, we present fpt algorithms for MESP with respect to the fol-
lowing structural parameters.

Definition 1 (Modular width, [10]). Consider graphs that can be obtained
from an algebraic expression that uses the following operations:

(O1) create an isolated vertex;
(O2) the disjoint union of 2 disjoint graphs (the disjoint union of graphs G1

and G2 is the graph
(
V (G1) ∪ V (G2), E(G1) ∪ E(G2)

)
);

(O3) the complete join of 2 disjoint graphs (the complete join of graphs G1 and
G2 is the graph

(
V (G1) ∪ V (G2), E(G1) ∪ E(G2) ∪ {{v, w} | v ∈ V (G1), w ∈

V (G2)
})

);
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(O4) the substitution with respect to some pattern graph T (for a graph T with
vertices t1, . . . , tn and disjoint graphs G1, . . . , Gn the substitution of the ver-
tices of T by the graphs G1, . . . , Gn is the graph with vertex set

⋃n
i=1 V (Gi)

and edge set
⋃n

i=1 E(Gi) ∪ {{u, v} | u ∈ V (Gi), v ∈ V (Gj), and {ti, tj} ∈
E(T )

}
).

We define the width of an algebraic expression A as the maximum number of
operands used by any occurrence of the operation (O4) in A. The modular-width
of a graph G, denoted mw(G), can be defined as the least integer m such that G
can be obtained from such an algebraic expression of width at most m.

Given a graph G = (V,E), an algebraic expression of width mw(G) describing G
can be constructed in O(|V | + |E|) time [15].

Definition 2 (Distance to cluster graph). For a graph G = (V,E), a modu-
lator to cluster graph is a vertex subset X ⊆ V such that G\X is a vertex-disjoint
union of cliques. The distance to cluster graph is the size of the smallest modu-
lator to cluster graph.

A modulator to cluster graph of a graph with distance to cluster graph p can be
found in O(

1.9102p · (n + m)
)

time [4].

Definition 3 (Distance to disjoint paths). For a graph G = (V,E) a mod-
ulator to disjoint paths is a vertex subset X ⊆ V , such that G\X is a vertex-
disjoint union of paths. The distance to disjoint paths is the size of the smallest
modulator to disjoint paths.

For completeness, we include the following result which is rather folklore.

Lemma 1 (�1). The modulator to disjoint paths C of a graph G with distance
to disjoint paths c can be found in O(

4c(n + m)
)
time.

Definition 4 (Maximum leaf number). The maximum leaf number of a
graph G is the maximum number of leaves in a spanning tree of G.

The presented algorithms rely on the following lemma.

Lemma 2. For any graph G = (V,E), any set S ⊆ V , and any vertex s ∈ V ,
at most one permutation π = (π1, . . . , π|S|) of the vertices in S exists, such that
there is a shortest path P with the following properties:

1. The first vertex on P is s,
2. P contains all vertices from S, and
3. the vertices from S appear on P in exactly the order given by π.

Moreover, given a precomputed distance matrix for G, the permutation π can be
found in O(|S| log |S|) time.

1 Proofs of lemmas marked with (�) can be found in the full version of the paper,
preprint is available on ArXiv [13].
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Proof. For the sake of deriving a contradiction, suppose that there are two dif-
ferent permutations π and π′ satisfying the conditions, and let P, P ′ be the
respective shortest paths. Let i ∈ {1, . . . , |S| − 1} be the first position such that
πi �= π′

i and let j ∈ {2, . . . , |S|} be the position of πi in π′ (clearly, j > i).
Let P1 be the subpath of P from s to πi, and P ′

2 the subpath of P ′ from π′
j

to π′
|S| (excluding the first vertex π′

j). Then, P ′′ = P1 � P ′
2 is a path which is

strictly shorter than P ′ and has the same endpoints. This contradicts P ′ being
a shortest path.

Sorting all vertices in S by increasing distance from the starting endpoint s
yields our permutation π. It corresponds to some shortest path P if and only if

dG(s, π1) +
∑|S|−1

i=1 dG(πi, πi+1) = dG(s, π|S|).

��

3 Parameterized Algorithms

In this section, we present several fpt algorithms for MESP. In Subsect. 3.1, we
present an algorithm parameterized by the modular width. In Subsect. 3.2 we
define the Constrained Set Cover (CSC) problem. In Subsect. 3.3 we show
an fpt algorithm for MESP parameterized by the distance to cluster graph which
reduces MESP to CSC. In Subsect. 3.4, we present an fpt algorithm parameter-
ized by the distance to disjoint paths and the desired eccentricity, combined.
This algorithm also depends on the solution of the CSC problem. Subsect. 3.5
presents an algorithm parameterized by the maximum leaf number.

3.1 Modular Width

We present an fpt algorithm for MESP parameterized by the modular width.
Let G = (V,E) be a graph with modular width w and A be the corresponding

algebraic expression describing the graph. We take a look at the last operation
applied in A. Operation (O1) is trivial and (O2) yields a disconnected graph,
therefore we suppose the last operation is either (O3) or (O4).

If it is (O3) and G is a path (of length at most 3), then the whole path is
trivially a shortest path with eccentricity 0. If G is not a path, then the minimum
eccentricity shortest path is any single edge connecting the two original graphs
with eccentricity 1.

If it is (O4), the pattern graph is T = (VT , ET ) with VT = {v1, . . . , vw} and
the substituted graphs are G1, . . . , Gw, then we suppose that w ≥ 3 and T is
not a clique (otherwise (O3) could be used as the last operation). We continue
by showing that the structure of the pattern graph restricts the structure of any
shortest path in the resulting graph significantly.

Lemma 3 (�). If the last operation in A is (O4), then there is a minimum
eccentricity shortest path in G which contains at most one vertex from each Gi

for i ∈ {1, . . . , w}.
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Now, we show that with respect to eccentricity, all vertices in the same
graph Gi are equivalent. I.e., a minimum eccentricity shortest path in G can
be found by trying all shortest paths in T .

Lemma 4 (�). Let P be a shortest path in G and p ∈ P ∩Gi. We create a path
P ′ by substituting p in P by any p′ ∈ Gi. Then, eccG(P ′) = eccG(P ).

Based on what we have shown, we can construct an algorithm to solve MESP.
We handle separately the graphs created using (O1) or (O3) as the last operation.
For (O4), we iterate through all possible shortest paths π in T . For each of them
and each i ∈ {1, . . . , |π|} we let pi ∈ Gπi

arbitrarily, and let P := (p1, . . . , p|π |).
Then we check whether P is a shortest path with eccentricity at most k in G.
By the above arguments, if there is a shortest path of eccentricity at most k, we
will find one.

All shortest paths in a graph may be found by simply performing n DFS
traversals (one starting in each vertex). Each forward step of the DFS represents
a new shortest path; we skip edges that would break the shortest path property
(this can easily be checked with a precomputed distance matrix).

By assuming a trivial upper bound 2w on the number of shortest paths in T ,
we arrive at the following theorem.

Theorem 1. There is an algorithm that solves MESP in O(2w ·n3) time, where
w is the modular width of the input graph.

3.2 Constrained Set Cover

In this subsection we define the Constrained Set Cover (CSC) problem. In
the folllowing two subsections it will be used as a subroutine to solve MESP.

Constrained Set Cover
Input: A set C = C1 ∪ · · · ∪ Cm of candidates, a set R = {r1, . . . , rn} of
requirements to be satisfied, and a function Ψ : C → 2R that determines for
each candidate which requirements it satisfies.
Question: Is there a constrained set cover, that is, a set of candidates,
exactly one from each set s1 ∈ C1, . . . , sm ∈ Cm such that together they
satisfy all the requirements, i.e., Ψ(s1) ∪ · · · ∪ Ψ(sm) = R?

Each candidate can be thought of as a set of (satisfied) requirements. Hence,
if we drop the constraints si ∈ Ci, we get the ordinary Set Cover. In our
definition several candidates can satisfy the same set of requirements.

In the next two subsections we use the following lemma.

Lemma 5 (�). Constrained Set Cover can be solved in O(22|R||R| · |C|)
time.
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3.3 Distance to Cluster Graph

In this subsection, we present an fpt algorithm for MESP parametrized by the
distance to cluster graph. The trivial case where distance to cluster graph is 0
is omitted. Note that if G is a graph with a modulator to cluster graph U , then,
for any edge {u, v} in G\U , u and v have the same neighborhood in G\U .

The high-level idea of the algorithm is that we iteratively guess (by trying all
possible combinations), for each vertex in the modulator to cluster U , whether
it lies on the desired shortest path (we say it belongs to the set L), or it is
at distance 1 or 2 from the shortest path (it belongs to the set R1 or R2,
respectively), or at an even further distance. Then, we try to find a shortest
path such that all vertices from L lie on it, and all vertices in R1,R2 have the
respective distance from the path. Finding such a path is reduced to solving the
CSC problem presented in Subsect. 3.2. Once we guess the correct combination
of these sets, we actually construct the MESP.

First, we discuss some properties of graphs having the desired path.

Lemma 6 (�). Let G be a graph with modulator to cluster graph U and let P
be a shortest path with eccG(P ) = k. Then, there exists a shortest path P ′ such
that it contains at least one vertex from U and eccG(P ′) ≤ k.

Definition 5. Let G be a graph with a modulator to cluster graph U . Let P be
a shortest path in G with eccG(P ) ≤ k and U ∩ P �= ∅. We denote LP = P ∩ U
and πP = (πP

1 , . . . , πP
|LP |) the permutation/order of vertices from LP in which

they appear on the path P . We denote RP
i = {u ∈ U | dG(u, P ) = i} the set of

vertices in U that are at distance i from P , for i ∈ {1, 2}.
Let V = V (G)\U . Since G[V ] is a disjoint union of cliques, and for every

i ∈ {1, . . . , |LP |−1}, all vertices that are between πP
i and πP

i+1 on P are from V ,
we have dG(πP

i , πP
i+1) ≤ 3, as otherwise P would not be a shortest path.

Let π = (π1, . . . , π|π |) be a candidate (guess) on the value of πP . Intuitively,
if we had the correct values of π = πP , we would only need to select the (at
most two) vertices between each πi, πi+1.

To help us refer to those pairs πi, πi+1 between which we still need to choose
some vertices we denote hπ = (h1, . . . , h�) the increasing sequence of all indices i
such that {πi, πi+1} /∈ E. For every i /∈ hπ, we have {πi, πi+1} ∈ E(G) and,
thus, there is no vertex between πi and πi+1 on P . For every hi ∈ hπ: If
dG(πhi

, πhi+1) = 2, then there is one vertex on P between πhi
and πhi+1, and

it is from V . If dG(πhi
, πhi+1) = 3, then there are two vertices from V on P

between πhi
and πhi+1.

Definition 6. We define the set Chi
of candidate vertices between πhi

and πhi+1

for each hi ∈ hπ.

Chi =

⎧
⎪⎪⎨

⎪⎪⎩

{
(u, u) ∈ V 2 | {{πhi , u}, {u, πhi+1}

} ⊆ E
}

if dG(πhi , πhi+1) = 2
{
(u, v) ∈ V 2 | { {πhi , u} , {u, v}, {v, πhi+1}

} ⊆ E
}

if dG(πhi , πhi+1) = 3

∅ otherwise
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For hi ∈ hπ with dG(πhi
, πhi+1) = 2, the set Chi

contains pairs of the
same vertices (u, u). To avoid adding some vertex into a path twice, we define a
function μ which maps a pair of two elements to a sequence of length 1 or 2:

μ(u, v) =

{
(u) if u = v,

(u, v) if u �= v.

To solve MESP, we need to choose exactly one pair from each of Ch1 , . . . , Ch�
.

Later, we show that the problem of choosing these pairs is an instance of CSC.
First, we define a function δP : U ∪ V → N that will help us prove that the

path constructed from the CSC solution will have a small eccentricity:

δP (u) = min
{
dG(u,LP ), dG(u,RP

1 ) + 1, dG(u,RP
2 ) + 2

}
.

Lemma 7 (�). Function δP is a good estimate of the distance from P :

1. δP (u) = dG(u, P ) for every u ∈ U , and
2. δP (u) = dG

(
u, P\(NG[u] ∩ V )

)
for every u ∈ V .

Now we show how to choose optimal vertices from each Ci by solving CSC.

Lemma 8 (�). Suppose that P is a shortest path in G with eccG(P ) ≤ k, both
endpoints of P are in U , and we have the corresponding values of LP , πP ,RP

1 ,RP
2

as described in Definition 5. Let hπP = (h1, . . . , h�) and (sh1 , . . . , sh�
) be a solu-

tion of the CSC instance with requirements RP = RP
1 ∪ RP

2 , sets of candidates
C = Ch1 ∪· · ·∪Ch�

, and function Ψ(u, v) = NG(u)∪NG(v)∪
((

N2
G[u]∪N2

G[v]
)∩

RP
2

)
. Then

P ′ = (πP
1 , . . . , πP

h1
) � μ(sh1) � (πP

h1+1, . . . , π
P
h2

)

· · · � μ(shi
) � (πP

hi+1, . . . , π
P
hi+1

) � μ(shi+1)

· · · � (πP
h�−1+1, . . . , π

P
h�

) � μ(sh�
) � (πP

h�+1, . . . , π
P
|LP |)

is a shortest path and eccG(P ′) ≤ max{2, k}.
Clearly, if k ≥ 2, then we can use Lemma 8 to construct a shortest path with

eccentricity at most k. Now, we discuss the case when k = 1.

Observation 1 (�). If eccG(P ) = 1, then for every u ∈ U ∪ V we have
δP (u) ≤ 2.

Corollary 1 (�). If eccG(P ) = 1, then a path P ′ with eccG(P ′) ≤ 1 can be
constructed similarly as in Lemma 8 with the following modification. For each
candidate set Ci which contains some pair (x, y) ∈ V 2 such that there is a
neighbor z ∈ V of x with δP (z) = 2, remove every (u, v) ∈ V 2 such that z is not
a neighbor of u from Ci.
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We have shown how to construct a shortest path with eccentricity at most k
by solving the CSC problem, even if k = 1. Finally, we observe that such a path
can be constructed even if one or both of its endpoints are in V .

Lemma 9 (�). If P has an endpoint s ∈ V , its neighbor t ∈ P might also
be in V . Let P = (s, t, . . . ). We may obtain a path P ′ with eccG(P ′) ≤ k by
removing Ψ(s, s) (and Ψ(t, t) if t ∈ V ) from RP , finding sh1 , . . . , sh�

by solving
the CSC, and prepending s (and t if t ∈ V ) to P ′.

MESP can be solved by trying all possible combinations of (L, s,R) : L ⊆
U, s ∈ L,R = R1 ∪ R2 ⊆ (U\L). For each combination, do:

1. Find a permutation π of L, such that π1 = s and
∑|L|−1

i=1 dG(πi, πi+1) =
dG(π1, π|L|). If it does not exist, continue with the next combination.

2. For each hi ∈ hπ: create set Chi
according to Definition 6 and Corollary 1.

3. Solve the CSC instance as described in Lemma 8.
4. If the CSC instance has a solution, construct path P ′ as in Lemma 8.
5. Check if eccG(P ′) ≤ k. If yes, return P ′. If not, try the same after prepending

and/or appending all combinations of single vertices and of pairs of vertices
to P ′ (see Lemma 9).

Note that by Lemma 2, there is at most one such permutation π in step 1.

Theorem 2 (�). In a graph with distance to cluster graph p, MESP can be
solved in O(24pp · n6) time.

3.4 Distance to Disjoint Paths

In this subsection, we present an fpt algorithm for MESP parameterized by the
distance to disjoint paths and the desired eccentricity, combined.

The high-level idea of the algorithm is similar to that in Subsect. 3.3. We
iteratively guess (by trying all possible combinations), for each vertex in the
modulator to disjoint paths C, what is the distance to the desired shortest path.
Then, we try to find a shortest path which satisfies all the guessed distance
requirements by solving an instance of the CSC problem. We argue that if these
requirements are guessed correctly, the resulting path will indeed be the desired
MESP.

We start by discussing some properties of graphs in which a shortest path P =
(p1, . . . , p|P |) with eccG(P ) ≤ k does exist. Assume that P is such a path, fixed
for the next few lemmas and definitions.

Definition 7. Let ĈP = C ∪ {p1, p|P |}. Let LP = P ∩ ĈP . We denote πP =
(πP

1 , . . . , πP
|LP |) the permutation/order of vertices from LP on the path P . We

define function δP (v) = dG(v, P ) for every v ∈ V .

Let Ĉ, L be candidates for ĈP , LP , respectively. Similarly as in Subsect. 3.3,
the permutation π = (π1, . . . , π|L|) of the vertices in L is unique (if it exists), and
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can be found in polynomial time. For each consecutive pair of vertices πi, πi+1 ∈
L, there may be multiple shortest paths connecting them, such that they do
not contain any other vertices from Ĉ. Exactly one of these shortest paths is
contained in P for each pair. We say σ̄ is a candidate segment if it is a sequence
of vertices on some shortest path from πi to πi+1 excluding the endpoints πi, πi+1

and σ̄∩Ĉ = ∅. We define S(πi, πi+1) as a set of all candidate segments σ̄ between
πi and πi+1. We denote S̃ =

⋃|L|−1
i=1 S(πi, πi+1) the set of all candidate segments

in G. We say that a candidate segment σ ∈ S̃ is a necessary segment if it must
be part of any shortest path P ′ such that Ĉ = ĈP ′

, L = LP ′
, π = πP ′

, and
eccG(P ′) ≤ k.

Intuitively, if we had the correct values of π, we would only need to select one
segment out of each S(πi, πi+1) for i ∈ {1, . . . , |L|−1}, in order to construct the
path P . To do so, we need the following function, which estimates the distance
from a vertex to the path P .

Definition 8 (estimate distance to P ). For a graph G = (V,E), a set of
vertices Ĉ ⊆ V and a function δ : Ĉ → N we define dδ

G : V × 2 ̂C → N as

dδ
G(v, S) = min

s∈S
dG(v, s) + δ(s).

Observation 2 (�). If Ĉ = ĈP and δ = δP |
̂C (that is, the restriction of δP

to Ĉ) for some shortest path P in G, then for every v ∈ V we have dG(v, P ) ≤
dδ

G(v, Ĉ). In particular, if dδ
G(v, Ĉ) ≤ k, then dG(v, P ) ≤ k.

If we had the correct values for the permutation π of vertices from Ĉ that are
on P , we would still have to take care of those vertices v ∈ V with de

G(v, Ĉ) > k,
in order to solve MESP. In particular, we would have to choose a segment from
each S(πi, πi+1) in a way that for every vertex v with de

G(v, Ĉ) > k, there would
be some chosen segment at distance at most k from v. We say that a candidate
segment σ̄ ∈ S̃ satisfies v ∈ V \Ĉ if dG(v, σ̄) ≤ k < dδ

G(v, Ĉ).
We continue by showing that the number of vertices v with dδ

G(v, Ĉ) > k
which do not lie on P is bounded by the size of L.

Lemma 10 (�). Let σ̄ ∈ S̃ be a candidate segment and D = {v ∈ V \P | σ̄
satisfies v}. Then |D| ≤ 2.

Corollary 2. Let P be a shortest path in G with eccG(P ) ≤ k. Let U = {v ∈
V \P | dδP

G (v, ĈP ) > k}. There are |LP | − 1 segments on P , therefore |U | ≤
2(|LP | − 1).

We have shown that there are not many vertices v /∈ P with dδP

G (v, ĈP ) > k.
Now, we show that all such vertices actually have dδP

G (v, ĈP ) = k + 1.

Lemma 11 (�). Let P be a shortest path in G with eccG(P ) ≤ k. Let v ∈ V be
such that dδP

G (v, ĈP ) ≥ k + 1. Let u ∈ P be the nearest vertex to v on P . Then
either u = v, or dG(u, v) = k and dG(u, ĈP ) = 1.
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πi πi+1 πi+2

u

v

w

k k

Fig. 2. Example of a situation from Lemma 11. Path P is red, candidate segments are
blue. The segment containing vertex u satisfies v. If all the dashed parts are present in G,
then the segment containing vertex w also satisfies v. (Color figure online)

Let v ∈ V \P be such that dδP

G (v, ĈP ) = k+1 and S ⊆ S̃ be a set of candidate
segments that satisfy v. As shown in Fig. 2, there may be multiple such segments
in S. However, if v itself lies on some segment, then only segments in the same
S(πi, πi+1) may satisfy v.

Observation 3 (�). Let P be a shortest path in G with eccG(P ) ≤ k. Let
σ̄ ∈ S(πP

i , πP
i+1) be a candidate segment that contains some vertex u such that

dδP

G (u, ĈP ) = k + 1. Let u′ ∈ P be the nearest vertex to u on P . Then u′ lies on
a segment σ ∈ S(πP

i , πP
i+1).

We already know from Lemma 11 that if a candidate segment contains some
vertex v with dδ

G(v, Ĉ) > k + 1, then it is a necessary segment. Now, we show
another sufficient condition for a candidate segment to be a necessary segment.

Lemma 12 (�). Let σ̄ ∈ S(πi, πi+1) be a candidate segment that contains some
vertices u, v ∈ σ̄ such that u �= v and dδ

G(u, Ĉ) = dδ
G(v, Ĉ) = k + 1. Then, σ̄ is a

necessary segment.

Let us summarize what we have shown so far. If we had the correct values
for the permutation π of vertices from Ĉ that are on P , and of δ, we would only
need to select one segment out of each S(πi, πi+1) to find a shortest path with
eccentricity at most k. There are some vertices u ∈ V such that dδ

G(u, Ĉ) ≤ k
and for these vertices, the distance to the resulting path will be at most k, no
matter which segments we choose.

A segment which contains some vertex v with dδ
G(v, Ĉ) > k + 1 is a neces-

sary segment. A segment which contains two vertices u �= v with dδ
G(u, Ĉ) =

dδ
G(v, Ĉ) = k +1 is a necessary segment as well. For the remaining segments, we

know that for every u ∈ V with dδ
G(u, Ĉ) > k, the shortest path with eccentricity

at most k needs to contain some σu ∈ S̃ such that dG(u, σu) ≤ k. Furthermore,



MESP Problem with Respect to Structural Parameters 453

for every v ∈ Ĉ with dG(v, L) > δ(v), the path needs to contain some σv ∈ S̃
such that dG(v, σv) ≤ δ(v).

Clearly, the problem of selecting one segment out of each set of candidate
segments is an instance of CSC: the sets of candidates are C = S(π1, π2) ∪ · · · ∪
S(π|L|−1, π|L|), the requirements are R = {v ∈ V \Ĉ | dδ

G(v, Ĉ) > k}∪{v ∈ Ĉ\L |
dG(v, L) > δ(v)}, and the function Ψ(σ̄) = {v ∈ V \Ĉ | σ̄ satisfies v}∪{v ∈ Ĉ\L |
dG(v, σ) ≤ δ(v)}.

We know that the number of vertices outside of P that the segments can
satisfy is bounded by the size of L. Furthermore, we know that if a segment
contains at least two vertices that need to be satisfied, then it is a necessary
segment. Lastly, we know that if a segment from some S(πi, πi+1) contains one
vertex v with dδ

G(v, Ĉ) = k + 1, then only segments from the same S(πi, πi+1)
may satisfy v. Thus, all segments in S(πi, πi+1) that do not satisfy v may be
disregarded. By this, we ensure that v will be satisfied no matter which segment
is chosen, and v does not need to be added to the requirements R. Hence, the
requirements R do not need to contain any vertices from P , and the size of R
is bounded by the size of C.

In the following lemma, we show that we do not need to explicitly check
whether a segment contains some vertex v with dδ

G(v, Ĉ) > k + 1 to decide that
it is a necessary segment. This will simplify our algorithm a bit.

Lemma 13 (�). If a segment σ ∈ S̃ contains a vertex u such that dδ
G(u, Ĉ) >

k + 1, then it must also contain two vertices v, v′ with dδ
G(v, Ĉ) = dδ

G(v′, Ĉ) =
k + 1.

Finally, we propose an algorithm that solves MESP. It finds the correct values
for p1, Ĉ, L, and δ : Ĉ → {0, . . . , k} by trying all possible combinations. For each
combination, it performs the following steps.

1. Find a permutation π of L, such that π1 = p1 and
∑|L|−1

i=1 dG(πi, πi+1) =
dG(π1, π|L|). If it does not exist, continue with the next combination.

2. For each πi, πi+1, check all candidate segments in S(πi, πi+1).
(a) If there are any segments containing a vertex u with dδ

G(u, Ĉ) = k + 1,
then we may disregard all candidate segments which do not satisfy u.

(b) After disregarding these segments, if there is only one candidate segment
left, it is a necessary segment. If there is no candidate segment left, then
no solution exists.

3. If there is a vertex v such that dδ
G(v, Ĉ) > k + 1, and it does not lie on a

segment that we have marked as a necessary segment, then no solution exists.
4. Construct the set U of vertices v that are not contained in any segment and

have dδ
G(v, Ĉ) = k + 1. If |U | > 2(|L| − 1), then no solution exists.

5. Choose the rest of the segments from all candidate segments (except those
disregarded in step 1) by solving the CSC instance, with requirements u ∈
Ĉ\L whose distance to the parts of P selected so far is greater than δ(u), and
all of U .
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6. If the CSC instance has a solution, construct a path from π and from the
chosen candidate segments. If the resulting path has eccentricity at most k,
return it.

Note that by Lemma 2, there is at most one such permutation π in step 1.
We arrive at the following theorem.

Theorem 3 (�). For a graph with distance to disjoint paths c, MESP can be
solved in O(25ckcc · n4).

3.5 Maximum Leaf Number

Theorem 4 (�). There is an algorithm that solves MESP in O(2� · n3) time,
where � is the maximum leaf number of the input graph.

4 Future Directions

We have shown that MESP is fixed-parameter tractable with respect to several
structural parameters. This partially answers an open question of Dragan and
Leitert [8] on classes where the problem is polynomial time solvable, as this is the
case whenever we limit ourselves to a class where one of the studied parameters
is a constant.

The natural next steps in the research of parameterized complexity of MESP
would be to investigate the existence of fpt algorithms with respect to the dis-
tance to disjoint paths alone, and with respect to other structural parameters,
such as tree depth or feedback vertex set number (see Fig. 1).
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2. Birmelé, E., de Montgolfier, F., Planche, L., Viennot, L.: Decomposing a graph
into shortest paths with bounded eccentricity. In: ISAAC 2017. LIPIcs, vol. 92, pp.
15:1–15:13. Dagstuhl (2017)
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Abstract. An instance of the non-preemptive tree packing problem con-
sists of an undirected graph G = (V,E) together with a weight w(e) for
every edge e ∈ E. The goal is to activate every edge e for some time
interval of length w(e), such that the activated edges keep G connected
for the longest possible overall time.

We derive a variety of results on this problem. The problem is strongly
NP-hard even on graphs of treewidth 2, and it does not allow a poly-
nomial time approximation scheme (unless P = NP). Furthermore, we
discuss the performance of a simple greedy algorithm, and we construct
and analyze a number of parameterized and exact algorithms.

1 Introduction

The Tree Packing Problem of Nash-Williams. For a given undirected connected
graph G = (V,E) and a weight function w : E → N, Nash-Williams [6] consid-
ered the following optimization problem:

maximize
∑

{xT : T is a spanning tree} (1)

such that
∑

{xT : e ∈ T} ≤ w(e) for every e ∈ E (2)

x ≥ 0, integral (3)

Nash-Williams [6] derives a min-max relation for problem (1)–(3) that connects it
to certain cut conditions. Building on these results, Cunningham [3] constructs
a polynomial time algorithm for the problem by reducing it to a polynomial
number of maximum flow problems. Barahona [2] presents another algorithm
with a better time complexity.

Problem (1)–(3) may also be interpreted as a scheduling problem: Every edge
e ∈ E is a resource that can be activated for a total of w(e) time units. The
objective now is to activate the edges in such a way that the graph remains
connected for the longest possible overall time. Under this interpretation, the
variable xT indicates the number of time units in which the spanning tree T is
used in the activation schedule. Figure 1 contains a simple illustrating example
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 456–468, 2021.
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on the three-vertex cycle. There are three spanning trees (that each consist of two
edges), and an optimal schedule uses each of these spanning trees for exactly one
time unit. It is easy to see that in every optimal schedule, one of the three edges
will be active during the first and the third time slot and will be inactive during
the second time slot; in the language of scheduling, we say that the execution
of that edge is preempted at time 1 and afterwards resumed at time 2. (In the
schedule shown in Fig. 1, edge e3 is the preempted edge.)

e1

e2e3

0 1 2 3

e1 e3

e3 e2

Fig. 1. The three edges in the graph on the left hand side have weights w(e1) = w(e2) =
w(e3) = 2. The schedule on the right hand side keeps the graph connected for a total
of three time units.

The Non-preemptive Version of Tree Packing. We consider a non-preemptive
variant of the above tree packing problem, where the execution of edges must
not be preempted: Every edge e is activated at some time point τ(e) chosen by
the scheduler, and then remains active without interruption during the full time
interval [τ(e), τ(e) + w(e)]. The objective is again to activate the edges in such
a way that the graph remains connected for the longest possible overall time.
The resulting combinatorial optimization problem is called non-preemptive tree
packing (N-TreePack for short), and the optimal objective value for a graph
G = (V,E) with edge weights w : E → N0 will be denoted ntp(G,w).

In the example in Fig. 1, every reasonable non-preemptive schedule will either
activate two of the edges at time 0, or activate the three edges respectively at
times 0, 1, 2. As there is no way of keeping the graph connected for more than
two time units, the optimal objective value is ntp(G,w) = 2.

Contributions of this Paper. We analyze the computational complexity and the
approximability of non-preemptive tree packing, and we also provide some param-
eterized and exact algorithms for it. The complexity results are devastating:

– N-TreePack is strongly NP-hard, even on complete bipartite graphs K2,n.
– N-TreePack is strongly NP-hard, even on graphs of bandwidth 2.

Since complete bipartite graphs K2,n are series-parallel and since graphs of band-
width 2 are outerplanar, our results yield strong NP-hardness for essentially
all natural subclasses of graphs with treewidth 2. As edges of zero-weight are
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irrelevant for the objective value of N-TreePack, NP-hardness immediately
propagates from graphs to supergraphs; hence our results also imply strong NP-
hardness for all the standard families of specially structured graphs, like planar
graphs, bipartite graphs, interval graphs, cographs, etc. The only notable excep-
tion are the trees and the cactus graphs. Furthermore, we analyze the complexity
of cases with small objective values: Deciding whether ntp(G,w) ≥ β can be done
in polynomial time for β = 3 and is NP-hard for β = 7; the intermediate cases
with β ∈ {4, 5, 6} remain open.

With respect to polynomial time approximation, we introduce a simple
greedy algorithm which has a worst case guarantee of n − 1 on n-vertex graphs.
On cactus graphs it always succeeds in finding an optimal solution, whereas for
every non-cactus graph G there exist edge weights w so that on the input (G,w)
the greedy algorithm fails to find an optimal solution. We show by means of a
gap-reduction that (unless P = NP) problem N-TreePack does not allow a
polynomial time approximation algorithm with worst case ratio strictly better
than 7/6; this of course excludes the existence of a PTAS.

Finally, we derive a number of FPT-results in the area of parameterized com-
plexity. The special case of N-TreePack where both the treewidth and the max-
imum edge weight are bounded by a constant k allows an FPT-algorithm whose
running time is linear in |E|. (The case where only the treewidth is bounded and
the case where only the maximum edge weight is bounded are both para-NP-
hard, and hence unlikely to belong to FPT.) Furthermore we design an exact
algorithm for N-TreePack whose (exponential) running time is bounded by
|E|! · poly(|E|).

Organization of the Paper. Section 2 provides central definitions and summarizes
the notation. Section 3 contains the NP-hardness results for specially structured
graph classes. Sections 4 and 5 contain the negative and positive results for
small objective values. Section 6 discusses the greedy algorithm, and Sect. 7
states some parameterized and exact algorithms for N-TreePack.

2 Preliminaries

We write N0 = N ∪ {0} for the set of nonnegative integers. For a ≤ b, the term
[a, b] denotes the time slot starting at a and ending at b. For t ≥ 1, the time slot
[t − 1, t] is often called the t-th time slot or time slot t. Every graph G = (V,E)
in this paper is simple, undirected and without loops. We write V (G) = V and
E(G) = E. For V ′ ⊆ V , the edge cut δ(V ′) is the set of edges with one endpoint
in V ′ and one endpoint in V −V ′; for v ∈ V , we write δ(v) = δ({v}). We denote
by G[V ′] the induced subgraph on V ′. By removing the vertex v from G, we
obtain the graph G − v = G[V − {v}]. Similarly, for E′ ⊆ E and e ∈ E we have
G−E′ = (V,E−E′) and G−e = G−{e}. For all other graph-theoretic concepts
used in the paper, we refer the reader to the text book by West [8].

An instance for problem N-TreePack is a weighted graph (G,w), where
G = (V,E) and w : E → N0. A schedule for instance (G,w) is a map σ :



Non-preemptive Tree Packing 459

E → N0, that maps each edge e to its activation time σ(e). For a schedule σ
and an edge e, the activity interval of e is [σ(e), σ(e) + w(e)]. For t ≥ 1, we let
Eσ

t = {e ∈ E : σ(e) + 1 ≤ t ≤ σ(e) + w(e)} denote the set of edges that are
active in the t-th time slot, and we let Gσ

t = (V,Eσ
t ) denote the graph on vertex

set V with all the edges that are active in the t-th time slot. Finally, we define
the objective value ntp(σ) of schedule σ as the number of time slots [t − 1, t] for
which Gσ

t is connected. When the schedule σ is clear from the context, we often
simply write Et and Gt instead of Eσ

t and Gσ
t . The following statement can be

shown by a simple exchange argument.

Lemma 1. For every instance (G,w) of N-TreePack with ntp(G,w) = T ,
there exists an optimal schedule σ for which the graphs Gσ

1 , . . . , Gσ
T (in the first

T time slots) are trees. �	

3 NP-Hardness

In this section, we establish the NP-hardness of problem N-TreePack for cer-
tain families of highly restricted graphs. All proofs are done by reductions from
the strongly NP-hard 3-Partition problem; see Garey and Johnson [5].

Problem 3-Partition:
Instance: Positive integers q1, . . . , q3n with sum

∑3n
i=1 qi = nQ that satisfy

Q/4 < qi < Q/2 for all i.
Question: Is there a partition of these 3n numbers into n into triplets,
such that in every triplet the three numbers sum up to Q?

In the following, we show that N-TreePack is strongly NP-hard both for series-
parallel graphs (Theorem 1) and for outerplanar graphs (Theorem 2).

Theorem 1. Problem N-TreePack is strongly NP-hard, even on complete
bipartite graphs K2,�.

Proof. Let q1, . . . , q3n be an instance of 3-Partition as defined above. Let β =
nQ + n − 1. We construct an instance of N-TreePack on the complete bipartite
graph K2,4n−1 with bipartition {a, b} and {x1, . . . , xn−1, y1, . . . , y3n}. For i ∈
{1, . . . , n − 1}, we set w({xi, a}) = i(Q + 1) and w({xi, b}) = (n − i)(Q + 1). For
i ∈ {1, . . . , 3n}, we set w({yi, a}) = qi and w({yi, b}) = β. We claim that the
constructed instance of N-TreePack possesses a schedule with objective value
β, if and only if the underlying 3-Partition instance has answer YES.

(Only if) Assume that for the constructed N-TreePack instance there exists
a schedule σ with objective value β. Note that for every i ∈ {1, . . . , n − 1}, we
have w({xi, a}) + w({xi, b}) = β + 1. Hence the sum of all the edge weights
in the graph is (n − 1)(β + 1) + 3nβ + (β − n + 1) = 4βn. As every spanning
tree for K2,4n−1 has 4n edges, each of the connected graphs G1, . . . , Gβ must
have exactly 4n edges (and must actually be a spanning tree). Furthermore, the
activity interval of every edge is contained in [0, β]. Now consider some vertex
xi with i ∈ {1, . . . , n − 1}. Since w({xi, a}) + w({xi, b}) = β + 1, there is exactly



460 S. Lendl et al.

one k ∈ {1, . . . , β} so that the edge set Ek contains both edges incident to vertex
xi. It is easy to see that either k = i(Q + 1) or k = (n − i)(Q + 1) holds, and we
say that this value k is associated with vertex xi. If some value k is associated
with two distinct vertices xi and xj , then Gk contains a cycle; a contradiction.
We conclude that each of the values k ∈ {Q + 1, 2(Q + 1), . . . , (n − 1)(Q + 1)}
is associated with exactly one of the vertices x1, . . . , xn−1. This means that for
the corresponding time slots [k − 1, k], vertex a is connected to vertex b via the
two edges that are incident to the associated vertex xi. The remaining β −n+1
time slots form n (maximal) intervals each of length Q. It is easily verified that
during each such interval exactly three vertices yi, yj , y� ensure the connection
between a and b, and that the weights of the three edges {yi, a}, {yj , a}, {y�, a}
satisfy qi + qj + q� = Q. Hence the corresponding triplets form a solution for the
3-Partition instance.

(If) Now assume that the 3-Partition instance has a solution. For 1 ≤ i ≤
n − 1, we activate edge {xi, a} at time 0 and edge {xi, b} at time i(Q + 1) − 1.
For 1 ≤ i ≤ n, we activate edge {yi, b} at time 0; finally, the edges {yi, a} are
grouped into triplets according to the solution of the 3-Partition instance and
scheduled as indicated in the proof of the (only if) part. �	
Theorem 2. Problem N-TreePack is strongly NP-hard, even on graphs of
bandwidth 2.

Proof. Let q1, . . . , q3n be an instance of 3-Partition as defined above. We con-
struct an instance of N-TreePack as follows. The graph G has 4n + 1 vertices
u0, . . . , un and v1, . . . , v3n. We will sometimes denote vertex uk also by the name
vk−n, for 1 ≤ k ≤ n + 1; in particular we use un = v0 and un−1 = v−1. Further-
more we define β = (2n − 1)Q.

– For k = 0, . . . , n − 1, the edge {uk, uk+1} receives weight w({uk, uk+1}) =
2(n − k − 1)Q.

– For k = 0, . . . , n − 2, the edge {uk, uk+2} receives weight w({uk, uk+2}) =
2(k + 1)Q.

– For k = 1, . . . , 3n, the edge {vk−1, vk} has weight w({vk−1, vk}) = qk.
– For k = −1, . . . , 3n − 2, the edge {vk, vk+2} has weight w({vk, vk+2}) = β.

In the ordering u0, u1, . . . , un, v1, v2, . . . , v3n, every edge either connects two
adjacent vertices or two vertices at distance 2. Hence, the constructed graph
G = (V,E) has bandwidth 2.

We will study schedules σ of objective value β. As the sum of all edge weights
in G equals β(|V | − 1), each of the graphs Gσ

1 , . . . Gσ
β is a spanning tree and the

activity interval of every edge is contained in [0, β]. We will discuss the behavior
of σ on the induced subgraph Hi = G[{u0, . . . , ui}] for 1 ≤ i ≤ n. Since the only
connections between Hi and the rest of the graph are via the two vertices ui−1

and ui, during any time slot [t − 1, t] with 1 ≤ t ≤ β, graph Hi will consist of
one or two connected components under schedule σ. If there is a single connected
component, we say that Hi is fully-connected during the t-th time slot. If there are
two connected components (one containing vertex ui−1, the other one containing
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vertex ui), we say that Hi is semi-connected during the t-th time slot. Note that if
Hi is semi-connected during the t-th time slot, then the edge {ui−1, ui+1} must be
active during that slot, as there are no other edges that would be able to connect
the component containing ui−1 to the rest of the graph.

The graph H1 consists of the vertices u0 and u1 and of the edge {u0, u1}
of weight (2n − 2)Q. Suppose for the sake of contradiction that H1 is neither
fully-connected during the first time slot nor during the β-th time slot. Then
the edge {u0, u2} (of value 2Q) must be contained both in E1 and in Eβ , which
is impossible. By symmetry, we will henceforth assume that under schedule σ
the graph G1 is fully-connected during the β-th time slot. This implies that
{u0, u1} is active during [Q, β] and that {u0, u2} is active during [0, 2Q]. For
graph Hi (with 1 ≤ i ≤ n) one can show by induction that Hi is semi-connected
during the time intervals [0, Q], [2Q, 3Q], . . . , [(2i − 2)Q, (2i − 1)Q] and fully-
connected at all other moments in [0, β]. The induction uses the following facts
and observations on the two edges {ui−2, ui} and {ui−1, ui} that are in Hi but
not in Hi−1:

– Graph Hi is semi-connected during the first time slot: By the inductive
hypothesis we have Hi−1 semi-connected during the first time slot. If Hi would
be fully-connected during the first time slot, we would get σ({ui−2, ui}) =
σ({ui−1, ui}) = 0. Since all involved edges have weight w(e) > Q, this yields
a cycle at time t = Q + 1 as the desired contradiction.

– Since graph Hi−1 is semi-connected at time 0, the edge {ui−2, ui} must be
active at time 0 and hence must be active during [0, (2i − 2)Q].

– Graph Hi is fully-connected during the β-th time slot: Otherwise, Hi is fully-
connected neither during the first time slot nor during the β-th time slot.
Then the edge {ui−1, ui+1} would have to be active for β time units.

– Since Hi is fully-connected during the β-th time slot, the edge {ui−1, ui}
must be active during the β-th time slot, and hence must be active during
the interval [(2i − 1)Q, β].

The induction yields for i = n that the induced subgraph Hn is semi-connected
during the time intervals [0, Q], [2Q, 3Q], . . . , [(2n− 2)Q, (2n− 1)Q] (that is, all
the intervals of length Q that start at an even multiple of Q) and fully-connected
during the time intervals [Q, 2Q], [3Q, 4Q], . . . , [(2n − 3)Q, (2n − 2)Q] (that is,
all the intervals of length Q that start at an odd multiple of Q).

Next, consider the subgraph G′ that is induced by the 3n + 2 vertices v−1 =
un−1, v0 = un and v1, . . . , v3n. As the edges {vk, vk+2} with k = −1, . . . , 3n − 2
all have value β, there is an active path P0 through the vertices with even index
during the full interval [0, β] and there is an active path P1 through the vertices
with odd index during [0, β]. By the above discussion, graph Hn connects these
two paths P0 and P1 to each other during the time intervals [Q, 2Q], [3Q,Q4],
. . . , [(2n−3)Q, (2n−2)Q]. The only way for connecting P0 and P1 to each other
during the remaining time intervals [0, Q], [2Q, 3Q], . . . , [(2n−2)Q, (2n−1)Q] is
by using the edges {vk−1, vk} with k = 1, . . . , 3n of weight qk. As this groups the
numbers q1, . . . , q3n into n groups with sum Q, we get a solution for the instance
of 3-Partition.
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Vice versa, if the 3-Partition instance has a solution, then we build a
schedule σ of objective value β: For k = 0, . . . , n−1, we activate edge {uk, uk+1}
at time (2k + 1)Q. For k = 0, . . . , n − 2, we activate edge {uk, uk+2} at time
0. For k = −1, . . . , 3n − 2, we activate edge {vk, vk+2} at time 0. Finally, the
edges {vk−1, vk} are grouped into triplets and scheduled as described in the other
direction of the proof. �	

4 A Negative Result for Objective Value Seven

In this section, we show that it is NP-hard to decide whether there exists a
schedule of objective value at least 7. The reduction is from the following version
of the Hamilton cycle problem; see Akiyama, Nishizeki and Saito [1]

Problem Hamilton-3-reg
Instance: A bipartite, 3-regular graph H ′.
Question: Does H ′ possess a Hamilton cycle?

The reduction is done in two steps. The first step transforms an instance H ′ of
Hamilton-3-reg into a new 4-regular graph H with the properties described
in Lemma 2. As this transformation is done by routine arguments, we omit the
details. The second step then transforms the 4-regular graph H from Lemma 2
into a corresponding instance of problem N-TreePack.

Lemma 2. There is a polynomial time algorithm that takes an instance H ′ of
Hamilton-3-reg as input and outputs a 4-regular bipartite graph H together
with a so-called special edge {u, z} ∈ E(H), so that the following holds:

(i) If H ′ is a YES-instance of Hamilton-3-reg, then the new graph H con-
tains a Hamilton cycle that traverses the special edge {u, z}.

(ii) If H ′ is a NO-instance of Hamilton-3-reg, then the new graph H has no
Hamilton path starting in vertex u. �	

Now let H be a 4-regular bipartite graph as described in Lemma 2. Let
U = {u1, . . . , uk} and Z = {z1, . . . , zk} denote the two parts in the bipartition
of H, and let {uk, zk} be its special edge. We create an instance (G,w) of N-
TreePack from H. The graph G has the vertex set

V (G) = {x, y} ∪ U ∪ Z ∪
k⋃

i=1

{vi1, . . . , vi4} ∪
k⋃

i=1

{v′
i1, v

′
i2}.

Furthermore, the graph G has the following edges and edge weights:

– For every edge e ∈ E(H), the graph G also contains e. We set w(e) = 2, if
e 
= {uk, zk} and w({uk, zk}) = 1.

– For every i = 1, . . . , k, the induced subgraph Li = G[{x, ui, vi1, vi2, vi3, vi4}]
is called the i-th gadget of type L and has edges and edge weights as depicted
in Fig. 2.



Non-preemptive Tree Packing 463

– For every i = 1, . . . , k, the induced subgraph Ri = G[{x, zi, v
′
i1, v

′
i2}] is called

the i-th gadget of type R and has edges and edge weights as depicted in Fig. 2.
– Finally, the two edges {x, y} and {y, zk} have w({x, y}) = w({y, zk}) = 4.

Assume that (G,w) allows some schedule σ of objective value 7. During any time
slot [t − 1, t] with 1 ≤ t ≤ 7, the i-th gadget of type L will consist of either one
or two connected components under schedule σ. If there is a single connected
component, we say that Li is fully-connected during the t-th time slot. If there
are two connected components (one containing x, and one containing ui), we say
that Li is semi-connected during the t-th time slot. In the same matter, during
the t-th time slot, gadget Ri is either fully-connected or semi-connected with x
and zi in different components. Likewise, the induced subgraph G[{x, y, zk}] is
either fully-connected, or semi-connected with x and zk in different components.

vi2 vi3

ui

x

5

3

Li

3

5
7

1
1

7

vi1 vi4 v′
i1 v′

i2

zi

x

6

2

6

2

Ri

Fig. 2. Gadget of type L (on the left) and gadget of type R (on the right).

Lemma 3. Let (G,w) be the instance described above. Every schedule of objec-
tive value 7 for (G,w) satisfies the following.

(i) A gadget of type R is fully-connected during time slots 2 and 6, and semi-
connected during each of the remaining five time slots.

(ii) For each i = 1, . . . , k, there are t1, t2 ∈ {1, 2, 4, 6, 7} with t1 
= t2, such
that the gadget Li is fully-connected during time slots 3, 5, t1, t2, and semi-
connected during each of the remaining three time slots.

(iii) The induced subgraph G[{x, y, zk}] is fully-connected during time slot 4, and
semi-connected during each of the remaining six time slots. �	

Lemma 4. Let the graph H and the special edge {u, z} be as described in
Lemma 2, and let (G,w) be the corresponding N-TreePack instance. If H
contains a Hamilton cycle which uses the special edge, then ntp(G,w) ≥ 7.

Proof. Let e0 = {u, z} = {uk, zk}. There is a Hamilton cycle C using e0. Then
H −E(C) is 2-regular, hence there exist pairwise disjoint matchings M1, . . . ,M4
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such that M1 ∪̇ M2 = E(C) and M3 ∪̇ M4 = EH − E(C) and e0 ∈ M1. We
describe a schedule σ with objective value 7:

– All gadgets of type R are fully-connected during time slots 2 and 6, and
semi-connected otherwise.

– All gadgets of type L are fully-connected during time slots 1, 3, 5, and 7, and
semi-connected otherwise.

– The subgraph G[{x, y, zk}] is fully-connected during time slot 4, and semi-
connected otherwise.

– All edges e ∈ M1 − {e0} have activity interval [2, 4]. The edge e0 has activity
interval [2, 3].

– All edges e ∈ M2 have activity interval [3, 5].
– All edges e ∈ M3 have activity interval [0, 2].
– All edges e ∈ M4 have activity interval [5, 7].

It is easy to see that the active edges in H form a matching of H during the
time slots 1, 2, 3, 5, 6, and 7, and form a Hamilton path of H during the time
slot 4. All of the graphs Gσ

1 , . . . , Gσ
7 are connected, hence ntp(σ) = 7. �	

Lemma 5. Let the graph H and the special edge {u, z} be as described in
Lemma 2, and let (G,w) be the corresponding N-TreePack instance. If
ntp(G,w) ≥ 7, then H contains a Hamilton path starting at vertex u.

Proof. So assume there exists a schedule σ of objective value 7. For a vertex
v ∈ U ∪ Z, and t ∈ {1, . . . , 7}, let dt(v) = |δ(v) ∩ E(H) ∩ Et| denote the number
of incident edges of v, which are both in E(H) and active during the t-th time
slot. The strategy of the proof will be to repeatedly deduce some conditions for
dt(v). Let e0 = {u, z} = {uk, zk} be the special edge.

First, recall Lemma 3. Consider vertex zi for some i ∈ {1, . . . , k}. We know
that for each t ∈ {1, 3, 5, 7} in the t-th time slot both the gadget Ri and
G[{x, y, zk}] are semi-connected. But of course at least one edge incident to zi

must be active during the t-th time slot. Hence d1(zi), d3(zi), d5(zi), d7(zi) ≥ 1.
Note that the four edges in δ(zi) ∩ E(H) each have weight at most 2 (in the case
i 
= k we have four times weight 2, and for i = k we have three times weight 2,
and w(e0) = 1). For the sake of contradiction, assume d1(zi) > 1. Then from the
four edges in δ(zi) ∩ E(H) at least two are scheduled at time 0. This is a con-
tradiction to d3(zi), d5(zi), d7(zi) ≥ 1. Hence d1(zi) = 1. By the same argument,
d7(zi) = 1. A similar argument shows that e0 
∈ E4.

Next, consider the graph G1 of active edges in the first time slot. We know
that d1(zi) = 1 for all i = 1, . . . , k. Hence the induced subgraph G1[U ∪ Z] is
acyclic, has k edges, and therefore has k connected components. But because
G1 is connected, and because all the gadgets of type R and G[{x, y, zk}] are
semi-connected during time slot 1, this implies that every single gadget of type
L is actually fully-connected during time slot 1. The same argument holds for
time slot 7. In total, together with Lemma 3, we have that a gadget of type L
is fully-connected during the t-th time slot, if and only if t ∈ {1, 3, 5, 7}. This
in turn implies that for all i = 1, . . . , k, one has d2(ui), d4(ui), d6(ui) ≥ 1. The
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two facts d2(ui) ≥ 1 and d6(ui) ≥ 1 together imply d4(ui) ≤ 2. Likewise, for all
i = 1, . . . , k, the two facts d1(zi) = 1 and d7(zi) = 1 together imply d4(zi) ≤ 2.

Finally, we claim d4(uk) = 1. In fact, d4(uk) = 0 is impossible, because
gadgets of type L are semi-connected during time slot 4. For the sake of contra-
diction, assume d4(uk) > 1. We know that d2(uk) ≥ 1, d6(uk) ≥ 1 and e0 
∈ E4

and w(e0) = 1. So our assumption d4(uk) > 1 is only possible if e0 ∈ E2 or
e0 ∈ E6. But for the vertex zk, we also know d1(zk), d3(zk), d5(zk), d7(zk) ≥ 1.
This is a contradiction to e0 ∈ E2 ∪ E6, hence our assumption was wrong and
d4(uk) = 1. In summary, during time slot 4, all gadgets of type L and R are
semi-connected. We also have for all i = 1, . . . , k that d4(ui) ≤ 2 and d4(zi) ≤ 2.
Also, d4(uk) = 1. However, G4 is connected. These facts together imply that the
induced subgraph G4[U ∪ Z] is a Hamilton path in H starting at uk = u. �	

By combining Lemmas 2, 4 and 5 we get the following summarizing theorem.

Theorem 3. For N-TreePack it is strongly NP-hard to decide whether there
exists a schedule of objective value at least 7. �	

All edge weights in the above reduction are in the set {1, . . . , 7}. A minor
modification yields the following corollary.

Corollary 1. Problem N-TreePack is strongly NP-hard, even if all edge
weights are in {1, . . . , 6}. �	

As it is NP-hard to distinguish between N-TreePack instances with optimal
objective value 6 and N-TreePack instances with optimal objective value 7,
we also get the following in approximability result.

Corollary 2. Unless P = NP, there is no polynomial time approximation algo-
rithm for N-TreePack with worst case guarantee better than 7/6. �	

5 A Positive Result for Objective Value Three

In Sect. 4, we have established the NP-hardness of deciding whether there exists
a schedule of objective value at least 7. As a complementary result, we now show
that it can be decided in polynomial time whether there is a schedule of objective
value at least 3.

Theorem 4. For an instance of N-TreePack on a graph with m edges, it can
be decided in O(m3) time whether ntp(G,w) ≥ 3.

Proof. Let G = (V,E). We partition the edge set E into set W1 (edges of
weight 1), set W2 (edges of weight 2), and set W≥3 (edges of weight at least 3).
In a schedule of objective value 3, we may activate all edges in W≥3 at time 0.
We interpret an edge in W2 as a pair of two edges of weight 1: one of these two
edges is scheduled during the middle time slot [1, 2]; the other edge can either
be scheduled during slot [0, 1] or during slot [2, 3]. Edges in W1 are scheduled
during one of the three slots [0, 1], [1, 2], [2, 3].
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By Lemma 1, we may assume that in a feasible schedule of length 3 the
graphs (V,Et) with t = 1, 2, 3 are trees. Let H3 be the graph that results from G
after contracting the edge set W≥3, and let H23 be the graph that results from
G after contracting the edge set W2 ∪ W≥3. We introduce three matroids:

– The matroid F1 has the ground set W1 ∪ W2. A set F ⊆ W1 ∪ W2 is inde-
pendent in F1, if and only if F is acyclic in graph H3.

– The matroid F2 has the ground set W1. A set F ⊆ W1 is independent in F2,
if and only if F is acyclic in graph H23.

– The matroid F3 has ground set W1 ∪ W2, and coincides with F1.

It is easily seen that ntp(G,w) ≥ 3 holds, if and only if there exist three pairwise
disjoint subsets S1, S2, S3 of E, such that St forms a base of the matroid Ft

for t = 1, 2, 3. This can be checked in O(m3) time by using Edmond’s matroid
partitioning algorithm [4]. �	

By a similar (but simpler) argument we can also decide in polynomial time
whether ntp(G,w) ≥ 2. Deciding whether ntp(G,w) ≥ 1 is trivial. The complex-
ity of deciding whether ntp(G,w) ≥ β remains open for β ∈ {4, 5, 6}.

6 The Greedy Algorithm

We introduce a greedy algorithm that maintains connectivity by always activat-
ing edges of the largest possible weight. Formally, we let Ft ⊆ Et denote the set
of edges whose activity intervals end at time t. By Ut = E − (E1 ∪E2 ∪ · · · ∪Et)
we denote the set of edges that have not been used and activated before time t.

Now the Greedy algorithm starts its work by initializing E0 := ∅, F0 := ∅, and
U0 := E. For t ≥ 0, the set Et+1 for time slot [t, t + 1] is computed as follows.
If the graph (V,Et −Ft) is a tree, we set Et+1 := Et. If the graph (V,Et −Ft) is
a forest with c components, we turn it into a tree by adding a maximum weight
subset A ⊆ Ut of cardinality c− 1; then we set Et+1 := (Et −Ft)∪A. In case no
such set A exists, the Greedy algorithm terminates. (The set A can be computed
for instance by applying Kruskal’s algorithm for maximum spanning trees; ties
are broken arbitrarily.)

Theorem 5. For every graph G = (V,E) on n vertices and for every w : E →
N0, the Greedy algorithm computes a schedule of length at least ntp(G,w)/(n −
1). Furthermore, there exist instances on which the schedule computed by the
Greedy algorithm is a factor n/2� below the optimal objective value.

Proof. For the positive result, we consider the time slot [T, T + 1] at which
Greedy terminates. Then the graph (V, (ET − FT ) ∪ UT ) is not connected. We
consider the vertex set C ⊆ V of one of the components of that graph, and the
corresponding edge cut δ(C). Then the weight w(δ(C)) =

∑
e∈δ(C) w(e) yields a

trivial upper bound for the optimal objective value:

ntp(G,w) ≤ w(δ(C)) (4)
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Since every edge set Ej with 1 ≤ j ≤ T induces a tree, we have |Ej | = n−1 and
hence |Ej ∩ δ(C)| ≤ n − 1. As all edges in the cut δ(C) have been activated and
run to completion before the time slot [T, T +1], we conclude T ≥ w(δ(C))/(n−
1), which together with (4) yields the desired approximation guarantee.

For the negative result, we consider the complete graph Kn = (V,E) on n
vertices with weights w(e) = 1 for all e ∈ E. A folklore result (see for instance
Palmer [7]) says that the maximum number of edge-disjoint spanning trees that
can be packed into Kn is n/2�. This implies ntp(Kn, w) = n/2�. On the other
hand, if the Greedy algorithm at time 0 activates the n− 1 edges in the edge cut
δ(v) for some v ∈ V , the objective value of the resulting schedule equals 1. �	
Theorem 6. For every connected graph G = (V,E), the following two state-
ments are equivalent.

(i) G is a cactus graph.
(ii) For every choice w : E → N0 of edge weights, the Greedy algorithm solves

the N-TreePack instance (G,w) to optimality. �	

7 Parameterized Complexity

In this section, we show that problem N-TreePack is fixed parameter tractable
with respect to various parameters. Note that Theorems 1 and 3 imply the NP-
hardness of problem N-TreePack, even if either the treewidth or the edge
weights are bounded by a constant.

Theorem 7. If both the treewidth and the maximum edge weight of the input
graph G = (V,E) are bounded, problem N-TreePack allows for an FPT-
algorithm whose running time is linear in |E|. �	
Theorem 8. On input graphs G = (V,E), problem N-TreePack is solvable in
exponential time O(|E|2 · |E|!). �	
Theorem 9. Problem N-TreePack is fixed parameter tractable with respect to
the size k of a feedback edge set. There is a kernel with O(k) vertices and edges.

�	
The last theorem of this section shows that problem N-TreePack is

tractable on instances that in a certain sense are close to the preemptive tree
packing problem (1)–(3).

Theorem 10. Let (G,w) be an instance of N-TreePack on m edges, so that
m − k edges have weight 1 and the remaining k edges have weight at most k.
Then an optimal solution can be found in O(k2km3) time. �	
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Abstract. This paper shows card-based cryptographic protocols to cal-
culate several Boolean functions using private operations under the semi-
honest model. Private operations, introduced by Nakai et al. are the most
powerful operations for card-based protocols. We showed that copy, logi-
cal AND, and logical XOR can be calculated with the minimum number
of cards using three private operations, private random bisection cuts,
private reverse cuts, and private reveals. This paper shows that by using
these private operations, all of the following Boolean functions can be
calculated without additional cards other than the input cards: (1) Any
three input Boolean functions, (2) Half adder and full adder, and (3)
Any n-input symmetric Boolean functions. The numbers of cards used
in these protocols are smaller than the ones without private operations.

Keywords: Card-based cryptographic protocols · Multi-party secure
computation · Boolean functions · Half adder · Symmetric functions

1 Introduction

Card-based cryptographic protocols [14,30] have been proposed in which phys-
ical cards are used instead of computers to securely calculate values. They
can be used when computers cannot be used or users cannot trust software
in the computers. They can also be used to teach the foundation of cryptog-
raphy [4,26]. den Boer [2] first showed a five-card protocol to securely calcu-
late logical AND of two inputs. Since then, many protocols have been proposed
to calculate logical AND, logical XOR, and copy primitives to compute gen-
eral Boolean functions [1,5,8,13,15,18,31,32,36,37,39,42,45,55,58] and specific
computations such as a class of Boolean functions [22,27,29,38,46,51], computa-
tion using garbled circuits [52], simulation of universal computation such as Tur-
ing machines [7,16], millionaires’ problem [23,34,40], voting [28,35,59,60], ran-
dom permutation [9,11,12,33], grouping [10], ranking [56], lottery [53], proof of
knowledge of a puzzle solution [3,6,20,24,25,43,44,47–49], and so on. This paper
considers the calculation of Boolean functions under the semi-honest model.

The protocols are executed by two players, Alice and Bob. Though this paper
and many other papers assume semi-honest model, malicious actions or mistakes
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P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 469–484, 2021.
https://doi.org/10.1007/978-3-030-79987-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_33&domain=pdf
http://orcid.org/0000-0002-6312-257X
https://doi.org/10.1007/978-3-030-79987-8_33


470 Y. Manabe and H. Ono

might occur in real cases. Preventing or detecting such actions were considered
[17,21,42,57].

There are several types of protocols regards to the inputs and outputs of the
computations. The first type is committed inputs, where the inputs are given
as committed values. The players do not know the input values. The other type
is non-committed inputs, where players give their own private inputs to the
protocol. Protocols with committed inputs are desirable since they can be used
for non-committed inputs: each player can give his own private input value as a
committed value. Some protocols output their computation results as committed
values. The players do not know the output values. The other type of protocols
output the result as a non-committed value, that is, the final result is obtained by
opening some or all cards. Protocols with committed outputs are desirable since
the committed output result can be used as an input to another computation. If
further computation is unnecessary, the players just open the committed outputs
and obtain the result. Thus, this paper discusses protocols with committed inputs
and committed outputs.

This paper assumes the standard two-type card model, in which one bit data
is represented by two cards. The detail is shown in Sect. 2.

Operations that a player executes where the other players cannot see are
called private operations. They are considered to be executed under the table,
in the back, and so on. They were first introduced by Nakai et al. to solve million-
aires’ problem [34]. Using private operations, committed-input and committed-
output logical AND, logical XOR, and copy protocols can be achieved with four
cards, that is, without additional cards other than the input (output) cards,
with finite steps, and without non-uniform shuffles [42]. The AND protocol in
[31] without private operations uses six cards. It is proved to be impossible to
achieve finite-runtime AND with four cards by the model without private oper-
ations [13,15]. As for the number of cards used for copy protocols, six was the
minimum for finite-runtime copy [31] without private operations. It is proved to
be impossible to achieve a copy with four cards by the model without private
operations [13]. Thus private operations are effective in card-based protocols.

Another type of private operations, we call private input operations, were
introduced to calculate Boolean functions with non-committed inputs [19,54]. A
player uses the private input operations to input his own private values to the
protocol. The operations were used also in millionaires’ problem [40], voting [59],
and so on. Since this paper considers committed inputs, private input operations
are not used.

Though the private operations are powerful, it is shown that we can calcu-
late any n-input Boolean functions with four additional cards [42]. Thus the
research question is obtaining the class of Boolean functions that can be calcu-
lated without additional cards using the private operations. This paper shows
new card-based protocols using private operations to calculate (1) any three
input Boolean functions and (2) half adder and full adder, and (3) any n-input
symmetric Boolean functions. All of these protocols need no additional cards
other than the input cards. Thus these protocols are optimal regards to the
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number of cards. In [37,38] two additional cards were necessary to calculate
these functions without private operations.

In Sect. 2 basic definitions are shown. Section 3 shows the private operations
introduced by [42]. Section 4 shows the sub-protocols shown in [42] that are
used in this paper. Section 5 shows protocols to calculate three input Boolean
functions. Section 6 shows protocols to calculate half and full adder, and n-input
symmetric Boolean functions. Section 7 concludes the paper.

2 Preliminaries

This section gives the notations and basic definitions of card-based protocols.
This paper is based on the standard two-type card model. In the two-type card
model, there are two kinds of marks, ♣ and ♥ . Cards of the same marks
cannot be distinguished. In addition, the back of both types of cards is ? . It is
impossible to determine the mark in the back of a given card with ? .

One bit of data is represented by two cards as follows: ♣ ♥ = 0 and
♥ ♣ = 1.

One pair of cards that represents one bit x ∈ {0, 1}, whose face is down, is
called a commitment of x, and denoted as commit(x). It is written as ? ?

︸ ︷︷ ︸

x

.

Note that when these two cards are swapped, commit(x) can be obtained. Thus,
NOT can be calculated without private operations.

A linearly ordered cards is called a sequence of cards. A sequence of cards S
whose length is n is denoted as S = s1, s2, . . . , sn, where si is i-th card of the
sequence. S = ?

︸︷︷︸

s1

?
︸︷︷︸

s2

?
︸︷︷︸

s3

. . . , ?
︸︷︷︸

sn

. A sequence whose length is even is called

an even sequence. S1||S2 is a concatenation of sequence S1 and S2.
All protocols are executed by multiple players. Throughout this paper, all

players are semi-honest, that is, they obey the rule of the protocols, but try to
obtain information x of commit(x). There is no collusion among players execut-
ing one protocol together. No player wants any other player to obtain information
of committed values.

The space complexity of card-based protocols is evaluated by the number of
cards. The time complexity of card-based protocols using private operations is
evaluated by the number of rounds [41]. The first round is (possibly parallel)
local executions by each player using the cards initially given to each player,
from the initial state to the instant when no further local execution is possible
without receiving cards from another player. The local executions in each round
include sending cards to some other players but do not include receiving cards.
The i(> 1)-th round begins with receiving all the cards sent during (i − 1)-th
round. Each player executes local executions using the received cards and the
cards left to the player at the end of the (i − 1)-th round. Each player executes
until no further local execution is possible without receiving cards from another
player. The number of rounds of a protocol is the maximum number of rounds
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necessary to output the result among all possible inputs and all possible choices
of the random values.

3 Private Operations

We show three private operations introduced in [42], private random bisection
cuts, private reverse cuts, and private reveals.

Primitive 1 (Private random bisection cut). A private random bisection cut
is the following operation on an even sequence S0 = s1, s2, . . . , s2m. A player
selects a random bit b ∈ {0, 1} and outputs

S1 =
{

S0 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player does not disclose the bit b. �

Note that the protocols in this paper uses the operation only when m = 1 and
S0 = commit(x). Given S0 = ? ?

︸ ︷︷ ︸

x

, The player’s output S1 = ? ?
︸ ︷︷ ︸

x⊕b

, which is

? ?
︸ ︷︷ ︸

x

or ? ?
︸ ︷︷ ︸

x

.

Note that a private random bisection cut is the same as the random bisection
cut [31], but the operation is executed in a hidden place.

Primitive 2 (Private reverse cut, Private reverse selection). A private reverse
cut is the following operation on an even sequence S2 = s1, s2, . . . , s2m and a bit
b ∈ {0, 1}. A player outputs

S3 =
{

S2 if b = 0
sm+1, sm+2, . . . , s2m, s1, s2, . . . , sm if b = 1

The player executes this operation in a place where the other players cannot see.
The player does not disclose b.

Note that in many protocols below, selecting left m cards is executed after
a private reverse cut. The sequence of these two operations is called a private
reverse selection. A private reverse selection is the following procedure on an
even sequence S2 = s1, s2, . . . , s2m and a bit b ∈ {0, 1}. A player outputs

S3 =
{

s1, s2, . . . sm if b = 0
sm+1, sm+2, . . . , s2m if b = 1 ��

The difference between the private random bisection cut and the private reverse
cut is that b is not newly selected by the player.

Next, we define a private reveal.
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Primitive 3 (Private reveal). A player privately opens a given committed bit.
The player does not disclose the obtained value. �

Using the obtained value, the player privately sets a sequence of cards.
Consider the case when Alice executes a private random bisection cut on

commit(x) and Bob executes a private reveal on the bit. Since the committed
bit is randomized by the bit b selected by Alice, the opened bit is x ⊕ b. Bob
obtains no information about x if b is randomly selected and not disclosed by
Alice. Bob must not disclose the obtained value. If Bob discloses the obtained
value to Alice, Alice knows the value of the committed bit.

4 Protocols for XOR, AND, Copy, and Other Boolean
Functions

This section shows the sub-protocols presented in [41,42] used in this paper’s
protocols. The correctness proof is shown in [41,42].

4.1 XOR Protocol

Protocol 1 (XOR protocol) [41]
Input: commit(x) and commit(y).
Output: commit(x ⊕ y).

1. Alice executes a private random bisection cut on input S0 = commit(x)
and S′

0 = commit(y) using the same random bit b. Let the output be
S1 = commit(x′) and S′

1 = commit(y′), respectively. Note that x′ = x ⊕ b
and y′ = y ⊕ b. Alice sends S1 and S′

1 to Bob.
2. Bob executes a private reveal on S1 = commit(x′). Bob executes a private

reverse cut on S′
1 using x′. Let the result be S2. Bob outputs S2. �

The protocol is two rounds. Note that the protocol uses no cards other than the
input cards.

4.2 And Protocol

Protocol 2 (AND protocol) [42]
Input: commit(x) and commit(y).
Output: commit(x ∧ y).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) and commit(y) to Bob.

2. Bob executes a private reveal on commit(x′). Bob sets

S2 =
{

commit(y)||commit(0) ifx′ = 1
commit(0)||commit(y) ifx′ = 0

and hands S2 to Alice.
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3. Alice executes a private reverse selection on S2 using the bit b generated in the
private random bisection cut. Let the obtained sequence be S3. Alice outputs
S3. �

In Step 2, the cards of commit(x′) are re-used to set commit(0). Thus the
protocol uses no cards other than the input cards. The protocol is three rounds.

4.3 COPY Protocol

Protocol 3 (COPY protocol) [42]
Input: commit(x).
Output: m copies of commit(x).

1. Alice executes a private random bisection cut on commit(x). Let the output
be commit(x′). Alice hands commit(x′) to Bob.

2. Bob executes a private reveal on commit(x′). Bob makes m copies of x′. Bob
faces down these cards. Bob hands these cards, m copies of commit(x′), to
Alice.

3. Alice executes a private reverse cut to each copy of commit(x′) using the
bit b Alice generated in the private random bisection cut. Alice outputs these
copies. �

The protocol is three rounds. Note that the protocol does not need additional
cards other than 2m output cards.

4.4 Any Two-Input Boolean Functions

Though the previous subsection showed AND and XOR, any two-input Boolean
functions can also be calculated by a similar protocol by three rounds and four
cards [42]. Any two-input Boolean function f(x, y) can be written as

f(x, y) =
{

f(1, y) ifx = 1
f(0, y) ifx = 0

where f(1, y) and f(0, y) are y, y, 0, or 1.
First consider the case when both of f(1, y) and f(0, y) are 0 or 1. (f(1, y),

f(0, y)) = (0, 0) (or (1, 1)) means that f(x, y) = 0 (or f(x, y) = 1), thus we do
not need to calculate f . (f(1, y), f(0, y)) = (1, 0) (or (0, 1)) means the f(x, y) = x
(or f(x, y) = x), thus we do not need to calculate f by a two player protocol.

Next consider the case when both of (f(1, y), f(0, y)) are y (or y). This case
is when f(x, y) = y (or f(x, y) = y), thus we do not need to calculate f by a
two player protocol.

Next case is when (f(1, y), f(0, y)) is (y, y) or (y, y). (f(1, y), f(0, y)) = (y, y)
is x ⊕ y (XOR). (f(1, y), f(0, y)) = (y, y) is x ⊕ y, thus this function can be
calculated as follows: use XOR protocol and NOT is taken to the output. Thus,
this function can also be calculated.
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The remaining case is when one of (f(1, y), f(0, y)) is y or y and the other is
0 or 1. We can use the AND protocol and Bob sets

S2 =
{

commit(f(1, y))||commit(f(0, y)) ifx′ = 1
commit(f(0, y))||commit(f(1, y)) ifx′ = 0

using one commit(y) in the second step of the protocol.
Thus, any two-input Boolean function can be calculated without additional

cards.

4.5 Parallel Computations

The above two-input Boolean function calculations can be executed in paral-
lel [42]. Consider the case when commit(x) and commit(yi)(i = 1, 2, . . . , n)
are given and commit(fi(x, yi))(i = 1, 2, . . . , n) need to be calculated. They
can be executed in parallel. Alice executes a private random bisection cut on
commit(x) and hands commit(x′) and commit(yi)(i = 1, 2, . . . , n) to Bob. Bob
sets Si

2(i = 1, 2, . . . , n) using x′ and commit(yi) according to fi. Alice executes
a private reverse cut or a private reverse selection on each of Si

2(i = 1, 2, . . . , n)
using the bit b selected at the private random bisection cut. By the procedure,
commit(fi(x, yi)) (i = 1, 2, . . . , n) are simultaneously obtained.

Note that if fi is calculated by an AND-type protocol, two new cards are
necessary and the two cards of commit(x′) can be used. Thus, when at most
one fi is executed by an AND-type protocol and all the others are executed by
XOR-type protocols, they can be executed in parallel without additional cards.

4.6 Preserving an Input

In the above protocols to calculate Boolean functions, the input commitment
values are lost. If the input is not lost, the input commitment can be used as
an input to another calculation. Thus input preserving calculation is discussed
[37,42].

In the XOR protocol, commit(x′) is no more necessary after Bob sets
S2. Thus, Bob can send back commit(x′) to Alice. Then, Alice can recover
commit(x) using the private reverse cut. In this modified protocol, the output
is commit(x ⊕ y) and commit(x) without additional cards.

An input preserving calculation without increasing the number of cards can
be executed for AND type protocols just like [37]. When we execute the AND
type protocol, two cards are selected by Alice at the final step. The remaining
two cards are used to recover an input value. The unused two cards’ value is

{

f(0, y) ifx = 1
f(1, y) ifx = 0

thus the output is commit((x ∧ f(1, y)) ⊕ (x ∧ f(0, y))).
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Note that the function f satisfies that one of (f(0, y), f(1, y)) is y or y and
the other is 0 or 1. Otherwise, we do not need to calculate f by the AND type
two player protocol.

The output f(x, y) can be represented as (x∧f(1, y))⊕ (x∧f(0, y)). Execute
the above input preserving XOR protocol for these two output values so that
the input f(x, y) is preserved. The output of XOR protocol is (x ∧ f(1, y)) ⊕
(x ∧ f(0, y)) ⊕ (x ∧ f(1, y)) ⊕ (x ∧ f(0, y)) = f(1, y) ⊕ f(0, y). Since one of
(f(0, y), f(1, y)) is y or y and the other is 0 or 1, the output is y or y (depending
on f). Thus, input y can be recovered without additional cards. Thus, preserving
an input can be realized by 4 cards, which is the minimum. In [37], two additional
cards are necessary.

4.7 n-input Boolean Functions

Since any 2-input Boolean function, NOT, and COPY can be executed, any
n-input Boolean function can be calculated by the combination of the above
protocols.

Using the technique in [37] and above input preserving Boolean function
calculations, any n-input Boolean function can be calculated with 2n + 4 cards
as follows [42].

Any Boolean function f(x1, x2, . . . , xn) can be represented as follows:
f(x1, x2, . . . , xn) = (x1 ∧ x2 ∧ · · · ∧ xn ∧ f(0, 0, . . . , 0)) ⊕ (x1 ∧ x2 ∧ · · · ∧ xn∧
f(1, 0, . . . , 0)) ⊕ (x1 ∧ x2 ∧ · · · ∧ xn ∧ f(0, 1, . . . , 0)) ⊕ · · · ⊕ (x1 ∧ x2 ∧ · · · ∧ xn ∧
f(1, 1, . . . , 1)).

Since the terms with f(i1, i2, . . . , in) = 0 can be removed, this function f can
be written as f =

⊕k
i=1 v

i
1 ∧ vi2 ∧ · · · ∧ vin, where vij = xj or xj . Let us write

Ti = vi1 ∧ vi2 ∧ · · · ∧ vin. The number of terms k(< 2n) depends on f .

Protocol 4 (Protocol for any Boolean function) [42]
Input: commit(xi)(i = 1, 2, . . . , n).
Output: commit(f(x1, x2, . . . , xn)).
The additional four cards (two pairs of cards) p1 and p2 are used as follows.
p1: the intermediate value to calculate f is stored.
p2: the intermediate value to calculate Ti is stored.

Execute the following steps for i = 1, . . . , k.

1. Copy vi1 from the input x1 to p2.
2. For j = 2, . . . , n, execute the following procedure: Apply the input-preserving

AND protocol to p2 and input xj (If AND is taken between xj, first execute
NOT to the input, then apply the AND protocol, and return the input to xj

again.)
At the end of this step, Ti is obtained at p2.

3. If i = 1, move p2 to p1. If i > 1, apply the XOR protocol between p1 and p2.
The result is stored to p1.

At the end of the protocol, f(x1, x2, . . . xn) is obtained at p1. �
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5 Protocols for Three-Input Boolean Functions

This section shows protocols for three-input Boolean functions. [38] has shown
that any three-input Boolean functions can be calculated with at most eight
cards. We show that these functions can be calculated with six cards using
private operations, that is, no additional cards are necessary other than the
input cards.

The arguments to show the protocols with six cards are just the same as the
one in [38]. The main difference is that AND-type functions can be calculated
by four cards using the private operations.

There are 22
3

= 256 different functions with three inputs. However, some of
these functions are equivalent by replacing variables and taking negations. NPN-
classification [50] was considered to reduce the number of different functions
considering the equivalence class of functions. The rules of NPN-classification
are as follows.

1. Negation of input variables (Example: xi ↔ xi).
2. Permutations of input variables (Example: xi ↔ xj).
3. Negation of the output (f ↔ f).

For example, consider f1(x1, x2, x3) = (x1 ∧x2)∨x3. Several functions in the
same equivalence class that includes f1 are: f2 = (x1∧x2)∨x3, f3 = (x1∧x3)∨x2,
f4 = f3, and so on.

Input negation and output negation can be executed by card-based protocols
without increasing the number of cards. They are executed by just swapping
input cards or output cards. Permutations of input variables can also be executed
without increasing the number of cards. They can be achieved by just changing
the positions of the input values. Therefore, all functions in the same NPN
equivalence class can be calculated with the same number of cards.

Theorem 1. Any three input Boolean functions can be securely calculated with-
out additional cards other than the input cards when we use private operations.

Proof. When the number of inputs is 3, there are the following 14 NPN-
representative functions [50]. (Note that x, y, and z are used to represent input
variables.)

1. NPN1 = 1
2. NPN2 = x
3. NPN3 = x ∨ y
4. NPN4 = x ⊕ y
5. NPN5 = x ∧ y ∧ z
6. NPN6 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
7. NPN7 = (x ∧ y) ∨ (x ∧ z)
8. NPN8 = (x ∧ y) ∨ (x ∧ y ∧ z)
9. NPN9 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)

10. NPN10 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = x ⊕ y ⊕ z.
11. NPN11 = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)
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12. NPN12 = (x ∧ z) ∨ (y ∧ z)
13. NPN13 = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)
14. NPN14 = (x ∧ y) ∨ (x ∧ z) ∨ (x ∧ y ∧ z)

Among these 14 functions, NPN1 - NPN4 depend on less than three inputs.
Since any two-variable function can be calculated without additional cards, these
functions can be calculated with at most six cards.

We show a calculation protocol for each of the remaining functions.
For NPN5, x ∧ y can be calculated without additional cards. Then x ∧ y ∧ z

can be calculated without additional cards other than the input cards, x∧y and z.
NPN7 can be represented as NPN7 = x∧ (y∨z), thus this function can also

be calculated without additional cards.
NPN10 can be calculated as (x ⊕ y) ⊕ z without additional cards.
NPN13 can be represented as NPN13 = x ∧ (y ⊕ z), thus this function can

also be calculated without additional cards.
NPN14 can be represented as NPN14 = x ⊕ (y ∨ z), thus this function can

also be calculated without additional cards.
NPN6 can be represented as NPN6 = (x ⊕ y) ∧ (x ⊕ z). First, calculate

x⊕ y and x⊕ z in parallel, where a private random bisection cut is executed to
x. Then NOT is applied to each result. Next, calculate AND to these results.

NPN8 can be represented as NPN8 = (x ⊕ y)∧ (y∨z). First, calculate x⊕y
and y∨z in parallel, where a private random bisection cut is executed to y. Then
NOT is applied to the first result. Next, calculate AND to these results.

NPN9 can be represented as NPN9 = (x ⊕ y ⊕ z) ∧ (x ∨ z). First, calculate
x ⊕ y with preserving input x. Next, calculate (x ⊕ y) ⊕ z and x ∨ z in parallel,
where a private random bisection cut is executed to z. Then NOT is applied to
the first result. Next, calculate AND to these results.

NPN12 can be calculated as follows. First, calculate x ∧ z with preserving
input z. Next, calculate y ∧ z. Then, calculate OR to these results.

NPN11 can be represented as

NPN11 =

{

z ifx ⊕ y = 1
x ifx ⊕ y = 0

This function can be calculated as follows. First, calculate x⊕ y with preserving
input x. Thus, x, z, and x⊕y are obtained. Then, modify the AND-type protocol
as follows.

1. Alice executes private random bisection cut on x ⊕ y. The obtained value is
x ⊕ y ⊕ b, where b is the random value.

2. Bob executes private reveal on x ⊕ y ⊕ b. Bob sets

S2 =
{

commit(z)||commit(x) ifx ⊕ y ⊕ b = 1
commit(x)||commit(z) ifx ⊕ y ⊕ b = 0

3. Alice executes a private reverse selection on S2 using the bit b generated in
the private random bisection cut. Let the obtained sequence be S3. Alice
outputs S3.
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The output is commit(z) if (x ⊕ y ⊕ b = 1 and b = 0) or (x ⊕ y ⊕ b = 0 and
b = 1). The case equals to x⊕ y = 1. The output is commit(x) if (x⊕ y ⊕ b = 1
and b = 1) or (x⊕ y ⊕ b = 0 and b = 0). The case equals to x⊕ y = 0. Thus the
result is correct. Therefore, NPN11 can also be calculated without additional
cards. ��

6 Half Adder and Full Adder, and Symmetric Functions

This section first shows a realization of half adder and full adder.
The input and output of the secure half adder are as follows:

– Input: commit(x) and commit(y)
– Output: S = commit(x ⊕ y) and C = commit(x ∧ y)

The half adder is realized by the following steps, whose idea is just the same
as the one in [37].

1. Execute XOR protocol with preserving input x. Thus x and x⊕y are obtained.
2. Obtain x ⊕ y by swapping the two cards of x ⊕ y.
3. Execute AND protocol to x and x ⊕ y with preserving input x ⊕ y. Thus

x ⊕ y and x ∧ (x ⊕ y) = x ∧ y are obtained.
4. Obtain x ⊕ y by swapping the two cards of x ⊕ y.

No additional cards are necessary other than the four input cards. The protocol
in [37] needs two additional cards, thus the number of cards is reduced by our
protocol.

The input and output of the secure full adder are as follows:

– Input: commit(x), commit(y), and commit(CI)
– Output: S = commit(x⊕y⊕CI), CO = commit((x∧y)∨ (x∧CI)∨ (y∧CI))

Since the half adder can be calculated without additional cards, the full adder
can also be calculated without additional cards by the following protocol.

1. Add x and y using the half adder. The outputs are x ⊕ y and x ∧ y.
2. Add CI to the result x ⊕ y using the half adder. The outputs are x ⊕ y ⊕ CI

and CI ∧ (x ⊕ y).
3. Execute OR protocol to CI ∧ (x⊕y) and x∧y. Since (CI ∧ (x⊕y))∨ (x∧y) =

(x ∧ y) ∨ (x ∧ CI) ∨ (y ∧ CI), the carry CO is obtained.

Using the half adder and full adder, calculation of symmetric function can
be done by the technique in [37]. n-input symmetric function f(x1, x2, . . . , xn)
depends only on the number of variables such that xi = 1. Let Y =

∑n
i=1 xi.

Then the function f can be written as f(x1, x2, . . . , xn) = g(Y ). When Y
is given by a binary representation, Y = ykyk−1....y1, g can be written as
g(y1, y2, . . . , yk), where k = �log n� + 1.
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Given input x1, x2, . . . , xn, first obtain the sum of these inputs using the half
adder and full adder protocols without additional cards. The sum is obtained as
y1, y2, . . . , yk. Then, calculate g using yis. When n ≤ 7, k ≤ 3, thus any three
input Boolean function g can be calculated without additional cards. When
n ≥ 8, Y is represented with k = �log n� + 1 bits. Since n − k ≥ 4, at least
8 input cards are unused after yis are calculated. Any Boolean function can be
calculated with four additional cards, thus g can be calculated without additional
cards other than the input cards.

Theorem 2. Any symmetric Boolean function can be securely calculated without
additional cards other than the input cards when we use private operations.

7 Conclusion

This paper showed card-based cryptographic protocols to calculate three input
Boolean functions, half adder, full adder, and symmetric functions using private
operations. One of the important open problems is obtaining another class of
Boolean functions that can be calculated without additional cards using private
operations.
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References

1. Abe, Y., Hayashi, Y.I., Mizuki, T., Sone, H.: Five-card and computations in com-
mitted format using only uniform cyclic shuffles. New Gener. Comput. 39(1), 97–
114 (2021)

2. den Boer, B.: More efficient match-making and satisfiability The Five Card Trick.
In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434,
pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-
4 23

3. Bultel, X., et al.: Physical zero-knowledge proof for Makaro. In: Izumi, T.,
Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 111–125. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03232-6 8

4. Cheung, E., Hawthorne, C., Lee, P.: Cs 758 project: secure computation with
playing cards (2013). http://cdchawthorne.com/writings/secure playing cards.pdf
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Abstract. An Eulerian walk (or Eulerian trail) is a walk (resp. trail)
that visits every edge of a graph G at least (resp. exactly) once. This
notion was first discussed by Leonhard Euler while solving the famous
Seven Bridges of Königsberg problem in 1736. But what if Euler had to
take a bus? In a temporal graph (G, λ), with λ : E(G) → 2[τ ], an edge
e ∈ E(G) is available only at the times specified by λ(e) ⊆ [τ ], in the same
way the connections of the public transportation network of a city or of
sightseeing tours are available only at scheduled times. In this scenario,
even though several translations of Eulerian trails and walks are possible
in temporal terms, only a very particular variation has been exploited in
the literature, specifically for infinite dynamic networks (Orlin, 1984). In
this paper, we deal with temporal walks, local trails, and trails, respec-
tively referring to edge traversal with no constraints, constrained to not
repeating the same edge in a single timestamp, and constrained to never
repeating the same edge throughout the entire traversal. We show that,
if the edges are always available, then deciding whether (G, λ) has a
temporal walk or trail is polynomial, while deciding whether it has a
local trail is NP-complete even if it has lifetime 2. In contrast, in the
general case, solving any of these problems is NP-complete, even under
very strict hypotheses.

1 Introduction

An Eulerian walk (or Eulerian trail) is a walk (resp. trail) that visits every
edge of a graph G at least (resp. exactly) once. The Eulerian trail notion was
first discussed by Leonhard Euler while solving the famous Seven Bridges of
Königsberg problem in 1736, where one wanted to pass by all the bridges over
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the river Preger without going twice over the same bridge. Imagine now a similar
problem, where you have a set of tourist sights linked by possible routes. If the
routes themselves are also of interest, a sightseeing tourism company might want
to plan visits on different days that cover all the routes. One could do that with
no constraints at all (thus performing a walk), or with the very strict constraint
of never repeating a route (thus getting a trail), or constraining oneself to at least
not repeating the same route on the same day (thus getting what we called a
local trail). If we further assume that some routes might not be always accessible,
we then get distinct problems defined on temporal graphs.

In a temporal graph (G,λ), with λ : E(G) → 2[τ ], an edge e ∈ E(G) is avail-
able only at the times specified by λ(e) ⊆ [τ ], in the same way the connections
of the public transportation network of a city or of sightseeing tours are avail-
able only at scheduled times. In this scenario, paths and walks are valid only
if they traverse a sequence of adjacent edges e1, . . . , ek at non-decreasing times
t1 ≤ . . . ≤ tk, respectively, with ti ∈ λ(ei) for every i ∈ [k] (similarly, one can
consider strictly increasing sequences, i.e. with t1 < . . . < tk).

Several translations of Eulerian trails and walks are possible in temporal
terms, depending on the constraints we consider. In particular, we study the
following variations. Below, all the walks and trails are implicitly considered to
be temporal, as defined in the previous paragraph.

Problem 1. Given a temporal graph (G,λ), we consider the following problems:

– Eulerian Walk: deciding whether (G,λ) has an Eulerian walk, i.e. a walk
traversing each edge of G at least once.

– Eulerian Local Trail: deciding whether (G,λ) has an Eulerian local trail,
i.e. a walk traversing each edge of G at least once, and at most once in each
timestamp.

– Eulerian Trail: deciding whether (G,λ) has an Eulerian trail, i.e. a walk
traversing each edge of G exactly once.

We also consider the related problems where the walks/trails are closed (first
vertex equal to the last one), respectively referring to them as Eulerian Closed
Walk, Eulerian Local Tour, and Eulerian Tour. Finally, for all of the
above problems, we add the prefix Strict to refer to the variation in which
walks must be strictly increasing sequences of edges. Observe that, when τ = 1,
then both Eulerian Trail and Eulerian Local Trail degenerate into the
original formulation of the Seven Bridges of Königsberg problem. This is why
we think they appear to be more natural adaptations of the static version of the
problem.

The research on temporal graphs has attracted a lot of attention in the past
decade (we refer the reader to the surveys [17,19] and the seminal paper [16]),
and temporal graphs appeared also under different names, e.g. as time-varying
graphs [5], as evolving networks [3], and as link streams [17]. Even after all the
received interest, surprisingly enough the above problems have received very
little attention, as we discuss in what follows.
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One of the concepts closest to ours is the one defined by Orlin in [21], where
he gives a polynomial algorithm to check the existence of an Eulerian closed
walk (i.e. a tour) in dynamic graphs. However, the dynamic graph model is
quite different from the temporal graph model used in this paper, as pointed
out in [19]. Indeed, looking at the corresponding time-expanded graph related
to [21], temporal edges can go back in time and the graph is infinite. Nevertheless,
the results presented there seemed to point towards the polinomiality of the
problems investigated here, as observed in [19]: “the results proved for it [the
dynamic graph model] are resounding and possibly give some first indications
of what to expect when adding to combinatorial optimization problems a time
dimension”. We found however that this is not the case, as we will show that
even Eulerian Walk turns out to be much harder on temporal graphs. Taking
inspiration in [21], we also define a dynamic-based temporal graph as a temporal
graph whose edges are always available, and we analyze the complexity of the
above problems on these particular instances.

In this paper we prove the following results. These are summarized in Table 1,
which also reports some recent results that will be discussed shortly.

Theorem 1. Given a temporal graph (G,λ) with lifetime τ ,

1. Eulerian Walk is NP-complete, even if either each snapshot of (G,λ) is
a forest of constant size, or each edge appears at most 3 times. Also, it is
polynomial-time solvable if (G,λ) is dynamic-based, and is in XP when param-
eterized by τ .

2. Eulerian Local Trail is NP-complete for each τ ≥ 2, even if (G,λ) is
dynamic-based.

3. Eulerian Trail is NP-complete for each τ ≥ 2. It is polynomial if (G,λ) is
dynamic-based.

Same applies to tours, i.e. Eulerian Closed Walk, Eulerian Local Tour,
and Eulerian Tour.

Theorem 1 gives a complete taxonomy of our problems, also focusing on
the possibility of getting polynomial algorithms when we have a small lifetime
τ . In particular, for Eulerian Trail and Eulerian Local Trail, since they
become polynomial when τ = 1, the bound for τ is optimal, giving us a complete
dichotomy with respect to the lifetime of (G,λ), excluding the possibility of any
FPT algorithm with parameter τ unless P = NP. In contrast, Eulerian Walk
is easily solvable for every fixed τ , showing that walks are easier than trails even
on the temporal context.

Eulerian Walk is related to the TEXP problem [20], which consists of,
given a temporal graph (G,λ), finding a temporal walk that visits all vertices in
G (possibly, more than once) whose arrival time is minimum. In [20], they prove
that TEXP is NP-complete and even not approximable unless P = NP; this is in
stark contrast with the static version of the problem, which can be trivially solved
in linear time. A lot of research has been devoted to temporal exploration, e.g.
bounding the arrival time of such walks in special instances [9,10] and extending
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Table 1. Our results concerning Problem 1. For general temporal graphs (first
row) and for dynamic-based temporal graphs (second row). † corresponds to deciding
whether G is connected. � corresponds to deciding whether G has an Eulerian trail. All
the results in the first row, when τ = Ω(m), with m = |E(G)|, extend to Strict Eule-
rian Walk, Strict Eulerian Local Trail, Strict Eulerian Trail (if τ < m,
then the answer is trivial).

Walk Local trail Trail

General NP-c NP-c for τ ≥ 2 NP-c for τ ≥ 2

XP by τ NP-c if tw(G) = 2 [4]

FPT by k + imw(G, λ) [4]

Dynamic-Based Poly† NP-c for τ ≥ 2 Poly�

previous results in the case of non-strictly increasing paths [11]. In [1], they
proved that TEXP is NP-complete even when restricted to temporal stars in
which each edge appears at most k times, for all fixed k ≥ 6. On the other hand,
they showed that, if each edge appears at most k = 3 times, then the problem is
polynomial-time solvable on temporal stars. Observe that in a star, passing by
all the leaves translates also into passing by all the edges. Therefore their result
implies already NP-completeness for Eulerian Walk with the same constraints
as before. Our proof complements the latter result as we prove that Eulerian
Walk is NP-complete on general temporal graphs even when every edge appears
at most 3 times.

Up to our knowledge, there is only one other paper that investigates problems
similar to Eulerian Trail and Eulerian Local Trail, that will appear in
the same volume as this paper and focuses on the Eulerian Trail variation,
giving independent and broadly different results [4]. In particular, they prove
that Eulerian Trail is NP-complete even if each edge appears at most k times,
for every fixed k ≥ 3. Observe that our result improves that to k = 2, since we
prove it is NP-complete even if the lifetime is 2. Nevertheless, even though their
reduction produces a temporal graph with unbounded lifetime, it also gives a
base graph with very simple structure (a set of triangles intersecting in a single
vertex, which is a graph with treewidth 2). In addition, they also introduce
a parameter for temporal graphs, that they called interval-membership width
(denoted by imw(G,λ)), and provide an FPT algorithm parametrized by k plus
imw(G,λ), as also reported in Table 1.

It is important to remark that none of the variations we considered immedi-
ately implies any of the others. We will show indeed that the property of being
Eulerian for the static base graph G is in general a necessary but not sufficient
condition for the existence of an Eulerian trail, becoming sufficient only if we
restrict to dynamic-based temporal graphs. In the case of Eulerian local trail,
we will see that this property is not even necessary. In addition, if only strictly
increasing temporal walks/trails are allowed, then our reductions for the first
row of Table 1 can be easily modified, thus giving NP-completeness results also
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in this case. Observe that in this case a necessary condition for a positive answer
is τ ≥ |E(G)|; this is why we do not have the same bounds for τ as in Theorem 1.

Corollary 1. (i) Strict Eulerian Walk, (ii) Strict Eulerian Local
Trail, (iii) Strict Eulerian Trail are NP-complete in a general temporal
graph (G,λ) with lifetime τ = Ω(|E(G)|).

Also in the case of dynamic-based temporal graphs (second row of Table 1),
the polynomiality is preserved for strictly increasing Eulerian walks and Eulerian
trails and we leave open the question whether Strict Eulerian Local Trail
is still NP-complete on dynamic-based temporal graphs.

Finally, as a byproduct of our reductions we get the following result about
static graphs, which can be of independent interest.

Corollary 2. Given a graph G, deciding whether the edges of G can be covered
with two trails is NP-complete.

Further Related Work. When considering dynamic-based temporal graphs, as
edges are assumed to be always available during the lifetime τ , we could relate our
problems to several other problems on static graphs. A closely related one would
be the Chinese Postman problem, where the edges of the graph have positive
weights and one wants to find an Eulerian closed walk on G with minimum
weight; in other words, one wants to add copies of existing edges in order to
obtain an Eulerian graph of minimum sum weight. Even if we regard the Chinese
Postman problem where the weights are all equal to 1, this is very different
from our approach since for us, repetition of a long common trail in different
snapshots does not make the solution worse, while it would considering the
Chinese Postman problem. It is easy to see though that the solution for the
Chinese Postman would give us an upper bound for the amount of time spent on
an Eulerian local tour of a dynamic-based graph, as we could start a new trail on
a new snapshot whenever an edge repetition was detected. The Chinese Postman
problem is largely known to be polynomial [15], and some variations that take
time into consideration have been investigated, mostly from the practical point
of view (see e.g. [6,22,23]), but none of which is equivalent to our problem.

The problem of trying to obtain an Eulerian subgraph (as opposed to a
supergraph, as was the case in the previous paragraph) has also been studied.
In [7], the authors study a family of problems where the goal is to make a static
graph Eulerian by a minimum number of deletions. They completely classify
the parameterized complexity of various versions of the problem: vertex or edge
deletions, undirected or directed graphs, with or without the requirement of
connectivity. Also in [12], the parameterized complexity of the following Euler
subgraph problems is studied: (i) Largest Euler Subgraph: for a given graph G
and integer parameter k, does G contain an induced Eulerian subgraph with
at least k vertices?; and (ii) Longest Circuit: for a given graph G and integer
parameter k, does G contain an Eulerian subgraph with at least k edges?

Eulerian Local Trail on dynamic-based graphs is actually more closely
related to the problem of covering the edges of a graph with the minimum
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number of (not necessarily disjoint) trails, whereas the aforementioned problems
are more concerned with either minimizing edge repetitions or maximizing the
subgraph covered by a single trail. Even if the trail cover problem can be so
naturally defined and involve such a basic structure as trail, up to our knowledge
it has not been previously investigated yet. Note that Eulerian Local Trail
is slightly different from trail cover, since we also require that together the trails
form a walk. In any case, a small modification of our proof of Theorem 1.2
implies that deciding whether the edges of a graph can be covered with at most
two trails is NP-complete (Corollary 2). Interestingly enough, the vertex version
of this problem, namely the path cover problem, has been largely investigated
(see e.g. [2,14,18]).

Preliminaries. A static graph G has an Eulerian tour (trail) if and only if G has
at most one non-trivial component and all the vertices have even degree (at most
two vertices have odd degree). A graph is called Eulerian if it has an Eulerian
tour. We use standard notation for graphs and we use and extend the notation
in [19]. A temporal graph is a graph together with a function on the edges saying
when each edge is active; more formally, a temporal graph is a pair (G,λ), where
λ : E(G) → 2N−{0}. Here, we consider only finite temporal graphs, i.e., graphs
such that max

⋃
e∈E(G) λ(e) is defined. This value is called the lifetime of (G,λ)

and denoted by τ . Given i ∈ [τ ], we define the snapshot Gi as being the subgraph
of G containing exactly the edges active in time i; more formally, V (Gi) = V (G)
and E(Gi) = {e ∈ E(G) | i ∈ λ(e)}.

Given vertices v0, vk in a graph G, a v0, vk-walk in G is an alternating
sequence (v0, e1, v1, . . . , ek, vk) of vertices and edges such that ei goes from vi−1

to vi for i ∈ {1, . . . , k}. We define a walk in a temporal graph similarly, except
that a walk cannot go back in time. More formally, given a temporal graph
(G,λ) and a v0, vk-walk W = (v0, e1, v1, . . . , ek, vk), we say that W is a temporal
v0, vk-walk if λ(e1) ≤ λ(e2) ≤ . . . ≤ λ(ek). It is closed if it starts and finishes on
the same vertex of G, i.e., if v0 = vk.

We say that a temporal walk W is a local trail if there are no two occurrences
of the same edge of G in the same snapshot, i.e., if W restricted to Gi is a trail
in G for every i ∈ [τ ]. We say that W is a trail if there are no two occurrences
of the same edge of G in W . A closed (local) trail is also called a (local) tour.
Finally, a temporal walk W is called Eulerian if at least one copy of each edge
of G appears at least once in W . Observe that, by definition, an Eulerian trail
visits every edge exactly once.

A dynamic-based graph is a temporal graph (G,λ) where the edges are always
available, i.e. λ(e) = [τ ] for each e ∈ E(G).1 We denote a dynamic-based graph
simply by (G, [τ ]) where τ is the lifetime of the temporal graph.

1 This is the reason why we use the term dynamic-based, as they are similar to the
dynamic networks used in [21] when studying Eulerian trails, except that edges
cannot go back in time and the lifetime is finite.
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2 Eulerian Walk

In this section we focus on Eulerian Walk, i.e. deciding if there is a tempo-
ral walk passing by each edge at least once, proving the results in Item 1 in
Theorem 1, summarized in the first column of Table 1.

In particular, a preliminary result concerns the case where the lifetime τ is
bounded. It consists basically of checking whether there is a choice of connected
components H1, . . . , Hτ , one for each timestamp i, that together cover all the
edges of G and is such that Hi intersects Hi+1, for each i ∈ [τ − 1].

Lemma 1. Given a temporal graph (G,λ) with fixed lifetime τ , solving Eule-
rian Walk on (G,λ) can be done in time O((n + m) · nτ−1), where n = |V (G)|
and m = |E(G)|.
Proof. Let G1, · · · , Gτ be the snapshots of G; note first that if E(Gi) is empty,
then this snapshot can be suppressed. Our problem reduces to deciding whether
there is a choice of connected components H1, . . . , Hτ , one for each timestamp
i, that together cover all the edges of G and is such that Hi intersects Hi+1,
for each i ∈ [τ − 1]. As for each i ∈ [τ ], there are at most n nodes in the
intersections, there are at most O(nτ−1) choices. For each choice the test can
be done in O(τ(n + m)), obtaining O(τ(n + m)nτ−1) running time, which is
O((n + m)nτ−1).

In the following, we show that when τ is unbounded, deciding whether (G,λ)
admits an Eulerian walk is NP-complete by reducing from 3-SAT. This is best
possible because of the above lemma.

Theorem 2. Given a temporal graph (G,λ), deciding whether (G,λ) admits an
Eulerian walk is NP-complete, even if either each snapshot of (G,λ) is a forest
of constant size, or each edge appears in at most 3 snapshots.

Proof. We make a reduction from 3-SAT. Let φ be a 3-CNF formula on variables
{x1, · · · , xn} and clauses {c1, · · · , cm}, and construct G as follows. For each
clause ci, add vertices {ai, bi} to G and edge aibi. Now consider a variable xi,
and let ci1 , · · · , cip be the clauses containing xi positively, and cj1 , · · · , cjq be
the clauses containing xi negatively. Add two new vertices xi, xi to G, and edges
{xiaik | k ∈ [p]} ∪ {xiajk | k ∈ [q]}; denote the spanning subgraph of G formed
by these edges by Hi, and let H ′

i be equal to Hi together with edges {aibi | i ∈
{i1, · · · , ip, j1, · · · , jq}}. We can suppose that {i1, · · · , ip} ∩ {j1, · · · , jq} = ∅ as
otherwise the clauses in the intersection would always be trivially valid; thus we
get that Hi,H

′
i are forests. Finally, add a new vertex T and make it adjacent to

every vertex in {xi, xi | i ∈ [n]}.
We now describe the snapshots of (G,λ). See Fig. 1 to follow the construction.

We first build 2 consecutive snapshots in (G,λ) related to xi, for each i ∈ [n].
The first one is equal to H ′

i, and the second one contains exactly the edges
{Txi, Txi, Txi+1, Txi+1} if i < n, and if i = n, then the second snapshot is equal
to G − {ajbj | j ∈ [m]}; this can be done because this subgraph is connected.
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Denote by S1
i , S2

i the first and second snapshot of xi, for each i ∈ [n]. Put these
snapshots consecutively in timestamps 1 through 2n, in the order of the indexing
of the variables. For now, observe that only the last snapshot might not be a
forest; this will be fixed later. We now prove that φ is a satisfiable formula if and
only if (G,λ) admits an Eulerian walk.

G1 G2 G3

x1

a1 a2

b1 b2

x1

a3 a4

b3 b4

x1 x1 x2 x2

T

x2

a1 a2

b1 b2

x2

a3 a4

b3 b4

Fig. 1. First three snapshots of the construction. For simplicity, we represent only
the non-trivial components of each snapshot. In this example, we have c1 containing
(x1 ∨ x2), c2 containing (x1 ∨ x2), c3 containing (x1 ∨ x2), and c4 containing (x1 ∨ x2).

Because of space constraints, the proof of equivalence is not presented, but
we believe that the construction itself is already convincing. Also, the reader
can verify that the number of appearances of each edge is at most 3. As for
the constraint on the structure of the graph, it can be done by repeating the
same pattern used for the first 2n − 1 snapshots, and the fact that 3-SAT is
NP-complete even if each variable appears at most three times [8]. 
�

If instead we are considering strictly increasing walks, a small modification of
our construction will also imply NP-completeness, hence proving Corollary 1(i).
Indeed, it suffices to relate each variable xi to a window big enough to ensure
we will be able to visit all the edges of the considered component. Because each
variable appears at most three times, one can see that it is enough that the
edges are available for a period of 12 timestamps. So, our previous snapshot
S1

i remains available for 12 consecutive timestamps, after which we will make
S2

i available for 2 timestamps. Because the spare time can never be used to go
from the component containing xi to the component containing xi, the same
arguments used in Theorem 2 still hold.

Now, if we consider a dynamic-based graph (G,λ), since all the edges are
active throughout its lifetime, we clearly have that there exists an Eulerian walk
if and only if G is connected, as highlighted by the following Lemma.

Lemma 2. Eulerian Walk is polynomial for dynamic-based temporal graphs.
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By Lemma 1, Theorem 2, and Lemma 2, we obtain Item 1 of Theorem 1.
Finally, note that if one is interested in closed walks instead, not only our NP-
completeness reduction can be adapted in order to ensure that we can always go
back to the initial vertex, but also the complexity results still hold.

3 Eulerian Local Tours and Trails

In this section we focus on Item 2 of Theorem 1. In the whole section, we will
focus on dynamic-based temporal graphs as the hardness results for general
temporal graphs are implied by the ones we prove for this restricted class. After
the preliminary result in Lemma 3, we focus on proving the hardness result for
the problem of deciding whether (G, [2]) has an Eulerian local tour, explaining
the construction behind our reduction from NAE 3-SAT, whose correctness is
proved in Theorem 3. We also argue that, if G is a cubic graph, then being
Hamiltonian is a necessary but not sufficient condition for (G, [2]) to admit an
Eulerian local tour, arguing the need of an ad hoc reduction for our problem.
As the reduction in Theorem 3 focuses on solving Eulerian Local Tour for
τ = 2, in Corollary 3 we extend this result to each fixed τ and to trails, thus
completing the proof of Item 2 of Theorem 1. The following lemma helps us in
our proof.

Lemma 3. Let G be a graph. If (G, [2]) has an Eulerian local tour T , then T
restricted to timestamp i must pass by all vertices of odd degree in G, for each
i ∈ [2].

Proof. For each i ∈ [2], denote by Ti the trail in G equal to T restricted to
timestamp i, and suppose, by contradiction, that u ∈ V (G) is a vertex with
odd degree not contained in T1. Because T is a temporal tour, observe that T1

is a trail in G starting at some s and finishing at some t, and T2 is a trail in
G starting at t and finishing at s, with possibly s = t. This means that the
subgraph of G formed by the edges of T2 is such that every x ∈ V (G) \ {s, t}
has even degree. This is a contradiction because, since no edge incident to u is
visited in T1, we get that all the edges incident to u must be visited in T2, i.e.,
u would have odd degree in T2. The same argument holds in case u is not in T2,
and the lemma follows. 
�

A simple consequence of the above lemma is that, as previously said, if G is
cubic, then G must be Hamiltonian in order for (G, [2]) to have an Eulerian local
tour. Since deciding whether a cubic graph is Hamiltonian is NP-complete [13],
this hints towards the NP-completeness of the problem. However, since the other
way around is not necessarily true (see e.g. the graph in Fig. 2), we need an
explicit reduction. Indeed, the construction in Fig. 2 shows us that we might
need an arbitrarily large lifetime in order to be able to visit all the edges of
(G, [τ ]) even if G is a 2-connected outerplanar cubic graph (which is trivially
Hamiltonian).
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Fig. 2. Example of outerplanar graph G such that (G, [2]) does not have an Eulerian
local tour.

In the following we explain the construction behind our reduction from
NAE 3-SAT. Let φ be a CNF formula on variables {x1, · · · , xn} and clauses
{c1, · · · , cm}. We start by presenting a meta-construction, in the sense that part
of the constructed graph will be presented for now as black boxes and the actual
construction is done later, as depicted in Fig. 3. The meta part concerns the
clauses; so for now, denote by Ci the black box related to clause ci. Without
going into details, Ci will contain exactly one entry vertex for each of its literal,
with some additional vertices, that will be presented later. So, given a literal �
contained in ci, denote by Ii(�) the entry vertex for � in Ci. All defined three
vertices are distinct.

Ci1 Ci2 · · · Cip

Cj1 Cj2 · · · Cjq

Ii Oi

Fig. 3. Edge gadget with clause black boxes.

Now, for each variable xi, let ci1 , · · · , cip be the clauses containing xi posi-
tively and cj1 , · · · , cjq containing xi negatively. Add two new vertices, Ii and Oi

(these will be the entry and exit vertices for the variable gadget), and add the
following edges (these compose the paths shown in Fig. 3):

Ei = {IiIi1(xi), IiIj1(xi), Iip(xi)Oi, Ijq (xi)Oi}
∪{Iih(xi)Iih+1(xi) | h ∈ [p − 1]}
∪{Ijh(xi)Ijh+1(xi) | h ∈ [q − 1]}

The paths will function as a switch, telling us whether the variable is true
or false within the considered snapshot; we then denote by Pi the set of edges
in the path (Ii, Ii1(xi), · · · , Iip(xi), Oi), and by P i the set of edges in the path
(Ii, Ij1(xi), · · · , Ijq (xi), Oi). Now, to link the variable gadgets and to construct
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the clause gadgets, we will need a gadget that will function as an edge that
must appear in the trail performed in G1 and the one performed in G2. For this,
we use Lemma 3 applied to the gadget in Fig. 4a; when adding such a gadget
between a pair u, v, we simply say that we are adding the forced edge uv.

Now, to link the variable gadgets, we add three new vertices s1, s2, t and the
following forced edges.

E′ = {sit | i ∈ [2]} ∪ {tI1, Ont} ∪ {OiIi+1 | i ∈ [n]}.

The new vertices simply help us assume where the trail starts and finishes.
Now, let T be an Eulerian local tour of (G, [2]) and denote by Ti the trail in G
defined by T restricted to Gi, for i ∈ [2]. It is fairly easy to see (and we will prove
it shortly) that if we can ensure that T1 uses Pi if and only if T2 uses P i, then
we can prove equivalence with NAE 3-SAT. In other words, the clause gadget
must be so that, for every clause cj containing xi (or equivalently xi), we get
that either both edges incident to Ij(xi) in Pi (or equivalently Ij(xi) in P i) are
used, or none of them is used. Such a gadget is presented in Fig. 4b, where the
red edges are forced.

u v

(a) Gadget related to a
forced edge uv.

ci2 ai
1

ai
2

bi1bi2

ci1

Ii( 1)

Ii( 2)

Ii( 3)

(b) Gadget related to clause ci. Red edges represent
forced edges.

Fig. 4. Gadgets for the reduction in Theorem 3.

Theorem 3. Let G be a graph with degree at most 4. Then Eulerian Local
Tour is NP-complete on (G, [2]).

Proof. Let φ and G be as previously stated. First, consider a truth NAE assign-
ment f to φ. We construct T1, T2 ⊆ E(G) and prove that they form an Eulerian
local tour of G. Start by putting Pi in T1 and P i in T2 if xi is true, and the
other way around if xi is false. From now on, whenever we add a forced edge to
T1 and T2, we are actually adding the trails depicted in Fig. 5.

Now, add E′ to both T1 and T2, and consider ci with literals �1, �2, �3. Sup-
pose, without loss of generality, that �1 is true and �2 is false. We then add to T1

the trail depicted in Fig. 6a, and to T2 the one depicted in Fig. 6b. Observe that
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u v

(a) Trail added to T1 when forced
edge uv is added to T1.

u v

(b) Trail added to T2 when forced
edge uv is added to T2.

Fig. 5. Trails related to forced edges.

all internal edges of Ci are covered. Also note that the value of �3 is irrelevant
(the choice remains the same, let it be true or false). We know that the remain-
ing edges are also covered by T1 ∪ T2 by construction. Finally, notice that both
T1 and T2 touch all odd-degree vertices in a way that every vertex (including
the even-degree ones) has even degree in T1 and in T2, except s1, s2 which have
degree exactly 1. Also note that they form a connected graph; indeed they are
formed by the cycle passing through the variable gadgets and t, together with
some pending trails passing by the clause gadgets. Therefore, we can find an
s1, s2-trail passing by all edges of T1, and an s2, s1-trail passing by all edges of
T2, thus getting our Eulerian local tour.

ci2 ai
1

ai
2

bi1bi2

ci1

Ii( 1)

Ii( 2)

Ii( 3)

(a) Added to T1 when 1 is true.

ci2 ai
1

ai
2

bi1bi2

ci1

Ii( 1)

Ii( 2)

Ii( 3)

(b) Added to T2 when 2 is false.

Fig. 6. Trails in Ci related to a given NAE assignment.

In order to prove that if Eulerian local tour of (G, [2]), then φ has an NAE
satisfying assignment, it suffices to show that for every xi, either Pi or P i is
contained in Tk for each k ∈ [2]. 
�

Observe that if we add two new vertices of degree one adjacent to vertex t,
then we get a reduction to the problem of deciding whether the edges of G can
be covered by two trails, proving Corollary 2. The following corollary concludes
the proof of Item 2 in Theorem 1.

Corollary 3. Eulerian Local Tour and Eulerian Local Trail are NP-
complete on temporal graphs with lifetime τ for every fixed τ ≥ 2. This also holds
on dynamic-based graphs.
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Proof. We first make a reduction from Eulerian Local Tour on (G, [2]) to
Eulerian Local Trail on (G′, [τ ]). Given (G, [2]), let G′ be obtained from
G by adding a star on τ + 1 vertices and identifying one of its leaves with a
vertex s ∈ V (G). We argue that (G, [2]) has an Eulerian local tour starting and
finishing in s if and only if (G′, [τ ]) has an Eulerian local trail. The lemma follows
because we can then obtain a Turing reduction by building a distinct instance
for each s ∈ V (G). Denote the vertices of the initial star by u, v1, · · · , vτ+1,
where u is the central vertex, and v2 is the vertex where G is pending. Let T be
an Eulerian local tour of (G, [2]) starting and finishing in s, and T1, T2 be the
trails in G defined by T . Build an Eulerian local trail of (G′, [τ ]) by visiting v1u,
uv2 and T1 in G′

1, then performing T2 and visiting v2u and uv3 in G′
2, and finish

visiting the remaining edges of the star in the obvious way.
Now, let T be an Eulerian local trail of (G′, [τ ]), and denote by Ti the trail

in G′ defined by T restricted to G′
i, for each i ∈ [τ ]. Observe that because we

have τ + 1 cut edges, we get that each Ti contains at most 2 of them, and in
case it contains exactly 2, say v1u, uv2, then Ti+1 either does not contain any
cut edge, or must intersect Ti in v1u, uv2. This means that the best we can do
in order to finish by time τ is to visit exactly two of them in the first snapshot,
and exactly one more in each of the subsequent snapshots. We can therefore
suppose, without loss of generality that Ti contains viu, vi+1u for each i ∈ [τ ].
Note that this implies that every edge of (G, [2]) must be visited in T1 and T2,
with T1 starting in v2 and T2 finishing in v2, as we wanted to prove.

Finally, note that (G′, [τ ]) constructed above has an Eulerian local trail if
and only if (G′, τ + 1) has an Eulerian local tour. This completes our proof. 
�

Finally, in order to prove Corollary 1.(ii), which considers strictly increas-
ing local trails, we can make a modification similar to the one made for walks,
meaning that the lifetime of (G,λ) will be sliced into windows, where each win-
dow allows only for the edges of a given variable to appear. Observe that this
transformation results in a non-dynamic-based temporal graph.

4 Eulerian Tours and Trails

We finally focus on Eulerian Trail and Eulerian Tour, proving that in the
general case they are both NP-complete, hence, proving Item 3 in Theorem 1.
To this aim, we make an adaptation of the construction in Theorem 3. Observe
that here the base graph needs to be Eulerian as otherwise the answer to Eule-
rian Trail is trivially NO. This also implies that the problem restricted to
dynamic-based graphs is trivial: if the base graph is Eulerian, then the answer
to Eulerian Tour is YES; otherwise, then the answer is NO. The trick now is
to take advantage of the function λ in order to enforce the edges.

Theorem 4. Eulerian Tour and Eulerian Trail are NP-complete, even
on temporal graphs with fixed lifetime τ ≥ 2.
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Proof. We first prove the case τ = 2. For this, we simply replace the gadget to
enforce an edge uv in the construction of Sect. 3 by two paths of length 2, P 1

uv

and P 2
uv, where the edges in P i

uv are active only in snapshot Gi, for each i ∈ [2].
Because the arguments used in Sect. 3 depended only on the fact of uv be indeed
an enforced edge, we can apply the same arguments here. The only difference is
that the trails in G1 and G2 now cannot intersect, which indeed is the case since
the intersection between T1 and T2 in Sect. 3 is exactly the set of forced edges,
and since here each appearance of a forced edge uv is actually related either to
P 1

uv or to P 2
uv.

Now, in order to prove the NP-completeness for higher values of τ , we can
simply add new vertices v3, · · · , vτ and edges {s1v3} ∪ {vivi+1 | i ∈ {3, · · · , τ}}.
This gives us that Eulerian Trail is NP-complete on (G,λ) with lifetime τ
for every fixed τ ≥ 2. And if we want a closed trail, it suffices to identify vτ with
s1, if τ ≥ 4, and if τ = 3, we add a new vertex v4 and edges v3v4, v4s1 active in
snapshot G3. This concludes our proof. 
�

Again, in order to prove Corollary 1.(iii), a modification similar to the one
made for walks works. We give a more formal argument below. One can observe
that similar arguments can be applied to prove Corollary 1.(ii), as previously
claimed.

Proof (Sketch of the proof of Corollary 1.(iii)). As previously said, we will slice
the lifetime of (G,λ) into windows, each window allowing only for the edges of
a given variable to appear. For this, first observe that, for each clause cj , a pass
in our previous T1 used 10 edges inside of Cj (already considering that a forced
edge is being replaced by two paths on 2 edges), and that a pass in our previous
T2 used 11 edges of Cj . This means that if we allow the edges of a variable
xi appearing in cj to live long enough, we will be able to visit Cj in a strictly
increasing way. For simplicity, consider again that each variable appears at most
3 times in φ. We assign to each xi two time windows, one for the first passing, one
for the second, each of size 40 (could be 39, but we choose that for roundness).
Thus, variable x1 will take windows {1, · · · , 40} and {40n + 1, · · · , 40(n + 1)},
with the edges of P1 ∪ P 1 ∪ {O1I2} being active in the following times: the first
edge of P1 and of P 1 are active in time 1 and 40n + 1, the last edges of P1

and of P 1 are active in time 38 and 40n + 38, forced edge O1, I2 is active in
times {39, 40, 40n + 39, 40(n + 1)}, and the remaining edges are active in the
period {2, · · · , 37} ∪ {40n + 2, · · · , 40n + 37}. Similarly the window of xi will be
{40(i − 1), · · · , 40i} ∪ {40(n + i − 1), · · · , 40(n + i)}. Note that we can link On

to I1 directly, making them active during {40n − 1, 40n} (this is the end of the
first window of xn). Finally, the edges inside a clause cj will be active during
the windows of the corresponding literals. One can verify that the key Property
(II) in the proof of Theorem 3 holds, and NP-completeness follows. 
�
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Abstract. We study the following reconfiguration problem: given two
s, t Hamiltonian paths connecting diagonally opposite corners s and t of
a rectangular grid graph G, can we transform one to the other using only
local operations in the grid cells? In this work, we introduce the notion
of simple s, t Hamiltonian paths, and give an algorithm to reconfigure
such paths of G in O(|G|) time using local operations in unit grid cells.
We achieve our algorithmic result by proving a combinatorial structure
theorem for simple s, t Hamiltonian paths in rectangular grid graphs.

1 Introduction

An m × n rectangular grid graph G is a subgraph of the infinite integer grid
embedded on m rows and n columns; the outer boundary of G is a rectangle
R, and the inner faces of G are 1 × 1 grid cells, so G has mn vertices. An s, t
Hamiltonian path P of G is a Hamiltonian path of G with endpoints at the top
left and bottom right vertices s and t of R. See Fig. 2(a) for an example. The
reconfiguration of s, t Hamiltonian paths in grid graphs is concerned with trans-
forming one s, t Hamiltonian path into another such Hamiltonian path of the
same graph using some operation that preserves Hamiltonicity in each interme-
diate step of the transformation. Here, we give a reconfiguration algorithm for
a class of s, t Hamiltonian paths that we call ‘simple’ paths. Moreover, we use
an operation (namely, pairs of switch operations to be defined in Sect. 4) that is
local to the grid graph, not the path. See Fig. 1.

Each internal node v of G lies on an internal subpath of P , namely the subpath
joining the first boundary vertices vs and vt met when travelling along P from
v toward s and toward t, respectively. This internal subpath must make at least
two bends (turns) if vs and vt lie on the same side of R, at least one bend if they
lie on adjacent sides, and does not need to bend if vs and vt lie directly opposite
each other. An s, t Hamiltonian path P is simple if each such internal subpath
has the minimum possible number of bends. Thus each internal node of G either
lies on a bend-free internal subpath between directly opposite boundary nodes,

c© Springer Nature Switzerland AG 2021
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Fig. 1. Reconfiguring simple s, t Hamiltonian path P to another such path P ′ using
pairs of switch operations.

or lies on a one-bend internal subpath between nodes on adjacent sides, or lies
on a two-bend internal subpath between nodes on the same side. We call such
paths P simple because they cannot wind and twist inside R: internal subpaths
can travel between any pair of sides of R, yet can make only the minimum
possible number of bends to do so. The Hamiltonian path in Fig. 2(a) is simple.
See Fig. 11 for an example of a ‘twisty’ and ‘windy’ s, t Hamiltonian path.

Although linear time reconfiguration algorithms have been designed for “1-
complex” Hamiltonian cycles in rectangular grid graphs [13] (i.e., Hamiltonian
cycles where each internal node of the grid is connected to the boundary by
a straight line segment along the cycle), similar techniques do not carry over
to s, t Hamiltonian paths. Whereas all the internal paths in a cycle must start
and end on adjacent nodes on the boundary, paths allow internal subpaths to
have endpoints that are far apart on the boundary. In this paper we study the
structure and reconfiguration of simple s, t Hamiltonian paths as an important
step towards understanding the structure of general s, t Hamiltonian paths and
designing reconfiguration algorithms for them.

Hamiltonian paths and cycles in grid graphs have attracted interest in part
due to their many applications (e.g., in robot navigation [5], 3D printing [11], and
polymer science [16]). They have the potential to reduce turn costs and travel
time and to increase navigation accuracy (e.g., [1,4,21]). We believe the general
study of reconfiguration of paths in grids is both interesting on its own and also
useful for exploring the space of route possibilities in grid-like environments such
as warehouses and 3D printer platforms.

Our Contributions. Our work is the first to study reconfiguration of paths in
grid graphs, while previous work on paths focused mainly on existence, enumera-
tion, and generation, not reconfiguration. In particular, (1) we establish the struc-
ture of simple s, t Hamiltonian paths in rectangular grid graphs; (2) we introduce
a zip operation, which uses a switch in a grid cell as the atomic local operation, to
reconfigure simple s, t Hamiltonian paths; our zip operation is comprised of pairs
of switch operations that preserve Hamiltonicity and its accompanying data struc-
ture facilitate running time analysis and possible implementation of our algorithm
and other reconfiguration algorithms; (3) using the structure theorem, we give an
algorithm to reconfigure any simple s, t Hamiltonian path to any other such path
in time linear in the size |G| of the grid graph G.
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Fig. 2. (a) Grid layout of a simple path P = Ps,t. (b) The combinatorial layout of P .
(See Sects. 2 and 3 for explanation of notation.)

Related Work. Itai et al. [6] gave necessary and sufficient conditions for the
existence of a Hamiltonian path between any pair of vertices in a rectangular
grid graph. The existence problem for classes of non-rectangular grid graphs was
studied in [3,9,20]. Ruskey and Sawada studied existence of ‘bent’ Hamiltonian
cycles in grid graphs in d-dimension, d ≥ 2, where each edge in a pair of successive
edges on the path lies in a different dimension [18]. Combinatorial aspects of
Hamiltonian paths in grid graphs such as enumeration [8,17] and generating
functions [2] have been explored.

Reconfiguration problems have attracted attention for some time [7,15].
There has been some recent work on reconfiguration of Hamiltonian cycles in
grid graphs. Takaoka [19] has shown that for some unembedded graph classes,
deciding whether there is a sequence of “switch” operations between two given
Hamiltonian cycles is a PSPACE-complete problem. Nishat and Whitesides stud-
ied reconfiguration of Hamiltonian cycles of “bend complexity 1” in grid graphs
without holes [12–14].

2 Terminology and Basics

Throughout this paper, a simple path means a simple s, t Hamiltonian path of
G; P visits each node of G exactly once and uses only edges in G. A cell of G is
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an internal face of G. A vertex of G with coordinates (x, y) is denoted by vx,y,
where 0 ≤ x ≤ n − 1 and 0 ≤ y ≤ m − 1. The top left corner vertex s of G
has coordinates (0, 0), and the positive y-direction is downward. We use the two
terms node and vertex interchangeably.

Column x of G is the shortest path of G between vx,0 and vx,m−1, and Row
y is the shortest path between v0,y and vn−1,y. We call Columns 0 and n− 1 the
west (W) and east (E) boundaries of G, respectively, and Rows 0 and m − 1 the
north (N ) and south (S) boundaries.

Let P be a simple path of G. We denote by Pu,w the directed subpath of
P from vertex u to w. Straight subpaths are called segments, denoted seg[u, v],
where u and v are the segment endpoints. An internal subpath Pu,v of P is called
a cookie if both u, v are on the same boundary (i.e., N , S, E , and W); otherwise,
Pu,v is called a separator. (Note that removal of the nodes of a separator from
G separates s from t in G.)

Cookies and Separators. A cookie has one of four types, depending on the
boundary where the cookie has its base. A cookie c is formed by three segments
of P ; the common length of the two parallel segments measures the size of c.

Since separators of P have endpoints on distinct boundaries, there are two
kinds, as shown in Fig. 2: a corner separator μi or νi has one bend, and a straight
separator ηi has no bends. Traveling along Ps,t, we denote the i-th straight
separator we meet by ηi where 0 ≤ i ≤ k, and its endpoints by s(ηi) and t(ηi),
where s(ηi) is the first endpoint met. We say a corner separator cuts off a corner
(s or t). Traveling along Ps,t, we denote the i-th corner separator cutting off s
by μi, where 0 ≤ i ≤ j. We denote its internal bend by b(μi), and its endpoints
by s(μi) and t(μi), where s(μi) is the first endpoint met. Similarly, we denote
the i-th corner separator cutting off t by νi; endpoint s(νi) is met before t(νi),
with internal bend at b(νi), where 0 ≤ i ≤ �. A corner separator that has one of
its endpoint connected to s or t by a segment of P is called a corner cookie. We
have j corner separators μi cutting off s, and k straight separators, and � corner
separators νi cutting off t. In Fig. 2, j = 4, k = 3 and � = 1. (We will see that
only s and t can be cut off.)

Runs of Cookies. A run of cookies is a subpath of P consisting of cookies
of the same type, spaced one unit apart and joined by the single boundary
edges between them, possibly extended at either end by an edge joining a cookie
endpoint to an adjacent boundary vertex. A run of cookies is denoted Run[u, v],
where u and v belong to the same boundary and delimit the range of boundary
vertices covered; Run[u, v] may consist of a single boundary edge (u, v). In Fig. 2,
Run[s, s(μ1)] is a run of W cookies. To describe the path structure, we define
three types of runs, depending on the cookie sizes along the run: the sizes may
remain the same, or be non-increasing (denoted Run≥[u, v]) or non-decreasing
(Run≤[u, v]). Runs are assumed to have cookies of the same size unless specified
otherwise. In Fig. 2, Run≥[a, α] is non-increasing; Run[s, s(μ1)], which has same
size cookies, could also be viewed as non-increasing or non-decreasing.
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Canonical Paths. A canonical path is a simple path P with no bends at
internal vertices. If m is odd, P can be E-W and fill rows of G one by one; if n
is odd, P can be N -S and fill columns (see Fig. 3(d)). There are no other types.

Assumption. Let α and β denote the bottom left and top right corner vertices
of G. Without loss of generality, we assume the input simple path Ps,t visits α
before β. The target simple path for the reconfiguration as well as intermediate
configurations may visit β before α. In the rest of this section and the next, P
denotes the input simple path.

Blocks. As shown in Fig. 3, corner separators μj and ν1 define rectangular
subgraphs, called blocks, of G, denoted Rs and Rt. Straight separators η1 and
ηk determine a block Rmid. The remaining nodes of G determine two blocks:
Rα, with corners at α, a (upper left) and a′ (lower right), and Rβ , with corners
at β, and b′ (upper left) and b (lower right) as shown. Blocks Rs and Rt vanish
when j=0 and �=0, respectively. For now the goal is to define the blocks. Later
we will observe that Ps,t connects the blocks with “links” as shown in the figure.

Fig. 3. (a) Blocks of Ps,t; the links between blocks are darkened. (b)–(d) Some special
cases. See Sect. 3 for details. (c) An N -S canonical path.

We make two observations (the second is a consequence of the first) that
prepare for the structure theorem in the next section.

Observation 1. The subpath Ps,α of Ps,t must cover all the W vertices as
otherwise P fails to be Hamiltonian or non-crossing. For the same reason, no
corner separators cut off α or β, and Ps,t must visit β before visiting any other
E vertices. It follows that the corner separators μi cutting off s must occur in
Ps,t before α, and that the corner separators νi cutting off t occur in Ps,t after
β. It also follows that all straight separators ηi occur between α and β, and that
the number k ≥ 1 of them must be odd. ��
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Observation 2. Ps,t breaks G into at most five blocks (Rs, Rα, Rmid, Rβ ,
and Rt) as shown in Fig. 3. Ps,t must join blocks with link edges, one on each
boundary, directed as shown in the figure. In certain cases, detailed in Sect. 3,
blocks (and their links) may vanish, or blocks may shrink to segments. ��

3 Structure of a Simple Path P

We regard P in its directed form Ps,t as composed of an initial subpath Ps,s(η1),
followed by a middle subpath Ps(η1),t(ηk), and a final subpath Pt(ηk),t. Except
for three special cases (a)–(c) listed below, the initial subpath first covers all
the vertices in Rs, next takes an edge (t(μj), a), denoted link(t(μj), a), to Rα.
It then covers Rα and then takes an edge link(a′, s(η1)) to s(η1). The possible
forms for the final subpath are the same as for the initial subpath Pt,s, which is
Ps,t in reverse.

Three Special Cases: (a) If α is not adjacent to s(η1) in G and j = 0, then
s = a because Rs disappears and the initial subpath begins at Rα, where each
side of Rα has length at least 1. See Fig. 3(b). Similarly, if β is not adjacent to
t(ηk) and � = 0, then Rt disappears and b = t and each side of Rβ has length
at least 1. (b) If α is adjacent to s(η1) in G and thus in Ps,t, then there is no
room for any μi so as in case (a), j must be 0 and a = s; furthermore, unlike
case (a), Rα = seg[s = a, α]. See Fig. 3(c) for an example. Similary, if t(ηk) is
adjacent to β, then � must be 0 and b = t, and Rβ = seg[β, b = t]. (c) If j > 0
and Ps,t contains edge (t(μj), α) then Rα = seg[α, a′]. See Fig. 3(d). Similarly,
if � > 0 and Ps,t contains edge (β, s(ν1)), then Rβ = seg[b′, β].

A canonical path that visits α before β falls into case (b) and has the form
‖ seg[s = a, α] ‖ link(α, s(η1)) ‖ Ps(η1),t(ηk) ‖ link(t(ηk), β) ‖ seg[β, b = t] ‖.
(Recall Fig. 3(c).) Here, and later on, ‖ is used to delimit subpaths. Observa-
tions 3, 4, and 5 below, together with Observations 1, 2 and associated figures,
will establish our structure theorem.

Observation 3 (about Rs). For j = 0, Rs disappears. For j > 0, there must be
j endpoints of μi on W and j on N . Endpoint t(μj) must lie on W, not N , and it
must be the corner separator endpoint nearest to α on W. The endpoints must
alternate on W as shown in Figs. 4(a), (d). Thus for j odd, the top endpoint
on W is t(μ1), so s(μ1) is on N ; for j > 0 even, s(μ1) is on W. Either way,
Ps,s(μ1) = Run[s, s(μ1)].

Ps(μ1),t(μj) makes round trips (see Fig. 4(e)) between W and N via the μi.
These trips have the form ‖μi ‖ Run[t(μi), s(μi+1)] ‖μi+1‖ and alternate leaving
from N or from W, as the return leg of one trip is the outgoing leg of the next.
Furthermore, t(μi+1) must be adjacent to s(μi) to ensure the Hamiltonicity of
Ps,t. Between t(μi) and s(μi+1), the path must have the form Run[t(μi), s(μi+1)],
which may be just a single edge (t(μi), s(μi+1)).

Thus for j > 0, Ps,t(μj) = ‖Run[s, s(μ1)] ‖ μ1 ‖ Run[t(μ1), s(μ2)] ‖ μ2 ‖ . . . ‖
μi ‖ Run[t(μi), s(μi+1)] ‖ μi+1 ‖ . . . ‖ μj−1 ‖ Run[t(μj−1), s(μj)] ‖ μj‖. ��
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Fig. 4. Endpoint ordering on W and form of Ps,s(μ1) for: (a), (b) even j > 0; (c), (d)
j odd; (e) round trips Ps(μi),t(μi+1) start on W (red) or on N (blue). (Color figure
online)

Fig. 5. (a) Block Rα where |seg[u, α]| > 1 and (b) where |seg[α, u]| > 1; (c) Rmid for
k > 1; (d) Rmid is a segment when k = 1. (e) Rmid cannot have cookies.

Observation 4 (about Rα). In special case (b), in which s = a and α is adja-
cent to s(η1), we have that α = a′ and so Pa,a′ = seg[s = a, α] on W. In special
case (c), in which Ps,t contains edge (t(μj), a = α), we have that Pa,a′ = seg[a =
α, a′] on S. Otherwise, two segments of P meet at α, one on W, one on S; one
has unit length and the other is strictly longer. See Fig. 5(a),(b). It follows from
Observation 1 that either Pa,a′ = ‖Run≥[a, u] ‖ seg[u, α] ‖ Run≤[α, a′]‖, with u
at least two units from α on W, or Pa,a′ = ‖Run≥[a, α]‖seg[α, u]‖Run≤[u, a′]‖,
with u at least two units from α on S. ��
Observation 5 (about Rmid). (See Fig. 5(c), (d), (e).) Block Rmid has no cook-
ies. Extending run notation, Ps(η1),t(ηk) = ‖η1 ‖ Run[t(η1), t(ηk)]‖. ��

The next theorem, based on Observations 1–5 and associated figures, estab-
lishes the structure of P by giving the forms that the subpaths of Ps,t may take
inside the blocks. See Fig. 3.

Theorem 1 (Structure of Simple Paths). Let Ps,t be a simple path with k
straight separators and j and � corner separators cutting off s and t, respectively.
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Initial Subpath [Ps,s(η1)]. The subpath Ps,t(μj) through Rs is given in Obser-
vation 3. The subsubpath Pa,a′ through Rα is given in Observation 4. Appending
link(a′, s(η1)) and inserting link(t(μj), a) (if needed), gives the structure for
Ps,s(η1).

Middle Subpath [Ps(η1),t(ηk)]. This consists of an odd number k of straight
separators ηi in adjacent grid columns, joined by edges (t(ηi), s(ηi+1)), 1 ≤ i < k,
which lie on N for odd i and on S for even i. See Observation 5.

Final Subpath [Pt(ηk),t]. As Pt,t(ηk) is the initial subpath of Pt,s (the reverse
of Ps,t), the forms for the final and the initial subpaths are the same.

4 Zip Operation

In this section we define the zip operation that can be applied on an s, t Hamil-
tonian path P , not necessarily simple. We will use zips in our reconfiguration
algorithm in the next section. We first define some terminology, including a
switch operation that is used as the atomic local operation of zip.

A vertical track trv
x is the subgraph of G induced by Columns x and x + 1,

and a horizontal track trh
y is the subgraph induced by Rows y and y + 1. A

cycle-path cover P of G is a set of cycles and paths that collectively cover all
the vertices of G. Let f be a cell of G with face cycle a, b, c, d, a in G such
that edges (a, d) and (c, b) are the only edges of f that are in P (see Fig. 6). A
switch operation on P in f replaces (a, d) and (c, b) with (a, b) and (c, d) and
thus produces another cycle-path cover P

′. We call f a switchable cell of G in
P (or in P for short, if P = {P}). Note that our switch operation is applied
locally to a cell of an embedded grid graph, and hence a single switch does not
preserve Hamiltonicity. We, therefore, always apply switches in pairs such that
the second switch operation in a pair patches the two parts created by the first
switch and returns an s, t Hamiltonian path. In contrast, the switch operation
defined by Lignos [10] and Takaoka [19] is applied to a four cycle of the graph,
where the graph is not necessarily planar, and may not be embedded; and their
switch operations do not need to be paired. See Fig. 6(c) for an example of the
switch operation defined in [10,19].

Fig. 6. (a) A switch in a cell f . (b) A switch in a switchable cell of an embedded s, t
Hamiltonian path P in cycle-path cover P = {P} yields new cover P

′ = {P ′, C}. (c)
A single switch (i.e., edges (a, b) and (d, c) is replaced by edges (a, d) and (b, c)) as
defined in [10,19] on a non-planar graph preserves Hamiltonicity.
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Observation 6. A switch operation in a grid cell that is switchable for an s, t
Hamiltonian path P of G gives a cycle-path cover of G: P′ = {C,P ′} where C is
a cycle and P ′ is a path with ends s and t. A switch in a switchable cell f of P′,
where each of C and P ′ contains one edge of f , gives an s, t Hamiltonian path.

A zipline lq1,q2
z (the superscript may be omitted for short) is a straight

directed line in G from node q1 to node q2; lz lies in a row or a column of
G, and two tracks (horizontal or vertical) of G contain lz. We designate one of
those tracks as the cookie track tr, and the other track the side track tr′. A
switchable cell f of tr or tr′ is called a perpendicular switchable cell if the two
edges that f contributes to P are perpendicular to tr (and tr′); we denote the
first of those edges met while walking along lz from q1 to q2 by e1(f), the second
edge by e2(f), and we say that f is between q1 and q2 if e1(f) and e2(f) occur
between q1 and q2. Note that not all the switchable cells of tr and tr′ between
q1 and q2 are necessarily perpendicular switchable cells.

The zip set S of zipline lz is the set of perpendicular switchable cells from
tr and tr′ constructed as follows: walking along lz from q1 to q2, we look for
the first perpendicular switchable cell in the cookie track tr; if we find such a
switchable cell, say f1, in tr between q1 and q2, we look for the next perpendicular
switchable cell in the side track tr′ between e2(f1) and vertex q2; if we find such
a cell (call it f ′

1) in tr′ then we add both f1 and f ′
1 to S; otherwise we do not add

f1 to S as it cannot be paired with a switchable cell from the side track. If we
find f ′

1 before reaching q2, we repeat the above process for cells between e2(f ′
1)

and q2 to find pairs (f2, f ′
2), (f3, f ′

3) and so on. At the end, S is either empty
or consists of pairs of perpendicular switchable cells, one from tr and one from
tr′. Moreover, no two cells of S share an edge, and each pair fi and f ′

i is met
consecutively on lz between f ′

i−1 and fi+1. We now define the zip operation; see
Fig. 7.

Definition 1 (Zip). Let lq1,q2
z be a zipline of G with cookie track tr and side

track tr′, and let S = {f1, f ′
1, f2, f ′

2, . . . , fp, f
′
p}, where |S| ≥ 0 is even, be the

zip set of lz. The zip operation Z = zip(lq1,q2
z , tr, tr′) applies switch to all the

cells of S in the following order: f ′
1, f1, f

′
2, f2, . . . , f

′
p, fp.

We note here that the zip operation may not preserve simplicity when applied
on a simple path. However, as Lemma 1 shows, each zip and indeed each pair of
its switches, preserves s, t Hamiltonicity.

Let S = {f1, f ′
1, f2, f ′

2, . . . , fp, f
′
p} be the zip set of the zip operation

Z = zip(lq1,q2
z , tr, tr′), where |S| > 0. S is intra-pair overlapping if for each pair

of cells fi, f
′
i of S, the edges appear in the following path order on Ps,t: e1(f1),

e1(f ′
1), e2(f1), e2(f ′

1). Note that the path order of those four edges is different
from their zipline order, i.e., the order in which they are met on lz. Zip set S
is inter-pair overlapping when S is intra-pair overlapping, and the first edge
e1(fi+1) of the (i + 1)st pair is between e2(fi) and e2(f ′

i) on P . In other words,
the path order of the edges of the cells of S is e1(f1), e1(f ′

1), e2(f1), e1(f2),
e2(f ′

1), e1(f ′
2), e2(f2), e1(f3), e2(f ′

2), . . . , e2(f ′
p).
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Fig. 7. (a) An example of a zip operation on an s, t Hamiltonian path P where lz is
horizontal. (b) The cycle-path cover P obtained by a switch in f ′

1, and the new s, t
Hamiltonian path P ′ obtained from the cycle-path cover by a switch in f1.

Lemma 1. Let Z = zip(lq1,q2
z , tr, tr′) be a zip operation on an s, t Hamiltonian

path P with the zip set S = {fi,f ′
i for 1 ≤ i ≤ p}, |S| > 0. If S is inter-pair

overlapping, then after switching the cells f ′
1 and f1 we obtain an s, t Hamiltonian

path P ′ such that S′ = S − {f1, f
′
1} is the zip set of Z ′ = zip(lq,q2

z , tr, tr′), where
q is the endpoint of e2(f ′

1) on lz, and S′ is inter-pair overlapping.

Proof. We first prove that P ′ is an s, t Hamiltonian path. Since S is intra-pair
overlapping, the path order of the edges of f1 and f ′

1 is e1(f1), e1(f ′
1), e2(f1),

e2(f ′
1). By Observation 6, a switch in f ′

1 must produce a cycle-path cover, say P,
of G containing exactly one cycle and one path from s to t; see Fig. 7(b). Now
edge e1(f1) is on the path and the edge e2(f1) is on the cycle in P. Therefore,
the switch in f1 in P gives an s, t Hamiltonian path by Observation 6. Since by
definition of zip set, f2 is the first perpendicular switchable cell encountered in
cookie track tr when walking from e2(f ′

1) to q2, S′ = S − {f1, f
′
1} is the zip set

of Z ′. By the inter-pair overlapping property of S, only one edge e1(f2) of a cell
in S − {f1, f

′
1} is on the subpath of P from s to the second endpoint of e2(f ′

1).
Since P and P ′ only differ in that subpath, the path order of the edges of the
cells of S′ on P ′ is the same as their path order on P . Therefore, S′ is inter-pair
overlapping. ��

Using Lemma 1, we can prove the following lemma by induction. To achieve
the stated time complexity, a suitable data structure is used to store the path
edges that allows O(1) time retrieval and update.

Lemma 2. A zip operation on an s, t Hamiltonian path P of G returns another
s, t Hamiltonian path P ′ in O(max{m,n}) time, where P and P ′ differ only at
the cells belonging to the zip set.

5 Reconfiguring Simple Paths

In this section, we give an algorithm to reconfigure any simple path P to another
simple path P ′. The algorithm reconfigures P and P ′ to canonical paths P and P

′,
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respectively; it then reconfigures P to P
′ in case they are not the same path (i.e.,

one of P and P
′ is the N -S canonical path and the other is the E-W canonical

path); and finally the algorithm reverses the steps taken from P ′ to P
′.

Reconfiguring P to P. We give an algorithm that we call ReconfigSimp to
reconfigure any simple path P = Ps,t to a canonical path P, where P might
be either N -S or E-W. The algorithm runs in three steps: (a) reconfigure the
initial subpath of Ps,t such that either Ps,α is a segment seg[s, α] and α = a′, or
Run[s, α] is a run of W cookies of size x(a′) and Pα,a′ is a segment seg[α, a′];
(b) reconfigure the final subpath (that is, the initial subpath of Pt,s) similarly
to the previous step; (c) if the path resulting from Step (b) contains both the
segments seg[s, α] and seg[β, t] then we have the N -S canonical path and the
algorithm terminates; otherwise, we have at least one run of E or W cookies and
we reconfigure Ps,t to obtain the E-W canonical path.

Step (a). The algorithm reconfigures the initial subpath of P by calling two
procedures, first Recon R s and then Recon s to a′.

Procedure. Recon R s reconfigures Rs by dissolving an even number of corner
separators cutting off s. If the number j is even, then all the corner separators
are dissolved; otherwise, all but μj are dissolved.

If j > 0 is even, we apply zips on a horizontal zipline lq1,q2
z , where q1 and

q2 are on the W boundary and on Column x(s(μj)), respectively, for all the zip
operations. The zipline lz is first placed on Row 1. Track trh

0 above lz is the cookie
track and track trh

1 below lz is the side track. The zip operation then grows a
W cookie of size x(q2) in the cookie track. We then move the zipline two rows
down and apply a similar zip. In this way the zipline is swept downward until
it is on Row y(t(μj)), where the final zip is applied to obtain a simple path P ′

with no corner separators cutting off s. We call this procedure a SweepDown;
see Fig. 8.

Fig. 8. Intermediate steps of a SweepDown procedure on Rs of P .

If j is odd, we apply a procedure SweepRight similar to SweepDown. Zips
are applied on a vertical zipline lq1,q2

z , where q1 and q2 are on the N boundary
and on Row y(t(μj)), respectively, and the cookie track is on the left and the
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side track is on the right of lz. The zipline starts from Column 1 and finishes on
Column x(s(μj)) − 1, sweeping two columns eastward after every zip except the
last one.

Let P ′ be the path returned by Recon R s. The following lemma shows that
P ′ is a simple path with at most one corner separator cutting off s.

Lemma 3. P ′ is a simple path with no corner separator if j is even, and P ′

has a single corner separator that coincides with μj of P if j is odd.

Proof. By Lemma 2, each of the zip operations in the SweepDown procedure
gives an s, t Hamiltonian path, although it might not necessarily be simple. First
assume that j is even. To prove that the P ′ is a simple s, t Hamiltonian path,
we show that each zip operation satisfies the following pre- and post-conditions.

Pre-condition: Pq1,q2 occupies only the rows on or below the cookie track.

Post-condition: Cookie track tr contains a W cookie of size x(q2).
Since the cookie track of the first zip Z1 is incident to the N boundary, the

input P satisfies the pre-condition. Let P1 be the path obtained by applying
Z1 to P . Every switch in tr′ creates an island in tr and the next switch in tr
connects that island to the W cookie, thus increasing the size of the W cookie.
The first switch of Z1 is illustrated in Fig. 9.

Fig. 9. The 1×1 island, depicted by red line, in the cookie track created by the switch
in f ′

1 is attached to the W cookie by the switch in f1. The W cookie after the switch
is depicted by red line. (Color figure online)

At the end of Z1, there is one single W cookie of size x(q2) in P1 satisfying the
post-condition. Then P1 also satisfies the pre-condition of the next zip operation
where the cookie track is trh

2 , as there are no edges perpendicular to the side
track trh

1 of Z1 in P1. In this way, we can show that after each zip operation we
have a W cookie of size x(q2) in the respective cookie track. Therefore, at the
end of the sweep, Rs of P ′ is covered by a run of W cookies; see Fig. 8. The case
when j is odd is the same when the grid is flipped along the s, t diagonal. ��

Procedure. Recon s to a′ applies zips on P ′ to obtain another simple path
P ′′, where the initial subpath of P ′′ has either a run of W cookies or no cookies
at all. If there is an odd number of columns, including the W boundary, to the
left of η1, we apply a SweepLeft procedure similar to the SweepRight procedure
above. The zips are applied on a vertical zipline lq1,q2

z , where q1 and q2 are on the
S boundary and N boundary, respectively, and the cookie track is on the right
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Fig. 10. The intermediate paths in the SweepLeft procedure in P ′.

and the side track is on the left of lz. The zipline starts from Column x(s(η1))−2
and finishes on Column 1, sweeping two columns westward after every zip except
the last one. See Fig. 10. Otherwise, when there is an even number of columns
covered by the initial subpath of P , the number of rows must be odd [2]. We
apply a SweepDown procedure from Row 1 to Row m − 2, where q1 is on the W
boundary and q2 is on η1 for all the ziplines. The following lemma proves the
correctness of procedure Recon s to a′.

Lemma 4. The initial subpath of P ′′ has either a run of W cookies or no cookies
at all.

Proof. If x(s(η1)) of P ′ is even, it is easy to show that the number of corner sep-
arators cutting off s cannot be odd. Therefore, j for P ′ must be 0 by Lemma 3.
Since the initial subpath covers a rectangular region from corner s to its diag-
onally opposite corner a′, if the number of columns is even then the number
of rows must be odd [2]. Then the SweepDown procedure grows a run of W
cookies in a similar way as in the proof of Lemma 3. If x(s(η1)) is odd, then there
are two cases to consider based on the existence of a corner separator cutting off
s in P ′. In both cases, SweepLeft works similarly to SweepDown if we flip
the Ps,s(η1) subpath about the diagonal. ��

Since Step (b) is very similar to Step (a), we now describe Step (c).

Step (c). Let the path obtained after Steps (a) and (b) be P. If there exists any
E or W cookies in P, then SweepDown is applied on the whole path, where
the starting point q1 of each zipline is on the W boundary and the ending point
q2 is on the E boundary. The following theorem follows from Lemmas 3 and 4.

Theorem 2. Algorithm ReconfigSimp reconfigures a simple path in a rectan-
gular grid graph G to a canonical path of G in O(|G|) time.

Reconfiguring P to P
′: This step is similar to Step (c) of Algorithm Recon-

figSimp; if P is N -S then we grow horizontal straight separators by sweeping
downward; otherwise, we grow vertical separators by sweeping eastward. We now
have the following theorem.
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Theorem 3. Let P and P
′ be two different canonical paths of G. Then P can be

reconfigured to P
′ using zips in O(|G|) time.

Main Algorithmic Result: We now state the central algorithmic result of our
paper in the following theorem.

Theorem 4. Let P and P ′ be two simple paths of a rectangular grid graph G.
Then P can be reconfigured to P ′ using zips in O(|G|) time.

6 Conclusion

We have opened the exploration of reconfiguration of families of Hamiltonian
paths in grid graphs. We have established the structure of any simple s, t Hamil-
tonian path in a rectangular grid graph G and given an O(|G|) algorithm to
reconfigure any such path to any other using zip operations. It would be inter-
esting to find new families of s, t Hamiltonian paths, as shown in Fig. 11, and
local operations that can reconfigure them.

Fig. 11. An s, t Hamiltonian path, where the red vertices are connected to a boundary
by at least 4 segments on the path. (Color figure online)

The problems about reconfiguring Hamiltonian paths with arbitrary end ver-
tices remain open. Another future direction of research could be reconfiguration
of Hamiltonian paths in d dimension, where d ≥ 3.
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Abstract. We consider the following class of submodular k-multiway
partitioning problems: (Sub-k-MP) min

∑k
i=1 f(Si) : S1 �S2 �· · ·�Sk =

V and Si �= ∅ for all i ∈ [k]. Here f is a non-negative submodular func-
tion, and � denotes the union of disjoint sets. Hence the goal is to parti-
tion V into k non-empty sets S1, S2, . . . , Sk such that

∑k
i=1 f(Si) is min-

imized. These problems were introduced by Zhao et al. partly motivated
by applications to network reliability analysis, VLSI design, hypergraph
cut, and other partitioning problems.

In this work we revisit this class of problems and shed some light on
their hardness of approximation in the value oracle model. We provide
new unconditional hardness results for Sub-k-MP in the special settings
where the function f is either monotone or symmetric. We then extend
Sub-k-MP to a larger class of partitioning problems, where the functions
fi(Si) can be different, and there is a more general partitioning constraint
S1�S2�· · ·�Sk ∈ F for some family F ⊆ 2V of feasible sets. We provide a
black box reduction that allows us to leverage several existing results from
the literature; leading to new approximations for this class of problems.

1 Introduction

Submodularity is a property of set functions equivalent to the notion of dimin-
ishing returns. We say that a set function f : 2V → R is submodular if for any
two sets A ⊆ B ⊆ V and an element v /∈ B, the corresponding marginal gains
satisfy f(A∪{v})−f(A) ≥ f(B ∪{v})−f(B). Submodular functions are a clas-
sical object in combinatorial optimization and operations research [20]. They
arise naturally in many contexts such as set covering problems, cuts in graphs,
and facility location problems. In recent years, they have found a wide range of
applications in different computer science areas.

Since a submodular function is defined over an exponentially large domain,
as is typical in the field we assume access to a value oracle that returns f(S)
for a given set S. A great variety of submodular maximization and minimization
problems under a wide range of constraints have been considered in the literature.
In this work, we are primarily interested in the following class of problems:

Submodular k-Multiway Partitioning (Sub-k-MP): Given a non-
negative submodular function f : 2V → R+, the goal is to partition V into
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 516–530, 2021.
https://doi.org/10.1007/978-3-030-79987-8_36
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https://doi.org/10.1007/978-3-030-79987-8_36
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k non-empty sets S1, S2, . . . , Sk such that
∑k

i=1 f(Si) is minimized. That is,

(Sub-k-MP) min
k∑

i=1

f(Si) : S1 � S2 � · · · � Sk = V and Si �= ∅ for all i ∈ [k],

where we use � to denote the union of disjoint sets.
Special important cases occur when in addition the function f is either mono-

tone or symmetric. We refer to those as Mon-Sub-k-MP and Sym-Sub-k-MP
respectively. Recall that a set function f is monotone if f(A) ≤ f(B) whenever
A ⊆ B ⊆ V , and symmetric if f(S) = f(V \ S) for any S ⊆ V .

In the absence of the non-emptyness constraints Si �= ∅, the problem is trivial
since the partition (V, ∅, . . . , ∅) is always optimal by submodularity. However,
although at first glance the non-emptyness constraints may seem inconspicuous,
they lead to interesting models and questions in terms of tractability. We discuss
this in more detail next.

These problems were introduced by Zhao, Nagamochi, and Ibaraki in [32]
partly motivated by applications to hypergraph cut and partition problems.
They mention how Sub-k-MP arises naturally in settings like network relia-
bility analysis [31] and VLSI design [7]. They also discuss how this class cap-
tures several important problems as special cases. For instance, the well-studied
Graph-k-Cut problem in graphs where the goal is to remove a subset of edges
of minimum weight such that the remaining graph has at least k connected
components. This problem is a special case of Sym-Sub-k-MP, where f corre-
sponds to a cut function in a graph and hence it is symmetric and submodular.
Another example is the more general Hypergraph-k-Cut problem on hyper-
graphs, where the goal is to remove a subset of hyperedges of minimum weight
such that the remaining hypergraph has at least k connected components. This
problem is a special case of Sub-k-MP (see [4,32] for further details).

The above class of submodular partitioning problems, however, is not as well
understood. No hardness of approximation for these problems seems to be known
under the standard P �= NP assumption. In fact, it is not known whether these
problems are in P for fixed values of k > 4 (even in the simpler monotone and
symmetric cases). We discuss this in more detail in Sect. 1.1.

One goal of this work is to revisit these problems and shed some light onto
their hardness of approximation in the value oracle model. These hardness results
are, thus, information theoretic. That is, limits on the approximability of a prob-
lem when only polynomially many queries to the value oracle are allowed. We
provide new hardness results for Sym-Sub-k-MP and Mon-Sub-k-MP.

A second goal is to extend Sub-k-MP to a more general class of prob-
lems and initiate the study of its tractability. This seems natural given that
Sub-k-MP already captures fundamental problems such as Graph-k-Cut and
Hypergraph-k-Cut, and in addition, its complexity is not as well understood.
We consider the class of problems given by

k-way MA-Min(F) min
k∑

i=1

fi(Si) : S1 � · · · � Sk ∈ F and Si �= ∅ ∀i ∈ [k],
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where the functions fi are all non-negative submodular and potentially differ-
ent, and the family F ⊆ 2V can be any collection of subsets of V . We denote
this class by k-way Multi-Agent Minimization (k-way MA-Min). This is
partially motivated by the work of Santiago and Shepherd [26] which considers
the following class of multi-agent submodular minimization problems:

MA-Min(F) min
k∑

i=1

fi(Si) : S1 � · · · � Sk ∈ F .

We study the connections between these multi-agent problems and their
k-way versions. In particular, we show that in many cases the approximation
guarantees for MA-Min(F) can be extended to the corresponding k-way versions
at a small additional loss.

1.1 Related Work

Zhao et al. [32] show that a simple greedy splitting algorithm achieves a (2−2/k)-
approximation for both Mon-Sub-k-MP and Sym-Sub-k-MP (Queyranne [24]
announced the same result for symmetric submodular functions), and a (k − 1)-
approximation for the more general Sub-k-MP. All these approximations hold
for arbitrary (i.e., not necessarily fixed) values of k. Okumoto et al. [23] showed
that Sub-k-MP is polytime solvable for k = 3, and Guiñez and Queyranne
[14] showed that the symmetric version Sym-Sub-k-MP is polytime solvable for
k = 4. We next discuss in more detail the cases where k is fixed (i.e., not part
of the input) and when k is part of the input.

For fixed values of k, the Graph-k-Cut problem can be solved in polyno-
mial time [13,18]. In recent work Chandrasekaran et al. [3] gave a randomized
polytime algorithm for Hypergraph-k-Cut, whose complexity had remained
an intriguing open problem even for fixed values of k. In subsequent work Chan-
drasekaran and Chekuri [2] gave a deterministic polytime algorithm. For the
more general submodular multiway partitioning problems, Chekuri and Ene [4]
gave a (1.5−1/k)-approximation for Sym-Sub-k-MP and a 2-approximation for
Sub-k-MP. The latter was improved to 2 − 2/k by Ene et al. [9].

When k is part of the input Graph-k-Cut is NP-Hard [13]. Hence all the
above problems are also NP-Hard (see full version for details about the mono-
tone case). Moreover, the symmetric and general version are also APX-Hard
since they generalize Graph-k-Cut. We note that Graph-k-Cut was claimed
to be APX-Hard by Papadimitriou (see [28]), although a formal proof never
appeared in the literature until the recent work of Manurangsi [22]. The latter
gave conditional hardness by showing that assuming the Small Set Expansion
Hypothesis, it is NP-hard to approximate Graph-k-Cut to within a 2 − ε fac-
tor of the optimum for every constant ε > 0. Chekuri and Li [6] give a simple
reduction showing that an α-approximation for Hypergraph-k-Cut implies an
O(α2)-approximation for Densest-k-Subgraph. This gives conditional hard-
ness of approximation for Hypergraph-k-Cut since the best known approxi-
mation for Densest-k-Subgraph is O(n1/4+ε) [1], and Manurangsi [21] shows



New Results for Submodular Partitioning Problems 519

that assuming the Exponential Time Hypothesis there is no polynomial-time
algorithm with an approximation factor of n1/(log log n)c for some constant c > 0.
The Densest-k-Subgraph problem is believed to not admit an efficient con-
stant factor approximation assuming P �= NP . Since Sub-k-MP generalizes
Hypergraph-k-Cut, the above gives conditional hardness on Sub-k-MP.

The hardness of approximation for the class of submodular multiway parti-
tioning problems, however, is not as well understood. No hardness of approx-
imation for these problems seems to be known under the P �= NP assump-
tion or under the value oracle model. In fact, it is not even known whether
Mon-Sub-k-MP, Sym-Sub-k-MP, or Sub-k-MP, are in P for fixed low values
of k (read k > 3 for the monotone and general versions, and k > 4 for the
symmetric version).

For the class of multi-agent minimization problems MA-Min(F), the special
case where F = {V } is known as Minimum Submodular Cost Allocation and has
been previously studied [5,8,15,30]. The works of Goel et al. [11] and Santiago
and Shepherd [26] studied these problems under more general families. For a
comprehensive review of multi-agent submodular optimization problems see [25].

We are not aware of previous work for the k-way MA-Min(F) class of prob-
lems besides the special case of Sub-k-MP. That is, the case with F = {V } and
fi = f for all i.

1.2 Our Contributions

The contributions of this work are three-fold: new hardness results, a black box
reduction, and new applications. We discuss each of these three blocks next.

In this work we initiate the study of the hardness of approximation in
the value oracle model for different variants of Sub-k-MP. We provide the
first unconditional hardness of approximation results for Sym-Sub-k-MP and
Mon-Sub-k-MP in the value oracle model. For the latter problem we are not
aware of any previous (even conditional) hardness result. For Sym-Sub-k-MP
our bound matches the (conditional) inapproximability factor of 2 − ε from the
work of [22]. See Sect. 2 for proof details and further discussion.

Theorem 1. Given any ε > 0, any algorithm achieving a (2− ε)-approximation
for the Sym-Sub-k-MP problem when k is part of the input, requires exponen-
tially many queries in the value oracle model.

Theorem 2. Given any ε > 0, any algorithm achieving a (43 −ε)-approximation
for the Mon-Sub-k-MP problem when k is part of the input, requires exponen-
tially many queries in the value oracle model.

Our main algorithmic result is a black box procedure which, at a small addi-
tional loss, turns a solution for the multi-agent problem (i.e., MA-Min(F)) into a
solution for the k-way version (i.e., k-way MA-Min(F)). We do this in the case
where the objective functions fi are non-negative and monotone, and for families
F that are upwards closed (i.e., if S ∈ F and T ⊇ S then T ∈ F). The latter is
a mild assumption given that the functions are monotone. Our guarantees are
tight up to a small constant additive term.
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Table 1. Comparison of some of our results with previous work.

Mon-Sub-k-MP
Mon-Sub-k-MP Sym-Sub-k-MP

for vertex covers

Approx Hardness Approx Hardness Approx Hardness

Known 2 − 2/k [32] – 2 − 2/k [32] 2 − ε (conditional) [22] – 2 − ε [11]

This work 2 (faster) 4/3 − ε – 2 − ε (unconditional) 3 –

Theorem 3. Let F be an upwards closed family. Then an α(n, k)-approximation
for monotone MA-Min(F) implies an (α(n, k) + 1)-approximation for mono-
tone k-way MA-Min(F). In addition, there are instances where achieving an
(α(n, k)+ 1

3 − ε)-approximation requires exponentially many queries in the value
oracle model for any ε > 0.

We remark that improving the above additive term would lead to an improve-
ment of the best current approximation factor for Mon-Sub-k-MP (i.e., the set-
ting where F = {V } and fi = f for all i). The multi-agent version of this prob-
lem: min

∑k
i=1 f(Si) : S1 � · · · �Sk = V , has a trivial 1-approximation by taking

the partition V, ∅, . . . , ∅, and hence by Theorem 3 we obtain a 2-approximation
for the corresponding k-way version, i.e., for Mon-Sub-k-MP. This matches
asymptotically the best known approximation of 2 − 2/k for this problem given
in [32]. It is not known however whether this is tight.

The above black box result leads to interesting applications (see Sect. 3 for full
details). For instance, the problem k-way MA-Min(F) with monotone functions
fi and where F corresponds to the family of vertex covers of a graph, admits
a tight O(log n)-approximation. Moreover, in the case where all the functions
fi are the same, this becomes a 3-approximation. To the best of our knowledge
this is the current best approximation for this problem. The special case k = 1
corresponds to the submodular vertex cover problem studied in [11], where a
hardness of 2 − ε is shown in the value oracle model.

Corollary 1. There is a 3-approximation for the problem min
∑

i∈[k] f(Si) :
S1 � · · · � Sk ∈ F and Si �= ∅ for all i ∈ [k], where f is non-negative monotone
submodular and F is the family of vertex covers of a graph.

Another direct consequence of Theorem 3 is providing a very simple 2-
approximation for Mon-Sub-k-MP. The argument in fact shows that one very
specific partition achieves the desired bound. In addition to simple, the pro-
cedure to build such a partition is also fast. Indeed, the running time of the
(2−2/k)-approximation algorithm provided by Zhao et al. [32] is kn3EO, where
EO denotes the time that a call to the value oracle takes. On the other hand,
the running time of this procedure is O(nEO+n log n) and hence almost linear.

Corollary 2. There is a 2-approximation algorithm for Mon-Sub-k-MP run-
ning in time O(nEO + n log n), where EO denotes the time that a value oracle
call takes.

We compare some of our results with previous work in Table 1.
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2 Hardness Results in the Value Oracle Model

In this section we provide the first unconditional hardness of approximation
results in the value oracle model for Sym-Sub-k-MP and Mon-Sub-k-MP. In
addition, for Mon-Sub-k-MP we are not aware of any (even conditional) hard-
ness of approximation result previous to this work.

Our results are based on the technique of building two functions that are
hard to distinguish with high probability for any (even randomized) algorithm.
This was first used in the work of Goemans et al. [12], and has since then been
used in several subsequent works [10,11,16,27,29].

2.1 A 2-Factor Inapproximability Oracle Hardness
for SYM-SUB-k-MP

The current best known (conditional) hardness of approximation for
Sym-Sub-k-MP follows from the result of Manurangsi [22], where it is shown
that assuming the Small Set Expansion Hypothesis, it is NP-hard to approximate
Graph-k-Cut to within a 2 − ε factor of the optimum for every constant ε > 0.
Since Sym-Sub-k-MP generalizes Graph-k-Cut, the same conditional hardness
of approximation automatically applies. In this section we prove an unconditional
lower bound hardness for Sym-Sub-k-MP in the value oracle model (Theorem
1). To the best of our knowledge this is the first result of this kind for this
problem.

To prove the desired result, we first build two indistinguishable functions as
follows. Let |V | = n be an even number, R be a random set of size n

2 , and R̄
denote its complement. Define parameters ε2 = 1

nω(ln n) and β = n
4 (1+ ε), such

that β is an integer. Consider the functions

f1(S) = min
{|S|, n

2
}−|S|

2
and f2(S) = min

{|S|, n

2
, β+|S∩R|, β+|S∩R̄|}−|S|

2
.

These functions were already used in the work of Svitkina and Fleischer [29]
to prove polynomial hardness of approximation for the submodular sparsest cut
and submodular balanced cut problems. They show that the above two functions
are non-negative symmetric submodular and hard to distinguish. That is, any
(even randomized) algorithm that makes a polynomial number of oracle queries
has probability at most n−ω(1) of distinguishing the functions f1 and f2.

We use this to show hardness of approximation for Sym-Sub-k-MP as follows.

Claim. Consider the Sym-Sub-k-MP problem with k = n
2 +1 and inputs f1 and

f2. Then, if the input is f1 any feasible solution has objective value at least n
2 ,

while if the input is f2 then the optimal value is at most n
4 (1 + ε).

Proof. Since we have n elements that must be split into n
2 + 1 non-empty sets,

no more than n
2 items can be assigned to any given set. That is, for any feasible

solution S1, S2, . . . , Sk we must have that |Si| ≤ n
2 . It then follows that when
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the input is f1, any feasible solution S1, S2, . . . , Sk has objective value exactly
∑k

i=1 f1(Si) =
∑k

i=1

(|Si| − |Si|
2

)
= n

2 .
On the other hand, when the input is f2, a feasible solution is given by taking

S1 = R̄, S2 = {r1}, S3 = {r2}, . . . , Sk = {rn/2}, where R = {r1, r2, . . . , rn/2}.
This has objective value

k∑

i=1

f2(Si) = f2(R̄) +
k∑

i=2

f2(ri−1) =
(
β − n

4

)
+

k∑

i=2

(
1 − 1

2

)

= β − n

4
+

n

4
= β =

n

4
(
1 + ε

)
.

��
From the above result it follows that the gap between the optimal solutions

for Sym-Sub-k-MP when the inputs are f1 and f2 is at least

OPT1

OPT2
≥

n
2

n
4 (1 + ε)

=
2

1 + ε
.

Since ε = o(1) this gap can be arbitrarily close to 2 for large values of n. Given
that f1 and f2 are hard to distinguish, this now leads to Theorem 1.

Proof [Theorem 1]. Assume there is an algorithm that makes polynomially
many queries to the value oracle and that achieves a (2 − δ)-approximation
for Sym-Sub-k-MP for some constant δ > 0. Let the functions f1 and f2 be as
defined above, and choose n and the parameter ε(n) so that (1+ε(n))(2−δ) < 2,
i.e., so that ε(n) < δ/(2−δ). Since ε(n) = o(1) and δ is a constant, this is always
possible.

Consider the output of the algorithm when the input is f2. By Claim 2.1 in
this case the optimal solution is at most n

4 (1+ε), and hence the algorithm finds a
feasible solution (S1, S2, . . . , Sk) such that

∑
i∈[k] f2(Si) ≤ (2 − δ)(1 + ε)n

4 < n
2 ,

where the last inequality follows from the choice of ε. However, there is no
feasible solution (S′

1, S
′
2, . . . , S

′
k) such that

∑
i∈[k] f1(S

′
i) < n

2 , since by Claim 2.1
any feasible solution for f1 has value at least n/2. That means that if the input
is the function f1 the algorithm outputs a different answer, thus distinguishing
between f1 and f2. A contradiction. ��

2.2 A 4/3-Inapproximability Oracle Hardness for MON-SUB-k-MP

In this section we prove an unconditional lower bound hardness of approximation
for Mon-Sub-k-MP in the value oracle model (Theorem 2). To the best of our
knowledge, this is the first hardness of approximation result (either conditional
or unconditional) for Mon-Sub-k-MP. As discussed in the full version of this
work, the conditional hardness of approximation for Graph-k-Cut does not
extend to Mon-Sub-k-MP, since the objective function in that case must take
negative values.
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The argument is similar to the one from Sect. 2.1. Consider the functions

f3(S) = min
{|S|, n

2
}

and f4(S) = min
{|S|, n

2
, β + |S ∩ R|, β + |S ∩ R̄|},

where all the parameters are as defined in Sect. 2.1. Note that f3 = f1 + g
and f4 = f2 + g, where g(S) = |S|/2. Since both f1 and f2 are submodular,
and g is modular, it follows that f3 and f4 are also submodular. Moreover,
it is straightforward to check that both f3 and f4 are also non-negative and
monotone.

Since f1 and f2 are hard to distinguish, and f3(S) �= f4(S) if and only if
f1(S) �= f2(S), it follows that f3 and f4 are also hard to distinguish.

The following result shows the gap between the optimal solutions of the
corresponding problems.

Claim. Consider the Mon-Sub-k-MP problem with k = n
2 + 1 and inputs f3

and f4. Then, if the input is f3 any feasible solution has objective value at least
n, while if the input is f4 then the optimal value is at most 3+ε

4 n.

Proof. The argument is very similar to that of Claim 2.1. Since any feasible
solution S1, S2, . . . , Sk must satisfy |Si| ≤ n

2 for all i, it then follows that when
the input is f3, any feasible solution S1, S2, . . . , Sk has objective value exactly∑k

i=1 f3(Si) =
∑k

i=1 |Si| = n.
On the other hand, when the input is f4, a feasible solution is given by

S1 = R̄, S2 = {r1}, S3 = {r2}, . . . , Sk = {rn/2}, where R = {r1, r2, . . . , rn/2}.
This has objective value

∑k
i=1 f4(Si) = n

4 (1 + ε) + n
2 = 3+ε

4 n. ��
It follows that the gap between the optimal solutions for Mon-Sub-k-MP

when the inputs are f3 and f4 is at least OPT3/OPT4 ≥ 4/(3+ε). Since ε = o(1)
this gap can be arbitrarily close to 4/3 for large values of n. Given that f3 and
f4 are hard to distinguish, this now leads to Theorem 2.

Proof [Theorem 2]. Assume there is an algorithm that makes polynomially many
queries to the value oracle and that achieves a (4/3 − δ)-approximation for
Mon-Sub-k-MP for some constant δ > 0. Let the functions f3 and f4 be as
defined above, and choose n and the parameter ε(n) so that (3+ε

4 )(43 − δ) < 1,
i.e., so that ε < 9δ

4−3δ . Since ε(n) = o(1) and δ is a constant, this can always be
done.

Consider the output of the algorithm when the input is f4. By Claim 2.2 in
this case the optimal solution is at most 3+ε

4 n, and hence the algorithm finds
a feasible solution (S1, S2, . . . , Sk) such that

∑
i∈[k] f4(Si) ≤ ( 43 − δ) 3+ε

4 n < n,
where the last inequality follows from the choice of ε. However, there is no
feasible solution (S′

1, S
′
2, . . . , S

′
k) such that

∑
i∈[k] f3(S

′
i) < n, since by Claim 2.2

any feasible solution for f3 has value at least n. That means that if the input
is the function f3 the algorithm outputs a different answer, thus distinguishing
between f3 and f4. A contradiction. ��
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3 From Multi-agent Minimization to the k-WAY versions

In this section we show that if the functions fi are monotone, then a feasible
solution to the MA-Min(F) problem can be turned into a feasible solution to the
corresponding k-way version (i.e., k-wayMA-Min(F)) at almost no additional
loss. Moreover, our argument is completely black box with respect to how the
approximation for the MA-Min instance is obtained (i.e., it could be via a greedy
algorithm, a continuous relaxation, or any other kind of approach). We show the
following.

Theorem 3. Let F be an upwards closed family. Then an α(n, k)-approximation
for monotone MA-Min(F) implies an (α(n, k) + 1)-approximation for mono-
tone k-way MA-Min(F). In addition, there are instances where achieving an
(α(n, k)+ 1

3 − ε)-approximation requires exponentially many queries in the value
oracle model for any ε > 0.

Proof. Denote by OPT the value of the optimal solution to the k-way problem
and by OPT the value of the optimal solution to MA-Min(F). Then it is clear
that OPT ≤ OPT since any feasible solution for the k-way version is also
feasible for MA-Min(F).

Let G = ([k] � V,E) denote the complete bipartite graph where the weight
of an edge (i, v) is given by fi(v). Let M be a minimum [k]-saturating matching
in G, that is a minimum cost matching such that every node in [k] gets assigned
at least one element. Since the edges have non-negative weights it is clear that
|M | = k, i.e., each node i ∈ [k] gets assigned exactly one element from V .
Denote the edges of the matching by M = {(1, u1), (2, u2), . . . , (k, uk)}, and let
U := {u1, u2, . . . , uk} be the elements in V that M is incident to.

We then have that the cost of M is at most OPT . Indeed, if (S∗
1 , S∗

2 , . . . , S∗
k)

is an optimal solution to the k-way instance, we can remove elements from the
sets S∗

i arbitrarily until each of the sets consists of exactly one element. By
monotonicity, removing elements can only decrease the objective value of the
solution. Moreover, since now each set consists of exactly one element, this is
a feasible [k]-saturating matching, and hence its cost is at least the cost of M .
That is,

∑
i∈[k] fi(ui) ≤ OPT .

Let (S1, S2, . . . , Sk) be an α-approximation for the MA-Min(F) instance.
Then we have

∑
i∈[k] fi(Si) ≤ α · OPT ≤ α · OPT . We combine this solution

with the matching M by defining new sets S′
i := (Si\U)�{ui} for each i ∈ [k]. It

is clear that this is now a feasible solution to the k-way problem since all the sets
S′

i are non-empty and pairwise disjoint, and their union ∪i∈[k]S
′
i = U ∪(∪i∈[k]Si

)

belongs to F since ∪i∈[k]Si ∈ F and F is upwards closed. Moreover, the cost of
the new solution is given by

∑

i∈[k]

fi(S′
i) =

∑

i∈[k]

fi(Si \ U + ui) ≤
∑

i∈[k]

fi(Si \ U) +
∑

i∈[k]

fi(ui)

≤
∑

i∈[k]

fi(Si) +
∑

i∈[k]

fi(ui) ≤ α · OPT + OPT = (α + 1) · OPT,
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where the first inequality follows from subadditivity (since the functions are
non-negative submodular) and the second inequality from monotonicity.

For the inapproximability result part, consider the family F = {V } and
the setting where all the functions fi are the same. Then the corresponding
MA-Min(F) problem has a trivial 1-approximation, while the k-way version
corresponds to Mon-Sub-k-MP. The latter, by Theorem 2, cannot be approxi-
mated in the value oracle model to a factor of (43−ε) for any ε > 0 without making
exponentially many queries. It follows that for these instances, the MA-Min ver-
sion has an exact solution while the k-way versions have an inapproximability
lower bound of 4/3 − ε = 1 + 1/3 − ε. Hence, there are instances where for any
ε > 0, achieving an (α(n, k)+ 1

3 − ε)-approximation requires exponentially many
queries in the value oracle model. This completes the proof. ��

For proving or improving the result from Theorem 3, one could be tempted
to first compute an optimal (or approximate) solution (S1, . . . , Sk) to the MA-
Min(F) problem, and then find an allocation of some of the elements of F :=
�i∈[k]Si among the agents that did not get any item. However, this approach
can lead to a large additional loss, since a set F ∈ F could be optimal for the
MA-Min problem but highly suboptimal for the k-way version. The following
example shows this, even for the case of modular functions.

Let T � V be an arbitrary set of size 2(k − 1). Let f1(S) = |S| and fi(S) =
w(S) for all i ≥ 2 where w : V → R+ is the modular function given by w(v) =
1 + ε for v /∈ T and w(v) = M for v ∈ T , for some large value M . Moreover,
let F = {S : |S| ≥ 2(k − 1)}. Then a feasible (and optimal) solution to the
MA-Min(F) problem is given by the allocation (T, ∅, . . . , ∅) with objective value
f1(T ) = |T | = 2(k − 1). However, any splitting of some of the items of T among
the other k − 1 agents leads to a solution of cost at least M(k − 1) + (k − 1) =
(M + 1)(k − 1). On the other hand, an optimal solution for the k-way version
is given by any partition of the form (S1, {v2}, {v3}, . . . , {vk}) where S1 ⊆ V is
any set of k − 1 elements, and {v2, v3, . . . , vk} ⊆ V \ T . This leads to a solution
of cost (k − 1) + (1 + ε)(k − 1) = (2 + ε)(k − 1). Thus having a gap in terms of
objective value of at least (M+1)(k−1)

(2+ε)(k−1) = M+1
2+ε .

Theorem 3 allows us to extend several results from monotone multi-agent
minimization to the k-way versions. We discuss some of these consequences
next. An interesting application is obtained using the O(log n)-approximation
from [30].

Corollary 3. There is a tight O(log n)-approximation for the allocation problem

min
k∑

i=1

fi(Si) : S1 � S2 � · · · � Sk = V and Si �= ∅ for all i ∈ [k],

where all the functions fi are non-negative monotone submodular.

Proof. The approximation factor follows from Theorem 3 and the tight O(log n)-
approximation [30] for the corresponding MA-Min instance. To see why this is



526 R. Santiago

tight assume that an (asymptotically) better approximation factor of o(log n) is
possible. Then given a MA-Min instance we can reduce it to an instance of the
k-way version by adding a set D := {d1, d2, . . . , dk} of k dummy elements to the
ground set. That is, consider an instance of the k-way version with V ′ := V ∪D,
F ′ = {V ′}, and f ′

i(S) := fi(S ∩ V ) for each i ∈ [k] and S ⊆ V ′. Then by
assumption we have a o(log(n + k))-approximation for this problem, and hence
we also have the same approximation factor for the original MA-Min instance.
But this contradicts the lower bound of Ω(log n) for the MA-Min problem. ��

More generally, we can obtain approximation guarantees for families with a
bounded blocker. Given a family F , there is an associated blocking clutter B(F)
which consists of the minimal sets B such that B ∩ F �= ∅ for each F ∈ F . We
refer to B(F) as the blocker of F . We say that B(F) is β-bounded if |B| ≤ β for
all B ∈ B(F). Families such as F = {V } or vertex covers in a graph, are examples
of families with a bounded blocker. Indeed, the family F = {V } has a 1-bounded
blocker, since B(F) = {{v1}, {v2}, . . . , {vn}}. The family F of vertex covers of a
graph G has a 2-bounded blocker, since B(F) = {{u, v} : (u, v) is an edge in G}.
Recall that a set S ⊆ V is a vertex cover in a graph G if every edge in G is incident
on a vertex in S.

It is shown in [26] that families with a β-bounded blocker admit a O(β log n)-
approximation for the multi-agent monotone minimization problem. This, com-
bined with Theorem 3, implies a O(β log n)-approximation for the k-way ver-
sions. In particular, this leads to a tight O(log n)-approximation for the k-way
MA-Min(F) problem with monotone functions fi and where F corresponds to
the family of vertex covers of a graph. The tightness follows from Corollary 3
and the fact that vertex covers generalize the family F = {V }.

3.1 The Special Case Where all the Functions fi are the Same

Theorem 3 also leads to interesting consequences in the special case where fi = f
for all i. In that setting, it is easy to see that the single-agent and multi-agent
versions are equivalent. That is,

min f(S) : S ∈ F = min
∑

i∈[k]

f(Si) : S1 � S2 � · · · � Sk ∈ F , (1)

and moreover F ∈ F is an optimal solution to the single-agent problem if and
only if the trivial partition (F, ∅, . . . , ∅) is an optimal solution to the multi-agent
version. Again this just follows from submodularity and non-negativity since
then f(T ) ≤ f(S) + f(T − S) for any S ⊆ T ⊆ V . That is, partitioning the
elements of a set can only increase the value of the solution. This leads to the
following result.

Corollary 4. Let F be any upwards closed family, and assume there is an α(n)-
approximation for the single-agent monotone minimization problem: min f(S) :
S ∈ F . If fi = f for all i, then there is an α(n)-approximation for monotone
MA-Min(F), and hence an (α(n) + 1)-approximation for monotone k-way MA-
Min(F).
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Algorithm 1: Simpler and faster algorithm for Mon-Sub-k-MP

Input: A ground set V = {v1, v2, . . . , vn}, and a set function f : 2V → R with
oracle access.

Sort and rename the elements so that f(v1) ≤ f(v2) ≤ . . . ≤ f(vn).
S1 ← {v1}, S2 ← {v2}, . . . , Sk−1 ← {vk−1}, Sk ← V \ {v1, v2, . . . , vk−1}.
Output: (S1, S2, . . . , Sk)

Proof. By Eq. (1), an α(n)-approximation for the single-agent monotone mini-
mization problem implies an α(n)-approximation for monotone MA-Min(F) in
the setting where fi = f for all i. Now the result for the corresponding k-way
versions immediately follows from Theorem 3. ��

We remark that by taking F = {V } the above corollary leads to a 2-
approximation for Mon-Sub-k-MP, which matches asymptotically the currently
best known. Hence improving the plus one additive term would lead to an
improvement on the approximation factor of the latter problem.

Corollary 4 leads to new results. For instance, using the 2-approximation from
[11,16] for single-agent monotone minimization over families of vertex covers, we
immediately get a 3-approximation for the corresponding monotone k-way MA-
Min(F) problem over the same type of families. This now proves Corollary 1.
More generally, given the β-approximation results ([17,19]) for minimizing a
monotone submodular function over families with a β-bounded blocker, we have
the following.

Corollary 5. Let F be an upwards closed family with a β-bounded blocker. Then
there is a (β + 1)-approximation algorithm for the problem min

∑
i∈[k] f(Si) :

S1 � · · · �Sk ∈ F and Si �= ∅ for all i ∈ [k], where f is a non-negative monotone
submodular function.

3.2 A Simpler and Faster 2-Approximation for MON-SUB-k-MP

Another direct consequence of Theorem 3 is to provide a very simple and fast 2-
approximation for Mon-Sub-k-MP. We describe the procedure in Algorithm 1.
The running time of the (2 − 2/k)-approximation algorithm provided by Zhao
et al. [32] is kn3EO, where EO denotes the time that a call to the value oracle
takes. On the other hand, the running time of our procedure is O(nEO+n log n)
and hence almost linear. All we need to do is first make n oracle calls to evaluate
f(v) for each v ∈ V , and then sort the elements so that f(v1) ≤ f(v2) ≤ . . . ≤
f(vn) (which requires O(n log n) time).

Corollary 2. Algorithm 1 is a 2-approximation for Mon-Sub-k-MP running
in time O(nEO + n log n), where EO denotes the time that a value oracle call
takes.
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4 Conclusion and Open Problems

We revisited the class of Submodular k-Multiway Partitioning problems
(Sub-k-MP). We proved new unconditional inapproximability results for the
monotone and symmetric cases of Sub-k-MP in the value oracle model.

We introduced and explored a new class of submodular partitioning problems
which generalizes Sub-k-MP. We showed that several results from multi-agent
submodular minimization can be extended to their k-way counterparts at a small
additional loss. Thus obtaining several new results for this class of problems.

Many interesting open questions remain, perhaps the most important being
about the approximation hardness of Sub-k-MP. It remains completely open
whether these problems are polytime solvable for fixed values of k > 4. In addi-
tion, given the conditional hardness of approximation for Hypergraph-k-Cut
based on Densest-k-Subgraph, we believe it may be possible to prove strong
unconditional hardness of approximation results for Sub-k-MP in the value ora-
cle model when k is part of the input.

It also remains open whether the 2-approximation for Mon-Sub-k-MP is
tight. And more generally, to close the gap between the upper bound and lower
bound in Theorem 3.

Acknowledgements. The author thanks Bruce Shepherd for valuable discussions and
suggestions that motivated some of this work.

References

1. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an o(n1/4) approximation for densest k-subgraph. In: Proceed-
ings of the Forty-second ACM Symposium on Theory of Computing, pp. 201–210.
ACM (2010)

2. Chandrasekaran, K., Chekuri, C.: Hypergraph k-cut for fixed k in deterministic
polynomial time. In: 2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS), pp. 810–821 (2020)

3. Chandrasekaran, K., Xu, C., Yu, X.: Hypergraph k-cut in randomized polynomial
time. Math. Program. 1–29 (2019)

4. Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway parti-
tion. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 807–816. IEEE (2011)

5. Chekuri, C., Ene, A.: Submodular cost allocation problem and applications. In:
International Colloquium on Automata, Languages, and Programming, pp. 354–
366. Springer (2011). Extended version: arXiv preprint arXiv:1105.2040

6. Chekuri, C., Li, S.: On the hardness of approximating the k-way hypergraph cut
problem. Theory Comput. 16(1), 1–8 (2020)

7. Chopra, S., Owen, J.H.: A note on formulations for the a-partition problem on
hypergraphs. Discrete Appl. Math. 90(1–3), 115–133 (1999)
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9. Ene, A., Vondrák, J., Wu, Y.: Local distribution and the symmetry gap: approx-
imability of multiway partitioning problems. In: Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 306–325. SIAM
(2013)

10. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

11. Goel, G., Karande, C., Tripathi, P., Wang, L.: Approximability of combinato-
rial problems with multi-agent submodular cost functions. In: 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, pp. 755–764. IEEE
(2009)

12. Goemans, M.X., Harvey, N.J., Iwata, S., Mirrokni, V.: Approximating submodular
functions everywhere. In: Proceedings of the Twentieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 535–544. Society for Industrial and Applied
Mathematics (2009)

13. Goldschmidt, O., Hochbaum, D.S.: A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res. 19(1), 24–37 (1994)

14. Guinez, F., Queyranne, M.: The size-constrained submodular k-partition problem
(2012). https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGR
vbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRl
OGI1
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Abstract. For a positive integer d, the d-CUT is the problem of decid-
ing if an undirected graph G = (V, E) has a nontrivial bipartition (A, B)
of V such that every vertex in A (resp. B) has at most d neighbors in B
(resp. A). When d = 1, this is the MATCHING CUT problem. Gomes
and Sau [9] gave the first fixed-parameter tractable algorithm for d-CUT
parameterized by the maximum number of the crossing edges in the cut
(i.e., the size of edge cut). However, their paper does not provide an
explicit bound on the running time, as it indirectly relies on an MSOL
formulation and Courcelle’s Theorem [5]. Motivated by this, we design
and present an FPT algorithm for the MATCHING CUT (and more gen-
erally for d-CUT) for general graphs with running time 2O(k log k)nO(1)

where k is the maximum size of the edge cut. This is the first FPT algo-
rithm for the MATCHING CUT (and d-CUT) with an explicit depen-
dence on this parameter. We also observe that MATCHING CUT cannot
be solved in 2o(k)nO(1) unless ETH fails.

Keywords: Matching cut · Fixed-parameter tractable · Algorithms

1 Introduction

For a graph G = (V,E), (A,B) is a partition of G if A ∪ B = V and A ∩ B = ∅.
Further, if both A �= ∅ and B �= ∅ then (A,B) is called a cut. The set of all the
edges with one endpoint in A and another in B denoted by E(A,B) is called an
edge cut and the size of the edge cut is defined as |E(A,B)|. A matching is an
edge set M ⊆ E such that no two edges ei, ej ∈ M share any endpoint. A cut
(A,B) is a matching cut if every vertex in A (resp. B) has at most 1 neighbor in
B (resp A). Equivalently, a cut (A,B) is a matching cut if the edge cut E(A,B)
is a matching. Note that a matching cut can be empty, and a matching whose
removal disconnects a graph is not necessarily a matching cut. The MATCHING
CUT is the problem of deciding if a given undirected graph G has a matching
cut or not.

Recently Gomes and Sau [9] considered a generalization of matching cut and
called it d-cut. For a positive integer d ≥ 1, a cut (A,B) is a d-cut if every vertex
in A (resp. B) has at most d neighbors in B (resp A). They named d-CUT the
problem of deciding if a given graph G has a d-cut or not. They showed that for
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-79987-8_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79987-8_37&domain=pdf
https://doi.org/10.1007/978-3-030-79987-8_37


532 N. R. Aravind and R. Saxena

every d ≥ 1, d-CUT is NP-hard for regular graphs even when restricted to (2d+
2)-regular graphs [9]. They considered various structural parameters to study d-
CUT and provided FPT results. They also showed fixed-parameter tractability
of d-CUT when parameterized by the maximum size of the edge cut, using results
provided by Marx, O’Sullivan and Razgon [16]. However, they did not provide
an explicit bound on the running time as the treewidth reduction technique
of [16] relies on MSOL formulation and Courcelle’s Theorem [5] to show fixed-
parameter tractability. Marx et al. [16] also observed that their method may
actually increase the treewidth of the graph, however the treewidth will remain
f(k) for some function f . This motivated us to investigate an FPT algorithm
for d-CUT parameterized by the maximum size of the edge cut where we can
explicitly bound the dependence on the parameter. In this paper, we will discuss
an FPT algorithm for d-CUT. Note that when d = 1, we can refer to the problem
as MATCHING CUT.

Let us now formally define d-CUT in the context of parameterized complexity
with maximum size of the edge cut as parameter.

k-d-CUT:
Input: An instance I = (G, k, d). Where graph G = (V,E), |V | = n and
k, d ∈ N.
Parameter : k.
Output: yes if G contains a d-cut (A,B) such that |E(A,B)| ≤ k, no
otherwise.

1.1 Previous Work

The matching cut problem has been extensively studied. It was first introduced
by Graham [10]. Chvátal [4] proved matching cut to be NP-Complete for graphs
with maximum degree 4. Bonsma [2] proved matching cut to be NP-complete
for planar graphs with maximum degree 4 and with girth 5. Kratsch and Le
[13] provided an exact algorithm with running time O∗(1.4143n)1 and also pro-
vided a single exponential algorithm parameterized by the vertex cover number.
Komusiewicz, Kratsch and Le [12] further improved the running time of the
branching based exact algorithm to O∗(1.3803n) and also provided a SAT based
O∗(1.3071n)-time randomized algorithm. They also provided a single exponen-
tial algorithm parameterized by distance to cluster and distance to co-cluster.
Aravind, Kalyanasundaram and Kare [1] provided fixed-parameter tractable
algorithms for various structural parameters, including treewidth. Recently hard-
ness and polynomial time results have also been obtained for various structural
assumptions in [11,14,15].

1 We use O∗ notation which suppresses polynomial factors.
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1.2 Our Contribution

Our main contribution is the following theorem.

Theorem 1. k-d-CUT can be solved in time 2O(k log k)nO(1).

We designed a dynamic programming based algorithm for the proof of the
above theorem, which we will discuss in Sect. 3. Cygan, Komosa, Lokshtanov,
Pilipczuk, Pilipczuk, Saurabh and Wahlström [7] provided a compact tree decom-
position with bounded adhesion along with a framework to design FPT algo-
rithms and showed its application to Minimum Bisection and other problems.
We used this framework and tree decomposition along with k-d-CUT specific
calculations and proofs to design an algorithm for k-d-CUT.

We also observe the parameterized lower bound for MATCHING CUT.

Theorem 2. Unless ETH fails, the problem to decide if a given n vertex graph
has a matching cut with edge cut size at most k cannot be solved in 2o(k)nO(1).

Proof. Kratsch and Le (Sect. 3.3 in [13]) have shown that for an n vertex graph,
MATCHING CUT cannot be solved in 2o(n) assuming exponential time hypoth-
esis (ETH). For every matching cut, the maximum size of the edge cut k is
linearly bounded by the number of vertices in the graph. Thus, for an n vertex
graph, MATCHING CUT cannot be solved in 2o(k)nO(1) time unless ETH fails.


�

2 Preliminaries

2.1 Multiset Notations

Considering a set U as universe, a multiset is a 2-tuple P = (U,mP ) where
multiplicity function mP : U → Z≥0 is a mapping from U to non negative
integers such that for an element e ∈ U , the value mP (e) is the multiplicity of
e in P that is the number of occurrence of e in P . Cardinality of a multiset P
is the sum of multiplicity of all the distinct elements of P . We write e ∈ P if
mP (e) ≥ 1. P is considered empty and denoted by P = ∅ iff ∀e ∈ U , mP (e) = 0.
For two multiset A and B on universe U , let mA and mB be their respective
multiplicity functions. We will use the following operations on multisets for our
purposes.

Equality: A is equal to B, denoted by A = B, if ∀e ∈ U , mA(e) = mB(e).
Otherwise, we say that A and B are distinct.

Inclusion: A is included in B, denoted by A ⊆ B, if ∀e ∈ U , mA(e) ≤ mB(e).

Sum Union: P is a sum union of A and B, denoted by P = A � B, if ∀e ∈ U ,
mP (e) = mA(e) + mB(e), where mP is the multiplicity function for P .

Throughout this paper, if the context is clear, for any multiset X we will use
mX to denote the multiplicity function of X.
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2.2 Graph Notations

All the graphs we consider are simple, undirected and connected. G = (V,E)
is a graph with vertex set V and edge set E. E(G) denotes the set of edges of
graph G, and V (G) denotes the set of vertices of G. For E′ ⊆ E, V (E′) denotes
the set of all vertices of G with at least one edge in E′ incident on it. We use
G′ ⊆ G to denote that G′ is a subgraph of G. For a vertex set V ′ ⊆ V , G[V ′]
denotes the induced subgraph of G on vertex set V ′. For an edge set E′ ⊆ E,
G[E′] denotes the subgraph of G on edge set E′ i.e., G[E′] = (V (E′), E′).

For disjoint vertex sets A ⊆ V and B ⊆ V , EG(A,B) denotes the set of all
the edges of G with one endpoint in A and another in B. For a subgraph G′ ⊆ G,
EG′(A,B) denotes the set of edges EG(A,B) ∩ E(G′). For a vertex v ∈ V , we
use NG(v) to denote the set of all adjacent vertices of v in G, if the context of
the graph is clear we will simply use N(v).

Partition of a Graph: For a graph G = (V,E), (A,B) is a partition of G if
A ∪ B = V and A ∩ B = ∅. We call a partition (A,B) trivial if either A = ∅ or
B = ∅.

Cut: For a graph G, a partition (A,B) is a cut if both A �= ∅ and B �= ∅.

d-Cut: A cut (A,B) is a d-cut if every vertex in A has at most d neighbors in
B, vice versa every vertex in B has at most d neighbors in A.

d-Matching: For a graph G = (V,E), an edge set M ⊆ E is called a d-matching
if every vertex v ∈ V has at most d edges in M incident on it. Observe that a
cut (A,B) is d-cut iff E(A,B) is a d-matching.

2.3 Fixed-Parameter Tractability

We refer the reader to [6,8] for basic background on parameterized complexity.
We also recall some basic definitions. A parameterized problem is a language L ⊆
Σ∗×N where Σ is a fixed and finite alphabet. For an instance I = (x, k) ∈ Σ∗×N,
k is called the parameter. A parameterized problem is called fixed-parameter
tractable (FPT) if there exists an algorithm A (called a fixed-parameter algorithm
), a computable function f : N → N, and a constant c such that, the algorithm
A correctly decides whether (x, k) ∈ L in time bounded by f(k).|(x, k)|c.

2.4 Tree Decomposition

A tree decomposition of a graph G is a pair (T, β) where T is a tree and β (called
a bag) is a mapping that assigns to every t ∈ V (T ) a set β(t) ⊆ V (G), such that
the following holds:

1. For every e ∈ E(G), there exists a t ∈ V (T ) such that V (e) ⊆ β(t);
2. For v ∈ V (G), let β−1(v) be the set of all vertices t ∈ V (T ) such that v ∈ β(t),

then T [β−1(v)] is a connected nonempty subgraph of T .
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If the tree T in decomposition (T, β) is rooted at some node r, we call it a rooted
tree decomposition.

Definition 1 (Adhesion in a Tree Decomposition). In a tree decomposition
(T, β), For an edge e ∈ E(T ) where e = t1t2, a set σ(e) = β(t1) ∩ β(t2) is called
an adhesion of e. For a rooted tree decomposition (T, β), adhesion of a node
t ∈ V (T ), denoted by σ(t), is σ(t, t′) where t′ is parent node of t in T . The
adhesion of a root node r is ∅.
Some Functions for Convenience: For a rooted tree decomposition (T, β) at
some node r, for s, t ∈ V (t) we say that s is a descendent of t, if t lies on the
unique path from s to r. This implies that a node is a descendant of itself.

γ(t) =
⋃

c: descendant of t

β(c), α(t) = γ(t) \ σ(t), Gt = G[γ(t)] − E(G[σ(t)]).

Definition 2 (Compact Tree Decomposition [7]). A rooted tree decompo-
sition (T, β) of G is compact if for every non root-node t ∈ V (T ) : G[α(t)] is
connected and N(α(t)) = σ(t).

Definition 3 (Separation [7]). A pair (A,B) of vertex subsets in a graph G
is a separation if A∪B = V (G) and there is no edge with one endpoint in A \B
and the other in B \ A; the order of the separation (A,B) is |A ∩ B|.

In [7] the edge cut (A,B) is defined as a pair A,B ⊆ V (G) such that A∪B =
V (G) and A ∩ B = ∅, which we refer to as partition (A,B). And the order of
the edge cut (A,B) is defined as |E(A,B)|. These terminologies are required for
following definition.

Definition 4 (Unbreakability [7]). Let G be a graph, A vertex subset X ⊆
V (G) is (q,k)-unbreakable if every separation(A,B) of order at most k satisfies
|A∩X| ≤ q or |B ∩X| ≤ q. A vertex subset Y ⊆ V (G) is (q,k)-edge-unbreakable
if every edge cut (A,B) of order at most k satisfies |A ∩ Y | ≤ q or |B ∩ Y | ≤ q.

Observe that every set that is (q,k)-unbreakable is also (q,k)-edge-unbreakable.

Theorem 3 ([7]). Given an n-vertex graph G and an integer k, one can in
time 2O(k log k)nO(1) compute a rooted compact tree decomposition (T, β) of G
such that

1. every adhesion of (T, β) is of size at most k;
2. every bag of (T, β) is (i, i)-unbreakable for every 1 ≤ i ≤ k.


�
Note that since every bag of the output decomposition (T, β) of Theorem 3
is (k, k)-unbreakable, it is also (k, k)-edge-unbreakable. Further, the construc-
tion provided for the proof of theorem3 in [7] maintained that the number of
edges in decomposition is always upper bounded by |V (G)| and hence |V (T )| ≤
|V (G)| + 1.
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3 An FPT Algorithm for k-d-CUT (Proof of Theorem 1)

A disconnected graph G trivially has a d-cut of size 0 and thus, (G, k, d) is always
a yes instance of k-d-CUT for every k, d ∈ N. Thus, it remains to find if (G, k, d)
is a yes instance when the graph G is connected. From here onward, we will
always assume that the input graph G is simple and connected. Further, we can
also assume that d < k, otherwise the problem is equivalent to deciding if G has
a min-cut of size at most k, which is polynomial time solvable [17].

We will start by invoking Theorem3 on input n vertex graph G with param-
eter k. This gives us a rooted compact tree decomposition (T, β) of G where
every bag is (k, k)-edge-unbreakable and every node t ∈ V (T ) has adhesion of
size at most k. Consider the following definition.

Definition 5 (Matched Candidate Set of a Vertex Set Q ⊆ V ). For a
vertex set Q ⊆ V and d ∈ N, we call a multiset P = (V,mP ) a d-matched
candidate set of Q if following holds.

– ∀v ∈ Q, mP (v) ≤ d,
– ∀v ∈ V \ Q, mP (v) = 0,
– |P | ≤ k.

Note that if Q = ∅, then the empty multiset is the only d-matched candidate set
of Q.

Proposition 1 (�2 ). Given Q ⊆ V , if |Q| ≤ k, then there are at most 2O(k log k)

distinct d-matched candidate sets of Q and in time 2O(k log k)nO(1) we can list all
of them.

We perform bottom up dynamic programming on (T, β). For every vertex
t ∈ V (T ), every set S ⊆ σ(t), S̄ = σ(t) \ S, every d-matched candidate set
P = (V,mP ) of σ(t) and ne ∈ {0, 1} we compute an integer M [t, S, P, ne] ∈
{0, 1, 2, . . . , k,∞} with the following properties.

(1) If M [t, S, P, ne] ≤ k, then there exists a partition (A,B) of Gt such that the
following holds.
– If ne = 1 then both A and B are non empty, otherwise either A or B is

empty,
– A ∩ σ(t) ∈ {S, S̄},
– EGt

(A,B) forms a d-matching,
– every vertex v in σ(t) has at most mP (v) neighbors in the other side of

the partition in Gt i.e., ∀v ∈ σ(t), |NG[EGt (A,B)](v)| ≤ mP (v),
– |EGt

(A,B)| ≤ M [t, S, P, ne].
(2) For every partition (A,B) of the entire graph G that satisfies the following

conditions:
– A ∩ σ(t) ∈ {S, S̄},
– EG(A,B) forms a d-matching,

2 Due to space constraint, the proofs of statements marked with a � have been omitted.
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– every vertex v in σ(t) has at most mP (v) neighbors in the other side of
the partition in Gt i.e., ∀v ∈ σ(t), |NG[EGt (A,B)](v)| ≤ mP (v),

– |EG(A,B)| ≤ k.
It holds that |EGt

(A,B)| ≥ M [t, S, P, 1] if both V (Gt) ∩ A and V (Gt) ∩ B
are non empty, otherwise |EGt

(A,B)| ≥ M [t, S, P, 0] if either V (Gt) ∩ A or
V (Gt) ∩ B is empty.
Note that |EGt

(A,B)| ≥ ∞ imply that such partition (A,B) doesn’t exist.
Let us now formally prove that table M [.] is sufficient for our purpose.

Lemma 1. (G, k, d) is a yes instance of k-d-CUT if and only if M [r, ∅, ∅, 1] ≤ k
where r is the root of T .

Proof. For the first direction, a non trivial partition (A,B) for Gr whose exis-
tence is asserted by property 1 for M [r, ∅, ∅, 1] is a d-cut of G with |EG(A,B)| ≤
k, as Gr = G.

For the other direction, let (A,B) be a d-cut of G such that |EG(A,B)| ≤ k.
Since σ(r) = ∅, (A,B) satisfies all the prerequisites of property (2) for t = r,
S = ∅ and P = ∅. Further, V (Gr) ∩ A and V (Gr) ∩ B are both non empty
as (A,B) is a non trivial partition. Thus, k ≥ |EGr

(A,B)| ≥ M [r, ∅, ∅, 1]. This
finishes the proof. 
�
Proposition 2 (�). For every t, S, and P , if either S or S̄ is empty, then
M [t, S, P, 0] = 0 satisfies properties (1) and (2).

Proposition 3 (�). For every t, S, and P , if both S and S̄ are non empty, then
M [t, S, P, 0] = ∞.

Proposition 4 (�). For every t, S, and P , if both S and S̄ are non empty, then
M [t, S, P, 1] ≥ 1.

To prove Theorem 1, it would suffice to compute the M [.] table for every
node t ∈ V (T ) in time 2O(k log k)nO(1). Further, as the number of nodes in T
is bounded by O(n), it would suffice if we show that for a fixed t ∈ V (T ), the
entries M [t, ., ., .] can be computed in 2O(k log k)nO(1).

For every t ∈ V (t), the number of distinct d-matched candidate sets of σ(t)
is bounded by 2O(k log k) and we can obtain them in time 2O(k log k)nO(1) due
to |σ(t)| ≤ k and Proposition 1. Thus, the number of cells M [t, ., ., .] at every
vertex t ∈ V (T ) are bounded by 2O(k log k). Given entries M [c, ., ., .] for every
children c of a node t ∈ V (T ), if we can show that a single cell M [t, S, P, ne] can
be computed in time 2O(k log k)nO(1), then we can bound the time required to
compute all the entries M [t, ., ., .] to 2O(k log k) ·2O(k log k)nO(1) which is essentially
2O(k log k)nO(1). Thus, we focus on the calculation of a single cell M [t, S, P, ne].

3.1 Calculating the Value of M [t, S, P, ne ]

In this section we will discuss the calculation of a single cell M [t, S, P, ne] for
the given t ∈ V (t), S ⊆ σ(t) and P such that P is a d-matched candidate set of
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σ(t). We use Propositions 2 and 3 to set M [t, S, P, 0] ∈ {0,∞}. Thus, we move
on to the calculation of M [t, S, P, 1]. Let Z(t) be the set of all the children of
t in T . From here on we will assume that entries M [c, ., ., .] are calculated for
every c ∈ Z(t). Note that if t is a leaf vertex then Z(t) is empty.

Intuitively, in this step of dynamic programming we will focus on to par-
titioning β(t) and use entries M [c, ., ., .] as black boxes to find the best way
to partition subgraphs Gc. Within this framework we can think of every edge
e ∈ E(Gt[β(t)]) as a subgraph of Gt and to find the best way to partition sub-
graph G[e] we construct a table ME [e, S′, P ′] for every edge e = uv ∈ E(Gt[β(t)])
where S′ ⊆ {u, v}, and P ′ is a 1-matched candidate set of {u, v}. We are taking
a 1-matched candidate set of V (e), as there is only 1 edge in G[e].

We assign following values to ME [e, S′, P ′].

– ME [e, ∅, P ′] = ME [e, {u, v}, P ′] = 0 for every 1-matched candidate set P ′ of
V (e);

– ME [e, {u}, P ′] = ME [e, {v}, P ′] = 1 for 1-matched candidate set P ′ of V (e)
such that mP ′(u) = mP ′(v) = 1;

– ME [e, {u}, P ′] = ME [e, {v}, P ′]= ∞ for every 1-matched candidate set P ′ of
V (e) such that mP ′(u) = 0 or mP ′(v) = 0.

Intuitively, if both u and v fall into the same side of the partition then
ME [e, S′, P ′] costs 0. Otherwise, if u and v fall into different side of the partition
and both are allowed to have a neighbor in the other side of the partition in G[e]
as per P ′ then ME [e, S′, P ′] costs 1 and if at least one of u or v is not allowed
to have a neighbor in the other side of the partition in G[e] as per P ′ then
ME [e, S′, P ′] costs ∞. Every 1-matched candidate set of V (e) can be considered
as a subset of V (e). Thus, number of cells ME [.] is bounded by nO(1) and we
can calculate them as per above assignment in time nO(1).

Definition 6 (S-Compatible Set of a Bag). For S ⊆ σ(t) and S̄ = σ(t) \ S,
a set As ⊆ β(t) is called an S-Compatible set of β(t) if

– |As| ≤ k,
– As ∩ σ(t) ∈ {S, S̄},
– As is non-empty proper subset of β(t) i.e., As �= ∅ and As �= β(t).

For an S-compatible set As of β(t), let Sc = As ∩ σ(c) and S̄c = σ(c) \ Sc

for every c ∈ Z(t). And let Se = As ∩ V (e) and S̄e = V (e) \ Se for every
e ∈ E(Gt[β(t)]).

We define ZAs

ab = {c | c ∈ Z(t) ∧ (Sc �= ∅) ∧ (S̄c �= ∅)} and call it the
set of broken children of t with respect to As, and also define EAs

ab = {e | e ∈
E(Gt[β(t)])∧(Se �= ∅)∧(S̄e �= ∅)} and call it the set of broken edges of E(Gt[β(t)])
with respect to As. Given As, we can find ZAs

ab and EAs

ab in time nO(1).

Definition 7 (P-Compatible Family). For t, P and As such that t ∈ V (T ),
P is a d-matched candidate set of σ(t) and As is an S-compatible set of β(t).
A family FP |As

= {Pc| c ∈ ZAs

ab } ∪ {Pe| e ∈ EAs

ab } is called an As-restricted
P -compatible family of t if the following holds:
let Pz =

⊎
Pv∈FP |As

Pv,
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– for each c ∈ ZAs

ab , Pc is a d-matched candidate set of σ(c),
– for each e ∈ EAs

ab , Pe is a 1-matched candidate set of V (e),
– |Pz| ≤ 2k,
– ∀v ∈ V , mPz

(v) ≤ d,
– ∀v ∈ σ(t), mPz

(v) ≤ mP (v).

The intuition behind the As-restricted P -compatible family is as follows. We
will use entries M [c, ., ., .] and ME [., ., .] for our calculation, to access a particular
entry, we will guess Pc and Pe which are consistent with P and maintain the
property of d-matching.

We say that two As-restricted P -compatible families FP |As
= {Pc| c ∈ ZAs

ab }∪
{Pe| e ∈ EAs

ab } and F ′
P |As

= {P ′
c| c ∈ ZAs

ab }∪{P ′
e| e ∈ EAs

ab } are equal iff ∀c ∈ ZAs

ab ,
Pc = P ′

c and ∀e ∈ EAs

ab , Pe = P ′
e. We say that FP |As

and F ′
P |As

are distinct iff
they are not equal.

Proposition 5 (�). For an S-compatible set As of β(t), if |ZAs

ab | + |EAs

ab | ≤ k,
then there are at most 2O(k log k) distinct As-restricted P -compatible families of
t and in time 2O(k log k)nO(1) we can list all of them.

Assuming that M [c, ., ., .] table is calculated for every c ∈ Z(t) and ME [e, ., .]
are available as per above assignment for every e ∈ E(Gt[β(t)]). For an S-
compatible set As of β(t) and As-restricted P -compatible family FP |As

=
{Pc| c ∈ ZAs

ab } ∪ {Pe| e ∈ EAs

ab } of t, we define the cost of As and FP |As
for

t as follows.

cs(t, As, FP |As
) =

∑

c∈ZAs
ab

M [c,As ∩σ(c), Pc, 1]+
∑

e∈EAs
ab

ME [e,As ∩V (e), Pe]. (1)

Proposition 6 (�). For every As-restricted P -compatible family FP |As
of t,

cs(t, As, FP |As
) ≥ |ZAs

ab | + |EAs

ab |.
Proposition 7 (�). Assuming M [c, ., ., .] and ME [e, ., .] tables are calculated
for every c ∈ Z(t) and every e ∈ E(Gt[β(t)]). Given an S-compatible set As of
β(t) and an As-restricted P -compatible family FP |As

of t, cs(t, As, FP |As
) can

be calculated in time 2O(k log k)nO(1).

We define minimum cost of an S-compatible set As of β(t) and d-matched
candidate set P of σ(t) as follows:

mcs(t, As, P ) = min{cs(t, As, FP |As
)| FP |As

is As-re.P -com. family of t}. (2)

Lemma 2 (�). Assuming the values M [c, ., ., .] satisfies properties (1) and (2)
for every c ∈ Z(t) then mcs(t, As, P ) satisfies the following properties.

(a) If mcs(t, As, P ) ≤ k, then there exists a partition (A,B) of Gt, such that:
– A ∩ β(t) = As,
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– |EGt
(A,B)| ≤ mcs(t, As, P ),

– EGt
(A,B) forms a d-matching,

– ∀v ∈ σ(t), |NG[EGt (A,B)](v)| ≤ mP (v).
(b) For every partition (A,B) of the entire graph G that satisfy following con-

ditions:
– A ∩ β(t) = As,
– |EG(A,B)| ≤ k,
– EG(A,B) forms a d-matching,
– ∀v ∈ σ(t), |NG[EGt (A,B)](v)| ≤ mP (v).
It holds that |EGt

(A,B)| ≥ mcs(t, As, P ).

We note that if mcs(t, As, P ) > k then there doesn’t exist a partition (A,B) of
G satisfying conditions of property (b).

Lemma 3. For an S-compatible set As of β(t), in time 2O(k log k)nO(1) we can
either decide that mcs(t, As, P ) > k or calculate mcs(t, As, P ).

Proof. Given As, we check if |ZAs

ab | + |EAs

ab | ≤ k, if not, then using Propo-
sition 6 we conclude that mcs(t, As, P ) > k . Else, if |ZAs

ab | + |EAs

ab | ≤ k,
then we use Proposition 5 to get all the 2O(k log k) distinct As- restricted P -
compatible families of t in time 2O(k log k)nO(1) and calculate mcs(t, As, P )
as per Eq. 2. We need to calculate cs(t, As, FP |As

) for 2O(k log k) distinct As-
restricted P -compatible families, which we can accomplish by invoking Propo-
sition 7, 2O(k log k) times. Thus, we conclude that calculation of mcs(t, As, P )
would take time 2O(k log k)nO(1). 
�

We now move on to give an assignment to M [t, S, P, 1]. Consider the following
assignments.

MINc = min{min{M [c, ∅, Pc, 1] | Pc is a d- mat. can. set of σ(c) such that (3)
∀v ∈ σ(t), mPc (v) ≤ mP (v)} | c ∈ Z(t)}.

If t is a leaf vertex and Z(t) is empty, then we set MINc = ∞.

MINβ(t) = min{mcs(t, As, P ) | As is an S -compatible set of β(t)}. (4)

Consider the following assignment of M [t, S, P, 1].

1. Case: S = ∅ or S = σ(t).

M [t, S, P, 1] = min{MINc,MINβ(t)}. (5)

2. Case: S �= ∅ and S �= σ(t).

M [t, S, P, 1] = MINβ(t). (6)

In Eqs. (5) and (6) if the right hand side exceed k then we set M [t, S, P, 1] = ∞.
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Lemma 4 (�). Assuming values M [c, ., ., .] satisfy properties (1) and (2) for
every c ∈ Z(t) and mcs(t, As, P ) satisfies properties (a) and (b) for every S-
compatible set As of β(t), assignment of M [t, S, P, 1] as per Eq. (5) and (6)
satisfies properties (1) and (2).

Calculation of MINc is straightforward and requires to iterate over every
M [c, ., ., .] for every c. As number of cells M [c, ., ., ] at each c are bounded
by 2O(k log k) and |Z(t)| can be at most O(n), we can calculate MINc in
2O(k log k)nO(1).

To calculate MINβ(t) a simple brute force approach of guessing all the S-
compatible sets of β(t) will not work, as it will exceed the running time budget
that we have. However, as it is required to calculate MINβ(t) only if MINβ(t) ≤
k, we can restrict our search space.

To this end, let us assume that MINβ(t) ≤ k, and let us fix a minimizing argu-
ment A∗

s, then A∗
s is the S-compatible set such that MINβ(t) = mcs(t, A∗

s , P ) ≤
k. In such a scenario due to Proposition 6 we have that |ZA∗

s

ab |+|EA∗
s

ab | ≤ k. Recall-
ing Sc = A∗

s ∩ σ(c) and S̄c = σ(c) \ Sc for every c ∈ Z(t). And Se = A∗
s ∩ V (e)

and S̄e = V (e) \ Se for every e ∈ E(Gt[β(t)]).

Lemma 5 ([3]). Given a set U of size n, and integers 0 ≤ a, b ≤ n, one can in
2O(min(a,b) log(a+b))n log n time construct a family F of at most
2O(min(a,b) log(a+b)) log n subsets of U , such that following holds: for any sets
A,B ⊆ U , A ∩ B = ∅, |A| ≤ a, |B| ≤ b, there exists a set S ∈ F with A ⊆ S
and B ∩ S = ∅.

Let B∗ = (∪
c∈Z

A∗
s

ab

S̄c)
⋃

(∪
c∈E

A∗
s

ab

S̄e). Due to |ZA∗
s

ab |+|EA∗
s

ab | ≤ k and |σ(c)| ≤ k,

we can observe that |B∗| ≤ k2. Invoking Lemma 5 for the universe β(t) and
integers k, k2 + k, we obtain a family F of subsets of β(t) such that there exists
a set Ag ∈ F such that Ag ⊇ A∗

s and Ag ∩ (B∗ ∪ (σ(t) \ A∗
s)) = ∅. We call such

a set Ag a good set. Further, the size of F is bounded by 2O(k log k) log n.
We now construct an auxiliary graph H on the vertex set β(t) such that an

edge uv ∈ E[H] if and only if one of the following holds:

1. u, v ∈ σ(t);
2. there exists a c ∈ Z(t) such that u, v ∈ σ(c);
3. uv ∈ E(Gt[β(t)]).

Observe that σ(t) forms a clique in H, similarly every σ(c) forms a clique in H
and Gt[β(t)] is a subgraph of H. For X ⊆ β(t), we call a connected component
Cs of H[X] an S-compatible component if V (Cs) is an S-compatible set of β(t).

Proposition 8 (�). If Ag is a good set, then there exists an S-compatible com-
ponent Cs in the subgraph H[Ag] such that mcs(t, A∗

s , P ) = mcs(t, V (Cs), P ).

Proposition 8 allow us to efficiently calculate MINβ(t). We need to iterate
over every Ag ∈ F and for each S-compatible component Cs in H[Ag] we need
to invoke Lemma 3 so that we can either calculate mcs(t, V (Cs), P ) or decide
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if mcs(t, V (Cs), P ) > k. If mcs(t, V (Cs), P ) > k then we assume it to be ∞.
We take the minimum value mcs(t, V (Cs), P ) encountered among all the S-
compatible component Cs in H[Ag] over all the choices Ag ∈ F and assign
it to MINβ(t). Correctness of this procedure comes due to the minimality of
mcs(t, A∗

s , P ) among all the S-compatible sets of β(t) and due to Proposition 8.
If we don’t encounter any S-compatible component during this process then
we can conclude that the assumption MINβ(t) ≤ k doesn’t hold and we set
MINβ(t) = ∞.

As the size of F is bounded by 2O(k log k) log n and we can obtain it using
Lemma 5 in time 2O(k log k)n log n. And for every Ag ∈ F , H[Ag] can contain
at most n S-compatible components and we can find all of them in time nO(1)

by using standard graph traversal methods. Thus, we need to invoke Lemma3
for at most 2O(k log k)nO(1) S-compatible components(sets), and each invocation
takes 2O(k log k)nO(1), thus, calculation of MINβ(t) takes time 2O(k log k)nO(1).
Recalling that calculation of MINc takes 2O(k log k)nO(1). This conclude that a
single cell M [t, S, P, 1] can be calculated in time 2O(k log k)nO(1). Further, we use
Propositions 2 and 3 to set values of M [t, S, P, 0]. This concludes that a single
cell M [t, S, P, ne] can be calculated in time 2O(k log k)nO(1). Recalling Lemma 1,
this suffices to conclude the proof of Theorem1.

4 Conclusion

In this paper, we discussed a 2O(k log k)nO(1) time fixed-parameter tractable algo-
rithm for d-CUT where k is the maximum size of the edge cut. We also observed
that MATCHING CUT cannot be solved in 2o(k)nO(1) unless ETH fails. It will
be an interesting problem to reduce the gap between lower and upper bound for
MATCHING CUT.

Acknowledgements. We thank Fahad Panolan for useful discussions, in particular
his suggestion of the tree decomposition that we used in the paper.
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Abstract. A spread in PG(n, q) is a set of lines which partition the
point set. A partition of the set of lines by spreads is called a parallelism.
The numerous relations and applications of parallelisms determine a sig-
nificant interest in the methods for their construction. We consider two
different backtrack search algorithms which can be used for that pur-
pose. The first one implies search on a set of spreads, and the second
- on the lines of the projective space. The authors have used them for
the classification of parallelisms invariant under definite automorphism
groups. The present paper concerns the applicability of each of the two
algorithms to cases with different peculiarities, and some ways to modify
them for usage on parallel computers. Suitable examples are given.

Keywords: Finite projective space · Parallelism · Resolution of a
combinatorial design

1 Introduction

Let PG(n, q) be the n-dimensional projective space over the finite field Fq. If n
is odd, it is possible to find a set of lines such that each point is in exactly one
of these lines. Such a set is called a spread. Two spreads are isomorphic if an
automorphism of PG(n, q) maps one to the other. A parallelism is a partition
of the set of all lines of the projective space to spreads. Two parallelisms are
isomorphic if there is an automorphism of PG(n, q) which maps the spreads
of one parallelism to spreads of the other. Background material on projective
spaces, spreads and parallelisms, can be found, for instance, in [13] or [23].

General constructions of parallelisms of PG(n, 2) are presented in [1] and
[31], of PG(2n − 1, q) in [5], and of PG(3, q) in [7,9,12,15]. All parallelisms of
PG(3, 2) and PG(3, 3) are known [2,13]. For larger projective spaces, however,
the classification problem is open. That is why computer-aided constructions
of parallelisms with certain predefined features (usually given automorphism
groups as in [3,16,18,20,22,24,25]) contribute significantly to the study of the
properties and possible applications of parallelisms.
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Parallelisms are related to translation planes [23], network coding [8], error-
correcting codes [11], and cryptography [21]. Of major importance is their rela-
tion to 2-designs.

Let V = {Pi}vi=1 be a finite set of points, and B = {Bj}bj=1 a finite collection
of k-element subsets of V , called blocks. D = (V,B) is a 2-design with parameters
2-(v,k,λ) if any 2-subset of V is contained in exactly λ blocks of B. A parallel
class is a set of blocks such that each point is in exactly one block. A resolution
of the design is a partition of the collection of blocks to parallel classes.

The point-line incidence in PG(n, q) defines a 2-design [23, 2.35-2.36] which
is called the point-line design. There is a one-to-one correspondence between
parallelisms and the resolutions of this design. That is why constructing paral-
lelisms is sometimes considered as identical to the more general problem of con-
structing resolutions. Point-line PG(n, q) designs, however, are Steiner 2-designs
with very rich automorphism groups and plenty of resolutions. This imposes
some specific problems. We have already constructed some of the parallelisms in
PG(3, 4) [3,4,24,25,27] and PG(3, 5) [26,28,30]. In the present paper we would
like to share our experience in doing this by backtrack search algorithms. The
algorithms described here can also be used for the construction of resolutions
of designs, and in particular, of Steiner 2-designs, but we only discuss on their
performance for the case of parallelisms (resolutions of point-line designs) for
which case we already have quite a lot of experimental data.

Backtrack search is exponential. It can only be successful with problems in
which relatively small parameters are concerned, many restrictions are set and
specific mathematical properties of the constructed objects can be taken into
account by the algorithm. The basic types of backtrack search algorithms for
classification of combinatorial structures are described by Kaski and Österg̊ard
in [14]. Our approach is based on the algorithm known as orderly generation [14]
proposed by Faradžev [10] and Read [19].

Before us a computer-aided search for parallelisms has been used by Stinson
and Vanstone [22], Fuji-Hara [9], Prince [16–18], Sarmiento [20], Braun [6], and
recently by Betten [2]. Their algorithms are not universal (the same holds for
the algorithms that we have used so far). They are based on theoretical results
implying the specifics of the respective parameters, properties and restrictions.
Moreover, compared to the theoretical considerations, the computer-aided work
in some papers (for instance [18,20]) is considered minor and trivial and almost
not described. It is therefore very difficult to compare the algorithms that are
implemented, and this is not our aim here. There is something common in all
these works, however. In all of them the authors first consider the spreads of
the projective space, determine which of them can possibly take part in the
parallelisms which have to be constructed, and construct these spreads. After
that they use the possible spreads to obtain parallelisms.

We have followed the same procedure, but to partially check the correctness
of our computer-aided results, we have independently used two basically differ-
ent algorithms for the construction of parallelisms. They are described in Sect. 2
of the present paper together with the general framework in which they can be
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applied. The main difference between them is that in Algorithm 1 the backtrack
search is on the spreads that have been constructed in advance, while in Algo-
rithm 2 it is on the lines of PG(n, q). Algorithm 2 takes into consideration the
restrictions which are imposed on the parallelisms, but it practically does not
use the results of the preliminary investigation on the spreads of the projective
space. We have not found such an approach described in the works of other
authors.

Our aim is to show that Algorithm 2 also has its advantages in some cases.
Section 3 contains observations on the performance of the two algorithms with
respect to the particularity of the considered problem and suitable examples.
Possible ways to modify these algorithms for usage on parallel computers are
considered in Sect. 4, and concluding remarks can be found in Sect. 5.

2 Two Construction Algorithms

2.1 Framework

We will start with a brief description of the framework in which each of these
algorithms can be used. Before applying one of the algorithms, we have found
generators of the automorphism group of the point-line 2-design and have sorted
its blocks (they correspond to the lines of the projective space) with respect to
a defined lexicographic order. Denote by v the number of points, and by b the
number of lines. Let k be the number of points in one line, and let r be the
number of lines containing a definite point. For some purposes it might be more
convenient to treat the lines as sets of points. This is illustrated in Fig. 1 by an
example for PG(3, 2).

The point-line incidence matrix of PG(3, 2) is an incidence matrix of a 2-(15, 3, 1) design

P\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
7 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
8 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
9 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
10 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
11 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
12 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
13 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
14 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
15 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

The lines by their points

b1b2b3b4b5 b6 b7 b8b9b10b11b12b13b14b15b16b17b18b19b20b21b22b23b24b25b26b27b28b29b30b31b32b33b34b35
1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7
2 4 6 8 10 12 14 4 5 8 9 12 13 4 5 8 9 12 13 8 9 10 11 8 9 10 11 8 9 10 11 8 9 10 11
3 5 7 9 11 13 15 6 7 10 11 14 15 7 6 11 10 15 14 12 13 14 15 13 12 15 14 14 15 12 13 15 14 13 12

Fig. 1. The point-line incidence of PG(3, 2)
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A parallelism contains r spreads which can (for the sake of the construction)
be considered as spread 1, spread 2, . . . spread r. The lines incident with the
i-th point should be in different spreads. That is why without loss of generality
we can choose a spread for each line containing the first point. This can be seen
on the parallelism of PG(3, 2) from Fig. 2.a where it is assumed that line b1 is in
the first spread, b2 in the second, etc. This way we have one predefined line in
each spread.

a) A parallelism of PG(3, 2) has 7 spreads of 5 lines each
b1b20b26b31b33 b2b10b19b29b35 b3b11b18b22b24 b4b12b15b23b34 b5b13b14b25b28 b6b8b17b27b32 b7b9b16b21b30
1 4 5 6 7 1 2 3 6 7 1 2 3 4 5 1 2 3 4 7 1 2 3 5 6 1 2 3 5 7 1 2 3 4 6
2 8 10 11 9 4 8 13 9 11 6 9 12 10 8 8 12 5 11 10 10 13 4 9 8 12 4 9 11 8 14 5 8 9 10
3 12 15 13 14 5 10 14 15 12 7 11 15 14 13 9 14 6 15 13 11 15 7 12 14 13 6 10 14 15 15 7 11 13 12

b) number of lines to consider at each step

b1b20b26b31b33 b2b10b19b29b35 b3b11b18b22b24 b4b12b15b23b34 b5b13b14b25b28 b6b8b17b27b32 b7b9b16b21b30
1 4 4 4 4 1 6 6 3 3 1 5 5 3 3 1 4 4 2 2 1 3 3 2 2 1 2 2 1 1 1 1 1 1 1

c) number of lines to put at each step
b1b20b26b31b33 b2b10b19b29b35 b3b11b18b22b24 b4b12b15b23b34 b5b13b14b25b28 b6b8b17b27b32 b7b9b16b21b30
1 4 2 1 1 1 4 2 1 1 1 3 1 1 1 1 4 2 1 1 1 3 1 1 1 1 2 2 1 1 1 1 1 1 1

Fig. 2. A parallelism of PG(3, 2)

We next consider the restrictions which should hold for the constructed par-
allelisms (automorphism groups, special type of the spreads, etc.) and decide at
which stage to take them in account. Then we apply Algorithm 1 or Algorithm
2 to construct all the desired parallelisms.

2.2 Algorithm 1

Algorithm 1, Part 1. In Algorithm 1 we first have to obtain, sort in a conve-
nient way, and save all the spreads that can possibly take part in a parallelism
which we want to construct. We use backtrack search illustrated by the follow-
ing code segment, where SpreadConstruct(2) is called to obtain all the spreads
containing a given first line.

SpreadConstruct(int Line) starts with finding Point - the first point that
is not contained in any of the (Line-1) lines which have already been added to
the spread. FirstLine[Point] is the first line (the lines are sorted in lexico-
graphic order) which is incident with Point, and LastLine[Point] is the last
one. Possible(Line, li) checks if the line li can be part of the current spread,
Put(Line, li) adds the line li to the spread and Take(Line) removes it.

If Line is the last line in the spread, the spread is ready and WriteSpread()
is called. If more lines have to be added, SpreadConstruct (Line+1) is called
to choose the next line. The steps in the construction of the eight spreads of
PG(3, 2) containing line b1, are presented in Fig. 3.
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void SpreadConstruct(int Line)
{

int Point = FirstMissingPoint(Line);
for(int li=FirstLine[Point]; li<=LastLine[Point]; li++)
{

if(Possible(Line, li))
{

Put(Line, li);
if(Line==v/k) WriteSpread();
else SpreadConstruct(Line+1);
Take(Line);

}
}

}

The candidates for the first spread of the constructed parallelisms are further
tested for isomorphism, and only nonisomorphic ones remain. In the example for
PG(3, 2) (Fig. 3) only one of the spreads containing b1 remains.

Fig. 3. The eight spreads of PG(3, 2) containing line b1
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Algorithm 1, Part 2. After all the possible spreads have been constructed,
sorted and saved in a convenient way, the main part of Algorithm 1 starts,
namely the parallelisms are constructed by a backtrack search on the possible
spreads. The search is illustrated in the following code segment.

void ParallConstr(int SpreadNum)
{

for(int i=1; i<=NumberOfVariants[SpreadNum]; i++)
{

if(SpreadOK(SpreadNum, i))
{

PutSpread(SpreadNum, i);
if(SpreadNum==r) WriteParallelism();
else ParallConstr(SpreadNum+1);
TakeSpread(SpreadNum);

}
}

}

ParallConstr(1) is called to construct the parallelisms. The function con-
siders all spread variants for the SpreadNum-th spread. SpreadOK(SpreadNum,
i) is called to check if the i-th spread variant can extend the obtained
until this moment partial parallelism. If this is the case, the function
PutSpread(SpreadNum, i) adds it to the current solution.

If all the r spreads are already in the partial parallelism, Write
Parallelism() is called to write the obtained solution, otherwise ParallConstr
(SpreadNum+1) attempts to add the next spread.

2.3 Algorithm 2

Without loss of generality we assume that the first line in the i-th spread is bi
(the grey lines in Fig. 2.a). This algorithm constructs the parallelisms by adding
the other spread lines in a consequent way that is illustrated by the code segment
presented below, where the parallelisms are constructed by MakeParall(2, 1).

The first missing point in spread SpreadNum is denoted by Point and found
by FirstMissingPoint(Line, SpreadNum). The lines that we try to add to the
current partial solution are between FirstLine[Point] and LastLine[Point].
Possible(Line, li, SpreadNum) checks if the current partial spread can be
extended with the line in consideration. If this is the case, Put(Line, li,
SpreadNum) adds it to the current solution.

We continue to add lines until all points are covered (i.e. the number of lines is
v/k) and when this happens, the function MakeParall(2, SpreadNum+1) starts
adding the next spread. If there are already r spreads in the partial parallelism,
WriteParallelism() is called.
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void MakeParall(int Line, int SpreadNum)
{

int Point = FirstMissingPoint(Line, SpreadNum);
for(int li = FirstLine[Point]; li<=LastLine[Point]; li++)
{

if(Possible(Line, li, SpreadNum))
{

Put(Line, li, SpreadNum);
if(Line==v/k)
{

if(SpreadNum==r) WriteParallelism();
else MakeParall(2, SpreadNum+1);

}
else MakeParall(Line+1, SpreadNum);
Take(Line, SpreadNum);

}
}

}

2.4 Restrictions

If the construction of all parallelisms of PG(n, q) is infeasible, families of paral-
lelisms with definite properties are usually constructed. The imposed restrictions
can make the classification feasible because they narrow the search space.

The restrictions might be on the type of the spreads, or on the whole paral-
lelisms. If the spreads of the projective space have been classified, then we might
want to construct only parallelisms which have spreads belonging to a given
isomorphism class, or spreads with some geometric properties. Such restrictions
are usually easy to take in consideration in the functions Possible(int Line,
int li) and Possible(int Line, int li, int SpreadNum) of Algorithms
1 and 2 respectively. Depending on the desired property, a check for it might be
applied either for all, or only for some values of Line.

Out of the restrictions on the whole parallelisms, most popular are the pre-
defined automorphism groups. Such a group is a subgroup of the automorphism
group of the projective space that preserves the parallelism. Consider paral-
lelisms invariant under a subgroup Gp of prime order p. The orbit of a spread
under Gp can be either of length 1, or of length p. In the first case it is made
of several whole line orbits, and in the second of lines from different line orbits
under Gp. This is illustrated in Fig. 4 by an example of a parallelism of PG(3, 2)
with an assumed automorphism of order 3. It is not difficult to see that in
this case parallelisms must consist of one fixed spread and two spread orbits of
length 3. The number of possible spreads with a predefined line is 8 (Fig. 3),
but with respect to the assumed automorphism, there are 2 possibilities for the
fixed spread and 3 for a spread (with one predefined line) with a spread orbit of
length 3.
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The predefined automorphism group G3 acts on the points as:
(1)(2)(3)(4, 8, 12)(5, 9, 13)(6, 10, 14)(7, 11, 15),
and on the lines as: (b1)(b2, b4, b6) (b3, b5, b7) (b8, b10, b12) (b9, b11, b13) (b14, b16, b18)
(b15, b17, b19) (b20) (b21, b24, b25) (b22, b28, b30) (b23, b32, b35) (b26, b33, b31) (b27, b29, b34).
The three spread orbits under G3 are:

An orbit of length 1: the spread is made of line orbits {b1}, {b20} and {b26, b31, b33}
b1 b20 b26 b31 b33
1 4 5 6 7
2 8 10 11 9
3 12 15 13 14

An orbit of length 3: the spreads contain one line from each of the line
orbits {b2, b4, b6}, {b8, b10, b12}, {b15, b17, b19}, {b23, b32, b35}, and {b27, b29, b34}
b2 b10 b19 b29 b35
1 2 3 6 7
4 8 13 9 11
5 10 14 15 12

b4 b12 b15 b23 b34
1 2 3 4 7
8 12 5 11 10
9 14 6 15 13

b6 b8 b17 b27 b32
1 2 3 5 7
12 4 9 11 8
13 6 10 14 15

An orbit of length 3: the spreads contain one line from each of the
line orbits {b3, b5, b7}, {b9, b11, b13}, {b14, b16, b18}, {b21, b24, b25}, {b22, b28, b30}
b3 b11 b18 b22 b24
1 2 3 4 5
6 9 12 10 8
7 11 15 14 13

b5 b13 b14 b25 b28
1 2 3 5 6
10 13 4 9 8
11 15 7 12 14

b7 b9 b16 b21 b30
1 2 3 4 6
14 5 8 9 10
15 7 11 13 12

Fig. 4. A parallelism of PG(3, 2) with a predefined automorphism of order 3

Parallelisms of PG(3, 2) are the smallest possible example. When larger
parameters are concerned and automorphism groups are assumed, there usu-
ally are many spreads that are neither made of whole line orbits, nor contain
lines from different line orbits of the same length. So these spreads are excluded
from the search set for Part 2 of Algorithm 1.

2.5 Isomorphism Test

We use the function SmallerExists(int SprNum) which checks if there exists
an automorphism of the projective space which maps the current partial solution
of SprNum spreads to a lexicographically smaller one, and returns true if so. A
call to SmallerExists (int SprNum) is included in the function SpreadOK(int
SpreadNum, int var) of Algorithm 1 for some values of SpreadNum and in the
function Possible(int Line, int li, int SpreadNum) of Algorithm 2 for
some values of SpreadNum if Line==v/k.

We have to mention here that the main difference between our approach and
the orderly generation algorithm [14] is that we do not call SmallerExists for
each value of SpreadNum. We apply the isomorphism test only to some of the
partial solutions and to all complete parallelisms that are obtained. Different
choices of the set of values of SpreadNum for which the test is applied, might
lead to considerable differences in the computation time.
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If we construct parallelisms with a predefined automorphism group Gp, the
check in SmallerExists(int SprNum) covers only the automorphisms from the
normalizer of Gp in the automorphism group of the projective space. If Gp is not
a Sylow subgroup, such a normalizer-based test might not reject all isomorphic
solutions, and it will be necessary to apply another type of isomorphism test on
the obtained parallelisms [29].

3 Comparison

Algorithm 1 is intuitively expected to be the better one, but our experience
shows that the computation time needed by the two algorithms to construct
the parallelisms has been quite similar in most of the problems that we have
considered so far. The main reason is that by backtrack search on the lines, the
number of lines which have to be considered at each step is big for the lines of the
first several spreads of the parallelism, but decreases for the next spreads. This is
illustrated in Fig. 2.b. The number of lines which meet the requirements decreases
too (Fig. 2.c). This significantly helps Algorithm 2 to compete with Algorithm
1. Moreover, Algorithm 1 avoids the repeated backtracking that Algorithm 2
does for the construction of the spreads within the parallelism, but Part 2 of
Algorithm 1 usually performs a search on a set of much bigger cardinality than
the line set.

Example 1. Parallelisms of PG(3, 4) with automorphism groups of order 7 are
constructed in [24]. Algorithm 2 performs a search on the 357 lines of the pro-
jective space, while Part 2 of Algorithm 1 searches on the possible spreads that
have been constructed in advance. There are 22860 spreads containing a given
line and having an orbit of length 7. Three such orbits are needed to obtain a
parallelism. The computation times of both algorithms are comparable.

Algorithm 2 usually performs worse when there are restrictions on the type
of the spreads because usually a considerable number of lines have to be added to
the spread before the nonexistence of the corresponding spread property can be
established, and therefore many not applicable partial solutions are not rejected.

Example 2. Subregular parallelisms of PG(3, 4) with a given automorphism
group of order 2 are constructed in [4]. There are 691968 possible spreads with
orbits of length 2, but only 213760 of them are subregular, and Part 2 of Algo-
rithm 1 performs a search on them. In this case Algorithm 2 can establish that a
spread is not subregular when at least 13 of all its 17 lines are added. Algorithm
2 needs 5 times more time to find the parallelisms.

Algorithm 1 is difficult to use if the number of the spreads in the search
set is too big and there is not enough memory for all of them. The usage of
disk memory is possible (we have done it for the construction in [27]), but the
computation time rises significantly. And if the number of possible spreads is
extremely big, Algorithm 1 is practically unusable, and Algorithm 2 has to be
used instead.
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Example 3. Parallelisms of PG(3, 5) with a cyclic automorphism group of order 8
are considered in [30]. There are too many parallelisms, and therefore we impose
some restrictions on the partial parallelisms consisting of spread orbits of length
less than 8, namely we extend to parallelisms only 19 partial solutions with rich
automorphism groups. The extension implies the addition of three spread orbits
of length 8. There are, however, 14227090 possibilities for each spread with an
orbit of length 8, and this is too much for Algorithm 1. That is why we do it
using Algorithm 2.

4 Parallel Versions

There are plenty of ways to create a parallel version of an algorithm. We estab-
lished that a very simple communication-free MPI based implementation of the
search for parallelisms on a parallel computer might be quite useful in many
cases. The parallel implementations of the two algorithms might look like that:

Algorithm 1, Part 2:

int aa=0;
void ParallConstr(int SpreadNum)
{

for(int i=1; i<=NumberOfVariants[SpreadNum]; i++)
{

if(SpreadOK(SpreadNum, i))
{

if(SpreadNum==N)
{

aa++;
if((aa%prnum)!=mynum) continue;

}
PutSpread(SpreadNum, i);
if(SpreadNum==r) WriteParallelism();
else ParallConstr(SpreadNum+1);
TakeSpread(SpreadNum);

}
}

}
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Algorithm 2:

int aa=0;
void MakeParall(int Line, int SpreadNum)
{

int Point = FirstMissingPoint(Line, SpreadNum);
for(int li = FirstLine[Point]; li<=LastLine[Point]; li++)
{

if(Possible(Line, li, SpreadNum))
{

if(SpreadNum==N&&Line==L)
{

aa++;
if((aa%prnum)!=mynum) continue;

}
Put(Line, li, SpreadNum);
if(Line==v/k)
{

if(SpreadNum==r) WriteParallelism();
else MakeParall(2, SpreadNum+1);

}
else MakeParall(Line+1, SpreadNum);
Take(Line, SpreadNum);

}
}

}

We denote by prnum the number of processes, and by mynum the number of
this process. Let N and L be positive integer constants not greater than the num-
ber of spreads in the parallelism and the number of lines in a spread respectively.
And let aa be a global variable that counts the number of partial solutions of
a definite size. Splitting the work among the processes can be done by allowing
each process to extend only those partial solutions of the definite size whose
number modulo prnum equals mynum.

It is of major importance to choose a suitable size of the partial solutions
after which the job is split to the different processes. On the one hand, we want
that the time to obtain these partial solutions will be relatively short, so that
the time when all processes do the same job will be as small as possible. On the
other hand, we want the number of the partial solutions of the chosen size to be
relatively big, so that each process will extend many of them, because in that
case the differences between the running times of the processes will be negligible.

If we use Algorithm 1 we can only choose partial solutions containing a
definite number of whole spreads (SpreadNum==N), while by Algorithm 2 we
may choose to split the job after a partial solution containing several whole
spreads and several lines of the next spread (SpreadNum==N&&Line==L). That is
why in some cases Algorithm 2 might be more suitable for a successful parallel
implementation in the way described above.
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5 Conclusion

Each problem which needs computer-aided search for parallelisms, has specifics
that have to be carefully considered before organizing the search. We have tried
to point out some cases when one of the two algorithms described here is less
applicable than the other one. In most of the cases, however, both algorithms can
be successfully used and the running times are comparable. This is particularly
useful for checking the correctness of the results in two different ways.
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Abstract. In multistage perfect matching problems, we are given a
sequence of graphs on the same vertex set and are asked to find a
sequence of perfect matchings, corresponding to the sequence of graphs,
such that consecutive matchings are as similar as possible. More precisely,
we aim to maximize the intersections, or minimize the unions between
consecutive matchings.

We show that these problems are NP-hard even in very restricted sce-
narios. As our main contribution, we present the first non-trivial approx-
imation algorithms for these problems: On the one hand, we devise a
tight approximation on graph sequences of length two (2-stage graphs).
On the other hand, we propose several general methods to deduce multi-
stage approximations from blackbox approximations on 2-stage graphs.

Keywords: Temporal graphs · Approximation algorithms · Perfect
matchings

1 Introduction

The study of graphs that evolve over time emerges naturally in several appli-
cations. As such, it is a well-known subject in graph theory [1–10,12–16,19,22].
While there are many possible approaches to model these problems (cf. the
discussion of related work), the paradigm of multistage graphs has attracted
quite some attention in recent years [2–5,13–15]. In this setting, we are given
a sequence of separate, but related graphs (stages). A typical goal is to find a
sequence of solutions for each individual graph such that the change in the solu-
tions between consecutive graphs is minimized. Since multistage graph problems
usually turn out to be NP-hard, one often resorts to FPT- or approximation algo-
rithms. To the best of our knowledge, all approximation results in this setting
discuss combined objective functions that reflect a trade-off between the quality
of each individual solution and the cost of the change over time (cf., e.g., [3,14]).
However, this is a drawback if one requires each stage’s solution to attain a cer-
tain quality guarantee (e.g., optimality). Trying to ensure this by adjusting the
trade-off weights in the above approximation algorithms leads to approximation
ratios that no longer effectively bound the cost of change. Here, we discuss a
multistage graph problem where each individual solution is necessarily optimal,
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but we can still obtain an approximation ratio on the cost of the change over
time.

A classical example are multistage matching problems, i.e., natural multi-
stage generalizations of traditional matching problems (e.g., perfect matching,
maximum weight matching, etc.). This is particularly interesting as optimality
for a single stage would be obtainable in polynomial time, but all known mul-
tistage variants are NP-hard already for two stages. There are several known
approximation algorithms for multistage matching problems [3]; however, they
all follow the trade-off paradigm.

In this paper, we are concerned with maintaining a perfect matching on
a multistage graph, such that the changes between consecutive matchings are
minimized. After showcasing the complexities of our problems (Sect. 2), we will
devise efficient approximation algorithms (Sect. 3).

Definitions and Preliminaries. Let G = (V, E) be an undirected graph. For a
set W ⊆ V of vertices, let δ(W ) :=

{
uv ∈ E | u ∈ W, v ∈ V \ W

}
denote the

set of its cut edges. For a singleton {v}, we may write δ(v) instead of δ({v}). A
set M ⊆ E of edges is a matching if every vertex is incident to at most one edge
of M ; it is a perfect matching if |δ(v)∩M | = 1 for every v ∈ V . A k-cycle (k-path)
is a cycle (path, respectively) consisting of exactly k edges. The parity of a k-cycle
is the parity of k. For a set F ⊆ E of edges, let V (F ) := {v ∈ V | δ(v) ∩ F �= ∅}
denote its incident vertices.

For x ∈ N, we define [x] := {1, ..., x} and �x� := {0} ∪ [x]. A temporal graph
(or τ -stage graph) is a tuple G = (V, E1, ..., Eτ ) consisting of a vertex set V and
multiple edge sets Ei, one for each i ∈ [τ ]. The graph Gi :=

(
V (Ei), Ei

)
is the ith

stage of G. We define ni := |V (Ei)|, and n := |V |. A temporal graph is spanning
if V (Ei) = V for each i ∈ [τ ].

Let μ := maxi∈[τ−1] |Ei∩Ei+1| denote the maximum number of edges that are
common between two adjacent stages. Let E∩ :=

⋂
i∈[τ ]Ei and E∪ :=

⋃
i∈[τ ]Ei.

The graph G∪ := (V (E∪), E∪) is the union graph of G. A multistage perfect
matching in G is a sequence M := (Mi)i∈[τ ] such that for each i ∈ [τ ], Mi is a
perfect matching in Gi.

All problems considered in this paper (MIM, MUM, Min-MPM, Max-MPM;
see below) are of the following form: Given a temporal graph G, we ask for
a multistage perfect matching M optimizing some objective function. In their
respective decision variants, the input furthermore consists of some value κ and
we ask whether there is an M with objective value at most (minimization prob-
lems) or at least (maximization problems) κ.

Definition 1 (MIM and τ -IM). Given a temporal graph G, the multistage inter-
section matching problem (MIM) asks for a multistage perfect matching M of G
with maximum profit p(M) :=

∑
i∈[τ−1]|Mi ∩ Mi+1|. For fixed τ , we denote the

problem by τ -IM.

We also consider the natural inverse objective, i.e., minimizing the unions.
While the problems differ in the precise objective function, an optimal solution
of MIM is optimal for MUM as well, and vice versa.
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Definition 2 (MUM and τ -UM). Given a temporal graph G, the multistage
union matching problem (MUM) asks for a multistage perfect matching M of G
with minimum cost c(M) :=

∑
i∈[τ−1]|Mi ∪ Mi+1|. For fixed τ , we denote the

problem by τ -UM.

Consider either MIM or MUM. Given a temporal graph G, we denote with opt
the optimal solution value and with apx the objective value achieved by a given
algorithm with input G. The approximation ratio of an approximation algorithm
for MIM (MUM) is the infimum (supremum, respectively) of apx/opt over all
instances.

Related Work. The classical dynamic graph setting often considers small modifi-
cations, e.g., single edge insertions/deletions [12,22]. There, one is given a graph
with a sequence of modifications and asked for a feasible solution after each
modification. A natural approach to tackle matchings in such graphs is to make
local changes to the previous solutions [7–9,21].

A more general way of modeling changes is that of temporal graphs, intro-
duced by Kempe et al. [16] and used herein. Typically, each vertex and edge is
assigned a set of time intervals that specify when it is present. This allows an arbi-
trary number of changes to occur at the same time. Algorithms for this setting
usually require a more global perspective and many approaches do not rely solely
on local changes. In fact, many temporal (matching) problems turn out to be
hard, even w.r.t. approximation and fixed-parameter-tractability [1,6,10,18,19].

One particular flavor of temporal graph problems is concerned with obtaining
a sequence of solutions—one for each stage—while optimizing a global quantity.
These problems are often referred to as multistage problems and gained much
attention in recent years [2–5,13–15], including in the realm of matchings: e.g.,
the authors of [15] show W[1]-hardness for finding the largest edge set that
induces a matching in each stage.

In the literature we find the problem Max-MPM, where the graph is aug-
mented with time-dependent edge weights, and we want to maximize the value
of each individual perfect matching (subject to the given edge costs) plus the
total profit [3]. MIM is the special case where all edge costs are zero, i.e., we only
care about the multistage properties of the solution, as long as each stage is per-
fectly matched. There is also the inverse optimization problem Min-MPM, where
we minimize the value of each perfect matching plus the number of matching
edges newly introduced in each stage. We have APX-hardness for Max-MPM and
Min-MPM [3,14] (for Min-MPM one may assume a complete graph at each stage,
possibly including edges of infinite weight). The latter remains APX-hard even
for spanning 2-stage graphs with bipartite union graph and no edge weights (i.e.,
we only minimize the number of edge swaps) [3]. For uniform edge weights 0, the
objective of Min-MPM is to minimize

∑
i∈[τ−1]|Mi+1 \ Mi|; similar but slightly

different to MUM (equal up to additive
∑

i∈[τ−1]ni/2). For Min-MPM on metric
spanning 2- or 3-stage graphs, the authors of [3] show 3-approximations. They
also propose a (1/2)-approximation for Max-MPM on spanning temporal graphs
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with any number of stages, which is unfortunately wrong (see Appendix A of
the arXiv version [11] of this paper for a detailed discussion).

When restricting Max-MPM and Min-MPM to uniform edge weights 0, opti-
mal solutions for MIM, MUM, Max-MPM, and Min-MPM are identical; thus MIM
and MUM are NP-hard. However, the APX-hardness of Min-MPM does not imply
APX-hardness of MUM as the objective functions slightly differ. Furthermore,
the APX-hardness reduction to Max-MPM inherently requires non-uniform edge
weights and does not translate to MIM. To the best of our knowledge, there are
no non-trivial approximation algorithms for any of these problems on more than
three stages.

Our Contribution. We start with showing in Sect. 2 that the problems are NP-
hard even in much more restricted scenarios than previously known, and that (a
lower bound for) the integrality gap of the natural linear program for 2-IM is close
to the approximation ratio we will subsequently devise. This hints that stronger
approximation ratios may be hard to obtain, at least using LP techniques.

As our main contribution, we propose several approximation algorithms for
the multistage problems MIM and MUM, as well as for their stage-restricted vari-
ants, see Fig. 1. In particular, in Sect. 3.1, we show a (1/

√
2μ)-approximation for

2-IM and that this analysis is tight. Then, in Sect. 3.2, we show that any approxi-
mation of 2-IM can be used to derive two different approximation algorithms for
MIM, whose approximation ratios are a priori incomparable. In Sect. 3.3, we fur-
ther show how to use all these algorithms to approximate MUM (and 2-UM). We
also observe that it is infeasible to use an arbitraryMUM algorithm to approximate
MIM. In particular, we propose the seemingly first approximation algorithms for
MIM and MUM on arbitrarily many stages. We stress that our goal is to always
guarantee a perfect matching in each stage; the approximation ratio deals purely
with optimizing the transition costs. Recall that approximation algorithms opti-
mizing a weighted sum between intra- and interstage costs cannot guarantee such
solutions in general.

Fig. 1. Relations of our approximation results. An arc from problem A to B
labeled f(α) denotes the existence of an f(α)-approximation for B, given an α-
approximation for A. In Corollary 16, α has to be constant. In Corollary 15, α(·)
is a function of μ. The ratio of 2-IM is by Theorem 8; combining this with Theorem 17
yields the ratio for 2-UM.
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Preprocessing and Observations. Given a graph G = (V, E), a single edge e is
allowed if there exists a perfect matching M in G with e ∈ M and forbidden
otherwise. A graph is matching-covered if all its edges are allowed (cf. [17] for
a concise characterization of matching-covered graphs). Forbidden edges can
easily be found in polynomial time; see e.g. [20] for an efficient algorithm. A
simple preprocessing for MIM and MUM is to remove the forbidden edges in each
stage, as they will never be part of a multistage matching. Thereby, we obtain
an equivalent reduced temporal graph, i.e., a temporal graph whose stages are
matching-covered. If any stage in the reduced temporal graph contains no edges
(but vertices), the instance is infeasible. In the following, we thus assume w.l.o.g.
that the given temporal graph is reduced and feasible, i.e., in each stage there
exists some perfect matching.

Observation 3. Let G be a reduced 2-stage graph. For any e ∈ E∩, there is a
perfect matching in each stage that includes e. Thus, there is a multistage perfect
matching with profit at least 1 if E∩ �= ∅.

Observation 4. For any multistage perfect matching (Mi)i∈[τ ], it holds for
each i ∈ [τ − 1] that max(ni/2, ni+1/2) ≤ |Mi ∪ Mi+1| = c(Mi, Mi+1) ≤
2 max(ni/2, ni+1/2). Thus, computing any multistage perfect matching is an
immediate 2-approximation for MUM.

Observation 5. Consider the following algorithm: Enumerate every possible
sequence (Fi)i∈[τ−1] such that Fi ⊆ Ei ∩ Ei+1 for each i ∈ [τ − 1]; then check for
each i ∈ [τ ] whether there is a perfect matching Mi in Gi such that Fi−1 ∪ Fi ⊆ Mi,
where F0 = Fτ = ∅. Thus, MIM and MUM are in FPT w.r.t. parameter∑

i∈[τ−1]|Ei ∩ Ei+1| (or similarly τ · μ).

2 Setting the Ground

Before we present our main contribution, the approximation algorithms, we moti-
vate the intrinsic complexities of the considered problems. On the one hand, we
show that the problem is already hard in very restricted cases. On the other hand,
we show that natural linear programming methods cannot yield a constant-factor
approximation for 2-IM.

While it is known that 2-IM is NP-hard in general, we show that 2-IM is
already NP-hard in the seemingly simple case where each vertex has only degree 2
in both stages. It immediately follows that the decision variants of MIM, 2-UM,
MUM, Min-MPM, and Max-MPM remain NP-hard as well, even if restricted to
this set of temporal graphs. The proof of the following theorem is in Appendix B
of [11].

Theorem 6. Deciding 2-IM is NP-hard on spanning temporal graphs whose
union graph is bipartite, even if both stages consist only of disjoint even cycles
and E∩ is a collection of disjoint 2-paths.
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Algorithm 1: Approximation of 2-IM
1 set (M1, M2) to (∅, ∅)
2 for i = 1, 2, ... do
3 set edge weights of G1 to 1

(
e ∈ E∩ \ ⋃

j∈[i−1]M
(j)
1

)

4 compute a maximum weight perfect matching M
(i)
1 on G1

5 set edge weights of G2 to 1
(
e ∈ M

(i)
1

)

6 compute a maximum weight perfect matching M
(i)
2 on G2

7 if |M (i)
1 ∩ M

(i)
2 | ≥ |M1 ∩ M2| then set (M1, M2) to (M (i)

1 , M
(i)
2 ) if

E∩ ⊆ ⋃
j∈[i]M

(j)
1 then return (M1, M2)

Linear Programs (LPs)—as relaxations of integer linear programs (ILPs)—are
often used to provide dual bounds in the approximation context. Here, we consider
the natural LP-formulation of 2-IM and show that the integrality gap (i.e., the ratio
between the optimal objective value of the ILP and the optimal objective value of
its relaxation) is at least √

μ, even already for spanning instances with a bipartite
union graph. Up to a small constant factor, this equals the (inverse) approximation
ratio guaranteed by Algorithm 1, which we will propose in Sect. 3. This serves as
a hint that overcoming the approximation dependency √

μ for 2-IM may be hard.
A proof of the following theorem is in Appendix C of [11].

Theorem 7. The natural LP for 2-IM has at least an integrality gap of √
μ,

independent of the number μ of edges in the intersection.

3 Approximation

We start with the special case of 2-IM, before extending the result to the multi-
stage MIM scenario. Then we will transform the algorithms for use with 2-UM
and MUM.

3.1 Approximating 2-IM

We first describe Algorithm 1, which is an approximation for 2-IM. Although
its ratio is not constant but grows with the rate of √

μ, Theorem 7 hints that
better approximations may be hard to obtain. Algorithm 1 roughly works as
follows: Given a 2-stage graph G, we iterate the following procedure on G1 until
every edge of E∩ has been in at least one perfect matching: Compute a perfect
matching M1 in G1 that uses the maximum number of edges of E∩ that have
not been used in any previous iteration; then compute a perfect matching M2
in G2 that optimizes the profit with respect to M1. While doing so, keep track of
the maximal occurring profit. Note that by choosing weights appropriately, we
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can construct a perfect matching that contains the maximum number of edges
of some prescribed edge set in polynomial time [17].

We show:

Theorem 8. Algorithm 1 is a tight (1/
√

2μ)-approximation for 2-IM.

We prove this via two Lemmata; the bad instance of Lemma 9 in conjunction
with the approximation guarantee (Lemma 10) establishes tightness.

Lemma 9 (Bad instance). The approximation ratio of Algorithm 1 is at
most (1/

√
2μ). (Proof in Appendix D of [11].)

Lemma 10 (Guarantee). The approximation ratio of Algorithm 1 is at
least (1/

√
2μ).

Proof. Let G be a feasible and reduced 2-stage graph with non-empty E∩. Clearly,
our algorithm achieves apx ≥ 1 as described in Observation 3. Let k denote
the number of iterations. For any i ∈ [k], let (M (i)

1 , M
(i)
2 ) denote the 2-stage

perfect matching computed in the ith iteration. The algorithm picks at least
one new edge of E∩ per iteration into M

(i)
1 and hence terminates. Let (M∗

1 , M∗
2 )

denote an optimal 2-stage perfect matching and M∗
∩ := M∗

1 ∩M∗
2 its intersection.

Let Ri := (M (i)
1 ∩ E∩) \ ⋃

j∈[i−1]Rj denote the set of edges in M
(i)
1 ∩ E∩ that are

not contained in M
(j)
1 for any previous iteration j < i and let ri := |Ri|. Note

that in iteration i, the algorithm first searches for a perfect matching M
(i)
1 in G1

that maximizes the cardinality ri of its intersection with E∩ \ ⋃
j∈[i−1]Rj . We

define R∗
i := (M (i)

1 ∩ M∗
∩) \ ⋃

j∈[i−1]R
∗
j and r∗

i := |R∗
i | equivalently to Ri, but

w.r.t. M∗
∩ (cf. Fig. 2). Observe that Ri ∩ M∗

∩ = R∗
i .

Let q :=
√

2μ. For every i ∈ [k] the algorithm chooses M
(i)
2 such that

|M (i)
1 ∩ M

(i)
2 | is maximized. Since we may choose M

(i)
2 = M∗

2 , it follows that
apx ≥ maxi∈[k] r∗

i . Thus, if maxi∈[k] r∗
i ≥ opt/q, we have a (1/q)-approximation.

In case opt ≤ q, any solution with profit at least 1 yields a (1/q)-approximation.
We show that we are in one of these cases.

Fig. 2. Visualization of the relationships between E∩, M∗
∩, M

(i)
1 , Ri and R∗

i for i ∈ [3].
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Algorithm 2: General multistage approximation
Input: Temporal graph G, 2-stage perfect matching algorithm A

1 create path P := {e1, ..., eτ−1}
2 foreach i ∈ [τ − 1] do
3 set (Si, Ti+1) to A(V, Ei, Ei+1) // approximate 2-stage graphs
4 set weight of ei to wi := |Si ∩ Ti+1|
5 compute maximum weight matching MP in (P, w)
6 set (Mi)i∈[τ−1] to (Si)i∈[τ−1] and Mτ to Tτ // set initial solution
7 foreach i ∈ [τ − 1] do // modify solution according to MP

8 if ei ∈ MP then set Mi to Si and Mi+1 to Ti+1

9 return (M1, ..., Mτ )

Let q := 
q�. Assume that opt > q (thus opt ≥ q) and simultaneously r∗
i <

opt/q for all i ∈ [k]. Since we distribute M∗
∩ over the disjoint sets {R∗

i | i ∈ [k]},
each containing less than opt/q edges, we know that k > q (thus k ≥ q). In
iteration i, M∗

1 has weight |(M∗
1 ∩ E∩) \ ⋃

j∈[i−1]Rj | ≥ |M∗
∩ \ ⋃

j∈[i−1]Rj | =
|M∗

∩\⋃
j∈[i−1]R

∗
j |. Hence, the latter term is a lower bound on ri, that we estimate

as follows: ri ≥ ∣
∣M∗

∩ \ ⋃
j∈[i−1]R

∗
j

∣
∣ = opt − ∑

j∈[i−1]r
∗
j ≥ opt − ∑

j∈[i−1]opt/q =
opt · (

1 − (i − 1)/q
)
. The above assumptions give a contradiction:

μ =
∣
∣⋃

i∈[k]Ri

∣
∣ ≥ ∑

i∈[q]ri ≥ opt · ∑
i∈[q]

(
1 − i−1

q

) ≥ q · ∑
i∈[q]

(
1 − i−1

q

)

= q
(
q − ∑

i∈[q−1]
i
q

)
= q

(
q − (q−1)q

2q

)
= q2

(
1 − q−1

2q

)
> q2

(
1 − q

2q

) ≥ μ. �

3.2 Approximating MIM

Let us extend the above result to an arbitrary number of stages. We show that we
can use any 2-IM approximation algorithm (in particular also Algorithm 1) as a
black box to obtain an approximation algorithm for MIM, while only halving the
approximation ratio: Algorithm 2 uses an edge weighted path (P, w) on τ vertices
as an auxiliary graph. We set the weight of the edge between the ith and (i + 1)th
vertex to an approximate solution for the 2-IM instance that arises from the ith and
(i + 1)th stage of the MIM instance. A maximum weight matching MP in (P, w)
induces a feasible solution for the MIM problem: If an edge (j, j + 1) is in MP , we
use the corresponding solutions for the jth and (j + 1)th stage; for stages without
incident edge in MP , we select an arbitrary solution. Since no vertex is incident to
more than one edge in MP , there are no conflicts.

Observation 11. For F ⊆ E(P ), denote w(F ) :=
∑

e∈F w(e). Let ei denote the
ith edge of P . For b ∈ [2], the matchings Mb := {ei ∈ E(P ) | i = b mod 2} are
disjoint and their union is exactly E(P ). Thus, any maximumweight matching MP

in P achieves 2 · w(MP ) ≥ w(E(P )).

Theorem 12. For a 2-IM α-approximation, Algorithm2 α
2 -approximates MIM.
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Proof. Let G = (V, E1, ..., Eτ ) be the given temporal graph. For any i ∈ [τ − 1],
(Si, Ti+1) is the output of the 2-IM α-approximation A(V, Ei, Ei+1); let wi :=
|Si ∩Ti+1|. Let M∗ := (M∗

1 , ..., M∗
τ ) denote a multistage perfect matching whose

profit p(M∗) is maximum. Since A is an α-approximation for 2-IM, we know
that |M∗

i ∩ M∗
i+1| ≤ wi/α for every i ∈ [τ − 1]. Thus p(M∗) ≤ (1/α)

∑
i∈[τ−1]wi.

Algorithm 2 computes a maximum weight matching MP in (P, w) and con-
structs a multistage solution M. By Observation 11, we obtain p(M∗) ≤
(1/α)

∑
i∈[τ−1]wi = (1/α) · w(E(P )) ≤ (2/α) · w(MP ) ≤ (2/α) · p(M).

We compute a maximum weight matching in a path in linear time using
straightforward dynamic programming. Hence, assuming running time f for A,
Algorithm 2 requires O(∑

i∈[τ−1]|f(Gi, Gi+1)|) steps.

Corollary 13. Algorithm1 in Algorithm2 yields a (1/
√

8μ)-approximation for
MIM.

There is another way to approximate MIM via an approximation for 2-IM,
which neither dominates nor is dominated by the above method:

Theorem 14. There is an S-reduction from MIM to 2-IM, i.e., given any MIM
instance G, we can find a corresponding 2-IM instance G′ in polynomial time
such that any solution for G bijectively corresponds to a solution for G′ with the
same profit. Furthermore, |E(G′

1) ∩ E(G′
2)| =

∑
i∈[τ−1]|E(Gi) ∩ E(Gi+1)|.

Proof. We will construct a 2-stage graph G′ whose first stage G′
1 consists of (sub-

divided) disjoint copies of Gi for odd i; conversely its second stage G′
2 consists

of (subdivided) disjoint copies of Gi for even i. More precisely, consider the fol-
lowing construction: Let b(i) := 2 − (i mod 2). For each i ∈ [τ ], we create a copy
of Gi in G′

b(i) where each edge e ∈ E(Gi) is replaced by a 7-path pe
i . We label the

3rd (5th) edge along pe
i (disregarding its orientation) with e−

i (e+i , respectively).
To finally obtain G′, for each i ∈ [τ −1] and e ∈ E(Gi)∩E(Gi+1), we identify the
vertices of e+i with those of e−

i+1 (disregarding the edges’ orientations); thereby
precisely the edges e+i and e−

i+1 become an edge common to both stages. No
other edges are shared between both stages. This completes the construction
of G′ and we have |E(G′

1) ∩ E(G′
2)| =

∑
i∈[τ−1]|E(Gi) ∩ E(Gi+1)|.

Assume M′ := (M ′
1, M ′

2) is a solution for G′. Clearly, each path pe
i in G′

b(i) is
matched alternatingly and hence either all or none of e−

i , e+i , the first, and the
last edge of pe

i are in M ′
b(i). We derive a corresponding solution M for G: For

every i ∈ [τ ] and e ∈ E(Gi), we add e to Mi if and only if e−
i ∈ M ′

b(i). Suppose
that Mi is not a perfect matching for Gi, i.e., there exists a vertex v in Gi that is
not incident to exactly one edge in Mi. Then also the copy of v in the copy of Gi

in G′
b(i) is not incident to exactly one edge of M ′

b(i), contradicting the feasibility
of M′.

Consider the profit achieved by M: Every edge in M ′
1 ∩ M ′

2 corresponds
to a different identification 〈e+i , e−

i+1〉. We have e ∈ Mi ∩ Mi+1 if and only if
e−

i ∈ M ′
b(i), e−

i+1 ∈ M ′
b(i+1), and e+i = e−

i+1. It follows that this holds if and only
if e+i ∈ M ′

b(i) ∩ M ′
b(i+1) and hence the profit of M is equal to that of M′. The

inverse direction proceeds in the same manner.



Approximating Multistage Matching Problems 567

Since the new μ′ := |E(G′
1)∩E(G′

2)| is largest w.r.t. the original μ if |E(Gi)∩
E(Gi+1)| is constant for all i, we obtain:

Corollary 15. For any 2-IM α(μ)-approximation where α(μ) is a (typically
decreasing) function of μ, there is an α

(
(τ −1)μ

)
-approximation for MIM. Using

Algorithm 1, this yields a ratio of 1/
√

2(τ − 1)μ; for 3-IM and 4-IM this is tighter
than Theorem 12.

Assume the approximation ratio for 2-IM would not depend on μ. Then the
above would yield a surprisingly strong result:

Corollary 16. Any 2-IM α-approximation with constant α results in an α-
approximation of MIM. If MIM is APX-hard, so is 2-IM.

3.3 Approximating MUM

Consider the MUM-problem which minimizes the cost. As noted in Observation 4,
a 2-approximation is easily accomplished. However, by exploiting the previous
results for MIM, we obtain better approximations.

Theorem 17. Any α-approximation of MIM is a (2 − α)-approximation of
MUM.

Proof. Recall that an optimal solution of MIM constitutes an optimal solution
of MUM. As before, we denote the heuristic sequence of matchings by (Mi)i∈[τ ]
and the optimal one by (M∗

i )i∈[τ ]. Let ξ :=
∑

i∈[τ−1](ni + ni+1)/2. Consider the
solutions’ values w.r.t. MUM:

apx∪
opt∪

=
∑

i∈[τ−1]c(Mi,Mi+1)∑
i∈[τ−1]c(M

∗
i

,M∗
i+1)

=
ξ−

∑
i∈[τ−1]|Mi∩Mi+1|

ξ−
∑

i∈[τ−1]|M∗
i

∩M∗
i+1| ≤ ξ−α·opt∩

ξ−opt∩
=: f.

As 0 < α < 1, f is monotonously increasing in opt∩ if 0 ≤ opt∩ < ξ. Thus, since
opt∩ ≤ ∑

i∈[τ−1] min(ni, ni+1)/2 ≤ ∑
i∈[τ−1](ni + ni+1)/4 = ξ/2, it follows that

apx∪/opt∪ ≤ (ξ − α · ξ/2)/(ξ − ξ/2) = 2 − α.

Corollary 18. Let r := min{8, 2(τ − 1)}. We have a
(
2 − 1/

√
r · μ

)
-

approximation for MUM.

Note that a similar reduction from MIM to MUM is not achieved as easily:
Consider any (1 + ε)-approximation for MUM. Choose an even integer k ≥ 6
such that k/(k − 1) ≤ 1 + ε; consider a spanning 2-stage instance where each
stage is a k-cycle and E∩ consists of a single edge e. The optimal 2-stage per-
fect matching M∗ that contains e in both stages has profit p(M∗) = 1 and
cost c(M∗) = 2 · k/2 − 1 = k − 1. A 2-stage perfect matching M that does
not contain e still satisfies c(M) = k and as such is an (1 + ε)-approximation
for MUM. However, its profit p(M) = 0 does not provide any approximation of
p(M∗) = 1.

As for MIM, we aim to extend a given approximation for 2-UM to a general
approximation for MUM. Unfortunately, we cannot use Theorems 14 and 17
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for this, as an approximation for 2-UM does not generally constitute one
for 2-IM (and MIM). On the positive side, a similar approach as used in the
proof of Theorem 12 also works for minimization.

Theorem 19. Any α-approximation A for 2-UM results in a (1 + α/2)-
approximation for MUM by using A in Algorithm 2.

Proof. As before, let (M∗
i )i∈[τ ] denote an optimal solution for MUM. For each

i ∈ [τ − 1], (Si, Ti) denotes the output of A(V, Ei, Ei+1). For L ⊆ [τ − 1],
let ξ(L) :=

∑
i∈L(ni + ni+1)/2 and σ(L) :=

∑
i∈L|Si ∪ Ti|. Note that wi :=

ξ({i}) − σ({i}) equals the weight of ei. We define I := {i ∈ [τ − 1] | ei ∈ MP } as
the set of indices corresponding to MP and J := [τ − 1] \ I as its complement.
By Observation 11, we have w

(
E(P )

) ≤ 2 · w(MP ), thus

ξ(I) − σ(I) + ξ(J) − σ(J) = w
(
E(P )

) ≤ 2 · w(MP ) = 2
(
ξ(I) − σ(I)

)

⇒ σ(I) + ξ(J) ≤ ξ(I) + σ(J) ⇒ 2
(
σ(I) + ξ(J)

) ≤ ξ(I ∪ J) + σ(I ∪ J).

The trivial upper bound ξ suffices to bound the algorithm’s solution value:

apx = σ(I) +
∑

j∈J |Mj ∪ Mj+1| ≤ σ(I) + ξ(J) ≤ 1
2
(
ξ(I ∪ J) + σ(I ∪ J)

)
.

Since σ(I ∪J) α-approximates the sum of all 2-UM instances’ solution values, we
have σ(I ∪J) ≤ α ·opt. For each transition, any solution satisfies (ni +ni+1)/4 ≤
|Mi ∪ Mi+1| and hence ξ(I ∪ J) ≤ 2 · opt. Finally, we obtain the claimed ratio:
apx ≤ 1/2 · (

2 · opt + α · opt) = (1 + α/2) · opt. �

4 Conclusion

In this paper we presented the first approximation algorithm for 2-IM, having a
tight approximation ratio of 1/

√
2μ. It remains open if a constant factor approxi-

mation for 2-IM is possible; however, we showed that this would imply a constant
factor approximation for MIM. We further showed two ways in which MIM and
MUM can be approximated by using any algorithm that approximates 2-IM,
thereby also presenting the first approximation algorithms for multistage match-
ing problems with an arbitrary number of stages. We are confident that our
techniques are applicable to a broader set of related problems as well.
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Abstract. The construction of covering arrays (CAs) with a small num-
ber of rows is a difficult optimization problem. CAs generated by greedy
methods are often far from optimal, while many metaheuristics and
search techniques become inefficient once larger instances are concerned.
In this work, we propose to incorporate improvement heuristics directly
into the constructing process of widely used in-parameter-order (IPO)
algorithms for CA generation. We discuss how this approach can signif-
icantly reduce the search space of the heuristics and implement some of
the discussed concepts in the SIPO algorithm, which enhances greedy
IPO algorithms with Simulated Annealing. Using SIPO, we improved
the best known upper bound on the number of rows of binary CAs of
strength 6 for 43 different instances.

Keywords: Covering arrays · Heuristics · Optimization · Simulated
annealing

1 Introduction

Due to the reliance of modern society on technology and software, efficient test-
ing of software systems for failures and unintended behavior is crucial. At the
same time many systems are too large to be tested exhaustively. Combinato-
rial testing (CT) is a testing methodology that makes it possible to test large
systems within reasonable time while maintaining certain coverage guarantees,
for an introduction see [14]. In past works, CT was successfully applied to find
faults in systems with more than 2000 parameters [10].

Covering arrays (CAs) are the combinatorial design underlying the test sets
used in CT and can be considered generalizations of orthogonal arrays. A (uni-
form) CA, denoted as CA(N ; t, k, v), is an array with N rows and k columns with
values arising from an alphabet of cardinality v. Further, the defining property of
a CA is that in every possible selection of t columns, every t-tuple {0, 1, ..., v − 1}t
appears in at least one row. The parameter t is known as the strength of the
CA, while we further refer to a selection of t columns as column configuration.
Figure 1 gives an example of a CA(6; 2, 10, 2). In this binary 6 × 10 array, any
possible selection of 2 columns contains all binary 2-tuples, (0, 0), (0, 1), (1, 0)
and (1, 1), in at least one row.
c© Springer Nature Switzerland AG 2021
P. Flocchini and L. Moura (Eds.): IWOCA 2021, LNCS 12757, pp. 571–586, 2021.
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This defining property of CAs can further be expressed using the notion
of t-way interactions. A t-way interaction is defined as a set of t pairs
{(p0, v0), ..., (pt−1, vt−1)}, representing a column index 0 ≤ pi < k and a cor-
responding value 0 ≤ vi < v for this column. A t-way interaction is consid-
ered covered if there exists at least one row in the array that contains all t
column/value pairs of the t-way interaction. Hence, a CA is an array where
every t-way interaction is covered. For example, in the first two columns, the
CA in Fig. 1 covers the 2-way interaction {(1, 0), (2, 0)} in the first two rows,
{(1, 0), (2, 1)} in row 3, {(1, 1), (2, 0)} in row 4 and {(1, 1), (2, 1)} in the last two
rows. We call the data structure that is used to store the coverage information
of all t-way interactions coverage map, which is discussed in detail in [13].

0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 1 0
0 1 0 1 1 0 0 1 1 1
1 0 1 0 0 1 0 1 1 1
1 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 1 0 0 1

Fig. 1. CA(6; 2, 10, 2)

We refer to the problem of generating a
CA(N ; t, k, v) with a given strength t, number of
columns k and alphabet of cardinality v as CA
instance. A CA with the minimal number of rows
possible is considered optimal. The number of rows
N of an optimal CA is called covering array number
(CAN). Generating optimal CAs is tightly coupled
with other hard optimization problems [12], there-
fore the precise value of CAN is only known for a
small number of CA instances. For the majority of
CA instances, only lower and upper bounds on CAN are known. The minimiza-
tion of rows is also of interest in practical applications such as combinatorial
testing, where CAs with a small number of rows directly translate to small test
sets, effectively reducing the resources needed for testing.

Further, CAs can be generalized to mixed-level alphabets, which allows for
different alphabet sizes in the columns. These structures are called mixed-level
covering arrays (MCAs) and are denoted as MCA(N ; t, k, (v1, . . . , vk)). For sim-
plicity, throughout the majority of this work, we focus on the case of uniform
CAs, but note that generalization of all proposed concepts to MCAs is straight
forward.

This work discusses how metaheuristics and search techniques can be inte-
grated directly into the construction process of In-Parameter-Order algorithms
and is structured as follows. In Sect. 2, we review various past works for the
generation of CAs. Section 3 proposes a concept of enhancing the well studied
in-parameter-order strategy with other heuristic methods. Parts of this concept
are then implemented in the SIPO algorithm presented in Sect. 4, which is eval-
uated in Sect. 5. Last, in Sect. 6 we present improvements to the best known
upper bounds on CAN and discuss future work in the conclusion in Sect. 7.

2 Related Work

Over the past 30 years, many different methods to generate CAs have been devel-
oped and evaluated, for a detailed survey see [21]. This includes exact approaches,
mathematical and recursive constructions, greedy algorithms and metaheuristics.
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In this section we want to give a brief overview about the different approaches
and discuss their advantages and limitations.

Exact methods are mainly used to determine the CAN for a CA instance.
Various techniques were applied to this extent, including SAT encodings and
constraint models [9]. While such approaches will theoretically yield optimal
solutions, they generally only terminate within reasonable time when applied to
very small instances.

Mathematical constructions can yield excellent results, however they often
are only applicable to a limited range of CA instances, e.g. the so called Bush
construction [3], which constructs orthogonal arrays of index unity over prime
fields. Cyclic constructions for CAs are based on cyclic shifts of one or more
cyclotomic vectors, therefore generating CAs where the number of rows is a
multiple of the number of columns. Last, the application of permutation vectors
and covering perfect hash families (CPHF) [6] in particular have been used to
improve many best known upper bounds on CAN for CAs of alphabet v > 2.
A CA is obtained by inserting permutation vectors into the CPHF. Therefore
a CPHF can be considered a compact version of a CA and due to its smaller
size and the resulting reduction in search space, optimization techniques such as
metaheuristics can efficiently be applied to generate CAs that would usually be
too difficult.

Many different metaheuristic algorithms have been designed for the gener-
ation of CAs, including population-based metaheuristics, such as genetic algo-
rithms [20] and particle swarm optimization [1]. Out of all these approaches,
single-solution metaheuristics such as Simulated Annealing (SA) has often
proven to produce the best results, achieving many improvements of to the best
known upper bounds on CAN. Especially the works of Torres-Jimenez et al. [22]
and [24] stand out, improving the best known upper bounds on CAN for many
binary CA instances. The search-based software testing tool (SBSTT) algorithm
proposed in [22] starts with an initial CA and extends it one column at a time.
The entries in the new columns are greedily set to the values that maximize
the number of covered t-way interactions. Thereafter, SA is used to reduce the
number of uncovered t-way interactions to zero, where, if necessary, rows are
added in order to help the Simulated Annealing algorithm to achieve this goal.
This is continued until either the desired number of columns is reached, or a
given number of rows is exceeded.

Further, various post-optimization methods were applied to reduce the num-
ber of rows of initial CAs, often generated by greedy methods. In [23], a meta-
heuristic post-optimization (MPO) algorithm using Simulated Annealing was
proposed and applied to the NIST repository of covering arrays [18]. The MPO
algorithm iteratively removes the row with the most redundant entries, using SA
to cover any uncovered t-way interactions that can occur due to row removals.

Last, greedy algorithms are widely used in combinatorial test generation
tools, due to their fast execution time and flexibility in regards to CAs with
mixed alphabet sizes as well as constraint handling. Many greedy approaches
build a CA one row at a time, adding rows until all t-way interactions are covered.
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Prominent examples of such algorithms are AETG [4,11] and the deterministic
density algorithm DDA [2].

2.1 Revisiting In-Parameter-Order Algorithms

Another greedy construction method is the In-Parameter-Order (IPO) strategy.
The characteristic of this strategy is that a vt × t array covering all possible t-
way combinations for the first t columns, is extended one column at a time until
a CA with k columns is constructed. The addition of a new column is referred
to as horizontal extension. To ensure that all t-way interactions are covered,
every horizontal extension step is succeeded by a vertical extension step, where
all uncovered t-way interactions are added to the array, appending new rows if
necessary. An overview of the IPO strategy is given in Algorithm 1.

Algorithm 1. IPO Strategy
Array ← cross-product of first t columns
for i ← t, . . . , k do

HorizontalExtension(i)
if there are uncovered t-way interactions then

VerticalExtension(i)
end if

end for

Fig. 2. Star values (Color
figure online)

In other words, the IPO strategy splits the CA gen-
eration process into smaller sub problems, in which an
existing CAi with i columns is extended to a CAi+1

with i + 1 columns. During such extension steps, val-
ues assigned to CAi are considered fixed and are not
changed anymore. When a new row is added to the
array during a vertical extension step, initially all its
values are set to so called star values. Star values rep-
resent entries for which no value has been set during
the generation process thus far. In greedy IPO algo-
rithms, once a star value is changed to an explicit
value, it will no longer be considered for further opti-
mization. Figure 2 gives an example of the different
sections where star values can occur. First, the blue
section corresponds to the horizontal extension, i.e.
the newly added column, which values are initialized as star values. Second, the
red sections contain star values that were created in previous extension steps,
while the green section represents new rows that might be added during the
current vertical extension.

The initial IPO algorithm, proposed by Lei and Tai in [16], was exclu-
sively designed for pairwise testing, but the concept was generalized to arbitrary
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strengths in [15]. Further, two additional strategies for the greedy selection of
values during the horizontal extension were proposed in [8]. During the horizontal
extension of the original IPOG algorithm the rows are iterated from top to bot-
tom and for each row, the value maximizing the number of newly covered t-way
interactions is selected. IPOG-F further optimizes the order in which rows are
assigned values, so that at any point of time during the horizontal extension, the
row and value that maximize the number of covered t-way interactions is greedily
selected. Various later works contributed in further improving IPO algorithms,
e.g. the work in [7] improves the efficiency of the vertical extension by applying
a graph coloring algorithm. In [26], the IPO strategy is used to generate binary
CAs with quantum-inspired evolutionary algorithms. Last, [13] introduces many
algorithmic optimizations that improve the performance of IPOG algorithms
while constructing identical CAs. Two examples of algorithms that implement
these optimizations are FIPOG and FIPOG-F, which can be considered a fast
version of the IPOG and IPOG-F algorithms described above. Both algorithms
are available in the combinatorial test generation tool CAgen [25].

3 Using Heuristics to Enhance IPO Algorithms

The IPO strategy manages to drastically reduce the size of the search space
by fixing the values of any entries upon first assignment. At the same time,
this restriction often leads to solutions that might be far from optimal. For this
reason we propose to incorporate improvement heuristics directly into the IPO
generation process. A pseudocode for this concept is given in Algorithm 2. A
greedy IPO algorithm is simply extended by applying an improvement heuristic
after each greedy extension step. While the concept seems very straight forward,
various design choices have to be considered, which will have a large impact on
the performance of the algorithm.

Algorithm 2. Heuristically enhanced IPO
Require: Greedy IPO algorithm, Improvement Heuristic

Array ← cross-product of first t columns
for i ← t, . . . , k do

GreedyHorizontalExtension(i)
EnhanceHorizontal()
if there are uncovered t-way interactions then

GreedyVerticalExtension()
EnhanceVertical()

end if
end for

First, in addition to the v different values an entry is allowed to have, in our
proposed approach star values need to be considered as well. Setting a value that
does not contribute to any missing t-way interaction to a star value can help the
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algorithm by allowing it to use the entry for optimization during later extension
steps. This can be achieved by considering star values as part of the objective
function of the improvement algorithm.

Next we need to determine which parts of the array will be optimized at
once, i.e. which entries of the array will be considered as modifiable by the
improvement heuristic. For example, a heuristic for enhancing the horizontal
extension might only act on the newly added column or in addition consider any
star values in the array that were left over from previous vertical extensions. On
the one hand, enhancing the new column together with old star values allows
the algorithm to optimize on a more global scale, which can result in solutions
of higher quality. On the other hand, this also increases the size of the search
space substantially. The size of the search space during the ith extension step
is (v + 1)m where m refers to the number of modifiable entries and (v + 1)
to the number of different values an entry can take including a star value. If
only entries in the new column are considered, m is equal to the number of
rows Ni−1 of the CA constructed during the last extension step, while if we
also consider old star values, the number of remaining star values in the array
needs to be added to this exponent on top of Ni−1. This difference becomes even
more significant if we consider a global optimization, where every value in the
previous array is considered as modifiable. In this case the search space increases
to (v+1)(i·Ni−1). Further, an extension algorithm following the IPO strategy has
the advantage that it only needs to ensure coverage of all t-way interactions in the(

i
t−1

)
column configurations that contain the newly added column, while a global

approach might destroy previously covered t-way interactions and therefore has
to consider all

(
i
t

)
column configurations. Due to these limitations, in the past

metaheuristics often yielded good results only for smaller instances, but proved
inefficient when applied to large instances.

In the remainder of the work, we use Simulated Annealing to enhance the
horizontal extension of greedy FIPOG and FIPOG-F algorithms, to show that
applying improvement heuristics can improve the size of generated CAs signif-
icantly. Further, our experiments demonstrate that the search space reduction
of this IPO strategy allows us to apply Simulated Annealing to larger instances
than previous algorithms using the same metaheuristic, while even improving
multiple best known upper bounds for binary CAs of strength t = 6.

4 SIPO: Enhancing IPO Algorithms with Simulated
Annealing

As a proof of concept, to enhance the horizontal extension of greedy FIPOG
algorithms we considered the use of Simulated Annealing, which in the past has
proven to be a potent heuristic when applied to the problem of CA generation,
e.g. [22] and [24]. The pseudocode is outlined in Algorithm 3. To this extent
we made use of a basic One-Flip neighborhood. We distinguish between two
different enhance types: NewColumn and FullHorizontal. With the NewColumn
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configuration, only entries that are part of the newly added column are con-
sidered modifiable, while FullHorizontal also considered star values generated
during previous extension steps as modifiable. In each iteration, a new candi-
date move m is generated by randomly selecting a modifiable entry and setting
it to a new random value. Next, the objective value s attained by applying m
to the array is calculated. As objective functions, expressed as a minimization
problem, we selected the number of missing t-way interactions minus the num-
ber of star values in the array. This provides an incentive for the algorithm to
create star values if an entry does not contribute to the number of covered t-way
interactions in the array. Therefore, the objective value of a move is given as the
difference in the number of covered t-way interactions before and after applying
the move. In addition, whenever a move would add a star value, the objective
value is reduced by one, while if the entry changed away from a star value, s
is incremented. The objective function is given in Eq. 1. Normalization of the
objective function is difficult, as the number of star values in an optimal solution
and therefore the best objective value for an extension step is unknown. Hence,
we will leave the use of normalization as well as a comparison of the effects of it
on different instances for future work.

A move will always be accepted if its objective value s is smaller or equal
to 0. Otherwise, it will be accepted according to the Metropolis criterion with
a probability of e−s/T , where T refers to the current temperature. If a move is
accepted, the respective modifiable entry is set to the new value and the coverage
map needs to be updated accordingly. At the end of each iteration, the temper-
ature is updated based on a geometric cooling schedule, such that Ti+1 = α ∗Ti,
with 0 < α < 1. The algorithm terminates once the current temperature falls
below a certain threshold, further referred to as final temperature Tf . In this
work, the value alpha was calculated at the beginning of an SA run, based on a
targeted number of iterations. We made the number of iterations at each exten-
sion step dependent on the instance size as well as a base number of iterations,
more precisely iterations = base · (t − 1) · i, where i is the current number of
columns.

s(m) = Cbefore(m) − Cafter(m) + D(m) (1)

Cbefore/after(m) = number of covered t -way interactions before/after move m

D(m) =

⎧
⎪⎨

⎪⎩

−1 if vi → ∗ (from value to star value)
0 if vi → vj (from value to value)
1 if ∗ → vj (from star value to value)

Finally, we want to note that our proposed algorithm can easily be general-
ized to generate CAs over higher or mixed alphabets as well as test sets with
constraints with slight modifications. However, for the sake of compact presen-
tation this work focuses on the generation of binary CAs.
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Algorithm 3. SIPO - Horizontal
Require: SA Parameters, Termination criterion, EnhanceType

procedure EnhanceHorizontal(Array, CoverageMap, new column i)
ModifiableEntries ← ∅
for row ← 0, . . . , N do

ModifiableEntries ← ModifiableEntries ∪ new ModifiableEntry(row, i, v)
end for
if EnhanceType is FullHorizontal then

for every entry ejl in the Array\column i do
if ejl is star value then

ModifiableEntries ← ModifiableEntries ∪ new ModifiableEntry(j, l, v)
end if

end for
end if
while Termination Criterion not met do

Move m ← Generate a random value for a random ModifiableEntry
Calculate objective value s for move m
if s ≤ 0 or acceptance criteron met then

Apply m to the array
Update CoverageMap

end if
end while

end procedure

5 SIPO Parameter Tuning and Algorithm Evaluation

To determine suitable values for the initial temperature Ti and the final tempera-
ture Tf used in SIPO, we generated binary covering arrays of strength t = 4 using
the FIPOG algorithm as greedy construction method and using base = 10000
to calculate the number of iterations per extension step. To evaluate the perfor-
mance of different configurations over multiple different instances we generated
10 CAs for each instance with 5 ≤ k ≤ 64 columns and recorded the minimum
and average number of rows of the generated CAs for each instance and con-
figuration. Last, for comparison of the average performance of configurations
over multiple CA instances, we consider the sum of average and minimum rows
respectively over all considered instances.

In various previous works for CA generation that feature objective functions
based on the number of covered t-way interactions, the final temperature was set
to Tf = 10−10, e.g. in [24]. However, in our experiments we noticed that the algo-
rithm failed to improve the best found solution after a relatively small number
of iterations. This suggests that, using this final temperature, the algorithm gets
stuck in local minima too quickly. In our experiments the average temperature
at which the last improvement to the best found solution occurred was greater
than 0.1. Thus, we set Tf to 0.1, which had the effect that the last improvements
were achieved far later during an SA run, indicating that the algorithm was able
to use a larger percentage of iterations effectively, see Fig. 3a. Table 1 further
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(a) Iterations until last improvement (b) Acceptance Probabilities

Fig. 3. Parameter tuning: The number of iterations until the last improvement (in
percent) is depicted for all extension steps in Fig. 3a. Figure 3b shows the acceptance
probabilities of scores s > 0 over the course of an SA run with Ti = 5 and Tf = 0.1.

confirms that, given the same number of iterations, all configurations using a
final temperature of Tf = 0.1 found better CAs on average than configurations
using Tf = 10−10.

We further experimented with various different initial temperatures and
present the results for Ti = 5 and Ti = 100. In our experiments, the value
for the initial temperature had no significant impact on solution quality. How-
ever, as Table 1 shows, the experiments with an initial temperature of Ti = 5
yielded slightly better results than those with Ti = 100, so for the remainder
of this work, we set Ti to 5. We note that, since in these experiments the SA
algorithm is limited to the same number of iterations for all tested SIPO config-
urations, their run times are relatively similar and therefore omitted from this
comparison. The acceptance probability for different objective values s > 0 for
this configuration is shown in Fig. 3b. It nicely shows that the last 20% of an
SA run are mostly a local search around the previously best found solution. We
believe this is a reasonable compromise between exploration and exploitation.

Table 1. Results of parameter tests
averaged over all extension steps for the
instance CA(N ; 4, 64, 2).

Configuration Since improvement Sum of rows

Type Ti Tf avg min Tmin avg min

FullHorizontal 100 0.1 84.17% 93.30% 0.21 4318.1 4247

FullHorizontal 100 10−10 22.73% 43.07% 0.13 4346.3 4265

FullHorizontal 5 0.1 74.22% 97.71% 0.22 4304.2 4230

FullHorizontal 5 10−10 13.21% 27.57% 0.16 4340.5 4262

NewColumn 100 0.1 68.54% 79.52% 0.87 4344.8 4270

NewColumn 5 0.1 45.40% 62.58% 0.84 4350.1 4276

FIPOG-F – – – – – 4734 4734

FIPOG – – – – – 4862 4862 Fig. 4. Number of modifiable entries
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Additionally, we compare the performance of SIPO when using the two differ-
ent enhance types NewColumn and FullHorizontal. Table 1 shows that, while
the configuration using FullHorizontal produced smaller arrays on average
than configurations using NewColumn, the difference between the two enhance
types is surprisingly small. This suggests that the reduction in search space
might not have as much of a negative impact on the quality of obtained solu-
tions as one might expect, further supporting the idea of reducing the search
space in order to help the metaheuristic algorithms. To highlight how much of a
reduction in search space the two different enhance types offer, Fig. 4 depicts the
average number of modifiable entries that the SIPO configurations had for each
instance. Further, the figure shows the number of modifiable entries that are
subject to optimization when applying a global optimization method, assuming
it generates CAs with the same number of rows as FullHorizontal. Recall that,
as described in Sect. 3, the entire search space for the optimization of binary
CAs is 3m in all cases, where o is the number of modifiable entries.

Last, we compare the performance of SIPO and FIPOG-F by comparing the
sum of the number of rows of the generated CAs over all considered instances.
As mentioned introductory, FIPOG-F adds an additional level of optimization
when compared to FIPOG by optimizing the order in which rows are assigned
values. The results in Table 1 show, that all SIPO configurations were able to
improve the total number of rows over all instances by a significantly larger
margin than FIPOG-F.

To evaluate the run time and verify the effectiveness of this approach for
higher alphabets and mixed-level covering arrays, we generated MCAs for four
different models coming from real world applications, also used in [19] and [25].
We compared two configurations of the SIPO algorithm with the FIPOG-F
implementation of the combinatorial test generation tool CAgen [25] and report
the minimum and average number of rows of the generated MCAs, as well as
the average run time over 10 runs in Table 2. Configuration SIPO 1k (col) used
1000 iterations as base and enhance type NewColumn, while SIPO 10k (full) used
10000 iterations as base and enhance type FullHorizontal. Both configurations
use FIPOG as underlying greedy algorithm, therefore we also list the results of
FIPOG, as implemented in CAgen, in the table, to show the improvement in
terms of size achieved by the Simulated Annealing algorithm.

Our experiments show that SIPO 10k (full) generates the smallest MCAs in
the vast majority of instances, reducing the number of rows by over 15% in some
instances when compared to FIPOG. Further, in three different instances, SIPO
1k (col) managed to generate smaller MCAs in less time than the well established
FIPOG-F algorithm, while in all other instances it performs better in either size
or time. These results seem very promising, especially considering that using
SIPO it is possible to select how much time should be spent on optimization
by selecting an appropriate number of iterations for the Simulated Annealing
algorithm. At the same time, the experiments showed that currently the number
of iterations does not scale sufficiently with the strength of the instance, when
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Table 2. Results of generated MCAs for testing real world applications. Bolded entries
mark results where SIPO performs as good or better than FIPOG-F in terms of size,
while underlined entries mark instances where the SIPO configuration terminated faster
than FIPOG-F.

t FIPOG FIPOG-F SIPO 1k (col) SIPO 10k (full)

size time(ms) size time(ms) min avg time(ms) min avg time(ms)

wireless

59,45,37,23
2 45 0 45 2 40 42.8 47.9 40 43.1 414.9

3 315 6 309 158.5 277 293.9 437.5 262 269.7 3253.6

4 1841 167.6 1768 9007.3 1729 1734.4 4237.7 1627 1650.7 31334.9

5 11064 3777.9 10124 716572.7 10852 10869.6 78811.5 9101 9136 287098.2

6 57633 80838.9 54170 41443197.3 57540 57550.8 770063.2 54686 54760.9 3863834.1

flex

52,34,223
2 26 0 25 1 25 25 76.3 25 25 626.6

3 91 2 100 28 94 98.3 863 91 96.4 6050.9

4 347 45.9 341 682.5 316 321.3 7300 314 318.1 69670.2

5 1164 743.4 1121 20349.5 1045 1053.7 64721.4 1026 1031.3 440585.7

6 3527 9498.1 3398 532310.7 3176 3192 924954.1 3093 3102.9 5169165.1

make

6,5,42,34,214
2 25 0 24 0 24 24 29.4 24 24 255.6

3 102 0 107 12 97 101.7 181.9 93 98.5 1417

4 387 10 381 223.5 371 375.5 926.8 355 358.1 8711.2

5 1320 104.8 1260 4260.7 1270 1273 4250.8 1160 1190.2 39183.1

6 4183 840.6 3941 69391.1 3993 4004.9 16036.5 3945 3954.5 160523.7

nanoxml

6,4,36,211
2 30 0 30 0 30 30 38 30 30 349.9

3 138 1.1 142 26.1 123 125.1 344.8 120 122 2506.6

4 607 24 588 661.1 542 546.2 2008.3 513 519.4 18448

5 2208 322.7 2167 17419.2 2066 2082.8 11330.3 1954 1980.3 88530.9

6 7153 3189.2 6993 374719 6871 6888.8 125152.3 6789 6806 697260.3

applied to instances of higher alphabet. Improving this scaling is subject to
future work.

6 New Upper Bounds on CAN

As mentioned in the introduction, generating CAs that are close to optimal is
a very difficult combinatorial optimization problem in the general case. How-
ever, such highly optimized CAs can provide tighter upper bounds on CAN and
will help to improve our understanding of this class of combinatorial design.
Currently there is no distinguished optimization strategy that performs best for
covering array generation in all instances. Therefore, a variety of strategies col-
lectively constitutes the state of the art, which is recorded in [5]. While many
different construction methods for CAs have been proposed over the past years,
it is remarkable that the last improvement to upper bounds of binary CAs was
achieved by SBSTT [22], which was published over 5 years ago. This once again
indicates how difficult it is to push the limits of the best known upper bounds
even further.

To show the effectiveness of our concept, we conducted experiments to gen-
erate binary CAs of strength t = 6 and compare them to the current state
of the art. We chose these instances, because the previous best known upper
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bounds on CAN for up to k = 69 columns were found using metaheuristic, simu-
lated annealing based, approaches and the instances seemed large enough for our
search space reduction to be effective. For smaller instances with 18 ≤ k ≤ 37
columns SBSTT was used to set the previously best known upper bounds on
CAN, while for larger instances, metaheuristic post optimization (MPO) [23]
found the smallest CAs to date. This makes these instances very interesting, as
SBSTT is similar to the SIPO algorithm, but acts on the entire array instead of
only on selected parts, while MPO also improves IPOG-F generated CAs using
Simulated Annealing, but by means of post optimization.

Over the course of our experiments, we were able to improve the currently
best known upper bounds on CAN for 43 instances. For all experiments we
selected FIPOG-F as greedy construction heuristic. For the Simulated Annealing,
an initial temperature of Ti = 5 and a final temperature of Tf = 0.1 were
used. We experimented with four different configurations, with a base number
of iterations between 1000 and 1000000. Table 3 contains the results for all
CA instances where SIPO managed to improve the currently best known upper
bound. The constructed CAs were verified using the combinatorial analysis tool
CAmetrics [17] and are available online1. Further, Fig. 5 depicts the results for
all binary t = 6 CA instances for up to k = 73 columns.

Fig. 5. New upper bounds on CAN(6, k, 2) for 30 ≤ k ≤ 72.

As expected, for small instances SBSTT produces significantly smaller CAs
due to the global optimization, e.g. for k = 18 columns SBSTT found a CA with
1 https://matris.sba-research.org/data/sipo.

https://matris.sba-research.org/data/sipo
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Table 3. New upper bounds on CAN for binary arrays of strength t = 6 constructed
with the SIPO algorithm. The values for the previous state of the art are taken from [5].

k FIPOG-F SIPO prev best Improvement prev method

30 483 440 441 1 SBSTT

31 493 452 457 5 SBSTT

32 502 461 468 7 SBSTT

33 509 470 480 10 SBSTT

34 515 479 482 3 SBSTT

35 524 487 496 9 SBSTT

36 535 495 505 10 SBSTT

37 540 506 514 8 SBSTT

38 551 512 522 10 MPO

39 561 518 530 12 MPO

40 568 527 542 15 MPO

41 575 534 547 13 MPO

42 582 541 550 9 MPO

43 589 553 565 12 MPO

44 594 561 565 4 MPO

45 599 566 578 12 MPO

46 608 573 588 15 MPO

47 617 581 590 9 MPO

48 623 586 600 14 MPO

49 631 592 604 12 MPO

50 639 599 612 13 MPO

51 645 605 620 15 MPO

52 650 612 630 18 MPO

53 656 615 630 15 MPO

54 663 623 640 17 MPO

55 668 628 645 17 MPO

56 671 634 650 16 MPO

57 678 640 663 23 MPO

58 684 644 665 21 MPO

59 689 651 665 14 MPO

60 694 660 675 15 MPO

61 699 666 675 9 MPO

62 707 672 685 13 MPO

63 713 677 685 8 MPO

64 717 680 695 15 MPO

65 721 685 695 10 MPO

66 725 688 705 17 MPO

67 731 695 705 10 MPO

68 735 699 710 11 MPO

69 738 705 715 10 MPO

70 743 709 720 11 Cyclic

71 746 714 720 6 Cyclic

72 751 718 720 2 Cyclic
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N = 260 rows, while the smallest CA found by SIPO had 295 rows. At the same
time, for instances with k ≥ 30 columns, SIPO managed to generate smaller
CAs than SBSTT. While the MPO algorithm managed to significantly reduce
the number of rows of IPOG-F generated CAs, the SIPO algorithm generated
smaller CAs for all instances, in one case even improving the previously best
known upper bound by 23 rows.

7 Conclusion and Future Work

In this work, we introduced the concept of heuristically enhanced IPO algo-
rithms, which aims to make metaheuristics and heuristic search algorithms appli-
cable to the generation of covering arrays for larger instances. We used Simulated
Annealing to implement and compare some of the proposed concepts, discussed
parameter choices and evaluated different configurations of the SIPO algorithm.
By applying SIPO to the problem of generating binary CAs of strength 6, we
achieved improvements to the best known upper bound on CAN for 43 instances.

In the future we want to continue our work on heuristically enhanced IPO
algorithms. First, we want to analyze different configurations of the SIPO algo-
rithm further in depth and potentially integrate constraint handling as well. In
addition, we want to include the vertical extension of the IPO strategy into the
optimization process. We believe this could improve the solution quality sub-
stantially. Last but not least, we plan to use different heuristics, consider hybrid
approaches that are able to switch between global and local optimization and
make use of parallelization and high performance computing to optimize even
larger instances.
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trian COMET K1 program and publicly funded by the Austrian Research Promotion
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