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CENTERS OF GENERALIZED REFLECTION EQUATION ALGEBRAS

D. I. Gurevich∗ and P. A. Saponov†

As is known, in the reflection equation (RE) algebra associated with an involutive or Hecke R-matrix,

the elements TrR L
k (called quantum power sums) are central. Here, L is the generating matrix of this

algebra, and TrR is the operation of taking the R-trace associated with a given R-matrix. We consider

the problem of whether this is true in certain RE-like algebras depending on a spectral parameter. We

mainly study algebras similar to those introduced by Reshetikhin and Semenov-Tian-Shansky (we call

them algebras of RS type). These algebras are defined using some current R-matrices (i.e., depending on

parameters) arising from involutive and Hecke R-matrices by so-called Baxterization. In algebras of RS

type. we define quantum power sums and show that the lowest quantum power sum is central iff the value

of the “charge” c in its definition takes a critical value. This critical value depends on the birank (m|n) of

the initial R-matrix. Moreover, if the birank is equal to (m|m) and the charge c has a critical value, then

all quantum power sums are central.
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1. Introduction

The best known quantum matrix (QM) algebras related to quantum groups (QG) Uq(sl(N)) are the

so-called RTT and reflection equation (RE) algebras. In the general case, any QM algebra is defined by

a pair of compatible R-matrices (see [1]) that yield permutation relations for the algebra generators. The

permutation relations can be written in matrix form by introducing the so-called generating matrix whose

elements are generators of the given algebra.

By definition, an R-matrix is an operator matrix R̂ : V ⊗2 → V ⊗2 (in some fixed basis) satisfying the

so-called braid relation

R12 R23 R12 = R23 R12 R23, R12 = R⊗ I, R23 = I ⊗R. (1)
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Here, V is a finite-dimensional linear space of dimension N over the ground field C, and I denotes the

identity operator. Moreover, the subscript on operators indicates the position of the factor(s) in the tensor

product of the spaces in which the operators act.

We note that the operator PR, where P is the usual flip operator or its matrix, satisfies the quantum

Yang–Baxter equation.

The QM algebras associated with R-matrices are said to be constant to distinguish them from current

algebras that we consider below. The defining relations of the current algebras contain some functions

depending on spectral parameters.

We recall that the constant RTT and RE algebras are respectively defined by the following systems of

relations on their generators tji and lji :

R12T1T2 − T1T2R12 = 0, T = ‖tji‖1≤i,j≤N ,

R12L1R12L1 − L1R12L1R12 = 0, L = ‖lji ‖1≤i,j≤N .
(2)

Here and hereafter, A1 = A ⊗ I and A2 = I ⊗ A for an arbitrary matrix A. These RTT and RE algebras

are respectively denoted by L(R) and T (R).

Here, we assume that all R-matrices are skew-invertible involutive or Hecke symmetries (see Sec. 2).

An involutive symmetry satisfies the additional relation R2 = I, and a Hecke symmetry satisfies a more

general quadratic condition of the form

(R− qI)(R + q−1I) = 0, q 6= ±1,

where the nonzero parameter q is assumed to be generic, i.e., qk 6= 1 for any integer k. Consequently, all

q-integers kq := (qk − q−k)/(q − q−1) are nonzero.

In both QM algebras, we can define analogues of symmetric polynomials (elementary and full polynomi-

als, power sums, and also Schur polynomials). But the properties of these quantum symmetric polynomials

differ essentially in the RTT and RE algebras: quantum symmetric polynomials generate a commutative

subalgebra in the algebra T (R) and are central in the algebra L(R).

We are especially interested in quantum analogues of power sums. We note that quantum power sums1

in the algebras L(R) look like their classical counterparts, namely, TrR Lk, k ≥ 1, while they cannot be

represented in such a simple form in the RTT algebras T (R). Hereafter, TrR denotes the so-called R-trace,

which is associated with a given skew-invertible R-matrix (see Sec. 2).

The term “RE algebra” appeared in connection with constructing exactly solvable models of particles

on the half-line with reflection at the boundary (see [1]–[4]). A method for constructing constant RE

algebras using a pair of RTT algebras was proposed in [5]. A generalization of this construction to some

current algebras was described in [6] (formula (11) in Sec. 2).

Our main objective is to define analogues of power sums in some current RE-like algebras and study

their centrality. Each considered algebra is defined by the system

(R + g1(u, v)I)L1(u)(R+ g2(u, v)I)L1(v) = L1(v)(R + g3(u, v)I)L1(u)(R + g4(u, v)I), (3)

where R is a skew-invertible involutive or Hecke symmetry and gk(u, v), k = 1, 2, 3, 4, are some functions.

We call these algebras generalized RE algebras.

Requirements on the factors R + gk(u, v)I are usually imposed for them to be current R-matrices

(possibly with an additional dependence on a charge). We consider algebras similar to those introduced by

1The terminology is motivated by the commutative case: if the elements of a matrix L are commutative and µi are its
eigenvalues, then TrLk =

∑
k µk

i .
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Reshetikhin and Semenov-Tian-Shansky [6] but associated with current R-matrices arising from involutive

and Hecke symmetries via the Baxterization procedure. For brevity, such algebras are called algebras of

RS type.

Let R(u, v) be a current R-matrix associated with a Hecke symmetry R. In the current algebra of RS

type, we define quantum matrix powers of its generating matrix L(u) by the formula

L[k](u) = L1(c
k−1u)L1(c

k−2u) · · ·L1(cu)L1(u), k ≤ 1. (4)

The factor c is called the charge. In the case of an involutive symmetry R, the quantum powers L[k](u) are

defined by an analogous formula, but the shifts of the argument u are additive: u 7→ u + kc, k ≥ 1. After

defining quantum powers of the generating matrix L(u), we introduce quantum analogues of power sums

standardly by calculating the R-trace TrR L[k](u).

We note that the notion of the quantum power of a matrix depending on a parameter and the corre-

sponding quantum power sum was introduced by Talalaev [7] in studying the rational Gaudin model. Our

definition (4) of the quantum powers of matrices differs from Talalaev’s definition and is analogous to the

definition introduced in [8], [9] for the generating matrices of generalized Yangians.

Our main result here is a proof that in any generalized RE algebra of RS type, the quantum power sum

TrR L(u) is central iff the charge c takes a special critical value. This result is analogous to the statement

in [6] proved for algebras related to the QG Uq(g) (g is a classical simple Lie algebra). But in contrast to [6],

the critical charge value in our approach is not related to the dual Coxeter number of g; it is determined

by the birank of the initial symmetry R. For example, in the case g = sl(N) (we call this case standard

below), our result is a generalization of the result in [6].

We stress that the involutive and Hecke symmetries in the structures of our algebras are not necessarily

standard. Moreover, they can even not be deformations of the usual flips or superflips. A way to construct

such symmetries was proposed in [10] (see our footnote 4). To describe generalized RE algebras and the

obtained first quantum power sum TrR L(u), we use the so-called R-matrix technique.2

In addition, we prove that if the birank of the initial symmetry R is equal to (m|m), then for the

critical charge value,3 all quantum power sums are central in the corresponding RE algebras of RS type.

This question remains open for an arbitrary birank of the symmetry R.

In conclusion, we note that in this paper, we do not use the usual expansion of the generating matrices

in series in the spectral parameter. We thus avoid questions connected with the normal ordering of the

quantum powers of matrices. The interested reader can refer to [11], where centers of some quantum affine

vertex algebras were constructed using a special ordering of the generating matrices.

2. Symmetries and QM algebras

In this section, we consider a relation between constant RTT and RE algebras associated with sym-

metries. We therefore first recall some elements of the R-matrix technique (see [12]for details).

Let R : V ⊗2 → V ⊗2 be a Hecke symmetry. We consider the associated R-skew-symmetric algebra

ΛR(V ) = T (V )/〈Im(q−1I +R)〉, (5)

where T (V ) is the free tensor algebra of the linear space V and 〈J〉 denotes the two-sided ideal generated

by a subset J ⊂ T (V ). We let Λ
(k)
R (V ) denote its kth-degree homogenous component and introduce the

2By R-matrix technique, we mean a collection of formulas and properties applicable to all skew-invertible R-matrices
independently of their concrete form. Moreover, the R=matrix technique does not rely on objects of the QG type.

3In this case, the critical value is unity if R is a Hecke symmetry.
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Hilbert–Poincaré series by the equality

PΛR
(t) =

∑

k≥0

tk dimΛ
(k)
R (V ).

For an involutive symmetry R in (5), we set q = 1.

As is known (see [13]), the series PΛR
(t) is a rational function of the parameter t for any involutive or

Hecke symmetry R. We say that R has the birank (m|n) if the rational function PΛR
(t) is a ratio of two

coprime polynomials and the respective degrees of the numerator and denominator of that ratio are n and

m.

Moreover, we assume that the R-matrix is skew-invertible. This means that there exists an operator

Ψ: V ⊗2 → V ⊗2 such that

Tr(2) R12Ψ23 = P13.

Calculating the partial traces of Ψ, we define the operators

B = Tr(1) Ψ, C = Tr(2) Ψ,

and introduce the operation of taking the R-trace by the rule

TrR A = Tr(C ·A), (6)

where A is an N×N matrix (possibly with noncommutative elements) and Tr is the usual trace.

The operator B plays an important role in constructing the representation category of the algebra

L(R), but we do not use B in what follows.

If R is a skew-invertible Hecke symmetry of birank (m|n), then B and C are invertible and are related

by the formula

B · C = q2(n−m) I. (7)

We also present normalizing relations for the R-trace:

TrR(2) R12 = I1, TrR I = qn−m(m− n)q. (8)

Below, we use the formula (proved in [12])

TrR(2) R12A1R
−1
12 = TrR(2) R

−1
12 A1R12 = I1(TrR A), (9)

where A is an arbitrary N×N matrix.

Using (9), we can show that the quantum power sums TrR Lk belong to the center of the algebra L(R).

Indeed, from the defining relations of L(R), we easily obtain

R12L1R12(L1)
k = (L1)

kR12L1R12 ∀ k ≥ 1.

Multiplying this relation by R−1
12 from both sides and applying TrR in the second space, we obtain the

expression

TrR(2) L1R12(L1)
kR−1

12 = TrR(2) R
−1
12 (L1)

kR12L1.

Finally, taking (9) into account, we obtain the required equality:

L (TrR Lk) = (TrR Lk)L ∀ k ≥ 1,
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which means that the elements TrR Lk belong to the center of L(R).

We emphasize that this method does not work in the RTT algebras T (R). Although quantum analogues

of power sums can also be defined in these algebras, they are not reducible to the form TrR T k (explicit

formulas for the power sums in these algebras can be found, e.g., in [1]). Moreover, the quantum power

sums are not central elements of RTT algebras and generate a commutative subalgebra called a Bethe

subalgebra. The algebraic properties of the QM algebras L(R) and T (R) thus differ essentially. Their

coalgebraic structures and representation theories also differ drastically.

We now recall the way to construct an RE algebra using a pair of RTT algebras [5], which we reproduce

in a more general context for an arbitrary skew-invertible R-matrix.

We consider an algebra constructed from two copies of an RTT algebra. The defining relations on the

generating matrices T+ and T− of these copies have the forms

R12T
±
1 T±

2 = T±
1 T±

2 R12, R12T
+
1 T−

2 = T−
1 T+

2 R12. (10)

The last equality defines the so-called permutation relations between the generators of the two copies of

the RTT algebra.

We now assume that the symmetry R has the birank (m|0).4 We can then define the so-called R-

determinant detR T in the RTT algebra T (R) (if R = P , then detR T becomes the usual determinant). We

also assume that detR T is a central element in the algebra. The quotient algebra T (R)/〈detR T − 1〉 is

then well defined; moreover, we can construct an antipode S in the quotient algebra. Using the relation

TS(T ) = S(T )T = I, we can rewrite the last equality in system (10) as

S(T−
1 )R12T

+
1 = T+

2 R12S(T
−
2 ).

It is now easy to prove the following statement.

Proposition 1. The matrix L = T+S(T−) satisfies matrix equality (2).

This statement was established in [5] in the standard case. We note that in this case, some supple-

mentary conditions are usually imposed on the generating matrices T+ and T− by assuming that they

are respectively upper and lower triangular matrices and by imposing additional relations on the diagonal

elements of these matrices. All these conditions allow reducing algebra (10) to the “classical sizes.”

We mention two properties of the algebra L(R) for a standard R-matrix. First, this algebra is a

deformation of the commutative algebra Sym(gl(N)), i.e., the algebra L(R) becomes commutative in the

limit q → 1, and for q in general position, the corresponding homogeneous components of the two algebras

coincide. The RTT algebra T (R) also has this same property. Second, the algebra L(R) is covariant

under the adjoint action of the QG Uq(gl(N)). The corresponding RTT algebra T (R) does not have this

covariance.

3. Centrality of TrR L(u)

We consider the algebra generated by elements of a matrix L(u) satisfying matrix relation (3), where

R is a skew-invertible involutive or Hecke symmetry. We note that if all functions gk are identically zero,

then we obtain a constant RE algebra.

4As an example of such a symmetry, we can mention the R-matrix related to the QG Uq(sl(N)). In this case, m = N .
But this equality is not satisfied in the general case. In particular, involutive and Hecke symmetries of birank (2|0) acting
in the space V ⊗2, where dimV = N , were constructed for any N ≥ 2 in [10]. For such symmetries, the corresponding
skew-symmetric algebra ΛR has a Hilbert–Poincaré series of the form PΛR

= 1 + Nt + t2. Moreover, a method for “gluing”
Hecke symmetries was proposed in [10]. As a result of gluing Hecke symmetries of biranks (m|0) and (0|n), a Hecke symmetry
of birank (m|n) can be obtained.
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We now assume that all gk = gk(u, v), k = 1, 2, 3, 4, are nontrivial, but we do not fix them in any

concrete way. We consider the case where R is a Hecke symmetry. We use the method in Sec. 2, which was

applied in studying the center of the algebra L(R). Namely, we apply the R-trace TrR(2) to both sides of

equality (3). In the left-hand side, we obtain

TrR(2)(R12L1(u)((q − q−1)I +R−1
12 )L1(v)) + g1L1(u)(TrR(2) R12)L1(v) +

+ g2(TrR(2) R12)L1(u)L1(v) + (TrR(2) I2)g1g2L1(u)L1(v) =

= TrR(L1(u))L1(v) + ((q − q−1) + g1 + g2 + α g1g2)L1(u)L1(v), (11)

where α = qn−m(m− n)q. Here, we use formulas (8) and (9) and the corollary of the Hecke relation

R = (q − q−1)I +R−1.

If R is a skew-invertible involutive symmetry, then the presented formula is still applicable, but the term

q − q−1 vanishes, and the value of the coefficient α should be changed to α = m− n. In what follows, we

mainly work with Hecke symmetries.

Applying the same operation to the right-hand side of (11), we obtain the expression

L1(v)TrR(L1(u)) + ((q − q−1) + g3 + g4 + α g3g4)L1(v)L1(u).

Here, TrR(L1(u)) = TrR(1)(L1(u)).

Therefore, the relation expressing the centrality of the quantum power sum

TrR(L1(u))L1(v) = L1(v)TrR(L1(u)) (12)

holds if the equalities for the functions gk(u, v)

(q − q−1) + g1 + g2 + α g1g2 = 0, (q − q−1) + g3 + g4 + α g3g4 = 0 (13)

are satisfied. We note that these conditions are also necessary for satisfaction of (12) because any non-

trivial linear combination of the products L1(v)L1(u) and L1(u)L1(v) is nonzero for general values of the

parameters u and v.

It is usually assumed that the factors R+gk(u, v) in relation (3) are current R-matrices with a possible

shift of the parameters. Such current R-matrices can be constructed using the Baxterization procedure,5

which is described in the following statement.

Proposition 2. 1. Let R be an involutive symmetry. Then the sum

R(u, v) = R+
a

u− v
I, a ∈ C, (14)

satisfies the braid relation with a spectral parameter

R12(u, v)R23(u,w)R12(v, w) = R23(v, w)R12(u,w)R23(u, v). (15)

2. Let R = Rq be a Hecke symmetry. Then

R(u, v) = Rq −
(q − q−1)u

u− v
I (16)

also satisfies braid relation (15) presented above.

5This term was introduced in [14], where the Baxterization of the Hecke algebras was considered.
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We call solutions of braid relation (15) current R-matrices. Below without loss of generality, we assume

that the parameter a in (14) is equal to unity.

Current R-matrices (14) and (16) are respectively said to be rational and trigonometric. Substituting

u → q−2u and v → q−2v in (16), we obtain the trigonometric current R-matrix in the form

Rq +
q − q−1

q2(u−v) − 1
I = Rq +

q−(u−v)

(u− v)q
I. (17)

As q → 1, this expression tends to a rational R-matrix if Rq tends to an involutive R-matrix.

We rewrite the trigonometric R-matrix in the form

R(u, v) = R(u/v), R(x) = R+ f(x) I, (18)

where f(x) is defined as

f(x) = −
(q − q−1)x

x− 1
. (19)

We consider the choice of the function gk(u, v) in system (3)

g1 = f

(
u

v

)
, g2 = f

(
vc

u

)
, g3 = f

(
uc

v

)
, g4 = f

(
v

u

)
, (20)

where f(x) is defined by (19). The numerical parameter c ∈ C is called the charge. Defining relations (3)

then become

R12(u/v)L1(u)R12(vc/u)L1(v) = L1(v)R12(uc/v)L1(u)R12(v/u). (21)

In the standard case, this result is equivalent to the result obtained in [6]. In this case, our charge is related

to the charge C in [6] as c = ehC . Moreover, our operators R(u/v) differ from the operators used in that

work by the factor P (the flip operator).

Proposition 3. In algebra (21) with the R-matrix R(u, v) defined by (18), the first quantum power

sum TrR L(u) is central iff the value of the charge c is q2(m−n). This value of c is said to be critical.

Proof. It suffices to verify that at the critical charge value (and only at that value), centrality condi-

tions (13) are satisfied with the functions gk defined by (20).

We call an algebra defined by relations (21) with an arbitrary skew-invertible Hecke symmetry R and

a function f(x) given by (19) an algebra of RS type.

If the initial symmetry R is involutive, we set

R(x) = R+ f(x)I, f(x) =
1

x
. (22)

The rational version of an algebra of RS type is defined by the system relation

R12(u − v)L1(u)R12(v − u+ c)L1(v) = L1(v)R12(u − v + c)L1(u)R12(v − u). (23)

The numerical term c is also called the charge. In this case, the element TrR L(u) belongs to the center of

the algebra iff c = n−m. This is the critical value of the charge in the rational case.

Nevertheless, the family of generalized RE algebras with the central element TrR L(u) is larger than

described in Proposition 3. For instance, as follows from conditions (13), the centrality of this element is

preserved if we interchange either the functions g1 and g2 or g3 and g4 in defining relations (3) and also if

we simultaneously apply both interchanges.
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4. Study of higher quantum power sums

In this section, we work with algebras of RS type given by system (21), where R is defined by formu-

las (18) and (19).

We consider the quantum matrix power L[k](v) (see definition (4)). In the product of quantum matrices

L
[k]
1 (v)R12

(
uc

v

)
L1(u)R12

(
v

u

)
,

the matrix L[k](v) can be moved to the rightmost position using the interchange relations in the algebra.

This property is one of the motivations for our definition (4) of quantum matrix powers. We illustrate this

statement in the case k = 2:

L1(cv)L1(v)R12

(
uc

v

)
L1(u)R12

(
v

u

)
= L1(cv)R12

(
u

v

)
L1(u)R12

(
vc

u

)
L1(v) =

= R12

(
u

cv

)
L1(u)R12

(
c2v

u

)
L1(cv)L1(v).

The second equality holds by virtue of (21), where v must be replaced with cv. Repeating this procedure,

we obtain a series of relations

L
[k]
1 (v)R12

(
uc

v

)
L1(u)R12

(
v

u

)
= R12

(
u

ck−1v

)
L1(u)R12

(
ckv

u

)
L
[k]
1 (v), k ≥ 2.

Multiplying this equality by R−1
12 (u/c

k−1v) from the left and by R−1
12 (v/u) from the right, we obtain

R−1
12

(
u

ck−1v

)
L
[k]
1 (v)R12

(
uc

v

)
L1(u) = L1(u)R12

(
ckv

u

)
L
[k]
1 (v)R−1

12

(
v

u

)
.

We now take into account that for any function g, we have the identity

(R + g I)−1 =
R− gI − (q − q−1)I

1− g(g + q − q−1)
=

(R−1 − gI)

1− g(g + q − q−1)
,

which allows obtaining the equality

(R−1 − f(u/ck−1v)I)L
[k]
1 (v)(R + f(uc/v)I)L1(u)

1− f(u/ck−1v)(f(u/ck−1v) + q − q−1)
=

L1(u)(R + f(ckv/u)I)L
[k]
1 (v)(R−1 − f(v/u)I)

1− f(v/u)(f(v/u) + q − q−1)
.

We now calculate the trace TrR(2) of this equality:

(TrR L[k](v))L1(u)

1− f(u/ck−1v)(f(u/ck−1v) + q − q−1)
−

L1(u)(TrR L[k](v))

1− f(v/u)(f(v/u) + q − q−1)
=

=
L1(u)L

[k]
1 (v)(−f(v/u) + f(ckv/u)(1− α(q − q−1))− f(v/u)f(ckv/u)α)

1− f(v/u)(f(v/u) + q − q−1)
−

−
L
[k]
1 (v)L1(u)(−f(u/ck−1v) + f(cu/v)(1− α(q − q−1))− f(u/ck−1v)f(cu/v)α)

1− f(u/ck−1v)(f(u/ck−1v) + q − q−1)
. (24)

Here, we use the identity

TrR(2) R
−1 = TrR(2) R− (q − q−1)TrR(2) I = (1− (q − q−1)α)I,
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where α = qn−m(m− n)q and (m|n) is the birank of R.

If c 6= 1 and k ≥ 2, then the denominators of the terms in the left-hand side of relation (24) differ.

This does not allow evaluating the difference

(TrR L[k](v))L1(u)− L1(u)(TrR L[k](v)). (25)

Therefore, we cannot draw a definite conclusion about the centrality of the quantum power sums TrR L[k](v),

k ≥ 2.

Nevertheless, if we set c = 1 in the algebra defined by relations (21) and (18), then it is easy to obtain

a condition on the matrix R ensuring the centrality of the higher quantum power sums TrR Lk(u).6 Indeed,

in this case, the denominators in (24) become equal as a consequence of explicit formula (19) for f(x):

f

(
u

v

)(
f

(
u

v

)
+ q − q−1

)
= f

(
v

u

)(
f

(
v

u

)
+ q − q−1

)
= (q − q−1)2

uv

(u− v)2
.

As a result, we can evaluate difference (25):

(TrR Lk(v))L1(u)− L1(u)(TrR Lk(v)) = (L1(u)L
k(v)− Lk(v)L1(u))

α(q − q−1)uv

(u− v)2
. (26)

If m 6= n, then α = q(n−m)(m − n)q 6= 0. Consequently, the right-hand side of this equality is nonzero.

Therefore, none of the quantum power sums in the corresponding algebra is central.

But if m = n, i.e., the birank of the Hecke symmetry R is (m|m), the right-hand side vanishes. In this

case, the critical charge value c = q2(m−n) = 1. Consequently, we obtain the following conclusion.

Proposition 4. If the birank of a skew-invertible Hecke symmetry R is (m|m), then in the algebra

given by interchange relations (21), where f(x) is defined by (19), the critical charge value is equal to unity.

For this charge value, all quantum power sums TrR L[k](v) = TrR Lk(v) belong to the center of the algebra.

We also note that there are generalized RE algebras with a Hecke symmetry R of birank (m|m) that

are not of RS type, but all their elements TrR L[k](v) = TrR Lk(v) are central.

In conclusion, we mention that the generalized Yangians recently introduced in [8], [9]) are particular

cases of generalized RE algebras corresponding to the choice g2 = g3 = 0.7 Quantum analogues of matrix

powers and power sums and also some other symmetric polynomials are well defined in the generalized

Yangians. But these symmetric polynomials are not central in the general case. The quantum determinant

detR L(u) turns out to be the only central element.
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