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1. INTRODUCTION AND STATEMENTS OF RESULTS

Let Mn be a closed n-manifold. A flow f t on Mn is called Morse-Smale if its non-wandering set
consists of a finite set of hyperbolic equilibria and closed trajectories, and invariant manifolds of equilibria
and closed trajectories have only transversal intersection. A Morse-Smale flow is called gradient-like
if its non-wandering set does not contain closed trajectories.

Recall that a Morse index of hyperbolic equilibrium p is the number equal to the dimension of the
unstable manifold W u

p of p.

We suppose that n = 3 and the manifold M3 is oriented. Let us denote by Ωf t the set of all equilibria
of gradient-like flow f t on M3 and by Ωi, the set of equilibria of Morse index i ∈ {0, 1, 2, 3}. Equilibria
of Morse indices 0 and 3 are called nodes (sinks and sources, respectively), equilibria of Morse indices
1, 2 are called saddles. Set Σ = Ω1 ∪ Ω2.

The following notation introduced similar to [2].
Definition 1. A gradient-like flow f t on M3 has surface dynamics (belongs to a class

GSD(M3)) if the set Σ can be represented as the union of two disjoint subsets Σa, Σr such that
each connected component of the sets Af t = W u

Σa
∪Ω0, Rf t = W s

Σr
∪Ω3 is an oriented locally flat

surface1).
In [1] a topology of manifolds admitting flows from GSD(M3) was studied. In particular it was

proved, that M3 is a mapping torus, that is M3 is diffeomorphic to a quotient space Mgft ,τft
=

Sgft
× [0, 1]/ ∼ of the direct product of an oriented surface Sgft

of a genus gf t and the interval [0, 1]
under an equivalence relation (z, 1) ∼ (τf t(z), 0), where τf t : Sf t → Sf t is an orientation preserving
diffeomorphism.

In this paper we clarify the structure of ambient manifolds for flows from GSD(M3) under the
condition that invariant manifolds of saddle equilibria have simple asymptotic behavior (see definition 2).
Main results of the paper are the following.

*E-mail: vgrines@yandex.ru
**E-mail: egurevich@hse.ru

***E-mail: soniakevlia@gmail.com
1)Let us recall that a surface Sg ⊂ M3 is locally flat if for any point x ∈ Sg there exist a neighborhood Ux ⊂ M3 and a

homeomorphism hx : Ux → R
3 such that hx(Sg ∩ Ux) = Oxy.
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Theorem 1. If invariant manifolds of saddle equilibria of a flow f t ∈ GSD(M3) have simple
asymptotic behavior, then the manifold M3 is Seifert and gluing map τf t is periodic.

Theorem 2. For any oriented surface Sg and any orientation preserving periodic diffeo-
morphism τ : Sg → Sg there exists a gradient-like flow f t ∈ GSD(M3) with simple asymptotic
behavior of invariant manifolds of saddles, and M3 is the mapping torus M3

τ .

2. AUXILIARY FACTS AND BASIC DEFINITIONS

In [2, Theorems 1, 2], [4, Lemma 1, Theorem 1] the topology of manifolds admitting gradient-like
cascades with surface dynamics was studied. Since a time one shift along trajectories of gradient-like
flow with surface dynamics is such a cascade then results of these papers can be adopted to flows in the
following way.

Proposition 1. Let f t ∈ GSD(M3) then there exist integers kf t , gf t ≥ 0 and an orientation
preserving diffeomorphism τf t of an oriented surface Sgft

of a genus gf t such that:

1. Sets Af t ,Rf t consist of the same number kf t of connected components, each of which is
homeomorphic to Sgft

.

2. Each connected component of the set Af t(Rf t) is an attractor (repeller)2)

3. The closure of each connected component of the set M3 \ (Af t ∪Rf t) is homeomorphic to
the direct product Sgft × [0, 1].

4. The manufold M3 is diffeomorphic to the quotient space Mgft ,τft
= Sgft

× [0, 1]/ ∼ under the
equivalence relation (z, 1) ∼ (τf t(z), 0).

Let σ ∈ Σ. Recall that a connected component of the stable (unstable) manifold W s
σ \ σ (W u

σ \ σ) is
called the stable (unstable) separatrix of σ.

Let σ1 ⊂ Ω1, σ2 ⊂ Ω2 be points such that W u
σ2 ∩W s

σ1 	= ∅. According to [3] any connected compo-
nent of the intersection W u

σ2 ∩W s
σ1 	= ∅ is called heteroclinic trajectory.

Let V be a connected component of the set M3 \ (Af t ∪Rf t). Then, due to Proposition 1 there exist
connected components A,R of Af t ,Rf t , respectively, such that ∂V = A∪R. Set ΩA = Ωf t ∩A,Ωi

A =

Ωi ∩ A, i ∈ {0, 1, 2}, ΩR = Ωf t ∩R,Ωj
R = Ωj ∩R, j ∈ {1, 2, 3}. Then the following equalities hold:

A =
⋃

p∈ΩA

W u
p , R =

⋃

p∈ΩR

W s
p .

Due to [5, Theorem 2.3] and [2, Lemmas 1, 2] the following statement is true.

Proposition 2. Let σ1 ∈ Ω1
A and ω ∈ Ω0

A. Then:

1. W u
σ1 ⊂ A and exist points ω+, ω− ∈ Ω0

A (it is possible, ω+ = ω−) such that cl W u
σ1 \W u

σ1 =
ω+ ∪ ω−.

2. there exist points σ2
+, σ

2
− ∈ Ω2

A (it is possible, σ2
+ = σ2

−) such that the set W s
σ1 ∩ (W u

σ2
+
∪W u

σ2
−
)

consists of exactly two different heteroclinic trajectories.
3. there exists a point σ1

∗ ∈ Ω1
R such that ω ⊂ cl W u

σ1
∗
.

Similar statement is true for points σ2 ∈ Ω2
R and α ∈ Ω3

R with formal change of symbols A, 0, 1, 2, s, u
by R, 3, 2, 1, u, s, respectively.

Definition 2. We say that invariant manifolds of saddle equilibria of a flow f t ⊂ GSD(M3)
have simple asymptotic behavior if for any triple of connected components A ⊂ Af t , R ⊂
Rf t , V ⊂ M3 \ (Af t ∪Rf t) such that ∂V = A ∪R the following conditions hold (see Figure 1):

2)Invariant set A is called an attractor of a flow f t if there exists a closed neighborhood (trapping neighborhood) V ⊂ M3

such that all trajectories of the flow f t intersect the boundary of V transversally, and A =
⋂

t>0

f t(V ). The set R is called a

repeller of f t if it is an attractor for f−t., and the restriction of the flows f t on this component is topologically equivalent
to a gradient-like flow.
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Fig. 1. Simple asymptotic behavior of invariant manifolds of saddle equilibria.

1. for any two different points σ1
r,1, σ

1
r,2 ∈ Ω1

R the closures of separatrices lu
σ1
r,1

, lu
σ1
r,2

⊂ V contain

different points ω1, ω2 ⊂ Ω0
A;

2. for any two different points σ2
a,1, σ

2
a,2 ∈ Ω2

A the closures of separatrices ls
σ2
a,1

, ls
σ2
a,2

⊂ V contain

different points α1, α2 ⊂ Ω3
R;

3. for any point σ1
a ⊂ Ω1

A there exists exactly one point σ2
r ⊂ Ω2

R such that the intersection
W s

σ1
a
∩W u

σ2
r
∩ V is not empty; for any point σ2

r ⊂ Ω2
R there exists exactly one point σ1

a ⊂ Ω1
A such

that W s
σ1
a
∩W u

σ2
r
∩ V is not empty;

4. for any points σ1
a ∈ Ω1

A, σ
2
r ∈ Ω2

R the intersection W s
σ1
a
∩W u

σ2
r
∩ V is either empty or consists

of exactly one heteroclinic curve.
Let us denote by GSDS(M3) the subset of GSD(M3) consisting of flows with the simple asymptotic

behavior of separatrices.

3. CELLS OF GSDS-FLOWS

For a flows f t ∈ GSDS(M3) let us denote by ΓA (ΓR) a union of all equilibria, one-dimensional
separatrices and heteroclinic trajectories of f t that belong to A(R) and by f t

A (f t
R) the restriction of f t

on A(R). The set ΓA is support for a graph whose vertices are equilibria, and edges are one-dimensional
separatrices and heteroclinic trajectories. Let us denote by E(ΓA) the set of connected components of
the set ΓA \ ΩA.

Definition 3. A connected component of the set A \ ΓA (R \ ΓR) is called two-dimensional cell
of the flow f t

A (f t
R).

It follows from proposition 2 the description of all possible types of two-dimensional cells (see
Figure 2).

Proposition 3. The boundary ∂a of a two-dimensional cell a of the flow f t
A have one of the

following type:
a1) ∂a consists of a sink ωa ∈ Ω0

A, saddles σ1
a,+, σ

1
a,− ∈ Ω1

A, separatrices lu
σ1
a,+

, lu
σ1
a,−

of σ1
a,+, σ

1
a,−

whose closures contain ωa, a saddle σ2
a ∈ Ω2

A, and heteroclinic curves γσ2
a,σ

1
a,+

⊂ W u
σ2
a
∩W s

σ1
a,+

,

γσ2
a,σ

1
a,−

⊂ W u
σ2
a
∩W s

σ1
a,−

;

a2) ∂a consists of a sink ωa, an unstable manifold W u
σ1
a

of a point σ1
a ∈ Ω1

A whose closure

contain ωa, a saddle σ2
a ∈ Ω2

A and a heteroclinic curve γσ2
a,σ

1
a
⊂ W u

σ2
a
∩W s

σ1
a
;

a3) ∂a consists of a sink ωa, a saddle σ1
a, a separatrix luσ1

a
such thatωa ∈ cl luσ1

a
, a saddle σ2

a ∈ Ω2
A

and heteroclinic curves γ+
σ2
a,σ

1
a
, γ−

σ2
a,σ

1
a
⊂ W u

σ2
a
∩W s

σ1
a

.

The boundary ∂r of any two-dimensional cell r of f t
R has exactly one of the following three

types:
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Fig. 2. Two-dimensional cells of GSD-flows.

r1) ∂r consists of a source αr ∈ Ω3
R, saddles σ2

r,+, σ
2
r,− ∈ Ω2

R, separatrices ls
σ2
r,+

, ls
σ2
r,−

, whose

closures contain αr, a saddle σ1
r ∈ Ω1

A and heteroclinic curves γσ2
r,+,σ1

r
⊂ W u

σ2
+
∩W s

σ1
r
, γσ2

r,−,σ1
r
⊂

W u
σ2
r,−

∩W s
σ1
r
;

r2) ∂r consists of a source αr, a stable manifold W s
σ2
r

of a saddle σ2
r ⊂ Ω2

R whose closure

contains αr, a saddle σ1
r ⊂ Ω1

R and a heteroclinic curve γσ2
r ,σ

1
r
⊂ W u

σ2
r
∩W s

σ1
r
;

r3) ∂r consists of a source αr, a saddle σ2
r ⊂ Ω2

R, a separatrix luσ2
r

whose closure contains αr, a

saddle σ1
r ⊂ Ω1

R, and heteroclinic curves γσ2
r ,σ

1
r
, γσ2

r ,σ
1
r
⊂ W u

σ2
r
∩W s

σ1
r
.

Let us denote by Γu
A a subset of ΓA that contains all one-dimensional separatrices of saddles from the

set Ω1
A.

Proposition 4. Γu
A is connected.

Proof. Let us choose a set of pair-wise disjoint disks {Dq}q∈Ω2
A

bounded by circles that meet

trajectories of f t
A transversally and such that q ∈ int Dq, Dq ∈ W u

q for any q ∈ Ω2
A. Set U = A \

⋃

q∈Ω2
q

int Dq. By definition the set U is connected, f t(U) ⊂ int f s(U) while t > s, and Γu
A ⊂ int U .

Moreover, Γu
A =

⋂

t≥0
f t(U). Then Γu

A is connected as an the intersection of compact connected nested

sets. �

Definition 4. Let f t ∈ GSDS(M3). A connected component ofM3 \
⋃

p∈Σ
(cl W u

p ∪ cl W s
p ) is called

three-dimensional cell of the flow f t.

Proposition below immediately follows from the definition 2 of the class GSDS(M3).

Proposition 5. Let f t ⊂ GSDS(M3). Then for any three-dimensional cellC3 of f t its boundary
∂C3 has one of types v1, v2, v3:

v1) The intersection ∂C3 ∩A is a two-dimensional cell with the boundary of type a1), the set
∂C3 ∩R is a two-dimensional cell of type r1), the set ∂C3 ∩ V consists of a separatrix luσ1,r

such that ωa ⊂ cl luσ1,r, a separatrix lsσ2,a such that αr ⊂ cl lsσ2,a, heteroclinic curves γσ2
r,−,σ1

a,−
,

γσ2
r,+,σ1

a,+
, a subset of the manifold W u

σ2
r,−

∩ V bounded by curves γσ2
r,−,σ1

r
, γσ2

r,−,σ1
a,−

, a subset of

the manifold W u
σ2
r,+

∩ V bounded by curves γσ2
r,+,σ1

r
, γσ2

r,+,σ1
a,+

, a subset of the manifold W s
σ1
a,−

∩ V

bounded by curves γσ2
a,σ

1
a,−

, γσ2
r,−,σ1

a,−
, and a part of the manifold W s

σ2
r,+

∩ V bounded by curves
γσ2

a,σ
1
a,−

, γσ2
r,+,σ1

a,+
.
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Fig. 3. Three-dimensional cells of GSDS-flows.

v2) The intersection ∂C3 ∩A is a two-dimensional cell of type a2), the set ∂C3 ∩R is a two-
dimensional cell of type r3, the set ∂C3 ∩ V is defined similar to the item v1).

v3) The intersection ∂C3 ∩A is a two-dimensional cell of type a3), the set ∂C3 ∩R is a two-
dimensional cell of type r2, the set ∂C3 ∩ V is defined similar to the item v1) (see Figure 3).

For any set of connected components A ⊂ Af t , R ⊂ Rf t , V ⊂ M3 \ (Af t ∪Rf t) such that ∂V =

A ∪R let us denote by C2
A, C2

R, C3
V the set of all cells of dimension two and three that belongs to A, R, V ,

respectively. Let us choose an arbitrary component A ⊂ Af t and denote by V1, . . . , V2kft
all pair-wise

disjoint connected components of the set M3 \ (Af t ∪Rf t). We will suppose that indices are chosen in
such a way that cl(Vi) ∩ cl(Vi+1) 	= ∅ for any i ∈ {1, . . . , 2kf t − 1} and cl(V2kft

) ∩ cl(V1) ⊃ A. Then
the following proposition holds.

Proposition 6. For any two-dimension cell c2 ⊂ A of the flow f t there is a sequence
C3
1 , . . . , C

3
2kft

of three-dimensional cells such that cl(C3
1 ) ∩A = cl(c2), C3

i ⊂ Vi, i ∈ {1, . . . , 2kf t}
and the intersections cl(C3

i ) ∩ cl(C3
i+1) \ A, i ∈ {1, . . . , 2kf t − 1}, cl(C3

2kft
) ∩A are non-empty and

each of them consists of a closure of two-dimensional cell.
Lemma 1. There is a well-defined one-to-one map μA : C2

A → C2
A which assigns to each cell

c2 ∈ C2
A a cell c̃2 belonging to the intersection cl(C3

2kft
) ∩A. Moreover, μA induces orientation

preserving homeomorphism hA : A → A with the following properties:

1. hA(Ωi
A) = Ωi

A, i ∈ {0, 1, 2};

2. hA(cl c2) = cl μA(c
2) for any cell c2 ∈ C2

A;

3. there exist an integer m > 0 such that for ant arc l ∈ ΓA \Ωi
A equalities hmA (l) = l, hiA(l) 	= l

hold for any natural i < m.
Proof. Let c2 ⊂ A, C3

1 , . . . , C
3
2kft

is a sequence of three-dimensional cells defined in Proposition 6

for c2, and c̃2 is a two-dimensional cell belonging to the intersection cl C3
2kft

∩A. Set μA(c
2) = c̃2.

Suppose that c2 has type a1 (see Proposition 3). Let us choose an orientation on the boundary ∂c2

of c2 in such a way that if we going around it in counterclockwise direction (in the positive direction)
provided that the observer is in the region V , the cell c2 remains to the left from ∂c2. If the cell c2 has
type a2 (a3) we choose the similar orientation on the closed curve consisting of closures of unstable
separatrices of saddle point σ1

c2 ∈ ∂c2 (closures of heteroclinic curves joining points σ2
c2 , σ

1
c2 ∈ ∂c2).

Thus we obtain a finite set EA of oriented simple closed curves cutting the surface A into open
disks. Since A is oriented then for any arc l ⊂ ∂c2 ∩ ∂c̃2 the orientations of ∂c2, ∂c̃2 induce opposite
orientations on l.
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let us construct an orientation preserving homeomorphism hc2 : cl c2 → cl (μA(c
2)) in the following

way.

Denote by B
2 ⊂ R

2 the standard unit disk with the center in the Origin O and by S
1 the boundary

of B2.

Let ec2 : B2 → cl c2 and eμA(c2) : B
2 → clμA(c

2) be homeomorphisms preserving the orientation of
the unit circle and such that ec2(S1) and eμA(c2)(S

1) ∈ EA. Without lost of generality suppose that if c2

is a cell of type a2 (a3) then ec2(O) = σ2
c2 (ec2(O) = ωc2) and ec2(rx) = γσ2

c2
,σ1

c2
(ec2(rx) = lu

σ1
c2
), where

rx ∈ B
2 is the interval joining the center O of B2 with a point x ∈ S

1.

Let us denote by g1c2,μA(c2) : S
1 → S

1 an orientation preserving homeomorphism with following prop-

erty: if p ∈ Ωi
A ∩ ∂c2, where i ∈ {0, 1, 2}, then there is p′ ∈ Ωi

A ∩ ∂μA(c
2) such that g1c2,μA(c2)(e

−1
c2

(p)) =

e−1
μA(c2)

(p′).

Let g2c2,μA(c2) : B
2 → B

2 be a homeomorphism given in the polar coordinates ϕ, r by the formula

g2c2,μA(c2)(ϕ, r) = (g1c2,μA(c2)(ϕ), r). At last define a homeomorphism hc2,μA(c2) : cl c
2 → cl μA(c

2) by

hc2,μA(c2) = eμA(c2)g
2
c2,μA(c2)e

−1
c2

. By construction hc2,μA(c2) satisfy the following conditions:

1. hc2,μA(c2) preserves the orientation of boundaries of cells c2, μA(c
2);

2. hc2,μA(c2)(∂c
2 ∩ Ωi

A) = ∂μA(c
2) ∩ Ωi

A.

Let ĉ2 be a two-dimensional cell such that ∂c2 ∩ ∂ĉ2 	= ∅. Let us define an orientation preserving
homeomorphism g1ĉ2,μA(ĉ2) : S

1 → S
1 in such a way that:

1. for any p ∈ Ωi
A ∩ ∂ĉ2, i ∈ {0, 1, 2}, there is p′ ∈ Ωi

A ∩ ∂μA(ĉ
2) such that g1ĉ2,μA(ĉ2)(e

−1
ĉ2

(p)) =

e−1
μA(ĉ2)

(p);

2. gĉ2,μA(ĉ2)(e
−1
ĉ2

(x)) = e−1
μA(ĉ2)

(hc2,μA(c2)(x)) for any point x ∈ ∂c2 ∩ ∂ĉ2.

At last, let us define a homeomorphism hĉ2,μA(ĉ2) : cl ĉ2 → cl μA(ĉ
2) similar to hc2,μA(c2) and

continue the process until we run out all cells from the set C2. The agreement of orientations of the
boundaries of all cells guarantees that in the finale we get an orientation preserving homeomorphism
hA : A → A. It follows from construction and Proposition 5 that homeomorphism hA satisfies to items
1, 2 of the Lemma.

Let us prove the item 3.

Since the set ΩA is finite then for any point p ∈ ΩA there exists an integer mp > 0 such that
h
mp

A (p) = p and hiA(p) 	= p for any natural i less than mp. For any curve l ⊂ ΓA \ ΩA and a cell c2 ∈ C2
A

denote similar numbers by ml,mc2 .

Let p ∈ Ω1
A and Lp be the set of arcs from the set ΓA \ ΩA the closures of which contain the point p.

It follows from Lemma 2 that the set Lp consists exactly on four arcs and a pair of them belongs to the
unstable manifold of p, and the other pair belongs to the intersection of the two-dimensional unstable
manifold of p with A. Let d2p ⊂ A be a disk such that d2p ∩ΩA = p, p ∈ int d2p, and any arc lip ∈ Lp

intersects the boundary ∂d2p of d2p at the single point zip. Let us choose an orientation of the curve ∂d2p
and suppose, without loss of the generality, that when one goes along the curve from the point z1p to point
z4p in positive direction then points z2p, z

3
p appears on order of the numbering decreasing. Then the points

belonging to the stable and the unstable manifolds of p alternate. Then ml1p
= ml3p

,ml2p
= ml4p

, and
ml1p

,ml2p
∈ {mp, 2mp}. Since hA is orientation preserving then the order of the points of the intersection

of arcs hmp

A (lip) with h
mp

A (d2p) coincides with the order of points {zip}. Then ml1p
= ml2p

.
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Let us show that for any pair l, l′ ∈ ΓA \ΩA the equality ml = ml′ holds. The set ΓA \ ΩA can be
presented as a disjoint unit of the subsets Lu

A and Ls
A consisting of one-dimensional separatrices and

heteroclinic trajectories of the flow f t respectively. Let us prove the statement for the arcs from Lu
A. Then

from this fact and the previous paragraph one gets that all numbers ml are equal to each other.
Let Lω ⊂ Lu

A be a set of one-dimensional separatrices of the flow f t
A whose closures contain the sink

ω, and kω be the number of arcs in the set Lω. Denote by d2ω ⊂ W s
ω a disk such that p ∈ int d2ω and ∂d2ω

intersects each separatrix l ∈ Lω at the single point. Let us choose an orientation on the curve ∂d2ω and
numbering of the point of the intersection of the arcs from Lω in order induces by the chosen orientation.
Let j = 1, 2, . . . . The homeomorphism hjmω preserves the set Lω and the orientation of A, hence it
sends any three consecutive points from the set {ziω} into points of the intersection of curves from Lω

with hjmω(∂d2ω) following in the same order. Then mliω
= m

ljω
for i, j ∈ {1, . . . , kω}.

Now the coinciding of all periods of curves from the set LA follows from the connectedness of
the set Γu

A consisting of closures of all one-dimensional separatrices laying in A, that was proven in
Proposition 4. �

3.1. Construction of Seifert Fibration of the Ambient Manifold

Let us recall that a homeomorphism τ : Sg → Sg of the closed oriented surface Sg is called a periodic
homeomorphism of the period r > 1 if τ r(x) = x for any point x ∈ Sg, and τ l 	= Id if l ∈ (0, r). A
number μx > 0 such that τμx(x) = x and τ l(x) 	= x form any l ∈ (0, μx) is called the period of the point
x. Due to [6] the set Xτ ⊂ Sg of points whose period less that r is finite.

Topological classification of oriented preserving periodic homeomorphisms of surfaces is obtained by
Nielsen in [6].

Lemma 2. There exists a periodic homeomorphism τ : A → A such that τ(cl c2) = hA(cl c
2) for

any cell c2 ⊂ CA, where hA : A → A is a homeomorphisms defined in Lemma 1, and Xτ ⊂ ΩA.
Proof. For a point p ∈ ΩA set τ(p) = hA(p). Let L0 ⊂ ΓA \ΩA be a set of all arcs such that h does

not send any arc from L0 to the arc from L0. For any arc l0 ∈ L0 set li = hiA(l0), i ∈ {1, . . . ,ml0 − 1}.
Remark that the boundary of any arc l ∈ ΓA \ ΩA contains exactly one saddle point σ1(l) of the flow f t

whose Morse index equals one. Denote by ei : [0, 1] → cl li a homeomorphisms such that ei(0) = σ1(li).
For i ∈ {0, . . . ,ml0 − 1}, x ∈ li set τ(x) = ei+1(e

−1
i (x)), for x ∈ lml0

−1 set τ(x) = e0(e
−1
ml0

−1(x)). By

construction the map τ is periodic on ΓA. Then it is possible to extend it into the set C2 similar to
construction of the homeomorphism hA in the proof of Lemma 1. �

Let ν, μ be co-prime integers, 0 ≤ ν < μ, and θ : B2 → B
2 be a rotation of the disk B

2 by the angle
2π ν

μ . Denote by N3 = B
2 × [0, 1]/∼ the quotient space by means of equivalence relation (x, 1) ∼

(θ(x), 0), x ∈ B
2.

Recall that a manifold M3 is called Seifert manifold if M3 is fibered into circles and any fiber has a
neighborhood in M3 fiber by fiber homeomorphic to N3.

Proof of Theorem 1. Let us show that M3 is a Seifert manifold. Due to Proposition 6 for any
two-dimensional cell c2 ⊂ A of the flow f t

A there exists a sequence C3
1 , . . . , C

3
2kft

of three-dimensional

cells such that cl(C3
1 )∩A = cl(c2), C3

i ⊂ Vi, i ∈ {1, . . . , 2kf t}, and intersections cl(C3
i )∩ cl(C3

i+1) \A,
i ∈ {1, . . . , 2kf t − 1}, cl(C3

2kft
) ∩A are non-empty and consist of a closures of two-dimensional cells.

Let τ : A → A be a periodic homeomorphism constructed in Lemma 2.
Denote by Qc2 a union of closures of all three-dimensional cells belonging to the obtained sequence

and set Xc2 = {x ∈ cl c2 : x = τ(x)}. It follows from Propositions 3, 5 that there exists a continuous
map gc2 : B2 × [0, 1] → Qc2 such that:

1. gc2(B2 × {0; 1}) ⊂ A;

2. gc2(B
2 × {0}) = cl c2;

3. gc2(z, 1) = τ(gc2(z, 0)) for any point z ∈ B
2;
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4. the restriction of gc2 on B
2 × [0, 1] \ X̃, where X̃ = {(z, 1), z ∈ B

2, gc2(z, 1) ⊂ Xc2}, is a homeo-
morphism.

Let c20 ∈ C2
A be an arbitrary cell. If τ = id then the map gc20 induces a continuous fibration Fc20

of the
set Qc20

\Xc20
into circles. If τ 	= id then the map gc20 induces a continuous fibration of the set Qc20

\Xc20

into segments Ic20 = {gc20(z × [0, 1]), z /∈ g−1
c20

(X) ∩ B
2 × {0}} supplemented with a finite set of circles

Sc20
= {gc20(z × [0, 1]), z ∈ g−1

c20
(X) ∩ B

2 × {0}}. In this case set Fc20
= Ic20 ∪ Sc20

.

Suppose that the cell c21 ∈ C2
A \ c20 is such that cl c20 ∩ cl c21 	= ∅ and Qc21

is the closure of the sequence

of three-dimensional cells of the flow f t described above, and the set F̃1 ⊂ (∂B2)× [0, 1] is such that
gc20(F̃1) ⊂ Qc21

. It follows from Proposition 5 that F̃1 is homeomorphic to the disk. Therefore there exists

a continuous map gc21 : B2 × [0; 1] → Qc21
that consists with gc20 on the set F̃1 and satisfy the conditions

1–4 above (if to replace c2 with c21 in the notations). Denote by Fc21
a fibration of the set Q2

c21
induced by

gc21 and continue the process of constructing the fibration in a similar way until all two-dimensional cells
are exhausted.

Since the homeomorphism τ is periodic then after a finite number of steps we obtain a fibration FA

of M3 into circles. Let us show that this fibration is Seifert. Denote by Xτ the set of points from A
(possibly, empty) whose period with respect to τ is less than the period mτ of τ . Due to Lemmas 1, 2
Xτ ⊂ ΩA.

Two cases are possible: 1) Xτ is non-empty, then τ is not identity; 2) the set Xτ is empty.
Let us consider the case 1). Let q ∈ Xτ and uq ⊂ A be a neighborhood of q wish does not contain

any equilibria different from q. Suppose that q is fixed point of τ (if period mq of q greater then one
then τ move to τmq and apply the similar reasoning). Denote by Lq a set of all arcs from LA whose
closures contain q. It follows from the construction of τ that the set Lq contains at least two arcs. Let
l1, l2 ⊂ Lq be arcs that belongs to a boundary of the same cell c2∗ and ν ∈ {1, . . . ,mτ − 1} be such a
number that l2 = τν(l1). Let us choose a point x1 ∈ l1 and join it with the point x2 = τν(x1) by an arc

bq without self-intersections such that the interior of bq belongs to the set c2∗ ∩ uq. Set Sq =
m−1⋃

i=0
τ i(bq).

By construction, Sq is τ-invariant simple closed curve bounding a disk Dq ⊂ uq, such that q ∈ int Dq.
Since τ |Sq is orientation preserving and periodic then there exists a homeomorphism hq : Sq → S

1 which
topologically conjugates τ |Sq with the rotation θ|S1 of the circle S

1 = ∂B2 with an angle 2π n
mτ

, where
n,mτ are co-prime. A homeomorphism hq can be extended into a homeomorphism Hq : Dq → B

2 which
conjugates τ |Dq with the periodic rotation θ : B2 → B

2.
Denote by λx a fiber of the fibration FA passing through the point x ∈ A, and by Nq a neighborhood

of the fiber λq generated by the fibers of the fibration FA passing through points of Dq. Let us extend
the homeomorphism Hq : Dq → B

2 up to a fiber by fiber homeomorphism Gq : Nq → Nθ, where Nθ =

B
2 × [0, 1]/∼ is the quotient space of B2 × [0, 1] by means of equivalence relation (x, 1) ∼ (θ(x), 0),

x ∈ B
2. For this, remark that the orientation of any segment z × [0, 1], z ∈ B

2 induces the orientation of
the closed curve (z × [0, 1])/∼ in Nθ. Similar, the homeomorphisms gc2 induce the orientations of fibers
generated the set Nq. Let x ∈ Dq, y ∈ λx be points such that there exists an arc λ̂x,y ⊂ λx joining points
x, y and such that the movement along this arc from x to y is agreed with the orientation of the fiber λx

and λ̂x,y ∩ dp = x. Denote by |λ̂x,y| the length of the arc λ̂x,y and by x′ ∈ B
2, λ′

x′ , y′, λ̂′
x′,y′ , |λ̂′

x′,y′ | similar

objects for the manifold Nθ. Set G(y) = y′, where y′ is a point such that |λ̂x,y|
|λ̂x,τ(x)|

=
|λ̂′

x′,y′ |
|λ̂′

Hq(x),θ(Hq(x))
| .

For an arbitrary point p ∈ A \Xτ there exists a closed neighborhood Dp ⊂ A consisting of points of
equal periods with respect to the map τ . Denote by Np the neighborhood of the fiber λp generated by
the fibers of the fibration FA passing though the points of Dp. Similar to the construction of Gq one can
construct fiber by fiber homeomorphism Gp : Np → B

2 × S
1.

In the case 2) for any points p ∈ A reasoning are similar to ones above.
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Fig. 4. Construction of an axillary flow on the module surface.

Thus, we have proved that the constructed bundle is a Seifert bundle.

Since A is homeomorphic to the surface Sgft
we can identify it with Sgft

. Then applying the
techniques of the proof of the Theorem 1 one can immediately get the following statement.

Corollary 1. Manifold M3 is diffeomorphic to the quotient space Sg × [0, 1]/∼ of Sg × [0, 1]
by equivalence relation (z, 1) ∼ (τf t(z), 0), where τ : Sgft → Sgft

is the periodic homeomorphisms
defined in Lemma 2.

4. REALIZATION

In this section we prove Theorem 2. Let Sg be an orientable surface of genus g and τ : Sg → Sg be
an orientation preserving periodic diffeomorphism. Let us prove that there exists a gradient-like flow
f t ∈ GSD(M3) with simple asymptotic behavior of invariant manifolds of saddles given on the mapping
torus M3

τ .

According to [6] the orbit space Sg/τ is homeomorphic to an orientable surface Sgτ of genus gτ (a
module surface) and the natural projection pτ : Sg → Sgτ is mτ-branched covering everywhere except
points of the set Xτ ⊂ Sg consisting of points whose period is less then mτ . Any point x ∈ Xτ of period
mx is a branch point of the order λx = mx

mτ
. It means that there exists a neighborhood Ux ⊂ Sg of the

point x and homeomorphisms hx : Ux → C, χx : pτ (Ux) → C, where C is the complex plane, such that
hx(x) = O, χx(pτ (x)) = O and χ(pτ (h

−1(z))) = zλx , z ∈ C.

Let us present the surface Sgτ by an 4gτ−polyhedron unfolding as it shown on the Figure 4, (a) and
denote by gt a gradient-like flow on the surface Sgτ with phase portrait shown on the Figure 4. If the set
Xτ contains more than two fixed points then one can modify the flow gt as in shown on the Figure 4,
(b), by adding pairs of a sink and a saddle in such a way that projections of all branch points belongs to
equilibria of obtained flow (see [7, Theorem 3.1.2] for more details). We will denote the modified flow also
by gt. Then there exists a gradient-like flow Gt on Sgτ such that pτGt = gtpτ , so trajectories of the flow
Gt are τ-invariant.

Define on the segment [0, 1] a flow ψt by equation ṡ = sinπs, s ∈ [0, 1] and consider the flow F t on the
direct product Sg × [0, 1] given by F t(z, s) = (Gt(z), ψt(s)), z ∈ Sg, s ∈ [0, 1]. Let πτ : Sg × [0, 1] → Mτ

be the natural projection. Then the flow f t = πτF
tπ−1

τ is the desired flow.
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