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1.  Introduction

There is a growing interest in the science of quantum infor­
mation to multiparticle entanglement. It finds applications in 
quantum computing and quantum error correction [1, 2], as 
well as in quantum networks [3]. The latter includes, in par­
ticular, communication among many parties that is enhanced 
by shared multiparticle entanglement. The most promising 
recourse for establishing this type of entanglement is, of 
course, multiphoton systems. Thus, there is a natural interest 
in studying entanglement properties of the states of many pho­
tons. Recent experiments have also shown that entanglement 
of up to ten photons can be observed in the laboratory [4].

In this work we consider pure multiphoton two-mode 
polarization Fock states and their superpositions. We give a 
general definition of the density matrices of such states, as 
well as of the density matrices of mixed states arising from 
pure Fock states after their partial reduction over a series 

of photon variables. Elements of such density matrices are 
expressed in terms of correlators, defined as averaged prod­
ucts of equal numbers of creation and annihilation operators 
with different distributions of operators over two polarization 
modes. We will calculate parameters characterizing the degree 
of entanglement in such states and investigate their depend­
ence on features of the original pure states and on the ways of 
their reduction.

Note that for biphoton states the method of density matri­
ces of the described type was suggested by D N Klyshko in 
1997 [5] and somewhat later used in the works [6, 7]. More 
recently there was a series of works on some aspects of entan­
glement in multipohoton states [8–12]. However, as far as we 
know, there were no works where the Klyshko method of den­
sity matrices would be generalized for multiphoton states with 
numbers of photons higher than 3. Such generalization is one 
of the main goals of this work. The second goal is character­
izing entanglement of multiphoton states in terms of Schmidt 
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decompositions and their parameters, which will also be new. 
Note also that, although the Schmidt decomposition has been 
known in mathematics since 1907 [13], in the fields of modern 
quantum optics and quantum information it was introduced 
by J H Eberly and coworkers first in 1994 [14] and then in 
2004 [15]. A much more general and detailed description of 
the Schmidt decomposition, as well as its applications, was 
given in the review paper [16].

2.  Density matrices

Let us consider an arbitrary pure state |Ψ(n)〉 of n photons 
with identical frequencies and identical given propagation 
directions but distributed arbitrarily between two polariza­
tion modes, horizontal and vertical or H and V . Two-mode 
polarization basic Fock states are states with given numbers 
of horizontally and vertically polarized photons nH and nV:

|ΨnH , nV 〉 = |nH , nV〉 =
a† nH

H a† nV
V√

nH!nV !
|0〉.� (1)

More general n-photon polarization states to be consid­
ered are superpositions of basic Fock states (1) with identi­
cal total numbers of photons in all terms of superposition, 
n ≡ nH + nV = const.

|Ψ(n)〉 =
n∑

nH=0

CnH |nH , nV〉|nV=n−nH� (2)

with 
∑n

nH=0 |CnH |2 = 1. The wave functions of all n-pho­
ton states |Ψ(n)〉 depend on n single-photon variables σi, 
Ψ(n)({σi}) = 〈{σi}|Ψ(n)〉 and, explicitly, they are given by 
symmetrized products of n single-photon wave functions 
[17]. In the case of polarization modes the single-photon 
wave functions in these products are ψH(σi) = δσi, H and 

ψV(σj) = δσj, V. In the matrix representation ψH(σi) =
(

1
0

)
i
 

and ψV(σj) =
(

0
1

)
j
 [18].

Note that sometimes it is possible to find in the literature 
mentions of particle or mode entanglement, and of their dif­
ferences or similarities. We do not use such concepts here 
because in our opinion the type of entanglement to be studied 
can be much more correctly interpreted as related to uncer­
tainty of distributions of particle variables between modes or, 
in brief, as variable entanglement. For two-mode polarization 
states this means an uncertainty of attachment of polarization 
variables σi to H- or V-modes.

The direct products of n two-line columns 
(

1
0

)
i
 and 

(
0
1

)
j
 

form a basis of columns with 2n elements (‘rows’) and with 
different locations of a single unit in one of these ‘rows’. 
Written down in this basis explicitly, the multiphoton wave 
function can be used for constructing the density matrix 

ρ(n)({σi}, {σ′
i}) = Ψ(n)({σi})Ψ(n) †({σ′

j}). However, at high 
values of the photon number n this procedure is rather cum­
bersome to reproduce it explicitly. Fortunately, there is a much 
more compact algorithm for constructing multiphoton density 

matrices to be described and discussed below. Of course, at 
any given n correctness of the matrix representations used 
below can be checked and confirmed directly by the described 
derivations based on the use of the multiphoton wave func­
tions Ψ(n)({σi}).

Thus, for any pure two-mode multiphoton state |Ψ(n)〉 its 
2n × 2n density matrix can be presented symbolically in the 
following form:

ρ(n) =
1
n!

({
〈(a†H)

n−k2(a†V)
k2 an−k1

H ak1
V 〉

})
� (3)

with averaged products of creation and annihilation opera­
tors defined as 〈...〉 = 〈Ψ(n)|...|Ψ(n)〉 and sometimes referred 
to below as correlators. The integers k1 and k2 (both � 0 and 
� n) in equation (3) represent, correspondingly, the number 
of identical groups of columns and rows in the matrix. At any 
given values of k1 and k2 columns and rows repeat themselves 
Ck1,2

n  times, where Ck
n = n!/k!(n − k)! are the binomial coef­

ficients. Note also that the total powers of creation operators 
and total powers of annihilation operators in all elements are 
the same: (n − k2) + k2 = n and (n − k1) + k1 = n. However, 
proportions between powers of the creation operators in the 
H- and V-modes change from one line of the matrix to another 
and are controlled by the integer k2. Similarly, proportions 
between powers of the annihilation operators in the H- and 
V-modes change from one column of the matrix to another 
and are controlled by the integer k1.

The simplest examples are the density matrices of pure 
one-photon and two-photon polarization states

k1 = 0 1 k2

ρ(1) =

(
〈a†HaH〉 〈a†HaV〉
〈a†

VaH〉 〈a†VaV〉

)
0
1

� (4)

and

k1 = 0 1 1 2 k2

ρ(2) =
1
2




〈a† 2
H a2

H〉 〈a† 2
H aHaV〉 〈a† 2

H aHaV〉 〈a† 2
H a2

V〉
〈a†

Ha†Va2
H〉 〈a†Ha†VaHaV〉 〈a†Ha†VaHaV〉 〈a†Ha†Va2

V〉
〈a†

Ha†Va2
H〉 〈a†Ha†VaHaV〉 〈a†Ha†VaHaV〉 〈a†Ha†Va2

V〉
〈a† 2

V a2
H〉 〈a† 2

V aHaV〉 〈a2
VaHaV〉 〈a† 2

V a2
V〉




0
1
1
2

� (5)
etc.

As mentioned above, the biphoton density matrix ρ(2) (5) 
was written by Klyshko [5] and used in [5–7]. Note, however, 
that the next step used for working with the density matrix (5) 
consisted of simply crossing out one of two coinciding rows 
and one of two coinciding columns. This reduces the fourth-
order matrix to the three-dimensional one, but significantly 
changes features of the arising matrix. In particular, its trace 
becomes different from one in contrast to the density matrix 
(5). Additionally, it does not provide a correct transition to the 
coherence matrix of biphoton qutrits [18]. Indeed, the most 
general polarization biphoton state is qutrit, the state vector 
of which is

|Ψ(2)〉 = C1|2H〉+ C2|1H , 1V〉+ C3|2V〉� (6)

Laser Phys. Lett. 17 (2020) 035209
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with Ci being arbitrary complex constants obeying the nor­
malization condition 

∑
i |Ci|2 = 1. The natural coherence 

matrix of this state is

ρ
(2)
coh =




|C1|2 C∗
1 C2 C∗

1 C3

C∗
2 C1 |C2|2 C∗

2 C3

C∗
3 C1 C∗

3 C2 |C3|2


 =




〈a† 2
H a2

H〉
2

〈a† 2
H aH aV〉√

2

〈a† 2
H a2

V〉
2

〈a†H a†V a2
H〉

√
2

〈a†
Ha†

V aHaV〉
〈a†H a†V a2

V〉√
2

〈a† 2
V a2

H〉
2

〈a† 2
V aH aV〉√

2

〈a† 2
V a2

V〉
2


.

�

(7)

Evidently, the last expression (7) does not coincide with that 
of equation (5), e.g. deleting the third column and third row. 
Therefore, the procedure of crossing out repeated columns 
and rows cannot be considered as mathematically correct. To 
make it correct, one has to first make the unitary transforma­
tion of the matrix (5) [18], after which all elements in one of 
the rows and one of the columns in the 4 × 4 matrix become 
zero. For the matrix (5) the required unitary transformation 
has the form

ρ(2) → ρ̃(2) = Uρ(2)U†

with

U =




1 0 0 0
0 1/

√
2 1/

√
2 0

0 1/
√

2 −1/
√

2 0
0 0 0 1


.

Only after this transformation can the arising single line and 
single column with zero elements be safely removed without 
changing general features of the original density matrix and 
providing the correct expression for the coherence matrix (7) 
[18]. In principle, similar transformations can also be found 
for density matrices of higher-order states, n  >  2. However, 
in the following discussion we will not use such transforma­
tions by keeping all the full 2n dimensionality of the density 
matrices unchanged, with repetitions of identical columns and 
rows of the density matrix completely conserved. This repeti­
tion of columns and rows is related directly to the symmetry 
features of multi-boson wave functions. This symmetry is not 
seen explicitly in the multiphoton state vectors of the type 
(1), but in the wave function of polarization variables they are 
present in the form of terms differing only by transposition 
of variables [17–19]. Such terms in the wave functions are 
responsible directly for the appearance of repeated columns 
and rows in the density matrices.

3.  Reduced density matrices

It is known that the degree of entanglement of pure quantum 
states is related directly to the degree of mixing of reduced 
states. The concept of reduced states arises when one repre­
sents a complicated pure state as if consisting of two parts. 
Reduction is then the averaging over one of these two parts, 
giving rise to a possibly mixed state of the other part. In the 
simplest cases of n  =  2 and n  =  3 definitions of two parts 

are evident: these parts consist of two single-photon states in 
the case of biphotons, and they consist of single-photon and 
two-photon states in the case of a pure three-photon original 
state. In the cases of states with large numbers of photons, 
n � 4, there is more than one way of imagining how the 
original n-photon state can be divided into two parts. E.g. for 
n  =  4 there are are two ways of the gedanken splitting this 
state into two parts: 4  =  2  +  2 and 4  =  3  +  1 [12]. Thus, in 
these cases one can discuss different degrees of entanglement 
corresponding to different ways of splitting the original state 
into two parts.

Mathematically, a standard way of reducing density 
matrices of pure states consists of using their wave-function 
representation ρ(n)({σi}, {σ′

i}) = Ψ(n)({σi})Ψ(n) †({σ′
i}), 

equalizing one or several variables σi = σ′
i  and summing the 

product Ψ(n)Ψ(n)† over the variable(s) σm. However, the pro­
cedure is rather cumbersome for states with many photons 
and with all symmetry requirements of the multi-boson wave 
functions fully taken into account. Fortunately, the result of 
such calculations can be presented in a relatively simple form 
with elements of the reduced density matrices expressed in 
terms of correlators similar to those arising in the above-men­
tioned density matrices of pure states. By assuming that for an 
n-photon state we reduce the density matrix ρ(n) with respect 
to n  −  m variables, we can write the following general expres­
sion for the resulting reduced 2m-order density matrix:

ρ(m; n)
r =

(n − m)!

n!

({
〈(a†H)

m−k2(a†V)
k2 am−k1

H ak1
V 〉

})
� (8)

with the previous definition of averaging in correlators 
〈...〉 = 〈Ψ(n)|...|Ψ(n)〉 and with the previous meaning of the 
integers k2 and k1 (m � k1,2 � 0) representing the number of 
groups of columns and rows, at given k1 and k2 repeated Ck1,2

m  
times. Below are some examples of reduced matrices.

The single-photon reduced density matrices of arbitrary 
pure n-photon states |Ψ(n)〉 arising at m  =  1 have the form

ρ(1; n)
r =

1
n

(
〈a†HaH〉 〈a†HaV〉
〈a†VaH〉 〈a†VaV〉

)
.� (9)

For basic Fock states |ΨnH , nV 〉 (1) the matrices are very simple:

ρ(1; n)
r =

1
nH + nV

(
nH 0
0 nV

)
,� (10)

and they correspond to the Schmidt entanglement parameter

K(nH , nV) =
1

Tr[(ρ(1; n)
r )2]

=
(nH + nV)

2

n2
H + n2

V
.� (11)

In the case of an even total number of photons n = nH + nV , 
as a function of nH, the Schmidt parameter K achieves a maxi­
mum at nH = nV = n/2 and Kmax  =2. For other relations 
between nH and nV the Schmidt parameter K is smaller than 
Kmax. In the cases of odd numbers of photons n the maximal 
values of the Schmidt parameter are achieved at nH  =  [n/2] 
and nH  =  [n/2]  +  1, where the symbol [x] denotes in this case 
the integer closest to but smaller than x. Maximal values of the 
Schmidt parameter in these cases are somewhat smaller than 

Laser Phys. Lett. 17 (2020) 035209
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2. The simplest example of the basic Fock state with odd n is 
that of three-photon states |1H , 2V〉 and |2H , 1V〉. In both cases 
equation (11) gives K  =  9/5 in agreement with the results of 
the work [12]. The main conclusion from this brief analysis 
concerns the achievable entanglement of n-photon basic Fock 
states with respect to division into subsystems of a single-pho­
ton and an (n − 1)-photon state: entanglement of such states 
with respect to such division for subsystems does not exceed 
that occurring in the case of biphoton states, and the maximal 
entanglement with K  =  2 or close to 2 is achieved in the states 
with maximally close numbers of horizontally and vertically 
polarized photons, nH and nV.

The two-photon reduced density matrices of arbitrary pure 
n-photon states Ψ(n) arise in the cases of m  =  2 and their gen­
eral form is given by

ρ(2; n)
r =

1
n(n − 1)




〈a† 2
H a2

H〉 〈a† 2
H aH aV〉 〈a† 2

H aH aV〉 〈a† 2
H a2

V〉

〈a†H a†V a2
H〉 〈a†H a†V aH aV〉 〈a†H a†V aH aV〉 〈a†H a†V a2

V〉

〈a†H a†V a2
H〉 〈a†H a†V aH aV〉 〈a†H a†V aH aV〉 〈a†H a†V a2

V〉

〈a† 2
V a2

H〉 〈a† 2
V aH aV〉 〈a† 2

V aH aV〉 〈a† 2
V a2

V〉


.

� (12)
Formally, this density matrix looks identical to that of equa­
tion (5), although the normalization factors in these two matri­
ces are different. However, an even more important difference 
concerns the meaning of averaging in correlators in these 
matrices. In the case of the density matrix of a pure two-photon 
states ρ(2) (5) averaging is defined as 〈Ψ(2)|...|Ψ(2)〉. In con­
trast, in the case of the second-order reduced density matrix 
(12) correlators in this matrix are defined as 〈Ψ(n)|...|Ψ(n)〉, 
where n  >  2. Note also that all described matrices, both of 
pure states (3)–(5) and of mixed states (8)–(12), obey the 
same important feature: their traces are equal to 1.

To evaluate the degree of entanglement of multiphoton 
states |Ψ(n)〉 their reduced density matrices have to be diago­

nalized numerically, after which the found eigenvalues λ(m; n)
i  

can be used to find the Schmidt entanglement parameter or the 
entropy of the reduced density matrices:

K =
1∑
i λ

2
i

and Sr = −
∑

i

λi log2 λi.� (13)

Before presenting specific results of calculations, it 
is worth making a note concerning features of the above-
mentioned density matrices and differences between their 
features in the cases of basic Fock states (1) and their super­
positions (2). In the case of single basic Fock states, their 
pure-state and reduced density matrices have many zeros. In 
fact, averaging over basic Fock zeroes all correlators contain­
ing products of creation and annihilation operators in one of 
two modes in different powers, e.g. (a†H)

p aq
H with p �= q  and 

the same for the vertical-polarization mode. Owing to this, 
the density matrices of single Fock states have a diagonal-
block structure. The following equation represents an exam­

ple of such a diagonal-block second-order reduced density 

matrix ρ
(2; 4)
r  (12) for the state |2H , 2V〉 reduced with respect 

to two variables (m  =  2):

ρ(2; 4)
r =




1/6 0 0 0
0 1/3 1/3 0
0 1/3 1/3 0
0 0 0 1/6


 .� (14)

In this matrix three diagonal blocks are located (a) at the cross­
ing of the first line and first column, (b) at the crossing of the 
second and third lines with the second and third columns, and 
(c) at the crossing of the fourth line and fourth column. Each 
block gives only one non-zero eigenvalue, and they are equal 
to, correspondingly, 1/6, 2/3, and 1/6, which gives K  =  2 in 
accordance with the result shown in figure 1.

In a general case of the reduced density matrices ρ
(m; n)
r  

(8) corresponding to the original states ΨnH ,nV  (1), the non-
zero square blocks arise at crossings of the lines and columns 
with equal numbers of integers k1 and k2, k1 = k2 ≡ k with 
0 � k � m, and the dimensionality of each block is Ck

m. The 
number of blocks equals m  +  1. All elements inside each 
block are equal to each other. Owing to the equality of ele­
ments inside a block, each block has only one non-zero eigen­
value, and eigenvalues of the reduced density matrix can be 
expressed via these non-zero eigenvalues of blocks. Explicitly 
they are given by

λk =
(n − m)!

n!
Ck

m〈ΨnH ,nV |(a
†
HaH)

m−k(a†VaV)
k|ΨnH ,nV 〉

=
(n − m)!

n!
m!

k!(m − k)!
nH!

(nH − m + k)!
nV !

(nV − k)!
,

�

(15)

with additional limitations

k � min{nV , m} and
k � max{m − nH , 0} ≡ max{nV − (n − m), 0}.

� (16)

Notice that at m = n = nH + nV  the reduced matrix ρ
(m;n)
r  

becomes the density matrix of a pure state ρ(n). In this case 
the limitations (16) take the form k � nV  and k � nV , and they 

Figure 1.  Calculated Schmidt entanglement parameter K(n) for 
states |Ψ(n)〉 = |nH , nV〉 with even n, equal numbers of horizontally 
and vertically polarized photons, nH = nV = n/2, and with the 
gedanken splitting of the states for two m-photon states with 
equal numbers of photons, m = (n − m) = n/2; the dotted line 
corresponds to Kappr  of equation (17).

Laser Phys. Lett. 17 (2020) 035209



5

S V Vintskevich et al

are compatible with each other only at k = nV . This means 
that at a given value of nV the density matrix ρ(n) has only 
one non-zero block characterized by k = nV . Simple algebra 
shows that in this case equation (15) yields λk = 1 as it has to 
be for a pure state.

The described features of the reduced density matrices 
corresponding to the basic two-mode Fock states ΨnH ,nV  (1) 
significantly simplify diagonalization of these matrices and 
their Schmidt-mode analysis. The situation appears to be com­
pletely different in the case of superpositions of basic states 
Ψ(n) (2). In this case the diagonal-block structure of matrices 
does not exist anymore and the reduced density matrices have 
to be diagonalized without any useful simplifications.

4.  Results

The results of calculations are presented in figures 1–6. The 
first of these (figure 1) corresponds to multiphoton states 
|Ψ(n)〉 with total number of photons n, where n is taken as 
even, and with equal numbers of photons with horizontal and 
vertical polarizations, nH = nV = n/2. The state is assumed 
to be imagined as consisting of two parts with the same num­
bers of photons in each, n/2. The reduced density matrix of 
such a subsystem is ρ(

n
2 , n) (m  =  n  −  m  =  n/2 in notations of 

equation  (8)). Its eigenvalues are λi and the Schmidt entan­
glement parameter is determined by the first expression in 
equation (13). In figure 1 the Schmidt parameter is shown in 
relation to its dependence on the total number of photons in 
the state |Ψ(n)〉. As seen from figure 1, in the considered case 
the Schmidt entanglement parameter and, hence, the degree 
of entanglement are monotonically growing functions of the 
number of photons. In other words, multiphoton Fock states 
can have much higher resources of entanglement than usually 
considered biphoton states.

Note that the curve in figure 1 can be perfectly approxi­
mated by the analytical expression

Kappr ≈ 0.62 + n0.54.� (17)

The coincidence of this model curve with the numerically 
calculated one is so perfect that in figure 1 they look indistin­
guishable, except for a small region n  <  4. The main quali­
tative conclusion from this comparison is that as a function 
of the total number of photons n, the Schmidt entanglement 
parameter K(n) grows roughly as the root square of n.

Similar conclusions can be deduced from calculations of 
the entropy of reduced state Sr defined by the second expres­
sion in equation  (13). For the same state as in the previous 
calculations the function Sr(n) plotted in figure 2 is seen to 
be monotonically growing and very similar to the curve of 
figure 1. This confirms the conclusion regarding the growing 
degree of entanglement with a growing number of photons, 
and confirms compatibility of the entropy and Schmidt param­
eter for characterization of the degree of entanglement.

Figure 3 depicts the dependency of the Schmidt entangle­
ment parameter K on the relation between horizontally and 
vertically polarized photons in the Fock states with given total 
number of photons n: if the number of vertically polarized 
photons is nV = k � n, the number of horizontally polarized 
photons is nH  =  n  −  k, and the number k varies along the hori­
zontal axis in figure 3. In this series of calculations the degree 
of reduction is taken to be as high as possible, m  =  1, i.e. 
the reduced state is a single-photon one and its reduced den­

sity matrix is ρ
(1; n)
r  of equation (9). As seen clearly from the  

figure, at all values of n the Schmidt number K and the degree 

n
0

S
r

1

1.5

2

2.5

3

3.5

10 504020 30

Figure 2.  As in figure 1 but for the entropy of the reduced state 
rather than for the Schmidt entanglement parameter.

m/n
0 0.2 0.4 0.6 0.8 1

K

1

2

3

4 2
3

1

Figure 4.  Schmidt entanglement parameter K of the states |ΨnH ,nV 〉 
(1) versus the ratio ‘number m of variables in the reduced density 
matrix divided by the total number of polarization variables 
or the total number of photons n′; the curves correspond to 
n = 6 (1), 8 (2) and 24 (3).

Figure 3.  Schmidt entanglement parameter K as a function of the 
number nV of vertically polarized photons in the states |Ψ(n)〉; total 
numbers of photons n are shown near the curves. The assumed 
division into subsystems is n → 1 + (n − 1).
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of entanglement are maximal when the numbers of vertically 
and horizontally polarized photons in the state |Ψ(n)〉 are equal 
(k  =  n/2) or maximally close to each other (in the case of odd 
n).

Figure 4 shows the dependence of the Schmidt entangle­
ment parameter of the Fock state |Ψ(n)〉 on m/n, i.e. on the 
ratio of number m of variables remaining in the state after its 
reduction to the total number of photons (or their variables) n 
in the original pure state. The figure shows clearly that entan­
glement of the state |Ψ(n)〉 is maximal when it is considered 
as split for two parts with an equal number of photons in each 
part (m/n  =  0.5).

Figure 5 shows the dependence of eigenvalues λk  on their 

numbers k for the reduced density matrices ρ
(m; n)
r  of the state 

with the total number of photons n  =  120, nH = nV and differ­
ent degrees of reduction n  −  m.

The results shown in figure 5 show that in spite of a grow­
ing degree of entanglement in strongly multiphoton states, 
eigenvalues of all reduced density matrices remain concen­
trated in a restricted region of not especially high values. This 
means that the effective dimensionality of the corresponding 
Hilbert spaces remains not too high. This conclusion is impor­
tant for approximate numerical calculations because it opens 

the possibility of performing these calculations in smaller-
dimensionality matrices, forming the main cores for finding 
relatively large eigenvalues λk .

Let us now consider an example of states more compli­
cated than a single basic Fock state. Let the state under con­
sideration be given by

|Ψ〉 =
n∑

m=1

Cm|(n − m)H , mV〉.� (18)

Let us take the coefficients Cm in the Gaussian form

Cm = N exp

(
− (m − m0)

2

2σ2

)
� (19)

with the normalization factor N given by

N =

[
n∑

m=0

exp

(
− (m − m0)

2

σ2

)]−1/2

� (20)

and m0 denoting the value of m at which the squared coef­
ficients |Cm|2  are maximal. As mentioned above, in this case 
diagonalization of the reduced density matrix is more com­
plicated because this matrix no longer has a diagonal-block 
structure, and it has to be diagonalized as a whole, without 
any simplifications. Nevertheless, the results of such calcul­
ations are presented in figure 6 for three different values of the 
parameter m0 in the Gausssian distribution of equation (19).

One of the most interesting features of the curves in  
figure 6 concerns the disappearance of entanglement (K  =  1) 
at some definite point σ0 . In principle, this is not contradic­
tory, e.g. to the known features of the simplest superposition 
of Fock states—a biphoton polarization qutrit (6) character­
ized by three constants C1, C2, C3. As is known [19], its degree 
of entanglement can be characterized either by the Schmidt 
entanglement parameter K or by the so-called concurrence 
C = |2C1C3 − C2

2| [20], the two of which are related to each 
other by a simple formula C =

√
2(1 − K−1). It is also 

known that entanglement of a qutrit disappears when C  =  0 
or 2C1C3 = C2

2. This effect of disappearing entanglement at 
some specific relation between the qutrit’s parameters seems 
to be analogous to the effect of missing entanglement of the 
state (18) at σ = σ0.

5.  Conclusion

In conclusion, in this paper the density matrix approach used 
previously for biphoton states is generalized for the case of 
multiphoton two-mode polarization states. Both basic two-
mode Fock states and their superpositions with given total 
numbers of photons are considered. In this method elements 
of density matrices are expressed in terms of mean values of 
products of photon creation and annihilation operators. The 
structures of the arising reduced density matrices with parts of 
the polarization variables are discussed. Eigenvalues λk  of the 
reduced density matrices are found analytically for two-mode 
Fock states and numerically for their superpositions. These 
results are used to find the degree of entanglement of multi­
photon states with respect to their division into pairs of states 

k
100

0.1

0.2

0.3

2 4 6 8

k
λ

Figure 5.  Arranged in descending order, eigenvalues λk  of the 
reduced density matrices ρ

(m,n)
r  (8) of the state |ΨnH ,nV 〉 (1) with 

nH = nV = 60 and n = nH + nV = 120 and different degrees of 
reduction: m  =  50 (solid line), 30 (dashed line) and 10 (dash-dotted 
line).

0 2 4 6 8 10

K
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Figure 6.  Schmidt entanglement parameter K for the state (18) with 
n  =  6 and m0 = 3, 2, 1, 0 (from top to bottom at small values of σ).
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with smaller numbers of photons. The degree of entangle­
ment is estimated either by the Schmidt entanglement param­
eter K = 1/

∑
k λ

2
k  or by the entropy of the reduced states 

Sr = −
∑

k λk log2 λk. The main qualitative conclusion is that 
the degree of entanglement is maximal if the numbers of pho­
tons in two modes, nH and nV, are maximally close to each 
other and if multiphoton states are considered as consisting 
of two parts with approximately (or exactly) equal numbers 
of photons in each part. The maximal degree of entanglement 
is found to be a growing function of the number of photons as 
shown in figures 1 and 2.
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