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Abstract. Human anatomical brain networks derived from the analysis
of neuroimaging data are known to demonstrate modular organization.
Modules, or communities, of cortical brain regions capture informa-
tion about the structure of connections in the entire network. Hence,
anatomical changes in network connectivity (e.g., caused by a certain
disease) should translate into changes in the community structure of
brain regions. This means that essential structural differences between
phenotypes (e.g., healthy and diseased) should be reflected in how brain
networks cluster into communities. To test this hypothesis, we propose a
pipeline to classify brain networks based on their underlying community
structure. We consider network partitionings into both non-overlapping
and overlapping communities and introduce a distance between connec-
tomes based on whether or not they cluster into modules similarly. We
next construct a classifier that uses partitioning-based kernels to pre-
dict a phenotype from brain networks. We demonstrate the performance
of the proposed approach in a task of classifying structural connec-
tomes of healthy subjects and those with mild cognitive impairment and
Alzheimer’s disease.

1 Introduction

Understanding disease-related changes in human brains has always been a chal-
lenge for neuroscience. A growing field of network science provides a powerful
framework to study these changes [5]. This is because any shifts in brain anatomy
or functioning are rarely confined to a single locus but rather affect the entire
network system.

Human brain networks have been extensively studied in a recent decade.
These networks, called connectomes, are constructed from neuroimaging data
and represent either anatomical or functional connectivity between cortical
brain regions. Several aspects of typical brain network organization have been
described, including their modular structure. Modular structure of a network
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means that its nodes tend to group into modules, or communities, with close
within-group connections and sparse between-group connectivity. Meunier et al.
[10] discuss why it is reasonable for human brains to be modular, and also review
studies on the community structure of human connectomes. Alexander-Bloch
et al. [1] demonstrate that brain network community structure differs between
phenotypes (healthy subjects and those with childhood-onset schizophrenia).

This suggests that brain network community structure captures enough infor-
mation about network topology to classify phenotypes associated with certain
diseases. To test this hypothesis, one needs a framework to classify networks
based on similarity in their partitions into communities. Recently, Kurmukov
et al. [8] proposed such an algorithm. Its basic idea was to detect non-overlapping
brain network communities, measure pairwise distances between the obtained
network partitions and use these distances in a kernel classification framework.
However, [8] only considered non-overlapping brain network communities and
demonstrated the performance of the proposed method on a small dataset.

Although non-overlapping communities are more commonly studied in net-
work neuroscience, a model of community structure that allows for overlapping
offers a more realistic model of brain-network organization [13]. Some cortical
areas are known to be heteromodal and to have a role in multiple networks; con-
sistently with this, current theories on brain organization suggest that cognitive
functions are organized into widespread, segregated, and overlapping networks.
Thus, clarifying the overlapping structure of brain network communities remains
a challenging and relatively unexplored research area.

In this study, we generalize the classification approach [8] by considering
both non-overlapping and overlapping communities of cortical brain regions. We
show how both types of partitions may be used to estimate distances between
brain networks and run a kernel classifier on these distances. Based on a large
Alzheimer’s Disease Neuroimaging Initiative dataset, we question whether simi-
larity in brain modular structure can help to differentiate subjects with different
diagnoses and tackle this question with the proposed approach.

2 Similarity of Brain Network Community Structures

Clustering networks into communities has attracted much attention in graph
theory. Here, we only briefly describe the algorithms that we used for partition-
ing brain networks into communities (both non-overlapping and overlapping),
and discuss how community structures of different brain networks may be quan-
titatively compared.

2.1 Detecting Communities in Structural Brain Networks

We use two approaches to detect brain network community structure. Both
approaches aim to identify communities, or groups of tightly anatomically con-
nected cortical regions. The major difference is that the first approach sepa-
rates brain network regions into unique, non-overlapping modules, while the
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second algorithm allows for nodes belonging to more than one community.
Algorithms of the former type are much more common in graph theory, and
hence much more widely used in applications including brain network analy-
sis [10]. However, as discussed above, overlapping community structures offer
more powerful description of human brain organization, although they are much
rarer evaluated [13].

In this study, we use the Louvain method [2] to produce non-overlapping
partitions of structural connectomes. Given a graph G(E, V ) with a set of edges
E, a set of nodes V , and the adjacency matrix A, the algorithm divides nodes V
into groups {V1, V2, ...Vk} so that V1 ∪V2 ∪ ...∪Vk = V . Similarly to many other
graph partitioning methods, it optimizes the so-called modularity by maximizing
the number of intra-community connections and minimizing the number of inter-
community links. The Louvain algorithm is a two-step iterative procedure. It
starts with each node assigned to a separate cluster. In the first step, it moves
each node i to a cluster of one of its neighbors j so that the gain in modularity
is maximal. Once there is no such move that improves modularity, the algorithm
proceeds to the second step, builds a new graph wherein nodes are clusters from
the previous step, and reapplies the first step. Importantly, the Louvain method
does not require any a-priori defined number of communities to be detected.

Second, we aim to estimate overlapping communities of structural brain net-
works. Two types of algorithms can accommodate this, differing in whether they
use crisp or fuzzy assignment of nodes into communities. The former means that
each node either belongs to each of the possible clusters or not, while the latter
allows for a strength of belonging to a community. We detect fuzzy communi-
ties based on non-negative matrix factorization (NMF) [7]. Given a non-negative
graph adjacency matrix A of size n × n (n being the number of nodes in brain
network), we find its low-rank approximation

A # WH, (1)

where W is of size n× k and H is k×n. A parameter k is usually selected to be
much smaller than n and stands for a number of communities to be detected.
Elements hij of a normalized matrix H denote probability of a node i being in
a community j. Unlike the first method, the NMF algorithm requires specifying
the number of communities. In our computational experiments, we show results
obtained for different values of k.

2.2 Measuring Distance Between Community Structures

We aim to evaluate similarity in community structure of brain networks stem-
ming from different subjects, possibly with different diagnoses. Hence, we need
to introduce a measure of distance between two partitions obtained from dif-
ferent brain networks. This becomes possible because nodes in connectomes
(i.e., cortical regions) are uniquely labeled, and the set of labels is the same
across connectomes obtained with the same parcellation atlas.

To estimate pairwise similarity of partitions of different brain networks we
use two modifications of mutual information (MI) score. Let U = {U1, U2, · · ·Ul}
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and V = {V1, V2, · · ·Vk} be partitions of two networks GU and GV with the same
sets of node labels, l and k be the number of clusters in the partitions U and V ,
respectively. MI between the partitions U and V is defined by:

MI(U, V ) =
l∑

i=1

m∑

j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
, (2)

For brain network partitions into non-overlapping communities, we use
adjusted mutual information, AMI [12]. We measure similarity between par-
titions into overlapping communities based on normalized mutual information
(NMI, [9]). A property of the latter measure is that it only accepts partitions
into overlapping modules with crisp node assignment. To accommodate this, we
binarize the community membership matrix H (1) using a threshold parame-
ter; we demonstrate how the results of our computational experiments change
depending on this parameter.

Both measures take values in [0, 1], with the value of 1 indicating exactly the
same partitions. We thus define a distance ω(GU , GV ) between the community
structures of networks GU and GV by:

ω(GU , GV ) = 1 − I(U, V ), (3)

where I(U, V ) is the index of similarity (AMI or NMI). Networks with the same
community structure now have zero distance, and the maximum distance is
close to 1.

3 Classifying Connectomes Based on their Community
Structure

Since we obtained an optimal partition of each brain network into communities
and introduced a measure of difference between community structures, we can
proceed to the question of whether community structure of cortical brain regions
provides enough information for differentiating between phenotypic classes. This
question can be addressed in a machine learning framework.

Given a set of brain networks Gi (each with known community structure),
class labels yi, a training set of pairs (Gi, yi) and the test set of input objects
Gj , the task is to make a best possible prediction of the unknown class label yj .
Provided that we already defined a matrix of pairwise distances ω(GU , GV ) (3),
the most straightforward approach to classification is to convert the obtained
distance matrix into a kernel and feed it to a kernel classifier. We accommodate
this by exponentiating the obtained distances:

K(GU , GV ) = e−αω(GU ,GV ), (4)

and run the support vector machines (SVM) classifier with the obtained kernel.
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4 Experiments: Network-Based Alzheimer’s Disease
Classification

We argue that if the community structure of anatomical brain networks is
affected by a disease in a certain manner, it should be possible to differenti-
ate between healthy and diseased brain networks solely based on similarity in
their community structures. In other words, brain networks stemming from the
same class (e.g., obtained for healthy participants) should be more similar in
their community structure than brain networks from different phenotypic classes
(e.g., normal and diseased brains). Using the approach described in the previ-
ous sections, we test this hypothesis in a task of classifying Alzheimer’s disease
(AD), late- and early-stage mild cognitive impairment (LMCI and EMCI), and
healthy participants (normal controls, NC).

4.1 Data and Network Construction

We use the Alzheimer’s Disease Neuroimaging Initiative (ADNI2) database
which comprises a total of 228 individuals (756 scans), with a mean age at
baseline visit 72.9 ± 7.4 years, 96 females. Each individual has at least 1 brain
scan and at most 6 scans. The data include 47 people with AD (136 AD scans),
40 individuals with LMCI (147 LMCI scans), 80 individuals with EMCI (283
EMCI scans), and 61 healthy participants (190 scans).

Corrected T1-weighted images were processed with Freesurfer’s [4] recon-all
pipeline to obtain a triangle mesh of the grey-white matter boundary registered
to a shared spherical space, as well as corresponding vertex labels per subject.
We used cortical parcellation based on the Desikan-Killiany (DK) atlas [3] which
includes 68 cortical brain regions. T1w images were aligned (6-dof) to the 2mm
isotropic MNI 152 template. These were used as the template to register the
average b0 of the DWI images, in order to account for EPI related suscepti-
bility artifacts. DWI images were also corrected for eddy current and motion
related distortions. Rotation of b-vectors was performed accordingly. Tractog-
raphy for ADNI data was then conducted using the distortion corrected DWI
in 2-mm isotropic MNI 152 space. Probabilistic streamline tractography was
performed using the Dipy [6] LocalTracking module and implementation of con-
strained spherical deconvolution (CSD) [11] with a spherical harmonics order
of 6. Streamlines longer than 5mm with both ends intersecting the cortical sur-
face were retained.

Edge weights in the original cortical connectivity matrices were proportional
to the number of streamlines detected by the algorithm. We binarize these
weights by:

abinarizedij =

{
1 if aij > 0
0 otherwise

(5)

Thus, we only work with non-weighted graphs throughout the paper.
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4.2 Experimental Setup

We obtain the best partition of each network into non-overlapping communi-
ties using the Louvain algorithm and compute a matrix of pairwise distances
between partitions with the AMI metric. In parallel, we cluster each network
into overlapping communities based on NMF and produce a matrix of pairwise
NMI distances between these clusterings. This second algorithm requires two
parameters (the number of communities and the cluster membership threshold),
we report how the results of the overall pipeline change depending on their par-
ticular values. For purposes of comparison, we also compute pairwise distances
between connectomes using the L2 (Frobenius) norm.

For each of the three distance matrices, we compute a kernel by (4) and run
an SVM classifier with this kernel. We vary the values of α in (4) from 0.01 to
10 and the penalty parameter of the classifier from 0.1 to 50; we only report the
results obtained for the optimal values of these technical parameters.

We consider four binary classification tasks: AD versus NC, AD versus LMCI,
LMCI versus EMCI, EMCI versus NC. We find optimal values for all parameters
in the simplest task of classifying AD versus NC and keep them fixed in the
remaining tasks. We use 10-fold cross-validation to train SVM on a subsample
and make predictions for an unseen part of a sample. As the data include several
networks for each subject, we use subjects rather than networks to split data
into train and test and put all networks of the same subject into a respective
category (thus avoiding data leakage).

We train the models on networks and next make a subject-based prediction as
an average of predictions obtained for individual networks; this method of eval-
uation (subject-based rather than network-based) does not affect the reported
results in any systematic way. We repeat the procedure 50 times with different
data splits and report ROC AUC as a quality metric. All scripts are available
at https://github.com/kurmukovai/GRAIL2017-communities.

Fig. 1. Left: Classification results. Right: Results of classifying AD versus NC based
on the overlapping community detection algorithm, depending on the number of com-
ponents and the membership threshold; colorbar shows average ROC AUC values.
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4.3 Results and Discussion

Figure 1 (left) shows the results of classifying AD, LMCI, EMCI and healthy
controls based on L2-distance between the structural connectivity matrices of
brain networks and on the distances representing similarity in brain community
structures.

As expected, classifying AD versus NC was the simplest task, while for
EMCI versus LMCI all algorithms only performed at chance level. For the tasks
with reasonable overall classification quality, an algorithm based on overlapping
community structures slightly outperformed the other algorithms. For AD ver-
sus NC, the model with overlapping communities provides an ROC AUC of
0.840 ± 0.010; the one based on non-overlapping communities gives an ROC
AUC 0.828 ± 0.013. For this task, Fig. 1 (right) shows how the outcomes of the

Fig. 2. Six overlapping communities: an example of a single network (healthy subject)
with the nodes shown in their original 3D coordinates (axial view); color intensity is
proportional to the strength of belonging to the respective community

Fig. 3. Comparison of the non-overlapping (left) and overlapping (right) community
structures obtained for the same example graph as in Fig. 3; node size is proportional
to its degree (the number of edges coming from the respective node). Right plot is pro-
duced by selecting a single community for each node based on the maximal membership
probability.
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best-performing algorithm depend on the predefined number of clusters and the
threshold of cluster membership used in computing the NMI distance. The best
classification results are obtained with the community structure of six overlap-
ping components, with membership probability thresholded at 0.25.

Figure 2 illustrates the obtained community structure based on a single exam-
ple graph. Figure 3 compares the non-overlapping and the simplified overlapping
community structures obtained for the same graph. The two algorithms seem
to identify similar communities, but the outcome of the overlapping community
detection algorithm retains more information on the underlying brain network
structure.

5 Conclusions

Human brain networks show modular structure which arises based on the entire
system of connections between cortical brain regions. Systematic shifts in con-
nectivity patterns, for example those caused by a brain disease, may be expected
to induce changes in the community structure of the macroscale brain networks.
If true, that would produce similar modular structure in brain networks of indi-
viduals with the same phenotype (e.g., Alzheimer’s disease) and different com-
munity structures in brain networks from different phenotypes (e.g., patients
versus healthy controls).

In this study, we explored whether the community structure of anatomical
human brain networks provides enough information to differentiate phenotypes
of the respective individuals. We proposed a framework to compare both over-
lapping and non-overlapping community structures of brain networks within the
machine learning settings. We demonstrated the performance of the proposed
pipeline in a task of classifying Alzheimer’s disease, mild cognitive impairment,
and healthy participants. Algorithms based on the distances between partitions
of brain networks slightly outperformed the baseline. Models that made full use
of overlapping community structures performed slightly better than those based
on non-overlapping community structures.

To sum up, the modular structure of anatomical brain networks seems to cap-
ture important information about the underlying network structure and can be
useful in classifying phenotypes. Further studies are needed to study this idea on
other phenotypic categories, and to specifically explore overlapping community
structure of cortical regions in human anatomical brain networks.
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