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EMBEDDINGS OF GROUPS Aut(Fn)
INTO AUTOMORPHISM GROUPS

OF ALGEBRAIC VARIETIES

VLADIMIR L. POPOV

Abstract. For each integer n > 0, we construct a series of irre-
ducible algebraic varieties X , for which the automorphism group
Aut(X) contains as a subgroup the automorphism group Aut(Fn)
of a free group Fn of rank n. For n > 2, such groups Aut(X) are
nonamenable, and for n > 3, they are nonlinear and contain the
braid group Bn. Some of these varieties X are affine, and among
affine, some are rational and some are not, some are smooth and
some are singular. The byproduct is that for n > 3, each Cremona
group of rank > 3n contains Aut(Fn) and the braid group Bn.

1. In the last decade, studying biregular and birational automorphism
groups of algebraic varieties, in particular, their abstract group pro-
perties and their subgroups, has become a trend. In terms of popularity,
probably the leaders among the groups in the focus of these studying
are the Cremona groups.
Here we construct, for each integer n > 0, a series of irreducible

algebraic varieties whose automorphism group contains as a subgroup
the automorphism group Aut(Fn) of a free group Fn of rank n.
This finds an application to the linearity problem for automorphism

groups of algebraic varieties considered in [8, Prop. 5.1], [9], [6]: the
existence of such a subgroup implies that the automorphism groups of
the constructed varieties are nonamenable for n > 2 and nonlinear for
n > 3. In addition, since some important groups (for example, the
braid group Bn for n > 3) are the subgroups of Aut(Fn), they get a
realization in the form of subgroups of automorphism groups of the
constructed algebraic varieties.
Among these varieties some are affine (some of them smooth and

some with singularities), and among them some are rational and some
are nonrational (and even are not stably rational).
As another application we obtain that for n > 3, each Cremona group

of rank > 3n contains the group Aut(Fn) and the braid group Bn. This
bound for the rank of the Cremona group containing Bn is better than
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that following from [13, Thm. 4.6], where the linearity of the group Bn

is proved.

2. In what follows, algebraic varieties are considered over an algebrai-
cally closed field k. With regard to algebraic geometry and algebraic
groups, we follow conventions and notation from [2].
Groups are considered in multiplicative notation.
When saying that a group G contains a group H , we mean the ex-

istence of a monomorphism ι : H →֒ G, by which H is identified with
ι(H).

C (G) denotes the center of a group G.
Sym(X) denotes the symmetric group of a set X .
If X is an algebraic variety (respectively, a differentiable manifold),

then the subgroup of Sym(X) consisting of all automorphisms (respecti-
vely, diffeomorphisms) of X is denoted by Aut(X). To avoid confusion,
if X is an algebraic group or a real Lie group, Aut(X) denotes the
automorphism group of its underlying algebraic variety (respectively,
manifold), so that Aut(X) is a subgroup of Aut(X), whose elements
are group automorphisms of X .

3. Consider an integer n > 0, an abstract group G with the identity
element e, and the group

X := G×n := G× · · · ×G (n factors). (1)

We fix in a free group Fn of rank n a free system of generators
f1, . . . , fn and denote the unit element in Aut(Fn) by 1.
For any elements w ∈ Fn and

x = (g1, . . . , gn) ∈ X, gj ∈ G, (2)

denote by

w(x) = w(g1, . . . , gn)

the element of G that is the image of element w under the homomor-
phism Fn → G that maps fj to gj for each j. In other words, w(x) is
obtained from the word w in f1, . . . , fn by substituting gj in place of
fj for each j.
Any element σ ∈ End(Fn) is uniquely determined by the sequence of

elements σ(f1), . . . , σ(fn), and any sequence of elements of Fn of length
n is of this form for some σ. This sequence defines the following map
(which, generally speaking, is not an endomorphism of the group X):

σX : X → X, x 7→ (σ(f1)(x), . . . , σ(fn)(x)). (3)

Some properties of such maps are listed below.
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Proposition 1. Let σ and τ be any elements of End(Fn). Then:

(a) (σ ◦ τ)X = τX ◦ σX .
(b) 1X = id.
(c) σX(S

×n) ⊆ S×n for any subgroup S of the group G.
(d) The following properties of element (2) are equivalent:

(a) σX(x) = x for each σ ∈ Aut(Fn);
(b) if n > 1, then g1 = . . . = gn = e, and if n = 1, then g21 = e.

(e) Let γ : G → H be a group homomorphism, and Y := H×n. Then
the map

γn : X → Y, (g1, . . . , gn) 7→ (γ(g1), . . . , γ(gn))

is End(Fn)-equivariant, i.e., γn ◦ σX = σY ◦ γn.
(f) σX(xz) = σX(x)σX(z) for all x ∈ X, z ∈ C (X). In particular,

the restriction of σX to the group C (X) is its endomorphism.
(g) σX commutes with the diagonal action of G on X by conjugation.
(h) If G is an algebraic group (respectively, a real Lie group), then

σX is a morphism (respectively, a differentiable mapping).

Proof. Statement (d) follows from the fact that if n = 1, then the only
element of the group Aut(Fn) not equal to 1 maps f1 to f−1

1 , and if
n > 2, then for any i, j ∈ {1, . . . , n}, i 6= j, the element σij ∈ End(Fn)
defined by formula

σij(fl) =

{

fl if l 6= i,

fifj if l = i,

lies in Aut(Fn).
The rest of the statements follow directly from the definitions and the

fact that each element of the group Fn is written as a non-commutative
Laurent monomial in f1, . . . , fn, i.e.,

f ε1
i1
· · ·f εs

is , where εj ∈ Z (4)

(uniquely defined if monomial (4) is reduced). �

4. It follows from statements (a), (b), (g) of Proposition 1 that if
σ ∈ Aut(Fn), then σX ∈ Sym(X) with (σX)

−1 = (σ−1)X , and the map

Aut(Fn) → Sym(X), σ 7→ (σ−1)X , (5)

is a group homomorphism. Moreover, ifG is an algebraic group or a real
Lie group, then σX ∈ Aut(X) and we obtain a group homomorphism

Aut(Fn) → Aut(X), σ 7→ (σ−1)X . (6)
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Theorem 1.

(a) If the group G is solvable and n > 3, then homomorphism (5) is
not an embedding.

(b) Let the group G be nonsolvable and any of the following properties
hold:
(b1) G is a connected algebraic group, and the field k is uncount-

able if char(k) > 0.
(b2) G is a connected real Lie group.
Then homomorphism (6) is an embedding.

Proof. (a) Let n > 3 and let the group G be solvable, i.e., the descend-
ing series of its successive commutator subgroups G = D0(G) ⊇ . . . ⊇
D i(G) ⊇ · · · terminates at some step with a number s:

D
s(G)={e}. (7)

Setting [a, b] := aba−1b−1, we define inductively the elements θi ∈ Fn

as follows:

θ1 := [f1, f2],

θi := [θi−1, fd], where d =

{

1 if i is even,

2 if i is odd,
for i > 2. (8)

From (8) it follows that θi for any i is a nonempty reduced word in f1
and f2. Consider the elements σ, τ ∈ End(Fn) given by the equalities

σ(fi) :=

{

fi if i < n,

fnθs if i = n,
τ(fi) :=

{

fi if i < n,

fnθ
−1
s if i = n.

(9)

Since n > 3, and θs is a word only in f1, f2, it follows from (9) that
σ ◦ τ = τ ◦ σ = 1. Hence σ is a nonidentity element of the group
Aut(Fn) with σ−1 = τ .
Consider now an element (2) from X . In view of (9), we have

σ(fi)(x) = fi(x) = gi for i < n (10)

and σ(fn)(x) = (fnθs)(x). It follows from (8) that θs(x) ∈ Ds(G). In
view of (7), this yields θs(x) = e. Therefore,

σ(fn)(x) = fn(x) = gn. (11)

Thus, in view of (2), (3), (10), (11), we have σX = id. Hence, σ is a
nonidentity element of the kernel of homomorphism (6). This proves
statement (a).
(b) If char(k) = 0, then by the Lefschetz principle we can assume

k = C, and then G in case (b1) is a real Lie group and therefore it
suffices to give a proof only for case (b2). If no restrictions are imposed
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on char(k), then (b1) admits some reduction, after which the proof for
(b1) and (b2) follows the same line.
Namely, if G is a connected algebraic group, by Chevalley’s theorem

it contains a largest connected affine normal subgroup Gaff , and the
group G/Gaff is an abelian variety. If G is nonsolvable, then since
G/Gaff is abelian (hence solvable), Gaff is nonsolvable. Therefore, Gaff

does not coincide with its radical Rad(Gaff) and hence Gaff/Rad(Gaff)
is a nontrivial connected semisimple algebraic group. In view of Propo-
sition 1(c), this reduces the proof of statement (b) to the case when G
in (b1) is a nontrivial connected semisimple algebraic group. We will
therefore assume now that in (b1) this additional condition is satisfied.
Then the group G in statement (b) contains Fm for any m: for case
(b1), this is proved in [4, Thm. 1.1], [5, App. D], and for case (b2), in
[11, Thm.]. We can therefore find in G a free subgroup S of rank n.
Arguing by contradiction, suppose now that homomorphism (6) is

not an embedding, and let σ ∈ Aut(Fn) be a nonidentity element of
its kernel. Since σ 6= 1, there is a number i such that the reduced
word σ(fi) in f1, . . . , fn is different from fi. Therefore, w := σ(fi)f

−1
i

is a nonidentity element of the group Fn. Consider element (2), in
which g1, . . . , gn is a free generating system of the group S. Since σ
lies in the kernel of homomorphism (6), we have σX(x) = x, hence
(3) yields σ(fi)(x) = gi = fi(x), and therefore w(x) = e. Thus, w is
a nontrivial relation between the elements g1, . . . , gn despite the fact
that g1, . . . , gn is a free system of generators of the group S. This proves
statement (b). �

5. Corollaries 1 and 2 formulated below follow from Theorem 1 in
view of the following Proposition 2:

Proposition 2. Let H be a group containing Aut(Fn). Then

(a) The group H contains Aut(Fs) for any s 6 n.
(b) If n > 2, then the group H contains Fm for any m and is

nonamenable.
(c) If n > 3, then the group H is nonlinear.
(d) If n > 3, then the group H contains the braid group Bn.

Proof. Clearly the group Aut(Fn) contains Aut(Fs) for any s6n. This
gives (a).
The group C (Fn) is trivial for n > 2 (see [14, Chap. I, Prop. 2.19]).

Therefore, the group Int(Fn) is isomorphic to Fn, and hence (see [14,
Chap. I, Prop. 3.1]) contains Fm for every m. This gives (b).
The group Aut(Fn) is nonlinear for n > 3 (see [12]). This gives (c).
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The group Aut(Fn) contains Bn for n > 3 (see [15, Chap. 3, 3.7]).
This gives (d). �

Corollary 1. Let the group G be nonsolvable and let it be either a
connected algebraic group with uncountable field k for char(k) > 0, or
a connected real Lie group. Then for any integers n > 0 and 0 < s 6 n,
the group Aut(G×n) contains Aut(Fs), and for n > 3, it is nonlinear
and contains the braid group Bn.

Remark 1. The action G on itself by left or right translations defines
an embedding of G into Sym(G). Therefore, Sym(G×n) contains G×n.
If G is a connected algebraic group or a real Lie group, then this con-
struction shows that Aut(G×n) contains the group G×n acting on G×n

simply transitively. If, moreover, G is nonsolvable, then, as noted in
the proof of Theorem 1, it contains Fm for any m and, therefore, is
nonamenable. Hence the same is true for the group Aut(G×n).

Example 1. If we take G = SL2(k), where the field k is uncount-
able for char(k) > 0, then the underlying variety of the group G×n is
isomorphic to Q × · · · × Q (n factors), where Q is the affine quadric
in A4 defined by the equation x1x2 + x3x4 = 1. Thus, according to
Corollary 1, the automorphism group of this irreducible smooth affine
algebraic variety contains Aut(Fs) for any s 6 n, and if n > 3, then
it is nonlinear and contains the braid group Bn. The same is true if,
for char(k) 6= 2, one replaces Q with Q/Z, where Z is the group of
order two generated by the involution (a, b, c, d) 7→ (−a,−b,−c,−d):
this follows from Corollary 1 for G = PSL2(k).

Example 2. The following construction [18, Sect. 2, Example 4] gives
an embedding of the group Aut(Fn) into the automorphism group of
an affine open subset of the affine space Am for some m, and hence
into the Cremona group Crn of rank m. In principle, it allows one to
describe the birational transformations of the space Am that lie in the
image of Aut(Fn) by means of explicit formulas.
Namely, consider a d-dimensional associative k-algebra A with an

identity element. Having fixed its basis, we identify the set A with Ad.
The group A∗ of invertible elements of the algebra A is a connected
affine algebraic group whose underlying variety is an affine open subset
of Ad. If A∗ is nonsolvable, then formulas (3), (6) for G = A∗ define
an embedding of Aut(Fn) into the Cremona group of rank nd. For
example, this is the case for

A = Mats×s(k), s > 2 :
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in this case, A∗ is the nonsolvable group GLs, and explicit description of
birational transformations σX in coordinates is reduced to multiplying
functional matrices and their inverses.

Corollary 2. For any integers n > 0, r > 3n, and 0 < s 6 n, the
Cremona group Crr of rank r contains Aut(Fs), and for n > 3, contains
the braid group Bn.

Proof. Let G be the group SL2(k). Its underlying variety is three-
dimensional and rational. Therefore, Cr3n contains Aut(G×n). The
statement now follows from Corollary 1 and the fact that Crr+1 contains
Crr for any r. �

6. Since Corollary 2 concerns subgroups of the Cremona group, it
is appropriate to complement it here with the following remark on
Cantat’s question about these subgroups.

Remark 2. In [9] are given examples of finitely generated (and even
finitely presented) groups that do not admit embeddings into any Cre-
mona group, which gives an answer to Cantat’s question about the
existence of such groups (see also [7]). These examples are based on
Theorem 1.2 of [10], according to which the word problem is solvable
in every finitely generated subgroup of any Cremona group. However,
the answer to the above question—and even in a stronger form, with
the addition of the condition of simplicity of the subgroup—can be
obtained without using this theorem.
Namely, according to [20, p. 188, Example 6], Richard Thompson’s

group V is an example of a non-Jordan finitely presented group. Since
any Cremona group is Jordan (see [1, Cor. 1.5]), the group V cannot be
embedded in it. Moreover, in addition to this property, V is simple, and
therefore any homomorphism of the group V into a Cremona group is
trivial (unlike [10], this proves Corollary 1.4 of [10] without usage of the
amplification, obtained in [16], of the Boone–Novikov construction).

7. Let G be a connected (not necessarily affine) algebraic group. Below
we show that the variety X = G×n is only one of the “extreme” cases in
a series of algebraic varieties related to X , on which there is a natural
action of the group Aut(Fn). For some of them (but not for all), this
action is faithful (i.e., its kernel is trivial), which gives new examples of
algebraic varieties, the automorphism group of which contains Aut(Fn),
and therefore, by virtue of Proposition 2, for n > 2, is non-amenable,
and for n > 3, is nonlinear and contains the braid group Bn. Unlike
X , they are no longer presented in the form of a Cartesian power of an
algebraic variety, not necessarily smooth, not endowed with a simply
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transitive action of the group G×n, and among those of them that are
affine, there are nonrational (and even not stably rational).
To obtain such varieties one can, first, replace X with an appropriate

Aut(Fn)-invariant open subset U of X (in general, U is not affine, even
if G is affine). Such subsets do exist. For example, the set of points
whose G-orbits have maximal dimension with respect to the diagonal
action of G on X by conjugation is open in X , and from Proposition
1(g) it follows that it is Aut(Fn)-invariant. If the action of Aut(Fn) on
X is faithful, then the openness condition of U ensures faithfulness of
the action of Aut(Fn) on U .
Next, the transition from X to U can be complemented with the

following construction. Consider a closed subgroup S in G and its
diagonal action on X by conjugation. Suppose that X contains an
open subset U that is invariant under both Aut(Fn) and S and admits
a geometric or categorical quotient under the action of S. Then, in
view of Proposition 1(g), the action of Aut(Fn) on U descends to the
quotient variety. The results obtained below show that under certain
conditions this action is faithful.
Below we explore two cases, in which U = G. In the first, the

group G is affine, and the group S is reductive, while in the second,
no restrictions are imposed on the group G, and the group S is finite.
In the corresponding criteria for an element σ ∈ Aut(Fn) to belong to
the kernel of the action of the group Aut(Fn) on the quotient variety,
we use the following notation:
If w ∈ Fn, a ∈ G, and i ∈ {1, . . . , n}, we put

Xw,a,i := {x = (g1, . . . , gn) ∈ X | w(x)a−1g−1
i a = e}. (12)

We have (e, . . . , e)∈Xw,a,i, therefore, Xw,a,i 6=∅. Being the fiber of the
morphism

X → G, x = (g1, . . . , gn) 7→ w(x)a−1g−1
i a

over the point e, the set Xw,a,i is closed in X .

8. Turning to the first case, we assume that G is a connected affine
algebraic group, and S is its reductive closed subgroup.
Consider the diagonal action of the group S on the affine algebraic

variety X = G×n by conjugation. Then the k-algebra k[X ]S is finitely
generated, and if X//S is the affine algebraic variety with k[X//S] =
k[X ]S, and

π : X → X//S,

is the morphism determined by the identity embedding k[X ]S →֒ k[X ],
then the pair (π,X//S) is the categorical quotient for the action of S on
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X . In view of Proposition 1(g), any comorphism σ∗

X preserves the al-
gebra k[X ]S. Therefore, it indices an automorphism σX//S ∈Aut(X//S),
for which

π ◦ σX = σX//S ◦ π. (13)

It arises a homomorphism

Aut(Fn) → Aut(X//S), σ 7→ (σ−1)X//S . (14)

Its kernel is described as follows:

Lemma 1. Let G be a connected affine algebraic group, and let S be
its reductive closed subgroup. The following properties of an element
σ ∈ Aut(Fn) are equivalent:

(a) σ lies in the kernel of homomorphism (14).
(b) Every closed S-orbit lies in the set

⋃

s∈S

(

⋂n
i=1Xσ(fi),s,i

)

. (15)

Proof. The morphism π is surjective, its fibers are S-invariant, and
for every point b ∈ X//S, the fiber π−1(b) contains a unique closed
S-orbit Ob (see [17, §2 and Append. 1B]). It follows from (13) that the
restriction of the morphism σX to the fiber π−1(b) is its S-equivariant
isomorphism with the fiber π−1(σX//S(b)). In view of the uniqueness of
closed orbits in the fibers, this means that σX(Ob) = OσX//S(b). There-

fore, σX//S(b) = b if and only if σX(Ob) = Ob. In view of (3) and
definition (12), this implies the equivalence of (a) and (b). �

9. In the situation under consideration two extreme cases occur.
The first is the case of S = {e}. It is considered in Theorem 1, which

shows that, depending on G, S, and k, both possibilities are realized for
homomorphism (14): in one, (14) is an embedding, and in the other,
it is not.
The second is the case of S = G (so that G is reductive). It is

considered in the following theorem:

Theorem 2. Let G be a connected reductive algebraic group, and let
S = G.

(a) If n > 2, then homomorphism (14) is not an embedding.
(b) If n = 1, then the following properties are equivalent:

(b1) Homomorphism (14) is an embedding.
(b2) The group G contains a connected simple normal subgroup

either of the type Dℓ, where ℓ is odd, or of the type E6.
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Proof. Let n > 1 and let σ, τ ∈ End(Fn) are given by the formulas

σ(fi) =

{

f1 if i = 1,

f1fif
−1
1 if i > 1,

τ(fi) =

{

f1 if i = 1,

f−1
1 fif1 if i > 1.

(16)

Then σ ◦ τ = τ ◦ σ = 1. Therefore, σ ∈ Aut(Fn), and τ = σ−1.
Now let x ∈ X be a point (2). Then it follows from (3), (16) that

σX(x) = (g1, g1g2g
−1
1 , . . . , g1gng

−1
1 ) = g1 · x,

so x and σX(x) lie in the same S-orbit. Therefore, the point π(x) is
fixed with respect to σX//S . Since π is surjective, this shows that σ lies
in the kernel of homomorphism (14). In view of σ 6= 1, this proves (a).
Now let n = 1, so that X = G. Then Aut(Fn) is the group of order

two, and if σ ∈ Aut(Fn), σ 6= 1, then σ(f1) = f−1
1 , so that σX(g) = g−1

for any g ∈ G. Every fiber of the morphism π contains a unique orbit
consisting of semisimple elements, and it is the unique closed orbit in
this fiber (see [24]).
From this and Lemma 1 the equivalence of the following properties

follows:

(i) σ lies in the kernel of homomorphism (14);
(ii) g and g−1 are conjugate for any semisimple element g ∈ G.

Since the intersection of any semisimple conjugacy class with a fixed
maximal torus of the group G is nonempty (see [2, Thm. 11.10]) and
is an orbit of the normalizer of this torus (see [24, 6.1] or [23, 1.1.1]),
property (ii) is equivalent to the fact that the Weyl group of the group
G contains −1. This, in turn, is equivalent to the fact that −1 is con-
tained in the Weyl group of every nontrivial connected simple normal
subgroup of G. As is known (see [3, Tabl. I–IX]), the Weyl group
of a nontrivial connected simple algebraic group does not contain −1
exactly if it is either of the type Dℓ, where ℓ is odd, or of the type E6.
This completes the proof. �

10. Now we consider the second case, when G is any (not necessarily
affine) connected algebraic group, and S is its finite subgroup.
According to [22, Prop. 19 and Example 2) on p. 50], in this case

there exist an algebraic variety X/S and a morphism

ρ : X → X/S (17)

such that the pair (ρ,X/S) is the geometric quotient for the action of
S on X . In particular,

ρ∗(k(X/S)) = k(X)S. (18)
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For each σ ∈ Aut(Fn), from Proposition 1(g) and the properties of
geometric quotient it follows the existence of σX/S ∈ Aut(X/S) such
that

ρ ◦ σX = σX/S ◦ ρ.

It arises a homomorphism

Aut(Fn) → Aut(X/S), σ 7→ (σ−1)X/S . (19)

Its kernel is described as follows:

Lemma 2. Let G be a connected algebraic group, and let S be its finite
subgroup. The following properties of an element σ ∈ Aut(Fn) are
equivalent:

(a) σ lies in the kernel of homomorphism (19).
(b) There exists an element s ∈ S such that

X = Xσ(f1),s,1 = . . . = Xσ(fn),s,n. (20)

If the group G is nonsolvable, the field k is uncountable if char(k) > 0,
and (b) holds, then the following conditions are equivalent:

(b1) σ = 1;
(b2) s ∈ C (G).

Proof. Since the group S is finite, every S-orbit is closed in X . Since
(17) is the geometric factor, the morphism ρ is surjective and each
fiber is an S-orbit. The argument analogous to that used in the proof
of Lemma 1 shows that condition (a) is equivalent to the condition
that each S-orbit lies in set (15), that is, the condition that set (15)
coincides with the whole set X .
Since the algebraic variety X is irreducible and set (15) is the union

of a finite (because S is finite) collection of closed sets of the form
⋂n

i=1Xσ(fi),s,i, the variety X must coincide with one of them. Finally,
the equality X =

⋂n
i=1Xσ(fi),s,i is obviously equivalent to system of

equalities (20). This proves the equivalence of (a) and (b).
Now let the group G be nonsolvable, let the field k be uncountable

if char(k) > 0, and let (b) holds. Consider an arbitrary point x =
(g1, . . . , gn) ∈ X .
If (b1) holds, then for each i ∈ {1, . . . , n}, we have the equality

σ(fi) = fi, and therefore, in view of (12) and (20), the equality gi =
sgis

−1. Since gi may be any element of G, this means that (b2) holds.
Conversely, if (b2) holds, then for any i, it follows from (12) and

(20) that σ(fi)(x) = gi, i.e., σ lies in the kernel of homomorphism (6),
which, in view of Theorem 1, is trivial. Hence, (b1) is fulfilled. This
proves the equivalence of (b1) and (b2). �
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11. Now we explore as to when in the considered situation homomor-
phism (19) is an embedding. Since the action of the group S on G
by conjugation is trivial if and only if S ⊆ C (G), in what follows we
can (and shall) assume that the group S does not lie in C (G) (i.e., is
noncentral).

Theorem 3. Let G be a nonsolvable connected algebraic group, and let
the field k be uncountable if char(k) > 0. Let S be a noncentral finite
subgroup of the group G, and let X := G×n. Then homomorphism
(19) is an embedding, so that the group Aut(X/S) contains Aut(Fn).
For n > 2, the group Aut(X/S) is nonamenable, and for n > 3, is
nonlinear and contains the braid group Bn.

Proof. Arguing by contradiction, assume that the kernel of homomor-
phism (19) contains an element σ ∈ Aut(Fn), σ 6= 1. Then by Lemma
2, there is an element

s ∈ S \ C (G), (21)

such that equalities (20) hold. In view of (12), this means that for each
i ∈ {1, . . . , n}, the following group identity holds:

σ(fi)(g1, . . . , gn) = sgis
−1 for any g1, . . . , gn ∈ G. (22)

In particular, for any g ∈ G, the equality obtained by substituting
g1 = . . . = gn = g in (22) holds. Since σ(fi) has form (4), this means
the existence of an integer d such that the following group identity
holds:

gd = sgs−1 for each g ∈ G. (23)

Notice that
d 6= 1 and d 6= −1. (24)

Indeed, in view of (23), if d = 1, then s ∈ C (G), which contradicts
(21). If d = −1, then for any g, h ∈ G the following equality holds

h−1g−1 = (gh)−1 (23)
= s(gh)s−1 = sgs−1shs−1 (23)

= g−1h−1,

which mean commutativity of the group G and contradicts its nonsolv-
ability.
Next, if r is a positive integer, then the following group identity

holds:
srgs−r = gd

r

for each g ∈ G. (25)

Indeed, (25) becomes (23) for r = 1. Arguing by induction, from

sr−1gs−r+1 = gd
r−1

we obtain

srgs−r=s(sr−1gs−r+1)s−1 = sgd
r−1

s−1 (23)
= (gd

r−1

)d = gd
r

,

as stated.
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Since the group S is finite, the order of the element s in group identity
(23) is finite. Let r in (25) be equal to this order. Then (25) becomes
the group identity

e = gd
r−1 for each g ∈ G. (26)

Since, in view of (24), we have dr−1 6= 0, it follows from group identity
(26) that G is a torsion group. Being nonsolvable, the group G is not
unipotent. Therefore, it contains a nonidentity semisimple element,
and hence a nontrivial torus (see [2, Thms. 4.4, 11.10]). But any such
torus contains an element of infinite order (see [2, Prop. 8.8]). The
obtained contradiction completes the proof that homomorphism (14)
is an embedding. The remaining statements of Theorem 3 follow from
Proposition 2. �

12. There are affine rational algebraic varieties in the set, supplied
by Theorem 3, of algebraic varieties X/S containing Aut(Fn) in their
automorphism group: such is X itself if G is unsolvable and affine,
because the underlying variety of any connected affine algebraic group
is rational (see [2, Cor. 14.14]).
We will now show that in this set there are also affine nonrational

(and even not stably rational) algebraic varieties.
We use the following known statement (see, e,g,, [19, Thm. 1]).

Lemma 3. If the field of invariant rational functions of some faithful
linear action of a finite group on a finite-dimensional vector space over
k is stably rational over k, then the same property holds for any other
such action of this group.

Let p be a prime integer other than char(k). In [21] are found finite
groups F of order p9 and group embeddings

ι : F →֒ GL(V ),

where V is a finite-dimensional vector space over k, such that the field
of ι(F )-invariant rational functions on V is not stably rational over k.
In view of Lemma 3, replacing V and ι if needed, we can (and shall)
assume that

ι(F ) ∩ C
(

GL(V )
)

= {idV }. (27)

Indeed, let L be a one-dimensional vector space over k. Since

C
(

GL(V ⊕ L)
)

= {c · idV⊕L | c ∈ k, c 6= 0},

for the group embedding

ι′ : F →֒ GL(V ⊕ L), f 7→ ι(f)⊕ idL,

we have ι′(F ) ∩ C
(

GL(V ⊕ L)
)

= {idV⊕L}.



14 VLADIMIR L. POPOV

Now we put
G := GL(V), S := ι(F ).

It follows from (27) that the diagonal action of the group S on the
vector space End(V)⊕n by conjugation is a faithful linear action. There-
fore, in view of Lemma 3, the field of rational S-invariant functions on
End(V)⊕n is not stably rational over k. Since X := G×n is an S-
invariant open subset of End(V )⊕n, this implies that the field k(X)S

for the diagonal action of S on X by conjugation is not stably rational
over k. This and (18) yield that the algebraic variety X/S is not stably
rational. Since the group G is affine, we have X/S = X//S (see [22,
Prop. 18 on p. 48]), so that the algebraic variety X/S is affine. Finally,
in view of nonsolvability of the group G, it follows from Theorem 3
that if the field k is uncountable when char(k) > 0, then the group
Aut(X/S) contains Aut(Fn).

Remark 3. At present, the groups of orders p6 and p5 are known whose
fields of rational invariants of faithful linear actions are not stably ra-
tional (see details and references in [19, Rem. on p. 414]). They can
be taken as F in the construction described in this section.

13. The author is grateful to N. L. Gordeev for a discussion of questi-
ons about group identities that arose in connection with the proof of
Theorem 3, and for information on some of the publications on this
topic. The idea to specify the parameters g1, . . . , gn in this proof be-
longs to him.
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