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Аннотация. Развитие информационно-коммуникационных технологий и 

вычислительной техники приводит к расширению инструментария для моделиро-
вания политических процессов. Если в предыдущие десятилетия математические 
модели разрабатывались в основном в теоретико-игровой постановке, то сегодня 
появляется все большее количество работ, реализующих агентное (агентно-
ориентированное, agent-based) моделирование. Этот тренд вполне закономерен. 
Произошли изменения в политическом участии и в формах коллективного взаимо- 
действия индивидов и групп, индуцированных цифровыми технологиями.  
Исследователями разработаны теоретические подходы к проблематике политиче-
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ского участия, делающие акцент на формах сетевого взаимодействия и реали-
зующих логику bottom-up, обосновывающую макросвойства системы из характе-
ристик и взаимодействия отдельных агентов. Тем самым сформировались теоре-
тические основы для агентного подхода к моделированию, который принимает 
наиболее многообещающую форму в сетевом дизайне. Этот подход, однако, по-
требовал более сложного, чем принято в господствующей ранее теоретико-
игровой парадигме, описания мотивации индивидов в плане принятия решений 
об участии. Один из ключевых моментов состоит в том, что мотивация оказыва-
ется увязанной с сетевым положением агентов ввиду того, что индивид ориенти-
руется на совершенные ранее действия своих соседей по сети. Таким образом, 
течение политического процесса определяется не только свойствами и решения-
ми его участников, но также типом связывающей их сетевой архитектуры. В изу-
чении моделей такого типа особую роль играет вычислительный эксперимент, в 
рамках которого варьируются параметры модели. Рассматриваются две основные 
стратегии такого эксперимента: поиск по решетке и метод Монте-Карло. Пер-
спективы агентного моделирования в сетевом дизайне включают в себя исследо-
вание динамики политических процессов с учетом структур доверия и социаль-
ного капитала, а также ресурсов и механизмов коллективного действия. 

Ключевые слова: агентный подход; агентно-ориентированное моделиро-
вание; социальные сети; сетевая архитектура; динамика политических процессов; 
политическое участие; вычислительный эксперимент. 
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литических процессов: к агентному подходу // Политическая наука. – 2021. – № 1. – 
С. 12–45. – DOI: http://www.doi.org/10.31249/poln/2021.01.01 

 
 

Введение 
 
На протяжении многих лет ключевой – если не единственной – 

парадигмой построения моделей в политической науке была теория 
игр. Она и сейчас в существенной мере остается «мейнстримом», 
причем в некоторых областях – к примеру, в политической экономии – 
ее господство является практически безраздельным. Но буквально в 
самые последние годы мы становимся свидетелями (а иногда и уча-
стниками) если не тектонических, то весьма ощутимых сдвигов  
исследовательских предпочтений в пользу другого подхода – чис-
ленного моделирования. Одним из знаковых событий в этом ряду 
стало появление в ведущем политологическом журнале American 
Journal of Political Science программной статьи одного из лидеров 
этого направления Д. Зигеля [Siegel, 2018] «Анализируя численные 
модели». В ней показано, что как по надежности результатов и вы-
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водов, так и по возможностям построения и развития политической 
теории численные модели как минимум не уступают теоретико-
игровым. В этой работе мы покажем, кроме того, что одно из тече-
ний в численном моделировании – агентный подход с использова-
нием сетевой методологии – в очень значительной мере отвечает 
тем трендам, вызовам и проблемам, которые несет с собой один из 
наиболее фундаментальных процессов современного мира – про-
цесс развития информационно-коммуникационных технологий. 

Во-первых, развитие Интернета и социальных медиа1 расши-
рило само предметное поле политической науки, сфокусировало 
внимание на изменениях в политическом поведении и в формах 
коллективного взаимодействия индивидов и групп, индуцированных 
цифровыми технологиями. Ответом стали не только новые исследо-
вательские вопросы и гипотезы, но и новые концепции. Например, 
ставшая широко распространенной в последние годы теория «связую-
щего действия» (connective action theory) Л. Беннета и А. Сегерберг 
[Bennett, Segerberg, 2013] объясняет, за счет чего горизонтально рас-
пределенные, «рыхлые» конгломераты индивидуальных цифровых 
микросетей могут успешно решать задачи коллективной – в том 
числе протестной – мобилизации, позволяющей им нередко конку-
рировать с вертикально организованными бюрократическими струк-
турами [Bennett, Segerberg, Walker, 2014]. Другое широкое направ-
ление исследований концентрируется на феномене политической 
поляризации в социальных медиа [Social media, political polarization ..., 
2018; Bakshy, Messing, Adamic, 2015; Ideological and temporal compo-
nents …, 2015]. Для его объяснения привлекаются, в частности, та-
кие особые – и вновь сугубо сетевые по своей природе явления, как 
эхо-камеры (echo chambers), – однородные по политическим взгля-
дам и замкнутые «сами на себя» сетевые сообщества [Tweeting from 
left to right …, 2015]. В этой статье мы попытаемся показать, что од-
ним из наиболее эффективных инструментов изучения такого рода 
явлений и эффектов становится современная версия агентно-
ориентированного моделирования (agent-based modeling, ABM) с ее 
                                                            

1 В русском языке принято называть социальные медиа типа Facebook, 
Twitter или Вконтакте «социальными сетями». В методологическом тексте это 
порождает значительную путаницу, потому что понятие «социальная сеть» зна-
чительно шире и включает в себя не только виртуальные, но и вполне «физиче-
ские» контакты индивида. Поэтому здесь мы будем следовать англоязычной тра-
диции и называть виртуальные сети «социальными медиа» (social media). 
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опорой на сети децентрализованных элементов, взаимодействую-
щих в рамках определенных правил принятия решений. 

Во-вторых, с развитием сетевых коммуникаций политологи 
получили в свое распоряжение огромный объем качественно но-
вых эмпирических данных об индивидуальном поведении людей. 
Принципиальным преимуществом таких данных является то, что 
они возникают в ходе естественного поведения (в отличие от  
опросных или экспериментальных техник). Обратная же сторона – 
гигантские объемы этой информации и зачастую ее сложная сете-
вая структура, делающие затруднительным или даже невозможным 
использование традиционных для общественных наук методов  
исследования. На помощь здесь приходят, с одной стороны, успехи 
компьютерных наук в таких областях, как обработка естественного 
языка, компьютерное зрение, сетевой анализ, подкрепленные  
огромным прогрессом в области анализа больших данных. Но та-
кого рода инструменты работают эффективно только тогда, когда 
имеется понимание, какие именно закономерности, структуры, 
паттерны следует искать в эмпирических массивах. Одной из стра-
тегий решения этой проблемы как раз и является моделирование. 
Но для больших данных сетевого типа все более остро ощущаются 
ограничения традиционных аналитических методов, основанных, 
прежде всего, на теории игр. Возможность получения общих ре-
шений достигается за счет крайне сильных упрощений, уровень 
которых становится все менее приемлемым. И вновь перспективной 
альтернативой здесь становится развитие численного моделирова-
ния на базе ABM, делающего акцент не на аналитических решениях, 
а на тщательно продуманном вычислительном эксперименте. 

Постановка численного эксперимента, сопоставимого по 
обоснованности выводов с аналитическими решениями теории 
игр, стала возможной во многом за счет огромного увеличения вы-
числительных возможностей компьютеров, которыми пользуются 
рядовые исследователи. Одновременно появился ряд новейших 
программ численного моделирования, «дружественных» по отно-
шению к ученым, не имеющим специальной подготовки в области 
программирования1. Параллельно им – и часто на их базе – возни-

                                                            
1 Особо отметим программу агентно-ориентированного моделирования, 

созданную У. Виленски [Wilensky, Rand, 2015]. – NetLogo. – Mode of access: 
https://ccl.northwestern.edu/netlogo/ (accessed: 22.10.2020). 
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кают «цифровые площадки» обмена опытом и конкретными разра-
ботками между исследователями. Долгое время сама по себе «вы-
сокая технологичность» используемых методов, сложность мате-
матического, статистического, программного обеспечения таких 
исследований делала «стоимость входа» в эту сферу научных раз-
работок чрезмерно высокой для большинства. Сейчас ситуация 
существенно меняется. 

Наконец, эволюция методологии ABM резонирует с текущими 
трендами в развитии общественных наук и в еще одном отноше-
нии. В последние годы все больше внимания уделяется более много- 
факторным и нюансированным – по сравнению с традиционны- 
ми «рационально-максимизирующими» – механизмам принятия 
индивидуальных решений (см., напр.: [Van Stekelenburg, Klander-
mans, 2013; Ayanian, Tausch, 2016]) с выделением психологических 
и эмоциональных аспектов. В течение десятилетий описание пове-
дения индивидов генерировалось в основном экономической на- 
укой, породившей такие понятия, как «репрезентативный потреби-
тель» или «репрезентативное домохозяйство». Политическая наука, 
в этой части «плывущая в фарватере» экономистов, произвела на 
свет «репрезентативного избирателя» и «репрезентативного про-
тестующего». В рамках этого подхода предполагалось, что некий 
усредненный поведенческий паттерн может репрезентировать по-
ведение всего класса индивидов в целом. Решение, принимаемое 
репрезентативным домохозяйством, представляло решения всех 
домохозяйств; предпочтения медианного избирателя – всю сово-
купность избирателей. Макроскопические свойства, характери-
зующие систему в целом, выводились из решений такого усреднен-
ного агента: например, равновесная цена – из его готовности 
совершить покупку по той или иной цене. К таким выводам, как пра-
вило, приходят посредством методов математического анализа. 

Развитие вычислительных инструментов моделирования  
позволяет рассматривать принятие решения каждым отдельным 
агентом. Причем агенты – как и реальные люди – могут различаться 
не только по своим свойствам, влияющим на принимаемые реше-
ния, но и обладать разными механизмами принятия решений. Это 
открывает большие возможности для приближения модельных ре-
зультатов к эмпирически наблюдаемым. Кроме того, значительно 
обогащаются инструменты рассмотрения динамических аспектов 
поведения. Действительно, если агенты принимают решения само-
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стоятельно, то каждый из них может принять положительное ре-
шение (присоединиться ли к революции, совершить ли покупку) в 
различное время; следовательно, каждый следующий агент может 
учесть действия предыдущих. Удобный образ – это волна принятия 
решений, проходящая по сети агентов. 

В этой статье мы проанализируем ключевые сюжеты, наме-
ченные во введении. Сначала мы рассмотрим фундаментальные 
особенности агентного моделирования в привязке к специфике  
исследований интернет-коммуникации индивидов и групп. Затем 
мы остановимся на основных аспектах развития сетевой методоло-
гии ABM. Потом покажем базовые возможности современных 
численных экспериментов. В заключение мы обсудим ключевые 
проблемы и перспективы дальнейшего развития метода. 

 
 

Агентный подход к моделированию 
 
Сначала несколько слов о терминах. Наряду с понятием 

«агентный» в отечественной литературе также можно встретить 
«агентно-ориентированное моделирование»; в англоязычной лите-
ратуре используются в основном термины «agent-based» и «multi-
agent», также широко распространена аббревиатура ABM. Как и в 
современной российской политике, слово «агент» содержит не от-
носящиеся к делу коннотации. В действительности агенты в дан-
ном случае являются лишь множеством автономных элементов, 
взаимодействующих в рамках некоторого пространства по опреде-
ленным правилам. В рамках моделирования для общественных 
наук агенты почти всегда представляют индивидов или семьи (до-
мохозяйства), хотя встречаются и более высокие уровни агрегиро-
вания – организации (в том числе политические партии, см.: 
[Laver, Sergenti, 2011], регионы и даже страны [Cederman, 1997; 
Combining social network analysis …, 2020]. 

Внутри одной модели могут присутствовать агенты несколь-
ких типов. Например, в ставшей классической работе Д. Эпстина 
[Epstein, 2002] по моделированию гражданского протеста наряду с 
обычными индивидами действуют агенты-полицейские, чьей 
функцией является арест и изоляция протестующих. В модифика-
циях этой модели появляются дополнительные типы агентов – 
члены революционных организаций [Moro, 2016] или активисты 
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гражданских движений [Lemos, 2018]. Развитие Интернета приво-
дит и к появлению принципиально новых типов – например, авто-
матизированных аккаунтов социальных медиа (в просторечье «бо-
тов») [Beskow, Carley, 2019]. 

Наличие значительного (как правило, от десятков до тысяч) 
числа однотипных агентов порождает естественную для данного 
подхода возможность ввести различия между ними по некоторым 
заданным свойствам. Гетерогенность (heterogeneity) агентов по 
некоторому признаку является очень характерной для агентного 
моделирования – и одновременно уникальной для моделирования 
в целом чертой, позволяющей существенно приблизить модель к 
реальности. Для некоторых свойств индивидуальные значения оп-
ределяются при инициализации модели (момент t = 0) и не меня-
ются во времени в процессе симуляции. Так, в уже названной мо-
дели Д. Эпстина такими свойствами являются избегание риска 
(risk aversion) и уровень экономических и бытовых трудностей 
(hardships). Другими примерами являются степень обладания вла-
стными ресурсами [Dacrema, Benati, 2020], индивидуальные «иде-
альные точки» по вопросам повестки дня [Makowsky, Rubin, 2013], 
пороговые значения присоединения к протесту [On the fate of pro-
tests …, 2020]. 

Как правило, такого рода переменные являются непрерыв-
ными либо на всем пространстве действительных чисел, либо – 
чаще – на каком-то заданном интервале. По расчетам исследовате-
лей [Mastroeni, Vellucci, Naldi, 2019], более чем в половине работ 
используется интервал от нуля до единицы [0, 1], где 0 соответст-
вует минимальной выраженности признака, 1 – максимальной. 
Определение конкретных значений свойств агентов происходит на 
основе какого-то явно определенного закона распределения, 
обычно нормального или равномерного, хотя встречаются и рас-
пределения с «толстыми хвостами» (степенное, экспоненциаль-
ное). Исследователь обоснованно фиксирует параметры распреде-
ления (например, математическое ожидание и стандартное 
отклонение для нормального закона), далее работает специальный 
алгоритм (так называемый генератор псевдослучайных чисел). 

Особым типом свойств агентов являются так называемые 
переменные состояния (state variables), динамика значений кото-
рых в значительной мере определяет специфику агентного моде-
лирования. 
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Во-первых, переменные состояния всегда фиксируют цен-
тральное с содержательной точки зрения свойство агентов, яв-
ляющееся фокусом исследования в данной конкретной модели. 
Например, агенты могут в каждый конкретный момент времени 
выбирать между состояниями «спокойствия» и «бунта» [Epstein, 
2002; Siegel, 2011], занимать позицию на шкале поддержки власти 
[Dacrema, Benatti, 2020], транслировать или не транслировать не-
которое сообщение в социальной сети [The contagion effects …, 
2018], менять положение в пространстве политических ориентаций 
[Laver, Sergenti, 2011], раскрывать или не раскрывать истинные 
политические предпочтения [Are social bots a real threat ..., 2019] 
и т.д. Как видно из приведенных примеров, среди таких перемен-
ных все чаще встречаются бинарные – принимающие одно из двух 
дискретных значений. 

Во-вторых, значение переменной состояния зависит не толь-
ко от остальных свойств агента в данный или предшествующий 
момент времени, но и от состояний других агентов, – как правило, 
той части всего их множества, которые связаны с данным агентом 
пространственной близостью или отношением сетевой связи. Так, 
выбор между состояниями «бунта» и «спокойствия» в модели  
Эпстина определяется как внутренними характеристиками агента 
(избегание риска и личные трудности), так и состояниями других 
агентов: локальным соотношением представителей полиции и 
бунтующих граждан. Последнее задает вероятность быть аресто-
ванным при переходе к активному протесту и входит в алгоритм 
принятия решения в качестве «рисковой» составляющей. В моде-
лях социальной сегрегации (Schelling, 1978; Wilensky, Rand, 2015; 
Laver, 2020] решение индивида о том, менять ли место жительства 
или оставаться на месте, зависит от того, какая доля агентов того 
же типа (напр., той же расы, социального статуса и т.п.) находится 
в его непосредственном окружении. 

Хороший пример того, как это работает более конкретно, 
представлен в модели эффективности репрессий Д. Зигеля [Siegel, 
2011]. В ней индивид принимает решение об участии или неуча-
стии в протестной акции (переменная состояния) на основе своей 
обобщенной внутренней мотивации (net internal motivation) и 
внешней мотивации (external motivation), определяемой локальным 
уровнем протестной активности. Индивиды гетерогенны по своей 
внутренней мотивации Di, значения которой полагаются постоян-
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ными во времени1 и извлекаются при инициализации модели из нор-
мального закона распределения. Гетерогенность по внешней мотивации, 
напротив, задается динамически изменяющейся долей протестующих 
в сетевом окружении индивидов (local protest rate lpri.t); чувстви- 
тельность индивида к поведению социального окружения опреде-
ляется параметром ∈λ  [0 , 1]: ci.t+1 = λci.t − (1 − λ)(1 − lpri.t). Реше-
ние об участии в протесте принимается индивидом лишь в том 
случае, если полная мотивация индивида превышает нулевой по-
рог: bi + ci.t  > 0. 

Отметим две важнейших особенности поведения агентов, 
которые иллюстрируются примерами выше – автономность и  
локальность взаимодействий. В моделях отсутствует централизо-
ванный иерархический контроль индивидуального поведения,  
каждый агент «принимает решения» – определяет значение пере-
менной состояния – самостоятельно, исходя из собственных ха-
рактеристик и информации о свойствах и действиях других аген-
тов. При этом, как привило, обмен информацией происходит 
локально – в рамках определенной части геометрического про-
странства (например, между агентами, расположенными физи- 
чески рядом друг с другом) или сегмента сети (между агентами, 
связанными ребрами или дугами2). 

Соответственно, агентно-ориентированные модели основаны 
на «восходящей» логике (bottom-up), или логике микрообоснова-
ния (microfoundation). Глобальное поведение системы «вырастает» 
из взаимодействий на микроуровне – взаимодействий отдельных 
агентов. Таким образом, агентно-ориентированное моделирование 
фокусируется на так называемых эмерджентных свойствах моде-
лируемых процессов, т.е. макроскопических свойствах, которые не 
атрибутированы каждому отдельному элементу системы, но «вы-
растают» из их совокупного и взаимозависимого поведения [Bona-
beau, 2002]. Наряду с понятием эмерджентности в близком значе-
нии используется понятие сложности (и здесь английский язык 
                                                            

1 Индекс i нумерует агентов; запись bi означает, что каждый из агентов  
i = (1, 2, …, N) обладает определенным значением свойства b. Например, запись 
b3 = 5 говорит о том, что у третьего агента значение свойства b составляет 5.  
Индекс t обозначает моменты времени; его отсутствие показывает, что свойство 
не меняется во времени.  

2 В теории графов упорядоченная пара вершин (когда важно направление 
связи) называется дугой, неупорядоченная – ребром.  
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лучше подчеркивает разницу между complexity как эмерджентной 
сложности и complication как «многосоставной» сложности, см. 
подробнее: [Miller, Page, 2009, p. 9–31]). Не случайно агентное мо-
делирование является одним из ключевых направлений современ-
ных исследований сложных систем, complexity studies. 

А наиболее интересные и активно изучаемые в политологии 
феномены коммуникации в социальных сетях как раз и представ-
ляют собой, в огромной мере, эмерджентные эффекты. Таковым, 
например, является формирование уже упомянутых нами эхо-
камер: фактически речь идет о процессе перестройки сети комму-
никации с появлением в ней наборов плотных, сильно связных 
кластеров идейно близких пользователей, причем этот феномен 
возникает самопроизвольно как равнодействующая поведения  
отдельных индивидов. В сочетании с другим центральным для  
современной политологии (и также эмерджентным) объектом изу-
чения – идеологической поляризацией он порождает особый  
феномен «кибербалканизации» (cyberbalkanization). И агентный 
подход уже продемонстрировал возможности успешного модели-
рования такого рода явлений [Chan, Fu, 2018]. 

Другой важнейший феномен, привлекающий пристальное 
внимание исследователей, – горизонтальная самоорганизация граж-
дан посредством социальных медиа, особенно в условиях противо-
действия со стороны централизованного контроля властями традици-
онных СМИ. И здесь агентный подход – и, на наш взгляд, только он – 
позволяет строить адекватные модели и проводить информативные 
численные эксперименты. Так, в модели [The contagion effects …, 
2018] агенты-граждане получают информационные сигналы от своих 
соседей и, по достижении определенных порогов (по которым они 
гетерогенны), ретранслируют его обратно окружающим. Дизайн мо-
дели устроен таким образом, что при определенных условиях в сис-
теме возникают глобальные корреляции: самопроизвольная синхро-
низация активаций отдельных пользователей. 

Наконец, в контексте горизонтальной сетевой самоорганиза-
ции особый интерес вызывает трансформация феномена политиче-
ского лидерства, которое, разумеется, никуда не исчезло с распро-
странением электронных коммуникаций. Однако в сетевой среде 
лидерство в большей степени связано с конкуренцией за внимание 
и поддержку пользователей, а не с директивной трансляцией сто-
ронникам политических позиций и образцов поведения. Традици-
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онные инструменты моделирования, нередко рассматривающие 
действия сторонников как функцию действий лидеров, здесь пере-
стают работать. В данный момент первые экспериментальные ре-
зультаты модельного исследования сетевого лидерства получены 
нашей командой [Filippov, Yureskul, Petrov, 2020]. 

 
 

Интеграция ABM с сетевым подходом 
 
Названные выше простые принципы агентного подхода, за-

ложенные еще в «классическую» эпоху его развития (1990-е), не-
достаточны для моделирования сложных динамических процессов. 
Ключевая новация последнего десятилетия состоит в тесной инте-
грации ABM с сетевым подходом и сетевым анализом. Агентский 
подход предоставляет руководящие принципы для моделирования 
взаимодействий агентов в рамках заданной (и нередко эволюцио-
нирующей во времени) системы связей; сетевой анализ дает инст-
рументарий для интерпретации полученных результатов вычисли-
тельных экспериментов. 

Изначально и вплоть до примерно 2010 г. агенты взаимодей-
ствовали почти исключительно в геометрическом пространстве. 
Его можно представить как двумерное клеточное поле, где все или 
некоторые клетки «заполняют» агенты одного или разных типов. 
На экране компьютера обычно такое пространство отображается 
как имеющее границы – разбитый на клетки квадрат или прямо-
угольник. Однако в последнее десятилетие исследователи все чаще 
делают выбор в пользу сетевого пространства, где агенты пред-
ставляют собой вершины (узлы) некоторого графа, а обмен ин-
формацией идет через соединяющие их связи – дуги или ребра. 
Рассмотрим этот вопрос несколько более детально, тем более что 
ряд исследователей (напр.: [Combining social network analysis ..., 
2020]) выделяют структурный («сетецентричный», network-centric) 
подход как самостоятельную парадигму построения и анализа 
агентных моделей. 

Вначале кратко рассмотрим две количественные меры в 
рамках сетевой методологии, ключевые для понимания современ-
ного прогресса в этой области, а также сопутствующие понятия. 
Это коэффициент кластеризации (clustering coefficient) и средняя 
длина пути (average path length). Коэффициент кластеризации  
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([(CC)]↓v) данной вершины v измеряет, насколько хорошо связаны 
между собой ее соседи. Под соседями мы будем здесь понимать 
смежные вершины – вершины, с которыми данная соединена реб-
рами. Коэффициент кластеризации принимает значения от нуля, 
когда связи между соседями отсутствуют, до единицы, когда каж-
дый сосед связан с каждым, 0 ≤ CCv ≤ 1. Он рассчитывается1 по 
формуле  

)1(
2

−
=

vv

v
v kk

NCC  , 
где Nv – число связей между соседями v, а kv – степень вершины 
(число ребер, присоединенных к v и, соответственно, число ее  
соседей). Идея этой формулы проста: она показывает отношение 
количества реально существующих связей между соседями к их 
потенциально возможному числу. На рис. 1 a у вершины A четыре 
соседа (выделены серым), между ними имеется три связи (соответ-
ствующие ребра выделены полужирным). По формуле получаем 

5.012
6

)34(
)32( ==×

×=ACC . Действительно, при трех имеющихся ребрах до 
полной связи не хватает еще трех (на рисунке 1 а «недостающие» 
ребра показаны пунктиром). 

 

 
Рис. 1 а. 

К расчету коэффициента  
кластеризации 

Рис. 1 б. 
К расчету средней длины 

пути 
                                                            

1 Для неориентированного графа. 
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Средний коэффициент кластеризации характеризует сеть в 
целом и рассчитывается как среднее арифметическое коэффициен-
тов отдельных вершин. На рис. 1 a приведен пример регулярного 
графа, у которого степени всех вершин одинаковы и для каждой 
коэффициент кластеризации равен 0,5. Соответственно, и средний 
коэффициент кластеризации составляет то же значение. Таким об-
разом, для регулярных графов, независимо от числа вершин, ха-
рактерны высокие значения коэффициентов кластеризации. 

Средняя длина пути является мерой интегрированности (це-
лостности) сети; она показывает, образно говоря, сколько «шагов» 
понадобится в среднем для того, чтобы «добраться» от одного ее 
произвольного элемента до другого. Для ее расчета для каждой 
пары вершин вычисляется кратчайший путь – минимальное число 
ребер, их соединяющих. Например, на рис. 1 б кратчайший путь 
между вершинами A и B (один из которых показан пунктирными 
линиями) равен трем. Здесь мы не будем приводить все расчеты; в 
данном случае средняя длина пути невелика и составляет пример-
но 1,67. Однако эта ситуация будет кардинально меняться с 
увеличением числа вершин; для более реалистичной сети из 
100 элементов средняя длина пути составит около 13. В целом для 
регулярных графов характерны большие длины путей (это легко 
понять, представив себе кольцо, аналогичное по структуре рис. 1 б, 
но состоящее из 100 вершин; чтобы дойти до противоположного 
края кольца, понадобится много шагов). 

Перейдем от модельного примера регулярного графа к тем 
сетевым топологиям, которые практически используются в по-
строении вычислительных моделей в социальных науках. Наибо-
лее простая из них – случайная сеть Эрдёша – Реньи [Erdös, Rényi, 
1959; Stocker, Green, Newth, 2001]. Ключевая ее особенность со-
стоит в том, что вероятность p включения каждого из всех воз-
можных ребер в конкретный граф одинакова и не зависит от дру-
гих ребер. Например, для графа с четырьмя вершинами всего 
возможно шесть ребер; это легко посчитать по формуле n (n – 1)/2, 
где n – число вершин. Каждая из них имеет одинаковую вероят-
ность (например, p = ½) попасть в итоговый граф. При генерации 
графа параметр p регулируется исследователем и, как нетрудно 
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заметить, дает возможность определить плотность1 сети: чем 
больше вероятность каждого из возможных ребер попасть в дан-
ный граф, тем больше связей в нем окажется в итоге. Случайные 
сети характеризуются низкими уровнями кластеризации (для сети 
из 100 вершин типичное значение составит порядка 0,05) одно-
временно с короткими средними длинами путей (порядка 3,5). По 
этим двум параметрам случайные сети – «антиподы» регулярных 
графов. 

Будучи очень простым и удобным практическим инструмен-
том включения сетей в вычислительные модели, топология Эрдё-
ша – Реньи тем не менее не лучшим образом отвечает на крайне 
существенный содержательный вопрос. А так ли – совершенно 
случайно и независимо друг от друга – образуются сети связей в 
реальной или виртуальной социальной жизни? Другими словами, 
соответствуют ли свойства таких сетей – уровень кластеризации и 
средняя длина пути – эмпирическим данным? Революционное ис-
следование на эту тему было опубликовано Д. Уоттсом и 
С. Строгатцем в журнале Nature в 1998 г. [Watts, Strogatz, 1998]. 
Они показали, что случайные сети драматически (до нескольких 
порядков) занижают уровень кластеризации для многих категорий 
реальных сетей. Парадоксальным образом «искусственные» регу-
лярные сети по этому показателю значительно ближе к действи-
тельности. Вообще говоря, это вполне закономерно: большинство 
людей окружено достаточно плотными кластерами социальных 
связей, в которых многие наши знакомые одновременно знакомы 
между собой. 

При этом случайные сети неплохо приближают реальность с 
точки зрения средней длины пути, которая оказывается на удивле-
ние короткой. Этот феномен, отразившейся в поговорке «мир те-
сен» (“it is a small world”), стал научным фактом еще в 1967 г. бла-
годаря одному из знаменитых экспериментов C. Милграма 
[Milgram, 1967]. Он установил, что требуется в среднем всего пять 
промежуточных звеньев (и, соответственно, шесть связей), чтобы 
передать сообщение между незнакомыми людьми, принадлежа-
щими к совершенно разным социальным и географическим сооб-
ществам (в оригинальном исследовании – фермерами из Небраски 

                                                            
1 Плотность графа – отношение числа ребер к максимально возможному 

числу ребер.  
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и биржевым маклером в Бостоне). Это открытие получило широ-
кую известность как «теория шести рукопожатий». 

Итак, регулярные графы хорошо соответствуют эмпириче-
ским данным в части уровня кластеризации, а случайные – в части 
средней длины пути. Все те же Д. Уоттс и С. Строгатц [Watts, Stro-
gatz, 1998] предложили практический алгоритм создания новой 
сетевой архитектуры, удовлетворяющей этим свойствам. Неудиви-
тельно, что она получила название «тесный мир» (small-world). 

Этот алгоритм стартует с регулярной структуры – кольца, 
аналогичного изображенному на рис. 1, что позволяет задать нуж-
ный уровень кластеризации. Он определяется специальным пара-
метром kv – тем же самым, что в формуле для регулярного графа 
(степень вершины). Он назначает, напомним, число соседей каж-
дой вершины. На следующем шаге в эту регулярную структуру 
добавляется стохастический компонент, характерный уже для слу-
чайной сети. Это определяемая исследователем «вероятность пе-
реприсоединения» (rewiring probability) – вероятность, с которой 
каждое данное ребро может быть «откреплено» от исходного узла 
и присоединено к другому, случайно выбранному узлу. В боль-
шинстве случаев в результате такой операции будет удалена 
«близкая» связь (с непосредственным или близлежащим соседом), 
и на ее месте возникнет «дальняя» связь. Это показано на рис. 2 
для вероятности переприсоединения, равной 0,2. 

 

 
 

Рис. 2. 
Построение топологии «small-world» 
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Регулируя два названных выше параметра, исследователь 
может подобрать оптимальную модель архитектуры, соответст-
вующую эмпирическим характеристикам той сети, которая являет-
ся объектом исследования. По существу, подбирается комбинация 
из двух «антиподов» – максимально упорядоченной структуры 
регулярного графа и совершенно случайного распределения связей 
в топологии Эрдёша – Реньи. На сегодняшний день алгоритм «мир 
тесен» Уоттса – Строгатца остается ключевым инструментом чис-
ленного моделирования «физических» (офлайновых) социальных 
связей. 

Однако бурное развитие социальных медиа и онлайн-
коммуникаций ставит под сомнение адекватность разработанных 
алгоритмов реальной картине социальных связей. Эмпирически 
показано [Which models are used in social simulation …, 2015], что 
пользователи социальных медиа характеризуются огромной не-
равномерностью в числе сетевых связей (подписок, друзей и пр.). 
Другими словами, распределение степеней вершин (degree distribu-
tion) в графе становится важной содержательной характеристикой 
системы взаимодействия. Она описывается так называемым сте-
пенным законом (power law), f(x) = ax−k. В рамках более привыч-
ного нормального закона, где движение от центра распределения в 
сторону бо́льших отклонений характеризуется экспоненциальным 
убыванием плотности вероятности, было бы почти невозможным 
наличие у значительного числа пользователей (политиков, поп-
звезд, ведущих блогеров) таких армий подписчиков, которые по 
своей численности на несколько порядков превосходят среднее 
число подписчиков в сети. Степенной закон предсказывает гораздо 
большую вероятность таких сильных отклонений, поэтому его 
часто называют распределением «с толстым хвостом» (fat-tailed 
distribution, см. рис. 3). 

Кроме того, в социальных медиа гораздо большую роль иг-
рает динамическая составляющая: в отличие от традиционных со-
циальных связей, где изменения сравнительно редки, здесь проис-
ходит постоянный процесс добавления или (реже) удаления 
контактов. 
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Рис. 3. 

Пример распределения с «толстым хвостом» 
 
Эти две взаимосвязанные особенности были одновременно 

учтены в алгоритме предпочтительного присоединения (preferen-
tial attachment), созданном А.-Л. Барабаши и Р. Альберт [Barabási, 
Albert, 1999; Barabási, Albert, Jeong, 2000]. В его основе лежит 
принцип «богатые становятся богаче» (the rich get richer): вероят-
ность присоединения к вершине новой связи зависит от того, 
сколько ребер уже присоединено к данной вершине. Этот принцип 
и обеспечивает соответствие распределения степеней вершин сте-
пенному закону. Для политической науки последнее особенно 
важно в контексте исследования проблем лидерства. 

В типовом алгоритме сеть строится пошаговым образом, на-
чиная с одного ребра, соединяющего две вершины, A и B. На пер-
вом шаге третья вершина С присоединяется к одной из них с веро-
ятностью 1/2. На втором шаге (рис. 4 а) вершина D может 
присоединиться к A, у которой уже есть две связи, с вероятностью 
1/2, и к B и C с вероятностью по 1/4 для каждой из них. Здесь важ-
но подчеркнуть, что это случайный процесс, новые узлы не «обре-
чены» присоединяться к вершинам с большим числом связей, ина-
че все ребра оказались бы замкнуты на одну вершину. A «богаче» 
B и C по отдельности, но вероятность присоединения D к одной из 
«бедных» вершин так же велика (1/4 + ¼ = ½). В нашем примере D 
«выбирает» B. На третьем шаге новая вершина E может присоеди-
ниться к A и B, имеющих по две связи, с вероятностью 1/3 для  
каждой и с вероятностью по 1/6 для C и D (рис. 4 б). Теперь в на-
шем примере происходит выбор в пользу «богатой» A, которая 



Political science (RU), 2021, N 1  2 
 

 

29

становится предпочтительным (но далеко не единственно возмож-
ным!) выбором для новой вершины F (рис. 4 в). Так продолжается 
до тех пор, пока в сети не возникнет нужное число вершин, – этот 
параметр задается исследователем; вторым управляющим пара-
метром является показатель степени – k. В результате возникает 
архитектура, похожая на схематично изображенную на рисунке 4 г 
(хотя число вершин в современной численной модели будет на-
много больше: как правило, от одной до нескольких сотен). Ее от-
личительная особенность состоит в наличии нескольких «хабов» – 
вершин, «богатых» связями. Такая картина качественно соответст-
вует степенному закону. Также важно, что при достаточно боль-
шом числе вершин коэффициент кластеризации и средняя длина 
пути приходят в соответствие с эмпирическими наблюдаемыми. 

 

  

а) б) 

 
в) г) 

 
Рис. 4. 

Построение топологии Барабаши – Альберт 
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Более сложные варианты алгоритма Барабаши – Альберт 
предполагают, что каждая новая вершина соединяется не с одной, 
а с m вершинами из существующих ранее, где m – некоторое за-
данное число; как правило, небольшое. Например, если m=2, то в 
ситуации на рис. 4 а вершина D должна «выбрать» для соединения 
не одну из трех, а две из трех. Случай m=1, подробно разобранный 
выше, характеризуется тем, что в графе не возникает ни одной 
триады; т.е. нет ни одной тройки индивидов, в которой каждый 
знает обоих других (другими словами, если у двух индивидов есть 
общий знакомый, то они не знакомы между собой), – см. рис. 4 г. 

В этой работе мы для простоты и экономии места рассмат-
риваем только ненаправленные (неориентированные) связи, когда 
ребра AB и BA представляют собой одно и то же ребро. Отметим, 
однако, что для моделирования онлайн-коммуникаций часто важ-
ной опцией является демонстрация направления связи. Например, 
для Твиттер-аккаунта Дональда Трампа характерно не просто 
большое число связей, но большое число входящих ребер – под-
писчиков (followers). Возможность построения направленных се-
тей очень хорошо реализована именно в алгоритме предпочти-
тельного присоединения. 

Важным свойством сетей Барабаши – Альберт является эн-
догенный характер (endogenous emerging) их построения; сеть не 
накладывается исследователем на агентов как жесткая внешняя 
структура (exogenous imposing), а эволюционирует во времени.  
К описанному выше типовому алгоритму можно добавить прави-
ла, которые позволят «выращивать» внутри модели важные для 
современного этапа исследований сетевые эффекты. Так, кроме 
степени вершины, на вероятность появления новой связи между 
пользователями может влиять сходство их политических позиций. 
В этом случае мы получаем возможность наблюдать и исследовать 
процессы поляризации, формирования эхо-камер. 

В целом современное состояние дел с применением сетевых 
архитектур в агентном моделировании можно резюмировать, 
пусть и с некоторым упрощением, следующим образом. Основным 
инструментом моделирования личных, офлайновых связей остается 
алгоритм «мир тесен» Уоттса – Стронгатца. Приоритетным мето-
дом симуляции социальных медиа является предпочтительное 
присоединение Барабаши – Альберт. Случайные сети Эрдёша – 
Реньи и, реже, регулярные графы используются для контроля  
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эффектов двух названных выше топологий. Одними из наиболее 
удачных примеров использования различных сетевых архитектур в 
ABM-моделировании являются, с нашей точки зрения, [Siegel, 
2011] и [The contagion effects …, 2018]. 

Сетевая позиция индивида в модели соответствует его по-
ложению в реальной социальной структуре и играет большую роль 
в его «поведении» в рамках модельной динамики. Представим для 
примера, что в сети распространяются сообщения (мемы), и агент 
принимает решение об участии или неучастии в распространении 
этого сообщения. Одним из факторов, влияющих на принятие ре-
шения, является количество пользователей из числа друзей, уже 
участвующих в распространении. Так, модель [The dynamics of 
protest recruitment …, 2011] характеризует каждого индивида опре-
деленным пороговым значением количества таких друзей. Именно 
некоторые агенты делают репост после первого знакомства с дан-
ным мемом; другим индивидам для репоста нужно первое знаком-
ство с мемом через первого друга, и затем подкрепление в виде 
получения того же сообщения от другого друга. Кому-то для репо-
ста нужно трехкратное получение мема, и так далее. Таким обра-
зом, локальная структура сети в окрестности данного пользователя 
влияет на принятие решения: чем больше у него друзей, поддер-
живающих мем (а значит, выражаемую мемом политическую по-
зицию), тем более вероятно, что он тоже примет участие в его рас-
пространении. 

 
 

Численный эксперимент 
 
Важнейшей частью любого вычислительного моделирова-

ния, в том числе и основанного на агентном подходе, является 
численный эксперимент (simulation, computational experiment). 
Численный эксперимент заключается в проведении определенно-
го, установленного исследователем числа симуляций модели в те-
чение определенного числа тактов. Каждый такт представляет со-
бой точку на дискретной временной шкале, отмеряющей время 
существования каждой симуляции. 

Таким образом, каждый численный эксперимент базируется 
на множестве «запусков» одной и той же модели с систематиче-
ской вариацией ее параметров и характеристик. Варьироваться 
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могут прямо устанавливаемые исследователем значения макро-
скопических свойств, характеризующих модель в целом. Так, в 
модели гражданского насилия Д. Эпстина [Epstein, 2002] в системе 
имеется такой глобальный параметр – общий уровень легитимно-
сти власти, одинаковый для всех агентов. Могут меняться и более 
общие характеристики, такие, как сетевая архитектура. Кроме то-
го, меняются те микросвойства агентов, которые определяются 
случайно при каждом перезапуске модели, что делает каждую си-
муляцию уникальной. При этом для соблюдения принципа вос-
производимости научного знания исследователи, как правило, 
инициализируют генератор псевдослучайных чисел на основе 
произвольно выбранного числа («random seed») [A common proto-
col …, 2006], сохраняя заданный закон распределения. Это позво-
ляет, имея уникальные результаты для каждого запуска модели, 
получать статистически идентичные результаты для большой се-
рии таких запусков, позволяя другим исследователям в точности 
повторить эксперимент коллег. 

Прежде чем описать две основные разновидности численного 
эксперимента, остановимся на целях, достижению которых он мо-
жет служить. Численный эксперимент позволяет на основе резуль-
татов симуляций формировать гипотезы и / или уточнять те гипоте-
зы, которые получены в ходе выстраивания теоретической рамки 
исследования благодаря возникающей возможности представлять 
их в более точном и эмпирически тестируемом виде [Laver, 2020].  
В ходе численного эксперимента генерируются квазиданые, т.е. 
данные, полученные в результате симуляций, а не эмпирического 
сбора, к которым тем не менее могут быть применены те же инст-
рументы анализа, что и к реальным данным. Соответственно, чис-
ленные эксперименты позволяют корректировать первоначальные и 
выводить новые гипотезы, которые в дальнейшем и могут быть 
прямо протестированы на эмпирических данных. 

Во-вторых, проведение численного эксперимента преследует 
и чисто технические задачи [Wilson, Collins, 2019]. К ним можно 
отнести проверку модели на устойчивость полученных результа-
тов (так называемую робастность) и подбор латентных парамет-
ров, при которых процессы, происходящие в симуляции модели, 
адекватно отражают соответствующие реальные процессы. Прак-
тически всегда модель как математический или алгоритмический 
объект имеет ряд технических параметров, значения которых ис-
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следователю неизвестны. Например, это могут быть параметры 
распределений, константы связей и др. Это вынуждает обратиться 
к численным экспериментам для подбора таких значений техниче-
ских параметров, которые в наибольшей мере отвечают сущност-
ным представлениям и знаниям об исследуемом явлении. После 
калибровки технических величин исследователи могут перейти к 
следующей волне численных экспериментов, направленных уже 
на другие – содержательные – цели. 

Также в ходе численного эксперимента может быть произве-
дено сравнение результатов симуляций нескольких моделей «мик-
ромира» [Wilson, Collins, 2019], в основу которых легли различные 
правила его существования, для выявления тех из них, которые бо-
лее точно и адекватно отражают принципы реального мира. 

Получив в свое распоряжение эмпирические данные и за-
давшись целью откалибровать на них модель, исследователь имеет 
все возможности перейти к конвергенции двух подходов: числен-
ного моделирования и эмпирического анализа [Moss, 2008]. Отка-
либрованная на эмпирических данных модель становится полно-
ценным инструментом для анализа и прогнозирования процессов, 
событий и результатов реального мира. 

Остановимся на двух основных стратегиях проведения чис-
ленного эксперимента [Laver, 2020]. Первый из них носит назва-
ние «поиска по решетке» или «скольжения по решетке» («grid 
search» или «grid sweep»). Его идея состоит в том, что задается не-
которое множество значений одного или нескольких параметров 
модели, и для каждого уникального значения параметра или каж-
дой уникальной комбинации значений параметров модель запус-
кается n-ое количество раз (мы буквально движемся по решетке из 
бесконечного пространства комбинаций, останавливаясь только на 
заранее выбранных точках этого пространства). Например, имеют-
ся параметры x и y, каждый из которых принимает значения от 
0 до 1. Определим шаг в 0,2 (для иллюстрации; в реальности был 
бы выбран гораздо меньший шаг). Тогда все комбинации (x, y) 
можно представить как узлы двумерной решетки, образованной 
этими параметрами. На рис. 5 показано несколько первых шагов 
процесса скольжения по решетке: (0, 0), (0, 0,2), (0, 0,4), (0, 0,6),  
(0, 0,8), (0, 1), (0,2, 0), (0,2, 0,2), (0,2, 0,4). 
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Рис. 5. 
Схема эксперимента – «скольжение по решетке» 

 
Каждый набор запусков модели с фиксированной комбина-

цией параметров называют прогоном (run), а каждый конкретный 
запуск модели – репетицией (repetition). В нашем примере каждый 
узел решетки определяет отдельный прогон. В каждом узле ре-
шетки производится, как правило, несколько репетиций: запусков 
модели с фиксированными значениями параметров, но разными 
случайными составляющими. 

Наличие фиксированного шага, определяющего системати-
ческий характер «поиска по решетке», является одновременно и 
источником потенциальной уязвимости этого алгоритма. Возмо-
жен вариант, при котором важный паттерн поведения модели бу-
дет обусловлен такой комбинацией параметров, который окажется 
«между прутьями» решетки и, следовательно, не попадет в поле 
зрения экспериментатора. 

Эту проблему решает второй ключевой алгоритм проведения 
численного эксперимента, который называют случайным поиском 
или методом Монте-Карло (random search и Monte Carlo). В отли-
чие от «поиска по решетке», данный способ подразумевает не по-
шаговый, а случайный процесс перебора комбинаций параметров. 
Схематично движение алгоритма показано на рис. 6. 
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Рис. 6. 

Схема эксперимента – метод Монте-Карло 
 
Таким образом, в эксперимент могут попасть не только уз-

лы решетки, но любые действительные числа в области значений 
параметров. Минус такого подхода заключается в большей вы-
числительной сложности: при прочих равных условиях Монте-
Карло требует значительно большего числа итераций по сравне-
нию с поиском по решетке. Это может стать серьезной пробле-
мой, когда размерность пространства параметров существенно 
больше двух. 

Более наглядно различия между двумя стратегиями мы про-
демонстрируем на примере численного эксперимента, проведенно-
го на основе нашей модели [Akhremenko, Yureskul, Petrov, 2019]. 
Она призвана отразить динамику развития протестных кампаний и 
нацелена на выявление взаимосвязи между численностью протеста 
(целевая переменная) и рядом других параметров, основным из 
которых является уровень репрессий. В текущей версии данная 
модель обладает сетевой структурой. Каждый агент в модели в 
каждый момент времени выбирает между состояниями «участия» 
и «неучастия» в протесте на основе соотношения соответствую-
щих мотивов, а также индивидуальной склонности к участию 
(уникальной и неизменной для каждого агента). Ключевая особен-
ность модели1 состоит в том, что уровень репрессий влияет одно-
временно и на стимулы к неучастию – через издержки протестую-
щих, и на стимулы к участию – через эмоциональное отторжение 
насильственных действий со стороны властей. 

                                                            
1 Математический дизайн модели изложен в оригинальной статье.  
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В результате каждого запуска модели, длина которого со-
ставляет 100 моментов времени, устанавливается равновесная доля 
протестующих от 0 до 1. На рис. 7 и 8 представлены реализации 
численного эксперимента в двух вариантах стратегий: поиск по 
решетке и метод Монте-Карло. 

 

 
 

Рис. 7. 
Пример численного эксперимента: поиск по решетке 
 
В первом случае было проведено 33 прогона (перебиралось 

11 уровней репрессий и три различных значения средней степени 
вершины в сети, т.е. «среднего числа друзей»), каждая из которых 
состояла из 1000 репетиций, т.е. суммарное число симуляций со-
ставило 33 000. Данное число было также установлено как необхо-
димое число прогонов модели по методу Монте-Карло: значения 
уровня репрессий случайно выбирались из интервала от 0 до 1, а 
среднее число друзей из интервала от 3 до 51. Легко заметить, что 
методу поиска по решетке свойственно дискретное распределение 
перебираемых параметров, а для Монте-Карло – непрерывное. 

 

                                                            
1 Вариация параметра среднего числа друзей неотличима для обоих вари-

антов стратегий численного эксперимента, поскольку данный параметр является 
целочисленным и оба раза определен на узком интервале значений. 
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Рис. 8. 
Пример численного эксперимента: стратегия Монте-Карло 

 
Результаты экспериментов, представленные на рисунках 

выше, позволяют сделать три вывода. Во-первых, с повышением 
уровня репрессий увеличивается связанная с их применением не-
определенность: высокий уровень насилия по отношению к про-
тестующим приводит либо к полному подавлению протеста, либо 
к массовой мобилизации. Во-вторых, с ростом среднего количест-
ва друзей в сети, что отчасти отображает скорость распростране-
ния в ней информации, уменьшается пространство возможных ис-
ходов, т.е. усиливается влияние репрессий на неопределенность. 
И, наконец, легко обнаруживается качественное сходство двух 
стратегий численного эксперимента, что говорит о робастности 
полученных результатов. 

Выбор в пользу той или иной стратегии численного экспе-
римента зависит от задач и удобства самого исследователя. Как мы 
можем убедиться, глядя на рисунки, случайный поиск дает нам 
более полную картину взаимосвязи между перебираемыми пара-
метрами и целевой переменной, сильно уменьшая вероятность 
столкнуться со «слепым пятном». В то же время поиск по решетке 
предоставляет больше возможностей для анализа эксперимента, 
поскольку позволяет использовать в качестве единицы анализа не 
единичный запуск модели, результат которого может быть случа-
ен, а прогон, состоящий из десятков, сотен и даже тысяч репети-
ций. Также метод поиска по решетке позволяет перебрать все воз-
можные значения параметра, которые исследователь пожелает 
задать модели, что позволяет избежать симуляции модели с теми 
значениями параметров, которые ему покажутся избыточными. 
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Заключение 
 
Выдвижение агентного подхода на передний план модели-

рования политических процессов выглядит вполне закономерным. 
Возросла роль сетевых взаимодействий и были разработаны соот-
ветствующие содержательные концепции, такие, как теория свя-
зующего действия. Многое стало известно о структуре сетей и 
сформировался Big Data – новый класс эмпирических данных, по-
зволяющий изучать характеристики и действия немыслимого ранее 
количества отдельных агентов. Вместе с тем возросли вычисли-
тельные мощности, пришло новое поколение средств программиро-
вания. Когда сомкнулись новые предметные постановки, с одной 
стороны, и новые исследовательские инструменты – с другой, зако-
номерно пришел новый тренд в моделировании политических 
процессов. Что дальше? 

Назовем лишь некоторые перспективные направления раз-
вития ABM-методологии на базе сетевого подхода, не раскрытые 
нами – в силу ограниченности объема статьи – выше. Из легко 
просматриваемых это более плотная связь разрабатываемых моде-
лей с эмпирическими данными, сокращающая пространство для в 
той или иной степени произвольных допущений. И здесь на пер-
вый план выходят не только «традиционные» (опросные, стати-
стический учет) и «новые» (большие данные социальных медиа) 
эмпирические массивы, но и данные лабораторных экспериментов 
[Wunder, Suri, Watts, 2013]. Из пока еще только намечающихся это, 
например, возможности соразвития с нейрокогнитивными науками 
[Epstein, 2014], переживающими сейчас стремительный подъем. 

В заключение отметим, что потенциал интеграции агентного 
подхода с сетевыми методологиями отнюдь не ограничивается 
собственно исследованиями политических онлайн-коммуникаций, 
хотя это направление само по себе чрезвычайно многообещающе. 
Включенность индивида в систему социальных связей может от-
ражать не только прямой обмен информацией, но и структуры до-
верия и социального капитала, ресурсы и механизмы коллективно-
го действия [Combining social network analysis …, 2020]. Сетевые 
агентные модели, таким образом, видятся в качестве одной из наи-
более перспективных теоретических платформ разработки ключе-
вых проблем современной политической науки. 
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How information and communication technologies change trends  
in modelling political processes: towards an agent-based approach 

 
Abstract. The development of information and communication technologies and 

computing power leads to the emergence of additional opportunities for modeling po-
litical processes. In the past decades, mathematical models have been developed mainly 
in a game-theoretic setting; today we witness an expanding stream of research applying 
agent-based (multi-agent) approach. This trend is quite natural. There have been 
changes in political participation and in the forms of collective interaction of individu-
als and groups, induced by digital technologies. Researchers have developed theoretical 
approaches to political participation, focusing on the network interaction and imple-
menting the “bottom-up” logic that infers the macro-properties of the system from the 
characteristics and interactions of individual agents. Thus, the theoretical foundations 
for an agent-based modeling, most promising in its network version, have been devel-
oped. This approach, however, required a more complex description of the individual 
motivation and decision making in comparison to the dominant game-theoretic para-
digm. One of the key points is that motivation is considered to be linked to the network 
position of agents, since the individual is guided by the actions of her neighbors. Thus, 
the course of the political process is determined not only by the properties and decisions 
of its participants, but also by the type of network architecture that connects them. 
Within this research framework, a computational experiment, assuming a controlled 
variation of parameters, plays a special role. Two main strategies of such an experiment 
are considered: the grid search and the Monte Carlo method. The prospects of agent-
based modeling in its network form are related to the study of the dynamical political 
processes, taking into account the structures of trust and social capital, as well as the 
resources and mechanisms of collective action. 
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