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1 Introduction

Network interactions in many social and economic environments involve a regular flow of payoffs.

For example, the long-term investment opportunities of business-people, the number of papers

published by academic researchers, and profits of a firm are the sum of their ongoing payoffs,

each determined by the networks of associates, co-authors and distributors that is in place in any

given time period. In such environments, it is reasonable to think that the outcome of network

formation, that is, the network structure which is stable and thus likely to be observed depends on

agents’ preferences and relative importance that they assign to payoffs derived at different steps.

The key contribution of this paper is to provide a theoretical framework for analyzing network

stability in such environments. We consider a setting in which agents’ preferences are defined

over finite paths of consecutively formed networks and allow for the case of myopic preferences,

where only the payoffs in the first network on the path matter (as in myopic stability concepts1),

the case of farsighted preferences, where only the payoffs in the last network on the path matter

(as in existing farsighted concepts2), and all kinds of intermediate cases. Moreover, in contrast to

most of the existing theories of network formation, agents’ preferences can be heterogeneous, so

that some players may be myopic, others farsighted, and still overs display preferences that are

anything in between these two extreme cases.

The other notable feature of our framework is that, in accordance with the idea of cautiousness

or pessimism first introduced by Chwe (1994), players are assumed to have cautious attitudes to

network formation, where they act to avoid any possibility of becoming worse off than in the status

quo. This feature is introduced for two reasons. First, while the empirical research on the relevance

of cautiousness or risk aversion for network formation is limited, it is known to be an important

individual attribute, and the existing experimental studies do find support for cautious behaviour

in network formation and coalition formation/bargaining (Teteryatnikova and Tremewan, 2019;

Murnighan et al., 1988; Tremewan and Vanberg, 2016). Second, the assumption of cautiousness

in network formation results in a number of useful properties of the proposed stability concept,

such as the property of stable networks to be “absorbing” in a well defined sense. The idea

behind cautious network formation is that in any environment without full communication and

commitment, players may often not be willing to add or delete links even if there exists a possibility

of becoming better off as an eventual result of such a move. There are instances where actually

following the desired path of network changes requires either good fortune, or full communication

and commitment. For example, after a first player deletes a link, a second player may have an

1Pairwise stable network, PWS (Jackson and Wolinsky, 1996), pairwise myopically stable set, PWMS (Herings
et al., 2009) and their refinements (Jackson and Van den Nouweland, 2005). Also, see Demuynck et al. (2019) for
a concept of myopic stable set that generalizes stability concepts in various applications of coalition formation.

2Von Neumann-Morgenstern pairwise farsightedly stable set, vN-MFS, largest pairwise consistent set, LPWC
(von Neumann and Morgenstern, 1944; Chwe, 1994; Herings et al., 2009), pairwise farsightedly stable set, PWFS
(Herings et al., 2009) and largest farsightedly consistent set, LFC (Page Jr et al., 2005). In addition, Dutta et al.
(2005) studies a network formation game where players’ preferences are defined by exponentially discounted infinite
payoff streams. But their approach to modeling network formation is very different from our cooperative pairwise
approach: it is closer in spirit to non-cooperative game theoretic models and imposes much greater structure on the
process of network formation. In fact, the paper focuses on the existence and properties of the process of network
formation, rather than the outcome, and does not allow for arbitrary and heterogeneous preferences.
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equal incentive to delete either one of two further links to reach a stable network. Deleting one

of these links results in a transition that makes the first player better off, but deleting the other

makes her worse off. Under most of the existing concepts of farsighted stability,3 which assume

optimistic beliefs on the part of the players, the current network is not stable because the first

player may become better off by deleting a link. However, if no credible commitment can be made

by the second player to delete the “correct” link, the first player may not be willing to take the

risk, making the current network stable. In this paper we take such possibility into account. We

assume that at least one of full communication or commitment is not possible and consider players

that, in the spirit of max-min strategies, will not add or delete a link if there is any possibility that

it will make them worse off in the longer run. Such “extreme pessimism” is also assumed by Chwe

(1994) and the follow-up coalition formation theories (Xue, 1998; Mauleon and Vannetelbosch,

2004; Page Jr et al., 2005) as the simplest way to capture cautious behaviour. Contributing to

these theories, our concept applies in the environments where players have arbitrary preferences

and identifies the set of networks that is never empty.

We model network formation as a cooperative game with bilateral, or pairwise link creation:

links require the consent of both players to form, but can be broken unilaterally.4 Note that such

limited cooperation between the two players involved in a link establishes an important distinction

between cooperative pairwise stability and coalitional stability. While in the pairwise approach,

only special 2-player “coalitions” can form, the cooperation in such coalitions is only partial, and

every player has a natural “unilateral” domain of action. This is where the structure of a network

is used to full effect, as it determines each player’s unilateral domain – the links that the player

has with the others.

By adding and deleting links, players can consecutively transform the network, and a chain of

networks that emerge at each step of this transformation produces a so-called path between the

initial and final network. We define two types of such paths, which then allows us to introduce our

new stability concept. First, we call a path between two networks improving if all players involved

in link changes on this path increase their payoffs relative to staying in the status quo network.

Namely, at each step of this path a link between players is added or deleted if the benefits that

these players derive from the remainder of the path are higher than those from staying in the

status quo network for the same number of steps. This definition includes as special cases the

myopic and farsighted improving paths of Jackson and Watts (2002a) and Herings et al. (2009).

They arise when players derive utility only from the first or only from the last network of the path,

respectively. In our more general definition, an improving path increases players’ payoffs/utility

associated with the path rather than the network.

3Pairwise farsightedly stable set (Herings et al., 2009), von Neumann-Morgenstern pairwise farsightedly stable
set (von Neumann and Morgenstern, 1944; Herings et al., 2009), level-K farsightedly stable set (Herings et al., 2014).

4Two alternative approaches are explicitly modeling a network formation game and using non-cooperative
equilibrium concepts, or considering deviating coalitions of more than two players. Examples of the former include
Myerson (1991), Bloch (1996), Bala and Goyal (2000), Jackson and Watts (2002b), Hojman and Szeidl (2008),
Granot and Hanany (2016). Examples of the latter, with considerations of farsightedness, include Aumann and
Myerson (1988), Chwe (1994), Xue (1998), Herings et al. (2004), Mauleon and Vannetelbosch (2004), Page Jr et al.
(2005), Page Jr and Wooders (2009), Ray and Vohra (2015), Bloch and van den Nouweland (2017), Ray and Vohra
(2019). See Ray and Vohra (2014) for a survey.
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Second, we call an improving path surely improving if players’ path payoffs increase “with

certainty”, that is, not only on this path but also on any credible improving path that can be

followed after the link change. The credibility of a path is determined with respect to a stable set

of networks G. Given G, an improving path is deemed credible only if it leads to a network in G.

This introduces the idea of a credible threat, or credible deviation, since on a surely improving

path link changes can be deterred only by those of the possible deviating paths that are improving

and lead to a stable set. We show that players’ cautiousness in the definition of a surely improving

path results in a useful property of “transitivity”, whereby a union of two surely improving paths

is surely improving. This underpins a number of results in our analysis.

Using the above definitions, we call a set of networks G cautious path stable if it is a minimal

set that satisfies external stability: (1) from any network outside the set, there exists a surely

improving path (relative to G) leading to some network in the set, and (2) no proper subset of G

satisfies this condition. We show that, in addition to external stability, a cautious path stable set

also satisfies internal stability: for any pair of networks in the set, there does not exist a surely

improving path between them. These properties have an important implication. Any network in

the cautious path stable set turns out to be “absorbing”, in the sense that once entered (by a

surely improving path), it cannot be left without coming back to exactly the same network.

The definition of the cautious path stable set is conceptually similar to the definition of the von

Neumann-Morgenstern pairwise farsightedly stable set (Herings et al., 2009; von Neumann and

Morgenstern, 1944), which also requires external and internal stability. However, in contrast to

the latter, our concept incorporates arbitrary preferences over paths and cautiousness in players’

behaviour. Also, in the special case when players care only about their end-of-path payoffs, our

definition turns out to be close to the definition of the pairwise farsightedly stable set (Herings

et al., 2009). Still, the key difference remains in the external stability condition as players in our

setting behave cautiously not only when they are inside but also outside the stable set.

We prove that for any specification of preferences regarding the process of network formation,

a cautious path stable set of networks always exists, and we provide a characterisation of this

set. By means of examples, including Criminal networks (Calvó-Armengol and Zenou, 2004) and

Co-author model (Jackson and Wolinsky, 1996), we demonstrate that the definition of players’

preferences is key for stability predictions, and when these preferences are even slightly different

from the typically assumed end-of-path or immediate-network payoff specifications, the resulting

stable set can be different. This fact is not surprising, but it emphasizes our key point – the impor-

tance of developing a theory for analyzing stability under a broader than usual set of preference

definitions. Moreover, we show that when players’ preferences are heterogeneous, – for example,

when some players care only about their immediate gains and losses, while others are concerned

about their long-run payoffs, – the predictions of cautious path stability can be asymmetric, in-

cluding some but not other of the structurally identical networks. Such asymmetry is not possible

with the existing concepts of stability, that do not allow for players’ heterogeneity.

The rest of the paper is organised as follows. In sections 2 and 3 we introduce some notation

and define the notions of path payoffs, improving and surely improving paths. In section 4 we
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define and characterise the concept of the cautious path stable set, and in section 5 we provide

the examples. In section 6 we examine the relationship between cautious path stability and other

farsighted concepts, assuming a special type of preferences where players care only about the

end-of-path payoffs. Finally, in section 7 we conclude. Proofs are provided in the Appendix.

2 Networks, paths and path payoffs

Consider a network g on n nodes. Nodes of the network are players and links indicate bilateral

relationships between them. The relationships are symmetric, or reciprocal, and the network is

therefore undirected. We say that ij ∈ g if players i and j are linked in the network g. In the

complete network all players are linked with each other, that is, ij ∈ g for any pair of players ij,

i 6= j. In the empty network, no pair of players is linked.

The set of all possible networks on n nodes is denoted by G. The network obtained by adding

a link ij to an existing network g is denoted by g + ij, while the network obtained by deleting a

link ij from an existing network g is denoted by g − ij.
A path from a network g to a network g′ is a finite sequence of networks P = (g1, .., gK),

where g1 = g, gK = g′ and for any 1 ≤ k ≤ K − 1 either (i) gk+1 = gk − ij for some ij, or (ii)

gk+1 = gk + ij for some ij, or (iii) gk+1 = gk. We will sometimes say that path P leads from g to

g′, and if g′ belongs to a set of networks G ⊆ G, then path P leads to G. The length of path P is

the number of networks in the sequence; it is denoted by |P |.
A special path that consists of a certain number of repetitions of the same network is a constant

path. A constant path that consists of m repetitions of network g is denoted by gm.

For any two paths P = (g1, .., gK) and P ′ = (g′1, .., g
′
K), where g′1 = gK ± ij for some ij, we

define a path P ⊕ P ′ as a path that is obtained by concatenation of paths P , P ′ in the specified

order: P ′ after P . That is, P ⊕ P ′ = (g1, .., gK , g
′
1, .., g

′
K).

Finally, for any path P = (g1, .., gK) and any 1 ≤ k ≤ K, we define a continuation of path

P from position k as a sequence of networks on path P from network gk onward. That is, a

continuation of path P from position k is path Pk = (gk, .., gK). In particular, a continuation of

path P from position 1 is path P itself.

The (infinite) set of all paths between any pair of networks in G is denoted by P.

For any player i, we define a path payoff as a function πi : P → R that specifies payoff

πi(P ) that player i obtains on any path P ∈ P. We do not impose any specific assumptions on

the functional form of πi. In fact, it may even be unrelated to payoffs that players derive from

actual networks on the path. However, in applications, it is often reasonable to consider a path

payoff as a weighted average of player’s payoffs in different networks of the path, where the exact

definition of the weights and of the weighted average is subject to a specific context. For example,

denoting by Yi(g) a payoff that player i obtains in network g, a path payoff can be defined as

πi(P ) = Yi(g1) or πi(P ) = Yi(gK), where g1 is the first and gK is the last network of path P .

The former definition is commonly assumed in settings where players are myopic and interested

only in their immediate payoffs, for example, in the definition of pairwise stability (Jackson and
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Wolinsky, 1996). The latter is suitable for the environments where players are farsighted and do

not care about gains and losses they may incur before the final network is reached (Herings et al.,

2009; Chwe, 1994). In intermediate cases, where player i is also interested in payoffs accrued

from intermediate steps, a path payoff of player i associated with path P can be defined using

exponential discounting, as πi(P ) = Yi(g1) + δYi(g2) + ... + δK−1

1−δ Yi(gK) for some δ > 0, or as

an “ε-weighted sum” πi(P ) = ε (Yi(g1) + ...+ Yi(gK−1)) + Yi(gK) for some ε > 0, or as a simple

arithmetic average πi(P ) = 1
K (Yi(g1) + ...+ Yi(gK)).

Example 1 Consider a set of all possible networks for the 3-player case depicted on Figure 1.

These are the empty network g0, complete network g7, three 1-link networks g1, g2, g3 and three

2-link networks g4, g5, g6. The payoff of a player in each network is represented by a number next

to the corresponding node.
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Figure 1: Examples 1 and 2.

Consider a path P = (g1, g5, g3) that leads from one 1-link network to another 1-link network

via a 2-link network. If Player 1 (Pl.1) is interested only in the final network of this path, then

her path payoff associated with P is π1(P ) = Y1(g3) = 6. If, on the other hand, Player 1

weighs payoffs in all networks of the path equally, then her path payoff is the arithmetic average,

π1(P ) = 1
3 (Y1(g1) + Y1(g5) + Y1(g3)) = 20. With exponential discounting, her path payoff is

π1(P ) = Y1(g1) + δY1(g5) + δ2

1−δY1(g3) = 30 + 24δ + 6 δ2

1−δ . And if Player 1 is mostly interested in

the final network but assigns a small positive weight ε to intermediate networks, then π1(P ) =

ε (Y1(g1) + Y1(g5))+Y1(g3) = 54ε+6. Clearly, this difference in path payoff specification can lead

to different predictions for network stability.

3 Improving and surely improving paths

We define two special types of paths: an improving and surely improving path. Both of these

notions will be used in the definition of our stability concept that we discuss in the next section.

3.1 Improving path

An improving path is a sequence of networks that can emerge when players add or severe links

based on the improvement that this sequence offers relative to staying in the current network.
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Each network in the sequence differs from the previous by one link. If a link is added, then the

two players involved must both prefer the path payoff associated with the continuation of the path

(starting after the link was added) to the payoff associated with staying in the current network

for the same number of steps. If a link is deleted, then at least one of the two players involved

in the link must strictly prefer the payoff associated with the continuation of the path.5 As usual

with pairwise deviations, the idea behind this definition is that adding a link requires a consent

of both involved players, while deleting a link can be done unilaterally.

Definition 1 A finite path P = (g1, .., gK) is an improving path if for any 1 ≤ k ≤ K − 1 either

(i) gk+1 = gk − ij for some ij such that πi(Pk+1) > πi(g
|Pk+1|
k ) or πj(Pk+1) > πj(g

|Pk+1|
k ), or

(ii) gk+1 = gk + ij for some ij such that πi(Pk+1) > πi(g
|Pk+1|
k ) and πj(Pk+1) ≥ πj(g

|Pk+1|
k ).

For a given network g, let us denote by P I(g) the set of all improving paths starting at network

g. One useful observation is that if P is an improving path from g1 to gK , then a continuation of

P from any step k, 1 < k ≤ K − 1, is an improving path from gk to gK . That is, if P ∈ P I(g1),
then Pk ∈ P I(gk) for any 1 < k ≤ K − 1.

Note that for the appropriately chosen specification of path payoffs, the definition of an im-

proving path is equivalent to the definition of a myopic improving path or farsighted improving

path introduced in Jackson and Watts (2002a) and Herings et al. (2009). Indeed, if players care

only about their immediate payoff, which they obtain straight after adding or deleting a link, then

πi(Pk+1) = Yi(gk+1) and πi(g
|Pk+1|
k ) = Yi(gk). In this case an improving path is, in fact, a myopic

improving path of Jackson and Watts (2002a). If, on the other hand, players care only about

their payoff in the final network, then πi(Pk+1) = Yi(gK) and πi(g
|Pk+1|
k ) = Yi(gk). In this case,

an improving path is a farsighted improving path of Herings et al. (2009).

Example 2 Consider again the set of all possible 3-player networks depicted on Figure 1. Suppose

that players’ path payoffs are a simple arithmetic average of their payoffs in all networks of the

path. Then it is easy to see that, since 30 is the absolute maximum of what players can gain in

any network, there are no improving paths starting at any of the 1-link networks. On the other

hand, from the empty network g0 there exists a one-step improving path to each of the 1-link

networks but there is no improving path leading anywhere else as there are no improving paths

starting at 1-link networks. From each of the 2-link networks there are improving paths to two

of the 1-link networks and nowhere else: from g4 there are improving paths to g1 and g2, from g5

– to g1 and g3, and from g6 – to g2 and g3. Finally, from the complete network g7 there exists

at least one improving path to any other network, apart from the empty network. For example,

P1 = (g7, g4, g1), P2 = (g7, g4, g2), P3 = (g7, g6, g3) are improving paths to each of the 1-link

networks, and P4 = (g7, g4), P5 = (g7, g5), P6 = (g7, g6) are improving paths to each of the 2-link

networks.
5Similarly, on the farsighted improving path defined by Herings et al. (2009) (and underlying the concepts of

PWFS, vN-MFS, LPWC) players compare the payoff in the final network of the path with the payoff in the current
network.
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Note that path P1 is improving, as its continuation from g7 strictly improves the average payoff

of Player 2 (22 < 1
2(24 + 30)) and the continuation from g4, which is just network g1, improves

the average payoff of Player 1 (18 < 30). The payoff of Player 3 declines. Therefore, on this path

Player 2 deletes the first link and Player 1 deletes the second. Note also that due to symmetry of

players’ payoffs, Player 1 in the 2-link network g4 is actually indifferent between deleting either

of her two links. If she deletes the other link instead, then from the perspective of Player 2, who

initiates the move on the path, it is not worth deleting the first link as it eventually reduces her

average payoff (12(24 + 6) < 22). This implies that if Player 1 cannot commit to deleting the link

with Player 3 and not with Player 2, then Player 2 may prefer to avoid the risk and not delete

any link in the first place. These considerations are taken into account in the definition of a surely

improving path that we consider next.

3.2 Surely improving path

Example 2 hints that when full-communication and/or commitment are not possible, cautious

players may abstain from deleting or adding links on an improving path. We incorporate this

idea of cautiousness in the definition of the improving path by assuming that players delete or

add a link only if their payoff increases not just on this but on any credible improving path that

follows after that. An improving path is called credible if it leads to a network in set G, where

G is regarded as a stable or absorbing set. The definition of a stable set is provided in the next

section. For now, it just introduces the idea of a credible threat, in the sense that players’ moves

on a surely improving path can be deterred only by those of the subsequent improving paths that

lead to a stable set.

To be more precise, we call an improving path surely improving relative to set G if (i) whenever

a link is deleted, at least one of the two players involved in the link prefers any improving path

that starts after the deviation and leads to a network in G to staying in the current network

for the same number of steps, and (ii) whenever a link is added, both involved players prefer

any improving path that starts after the deviation and leads to a network in G to staying in

the current network, with at least one of the two preferences being strict. That is, for any two

consecutive networks gk and gk+1 on a surely improving path it must be that a player or a pair of

players involved in this step prefer every improving path P̃ ∈ P I(gk+1) leading to G to staying in

gk for the respective number of steps, |P̃ |. We note that in general the last network of the path,

gK , does not have to belong to G. This ensures that when a certain improving path is not surely

improving, it has to do with the existence of a credible threat for some of the active players on

the path rather than with the fact that gK /∈ G.6

Definition 2 A finite path P = (g1, .., gK) is surely improving relative to G if it is an improving

path and for any 1 ≤ k ≤ K − 1 either

6From the discussion at the beginning of section 3.4 it follows that even if the last network of a surely improving
path does not belong to G, players that make changes on the path do, in fact, take into account all possible improving
continuations of this path that lead to G.
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(i) gk+1 = gk − ij for some ij such that πi(P̃ ) > πi(g
|P̃ |
k ) for any P̃ ∈ P I(gk+1) leading to G or

πj(P̃ ) > πj(g
|P̃ |
k ) for any P̃ ∈ P I(gk+1) leading to G, or

(ii) gk+1 = gk + ij for some ij such that πi(P̃ ) ≥ πi(g
|P̃ |
k ) and πj(P̃ ) ≥ πj(g

|P̃ |
k ), with at least

one inequality being strict, for any P̃ ∈ P I(gk+1) leading to G.

For a given network g, we denote by PSI(g,G) the set of all paths starting at network g

that are surely improving relative to G. By definition, PSI(g,G) ⊆ P I(g) for any G ⊆ G. Note

that one case where players’ cautiousness does not play a role and surely improving paths are

identical to “simple” improving paths is when players care only about their immediate payoffs.

More generally, when not all but just some players are myopic in this sense, a step on a path that

involves a change made by the myopic player is improving for this player if and only if it is surely

improving.

3.3 Discussion of surely improving paths

The definition of a surely improving path assumes players’ cautiousness in two respects. First,

just as with max-min preferences, a decision of a player to add or delete a link is discouraged by

the existence of at least one credible improving path starting after the player’s move on which

this player’s payoff is worse than the payoff associated with staying in the status quo network.

Second, among all paths that might be followed after the link is added or deleted, players give

consideration to all (credible) improving paths, and not only to the surely improving ones. The

latter is reasonable when players, for example, do not know how cautious or sophisticated the

others are, and being cautious themselves, take into account all possibilities.

Note that such “extreme cautiousness” in players’ behaviour makes the existence of surely

improving paths between networks harder than under alternative, less cautious approaches, where

players consider not all but only surely improving paths or take into account the weighted average

of possible improving paths. As a result, the set of networks from which a stable set can be

reached by a surely improving path is smaller, and this eventually implies the stability of a larger

set of networks. Thus, networks which are not stable according to our definition cannot be stable

according to these other, less cautious approaches. Put differently, stability concept that we

propose eliminates with confidence: if a network belongs to our stable set, the interpretation

is not that this network will be stable but that it is possible for it to be stable. On the other

hand, if a network does not belong to any of the stable sets according to our definition, then the

interpretation is that this network cannot possibly be stable, also with less cautious approaches.

The extreme cautiousness also makes the notion of a surely improving path and, later on, of a

stable set simpler, which turns out to be useful in applications.

One relevant concern that may arise about Definition 2 is that it does not specify what players

expect to happen after the last steps of the compared paths are reached. In view of this concern,

one way to motivate Definition 2 is to consider a class of preferences over paths for which one

can assume, without loss of generality, that whatever the path, its finite network is going to last

forever. In particular, for such class of preferences, an implicit assumption is that a player who
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considers a move within a path has a benchmark of staying in the status quo network indefinitely.7

This class of preferences is rather broad and can be formally defined as follows. We say that the

path payoff of player i is consistent with staying in the last network indefinitely, if for any path

P = (g1, .., gK), player i is indifferent between P and the path P ⊕gK = (g1, .., gK , gK). Examples

of such path payoffs include

� the sum of exponentially discounted network payoffs

πi(P ) = Yi(g1) + δYi(g2) + ...+
δK−1

1− δ
Yi(gK)

� path payoffs where players derive utility only from the first network of any path (as in myopic

stability approaches) or only from the last network (as in “traditional” farsighted stability

approaches);

� path payoffs where for any path P of length K player i derives utility only from the first

2 ≤ k ≤ K networks of the path, of the following form:

(a) πi(P ) = Yi(g1) · ... · Yi(gk) for any P such that |P | ≥ k
πi(P ) = Yi(g1) · ... · (Yi(gk−1))2 for any P = (g1, .., gk−1) (such that |P | = k − 1)

πi(P ) = Yi(g1) · ... · (Yi(gk−2))3 for any P = (g1, .., gk−2) (such that |P | = k − 2)
...

πi(P ) = (Yi(g1))
k for any P = (g1) (such that |P | = 1)

(b) πi(P ) = Yi(g1) + ...+ Yi(gk) for any P such that |P | ≥ k
πi(P ) = Yi(g1) + ...+ 2Yi(gk−1) for any P = (g1, .., gk−1)

πi(P ) = Yi(g1) + ...+ 3Yi(gk−2) for any P = (g1, .., gk−2)
...

πi(P ) = kYi(g1) for any P = (g1)

(c) πi(P ) = 1
k (Yi(g1) + ...+ Yi(gk)) for any P such that |P | ≥ k

πi(P ) = 1
k (Yi(g1) + ...+ Yi(gk−2)) + 2

kYi(gk−1) for any P = (g1, .., gk−1)

πi(P ) = 1
k (Yi(g1) + ...+ Yi(gk−3)) + 3

kYi(gk−2) for any P = (g1, .., gk−2)
...

πi(P ) = k
kYi(g1) = Yi(g1) for any P = (g1)

(d) πi(P ) = αYi(g1) + (1− α)Yi(g2) for any P such that |P | ≥ 2

πi(P ) = Yi(g1) for any P = (g1)

All examples presented in the paper, including those in section 5, employ such type of preferences.

An exception is the arithmetic average of network payoffs in the network formation game of

Figure 1. But in this game, it is easy to show that alternative path payoffs that are consistent

with staying in the last network indefinitely, would produce the same stability predictions (see

Game 1 in section 5).

7This brings our approach closer to earlier definitions of farsighted improving paths (or farsighted objection
paths) underlying the concepts of PWFS, vN-MFS, LPWC: by comparing the current and terminal networks of a
path, they implicitly assume that the status quo network remains in place forever if a player decides to stay, and
the final network of the path is going to last indefinitely if everyone along the path moves.
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Finally, we should also discuss the assumption that players on a surely improving path essen-

tially do not account for deviations by others in case they do not change the status quo. Indeed,

having the status quo network gk as a sole benchmark for payoff comparisons is not ideal because

in general, players should consider the possibility of alternative paths that could be followed if they

stay inactive. A recent paper by Karos and Kasper (2018) raises exactly this issue and proposes

an interesting way to address it (in a general cooperative setting). It uses extended expectation

functions to describe coalitions’ expectations of what transitions will happen at each state and

what coalitions will implement them. The transitions determine paths between states, the termi-

nal points of which are stable outcomes. Differently from earlier models that adopt expectation

functions (Jordan, 2006; Dutta and Vohra, 2017), the characteristic new feature of the proposed

extension is that it incorporates “counterfactuals” reflecting what would happen if a coalition did

not implement a change of the status quo. For every state, the extended expectation function

comprises an ordered list of coalitions and their actions, and each coalition knows that if it doesn’t

move, the next one will. This new feature is reflected in one of the three axioms that are imposed

on a rational expectation function – the axiom of external stability. It postulates that instead of

comparing the outcome of a deviation with the status quo, each coalition compares it with the

outcome of a deviation by the next coalition (that is allowed to move if this coalition doesn’t).

A key difference of the modeling approach of Karos and Kasper (2018) from the one in this

paper is that their players (and coalitions) have much more certainty about what would happen

at each state on a path: the expectation function tells them what coalitions are allowed to move

at each state, and moreover, there is a prescribed (and known to everyone) order in which these

coalitions can move. In particular, for every state there is one coalition that has a priority to make

a move first, and once it has an incentive to make that move (as is the case on a path determined

by a rational expectation function), the previous step coalition does not need to “worry” about

other potential deviations because other coalitions have no chance to intervene. Similarly, due

to the imposed order of moves, the coalition that has a priority at a given state only needs to

compare its payoff from making a move with the payoff it would obtain if the second-in-line

coalition moved instead. If we were to bring this idea into our setting, but assumed, as we do,

that (a) there is no specific prescription of who and in which order will be allowed to make a

change at each network, and (b) players are cautious, then in parts (i) and (ii) of Definition 2 we

should require that players compare the worst path payoff from making the step with the worst

path payoff from not making it: min
P̃∈P I(gk+1)

πi(P̃ ) > minP∈P I(gk) πi(P ). One difficulty with

this approach is that comparing payoffs associated with paths of different length does not appear

sensible with most payoff specifications. One would then need to restrict attention to special

types of preferences, such as preferences consistent with staying in the last network indefinitely.

By following this approach, many of our results would still hold. However, the tractability of the

proposed stability concept (let alone the set of preference definitions) would decline considerably.

Furthermore, comparing our concept with the existing concepts of farsighted stability in networks

would become much more difficult, since, as explained earlier (see footnote 5), these concepts

feature analogous to ours way of defining an improving path.
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Another paper that allows for deviations from the status quo in case a given coalition does

not move is Ray and Vohra (2019). In fact, this paper’s approach takes into account possible

interventions into the chain of coalitional moves by other coalitions at any point along the entire

farsighted chain. The authors introduce the notion of an absorbing, coalitionally acceptable, and

absolutely maximal process (that embeds an absolutely maximal farsighted stable set) that is

immune to all deviations. Absolute maximality of a process is a very strong requirement: since no

coalition should be able to gain from deviating following any history, it requires considering any

possible deviations from ongoing chains, deviations from deviations and so on. As the authors

themselves admit, the direct construction of such a process “is not an easy task” (p. 1768), and

this is the case even in a setting where players derive utility only from the final outcome of a

deviation/chain. Applying this definition to a situation where players derive utility from paths

rather than individual states adds another layer of complexity and makes this definition very

difficult to handle.8

In an earlier paper, Konishi and Ray (2003) assume, similarly, that at any moment in the

process of dynamic coalition formation, including the status quo, each coalition expects that other

coalitions may move in the future – from the current state if it stays in it and from the other state if

it moves.9 But the approach in this paper is completely different from ours. In the manner of non-

cooperative dynamic games, it builds an explicit dynamic model where a) the process of coalition

formation is defined by Markov transitions between states that are induced by coalitions who stand

to benefit from them, and b) players evaluate future (probabilistic) paths using common beliefs

(according to the transition probabilities) and calculate expected payoffs using these beliefs. In

this setting the paper examines the existence and properties of an equilibrium process of coalition

formation.

3.4 Properties of improving and surely improving paths

A notable property of surely improving paths is that any player who adds or deletes a link on a

surely improving path, by considering all credible immediate deviations, in fact, also takes into

account all credible deviations at any later step. In particular, the player or players who initiate

the move on a surely improving path take into account all credible improving paths that start at

the last network of the path, i.e., all possible improving continuations (leading to G) of the given

surely improving path. This is so because any such future credible improving path is actually a

part of a credible improving path starting immediately after the player’s move. To see this, suppose

that path P = (g1, .., gK) is surely improving relative to G. Consider that for any 1 < k ≤ K and

any credible improving path P̃ starting at gk, a path (gk−1)⊕ P̃ is also a credible improving path

but starting at gk−1, i.e., (gk−1)⊕ P̃ ∈ P I(gk−1). Then by induction, (gk−2, gk−1)⊕ P̃ ∈ P I(gk−2)
and is credible and so on. So, in general, path (gl, .., gk−1) ⊕ P̃ ∈ P I(gl) and is credible for any

1 ≤ l < k − 1. This means that players who delete or add a link on the transition from gl−1 to

8Given the difficulty of constructing an absolutely maximal process in their environment, Ray and Vohra (2019)
formulate two sufficient conditions for a farsighted set to be absolutely maximal. It is an interesting question for
future research to evaluate whether and how these conditions can be adjusted for the setting with path payoffs.

9Dutta et al. (2005), that is briefly discussed in the introduction, is an application of this paper to networks.
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gl of a surely improving path P , are guaranteed to become better off on any credible improving

path that starts not just at gl but also at any future network of the path.

By the same logic, even though two different surely improving paths may pass through the same

network (i.e., two different surely improving continuations are possible from the same state), if

both paths lead to G, then players who make moves at all previous steps of these surely improving

paths take both possible continuations into account. In this sense, players cannot be mislead

and will make “correct” choices on a surely improving path no matter which of the future surely

improving continuations will be followed.10

Just as any continuation of an improving path is also an improving path, any continuation of

a surely improving path is surely improving. This follows directly from the definition. Moreover,

if a path is surely improving relative to G, then it is also surely improving relative to any subset

of G. That is, PSI(g,G) ⊆ PSI(g,G′) for any G′ ⊂ G.

A slightly less straightforward pair of properties are stated by Lemma 1 and Lemma 2. The

first property establishes the “transitivity” of surely improving paths, in the sense that a union

of two surely improving paths, where the end of the first path is the beginning of the second, is a

surely improving path. More formally, if the first path is surely improving relative to set G and

the second is surely improving relative to set G′ (equal or not to G) but leads to a network in G,

then the union of the two paths is surely improving relative to the intersection of G and G′ (or

any smaller set). In a similar way, the second property establishes that a union of two improving

paths, where only the first is surely improving, is an improving path.11

Lemma 1 Suppose that P ∈ PSI(g,G) and P leads to g′, and P ′ ∈ PSI(g′, G′) and P ′ leads to

G. Then P ′′ = P ⊕ P ′2 ∈ PSI(g,G′′) for any G′′ ⊆ G ∩G′.

Lemma 2 If P ∈ PSI(g,G) and P leads to g′, and P ′ ∈ P I(g′) and P ′ leads to G, then P ′′ =

P ⊕ P ′2 ∈ P I(g).

Lemmas 1 and 2 follow directly from the definitions of improving and surely improving paths

and from the assumption of cautiousness in network formation. They turn out to be key for the

subsequent analysis, and in particular, determine the property of internal stability of our stable

set of networks (see section 4.2).

To demonstrate the notion of a surely improving path, consider again Example 2. The one-

step improving paths from the empty network and from each of the 2-link networks to a 1-link

network are at the same time surely improving relative to any set, as no threat of further adverse

10While this does not mean that our concept addresses the issue of “inconsistent expectations” recently raised
by Ray and Vohra (2014) and Dutta and Vohra (2017), – players may not share the same expectation about future
play in our setting, – we claim that this is not critical in a model where there is no specific protocol prescribing
which player or pair of players will actually get to make a move in each network, and no possibility for players to
fully communicate and commit to that exact player/pair of players making a move. In such case, if multiple players
can make an improving change at the same network, and everyone is cautious/pessimistic, then it is reasonable that
any player making a change at an earlier step expects that the future active player will be the one that delivers her
worst possible outcome. This would give rise to different expectations.

11The proof of Lemma 2 is included in the proof of Lemma 1 and is, therefore, omitted. Indeed, in order to show
that P ′′ is a surely improving path in Lemma 1, one needs to verify, in particular, that it is an improving path, and
this requires only that the first of the two improving paths is surely improving.
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changes exists. On the other hand, any improving path that starts at the complete network is

not surely improving relative to G as soon as G contains all 1-link networks. The reason for

this is explained in Example 2: any player deleting a link at the first step of a path from the

complete network cannot be sure that a credible improving path which will be followed after that

will make her better off. In section 5 we will show that the existence of an improving but not

surely improving path from the complete network to a 1-link network makes the complete network

unstable according to many existing farsighted stability concepts (PWFS, vN-MFS and Level-K)

but stable according to our concept.

4 Cautious path stable set of networks

We now introduce a concept of cautious path stability, or briefly, CPS. We prove the existence of

this set, describe its properties, including internal stability and property to be an “absorbing” set

of networks, and state conditions for uniqueness.

4.1 Definition and difference from other concepts

We define the cautious path stable set G as a minimal set which satisfies external stability. That

is, for any network outside the set there exists a surely improving path relative to G leading to

some network in the set, and no proper subset of G satisfies this condition.

Definition 3 A set of networks G ∈ G is cautious path stable (CPS) if (1) ∀ g′ ∈ G \ G ∃P ∈
PSI(g′, G) such that P leads to G, and (2) ∀ G′ ( G it holds that G′ violates (1).

In the next subsection we will show that a cautious path stable set of networks always exists, and

condition (1) of external stability guarantees that it is not empty. Condition (1) also means that

networks within a stable set are robust to perturbations leading to some network outside the set.

Notice that external stability is trivially satisfied by the whole network space G. This motivates

the requirement of minimality in condition (2).

The key features underlying the concept of the cautious path stable set – a generic definition

of path payoffs and players’ cautiousness – distinguish this concept from many other notions of

farsighted pairwise stability. In particular, a generic definition of payoffs is novel relative to all

pairwise stability concepts that we are aware off, while cautiousness is new relative to the concepts

of von Neumann-Morgenstern pairwise farsightedly stable set (vN-MFS), pairwise farsightedly

stable set (PWFS) and level-K farsightedly stable set introduced in Herings et al. (2009) and

Herings et al. (2014).12

In particular, while just as our concept, or rather its equivalent definition in Proposition 2,

vN-MFS imposes internal and external stability and requires minimality with respect to these

two conditions, it employs the notion of improving paths (instead of surely improving) and as-

sumes that preferences are determined by payoffs in final networks of the paths. Likewise, PWFS

considers preferences that are determined by final network payoffs, and the similarity with the

12The definitions of these concepts are provided in Supplementary Appendix B and Table 2.
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cautious path stable set becomes apparent only when the same preferences are imposed in our

setting. In section 6 we show that in this special case, our concept satisfies the same three con-

ditions – deterrence of external deviations, external stability and minimality – that characterise

the PWFS set. Still, even in this case the important difference remains: the external stability

in our definition requires the existence of not just an improving but surely improving path from

any network outside G to a network in G. This requirement “adds more cautiousness” to players’

behaviour relative to what is assumed in Herings et al. (2009) as players in our setting consider

the consequences of adding and deleting a link not only when they are in a network inside but

also outside G.

In a simple case when set G consists of a single network, the stability of G is fully determined

by condition (1) of the definition as condition (2) of minimality is trivially satisfied.

Remark 1 The set {g} is cautious path stable if and only if ∀ g′ 6= g ∃P ∈ PSI(g′, {g}) such that

P leads to g.

Furthermore, the minimality of a cautious path stable set implies that if {g} is a cautious path

stable set, then it does not belong to any other stable set. But there may exist other cautious path

stable sets that do not contain g. More generally, a possibility that the same network belongs to

one stable set and lies outside some other is common for set-valued stability concepts. This has to

do with the fact that whether a network is stable or not is not determined in isolation but hinges

upon stability of all networks in the stable set.

4.2 Existence and characterisation of CPS sets

The first result establishes the existence of a cautious path stable set.

Proposition 1 A cautious path stable set of networks exists.

Proof. The proof of Proposition 1 is straightforward. Notice that the whole network space G
trivially satisfies condition (1) of the definition of a cautious path stable set. If it is also the

minimal set that satisfies this condition, then G is cautious path stable. Otherwise, there must

exist a proper subset of G, G′ ( G, that satisfies condition (1). Then by analogy either G′ is a

minimal set that satisfies (1), so that G′ is cautious path stable, or there exists a proper subset

of G′ that satisfies this condition, etc. As the cardinality of set G is finite, the sequence of thus

constructed subsets of G satisfying (1) is finite, and the last, “smallest” subset in this sequence is

minimal, so that both conditions (1) and (2) hold.

The next statement proposes an alternative definition of a cautious path stable set in terms

of both external and internal stability conditions. It involves two claims. First, a cautious path

stable set satisfies internal stability: for any pair of networks in the set, there does not exist a

surely improving path between them. Second, the converse is also true, in the sense that a set of

networks which satisfies external and internal stability and which is minimal with respect to both

conditions, is also minimal with respect to the condition of external stability alone. Therefore,
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such set is cautious path stable.13

Proposition 2 The set G is cautious path stable if and only if it satisfies three conditions: (1)

∀ g′ ∈ G \G ∃P ∈ PSI(g′, G) such that P leads to G; (2) ∀ g ∈ G 6 ∃P ∈ PSI(g,G) such that P

leads to G \ {g}; (3) ∀G′ ( G it holds that G′ violates at least one of conditions (1), (2).

The proof of Proposition 2 is provided in the Appendix. The first claim, that a cautious path

stable set G satisfies internal stability, follows from the observation that if it did not, then there

would exist a network g ∈ G from which a surely improving path leads to some other network

in G. By removing this network g from the set, we would obtain a smaller set G′ that satisfies

external stability: from any network outside G′ there exists a surely improving path relative to G′

leading to G′ either “directly” or via network g (by Lemma 1). But this is ruled out by minimality

of the cautious path stable set G. The converse is established by employing a similar idea. If

set G that satisfies conditions (1) – (3) was not minimal with respect to condition (1) of external

stability alone, then one could prove the existence of a proper subset of G which satisfies not only

external but also internal stability, and thus, contradicts the minimality condition (3).

Internal stability of a cautious path stable set turns out to be important for establishing its

other notable property. Proposition 3 maintains that a cautious path stable set can be thought

of as a set of stationary or “absorbing” networks: once a network in a cautious path stable set G

is reached by a surely improving path from outside the set, it cannot be left without coming back

to exactly the same network. That is, for any network g ∈ G, it holds that either there are no

surely improving paths starting at g, or any surely improving path eventually leads back to g.

Proposition 3 If G is a cautious path stable set, then for every g ∈ G, it holds that either

PSI(g,G) is an empty set, or any P ∈ PSI(g,G) is such that it leads to g or forms a subpath of

a longer surely improving path P̄ = P ⊕ P ′ ∈ PSI(g,G) that leads to g.

Proof. Suppose that g ∈ G and there is a surely improving path relative to G starting at network

g. By internal stability of G established in Proposition 2, this path cannot lead to another network

in G, and if it leads to some network g′ outside G, then it is certain to have a continuation back

to set G – according to the external stability. This continuation must lead back to exactly the

same network g, as if it leads to any other network, then by transitivity of surely improving paths

(see Lemma 1) we would obtain a surely improving path from g to another network in G, which

is a contradiction to G’s internal stability.14

Recall that the proof of existence in Proposition 1 constructs one cautious path stable set.

But the outcome of the proposed procedure, in general, depends on the exact choice of proper

subsets satisfying external stability at each step in the decreasing sequence. Therefore, a cautious

13Note that while an additional condition of internal stability works in the direction of reducing the set of
networks in G, a milder condition that it is a minimal set for which both conditions are satisfied (and not just
external stability), tends to increase this set.

14Note that network g′ outside G may itself be a part of some other cautious path stable set. However, by simply
adding it to set G or replacing g with g′, we won’t (or won’t necessarily) obtain a stable set as some of its key
properties would be lost: the former would violate minimality of the cautious path stable set, and both the former
and the latter may violate internal and external stability.
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path stable set might not be unique. The next proposition provides two simple conditions that

are sufficient for uniqueness. It states that if there are no improving paths starting at networks

in set G or any such path leads back to the initial network, and if the external stability condition

holds, then G is the unique cautious path stable set.

Proposition 4 If for every g ∈ G, P I(g) = ∅ or any P ∈ P I(g) is such that P leads to g, and

for every g′ ∈ G \G, ∃P ∈ PSI(g′, G) such that P leads to G, then G is the unique cautious path

stable set.

Proof. First, it is easy to see that set G is cautious path stable as it satisfies condition (1)

and no proper subset of G satisfies this condition. Second, since no improving paths lead from a

network in G to any other network, G must be a subset of any cautious path stable set. Then by

minimality, G is the unique cautious path stable set.

Proposition 4 implies, in particular, that if there exists a Pareto dominant network, where

each player’s payoff is strictly larger than in any other network, and if players’ path payoffs

assign sufficiently high weight to a final network, then this Pareto dominant network is the unique

cautious path stable set. In section 5, we will also show by means of examples that Proposition 4

cannot be extended to an “if and only if” statement.

Our next proposition provides another couple of simple conditions that describe a cautious

path stable set. These conditions are less restrictive than those required for uniqueness, and the

proof follows immediately from the definition of the cautious path stable set.

Proposition 5 If for every g ∈ G, any P ∈ P I(g) is such that P leads to g or to G \G, and for

every g′ ∈ G \G, ∃P ∈ PSI(g′, G) such that P leads to G, then G is a cautious path stable set.

5 Examples of CPS sets

In this section we derive predictions of cautious path stability in four network formation games,

using four different specifications of players’ preferences. We also compare these predictions with

those of other concepts of farsighted and myopic pairwise stability. Clearly, the predictions depend

crucially on the specification of players’ preferences, which strengthens the key motivation for this

paper: in the environments where players may care not just about their immediate or final payoffs

and where preferences of different players can be different, a new theory is required to make

predictions about stable outcomes.

Game 1 corresponds to the network formation game of Examples 1 and 2. We call it a game

with equal value networks as the sum of players’ payoffs associated with each network is the

same. In Game 2 the main idea is that players have heterogeneous preferences: two players are

farsighted and care only about the last network of each path and one player is myopic and derives

utility only from the first network. Owing to this heterogeneity, the CPS prediction turns out to

be asymmetric: only one specific 1-link network is stable (together with the complete network).

Finally, Games 3 and 4 are the standard co-author model of Jackson and Wolinsky (1996) and
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the criminal networks model of Calvó-Armengol and Zenou (2004), respectively. The results are

summarised by Table 1 at the end of the section.15

Game 1: Equal value networks Consider a network formation game, where players’ payoffs

in every network are given by Figure 1. As in Examples 1 and 2, suppose that players’ path payoffs

are the arithmetic average of their payoffs in all networks of a path.16 In this case the unique

cautious path stable set of networks is G = {g1, g2, g3, g7}. Indeed, from the discussion in Example

1 it follows that all 1-link networks must belong to any stable set as there are no improving paths

starting at these networks. And as soon as all 1-link networks belong to a stable set, the complete

network must be in each stable set, too, since no path starting at the complete network is surely

improving relative to the set containing all 1-link networks. On the other hand, from the empty

network and 2-link networks there exists a surely improving path relative to G to a 1-link network.

Then by Definition 3, G = {g1, g2, g3, g7} is a cautious path stable set and this set is unique.

Other farsighted and myopic stability concepts, namely, PWS, PWMS, PWFS, vN-MFS,

LPWC, LFC and Level-K (for all K ≥ 1), also identify each of the 1-link networks as stable

but none of them, apart from LPWC and LFC, identifies the complete network as stable. The

predictions of LPWC, instead, turn out to be very broad: all but the empty network belong to

the LPWC set, so that even the 2-link networks are identified as stable.17 The reason why the

complete network is not stable according to most farsighted stability concepts has to do with the

fact that there exists a farsighted improving path (or a combination of farsighted improving paths

of length at most K), as defined in Herings et al. (2009) and Herings et al. (2014), from the com-

plete network to each of the 1-link networks. In our setting, improving paths from the complete

to 1-link networks also exist but none of them is surely improving. As for the myopic stability

concepts, PWS and PWMS do not identify the complete network as stable because deleting a link

by either player increases her immediate payoff.

Game 2: Heterogeneous preferences Consider a network formation game where network

payoffs are such that adding a link in any network immediately improves the involved players’

payoffs but worsens the payoff of the remaining, third player. Such structure of payoffs may arise in

the context of countries signing trade agreements or military/political alliances, or firms entering

into R&D collaborations with each other. For example, in trade, a new bilateral agreement is often

beneficial to both involved countries but has a negative effect on their existing trade partners,

which is known as the concession diversion effect (Ethier, 1998; Goyal and Joshi, 2006). Similarly

with R&D collaborations, while a new collaboration between two firms boosts their productivity

and increases profits, the third firm on the market may lose as its rivals become more competitive.

15In all four games network payoff allocation across players is anonymous, that is, payoffs depend only on players’
positions in the network, and not on their label.

16It is easy to show that the same stability predictions result from path payoffs that are consistent with staying
in the last network indefinitely: the sum of exponentially discounted network payoffs when 1

9
≤ δ < 1 (so that

22
1−δ ≥ 24 + 6δ

1−δ ), or payoffs as in examples (a)-(d) of section 3.3, where only k ≥ 2 first networks matter (and
0 < α ≤ 8/9 in (d) so that 22 ≥ 24α+ 6(1 − α)).

17The stability of 2-link networks according to the LPWC set but not according to our concept bears on the
fact that payoffs in intermediate networks on a path matter for players in our setting but not in the definition of
the LPWC set. A more detailed explanation is provided in the Supplementary Appendix where the concept of the
LPWC set is defined.
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Figure 2 provides an example of a network formation game with such payoff structure.
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Figure 2: Game 2.

Suppose that in this game players have different preferences over the process of network for-

mation. Player 1 (Pl.1(M)) is myopic, in that she cares only about her payoff in the first network

of any path. By contrast, Players 2 and 3 (Pl.2(F ), Pl.3(F )) are farsighted and care only about

the last network of a path. Thus, while Player 1 has incentives to add or delete a link whenever

this results in immediate improvement, Players 2 and 3 are only willing to do so if their payoff in

the final network improves. It turns out that such contrasting approaches to network formation

in this game produce an “asymmetric” cautious path stable set G = {g3, g7}. Here only one of

the three 1-link networks is stable, and namely, the network in which the farsighted players are

linked. Note that if the preferences of all players were the same, such asymmetry in stability

outcomes would not arise. For example, it is easy to see that if all players were myopic, the

unique cautious path stable set would be {g7}, the complete network. Indeed, no improving paths

start at g7 but from any other network there is an improving path to g7. Similarly, if all players

were farsighted and derived utility only from the last network, the unique cautious path stable set

would be {g1, g2, g3, g7}, including all 1-link networks and the complete network. The argument

is provided in the Supplementary Appendix.

The inability to generate asymmetric predictions is also true for other concepts of pairwise

myopic and farsighted network stability: all of them assume identical preferences across players

and lead to symmetric outcomes.18 For example, in this particular game, {g7} is the unique

prediction of PWS, PWMS and Level-K, for all K ≥ 1; {g1, g2, g3, g7} is the prediction of vN-

MFS, LPWC, LFC and PWFS; and PWFS identifies, in addition, a number of other sets as

stable, that include each of the 2-link networks in symmetric combinations. So, while myopic and

Level-K concepts do not capture a possibility for a stable 1-link relationship at all (as immediate

benefits from a deviation exist), farsighted concepts predict stability of all 1-link networks. The

latter, however, is not very reasonable when one of the linked players (with payoff 10) is myopic.

Indeed, the myopic player in such situation can immediately benefit from adding a link with an

isolated player, and that isolated player (with the worst possible payoff) would prefer to have a

18A recent paper by Herings et al. (2017) allows for the interaction between myopic and farsighted players in
one-to-one matching problems.
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link, too. Thus, a deviation from such 1-link networks is very likely. The only 1-link network

where such deviation would not occur is identified as stable by our concept. In this network,

the linked players are farsighted and thus, cannot be tempted by a possibility of an immediate

but temporary gain (from adding the second link), knowing that a future development from that

network is likely to reduce their status quo payoffs. One possible interpretation of this result is

that even in the presence of myopic players and immediate gains from deviations, the myopically

unstable but beneficial bilateral relationship can be sustained. It only requires that partners in

the relationship choose each other “carefully”, by the principle of similar preference for the long

term payoffs. As simple and intuitive as this result may seem, our farsighted concept is the only

one that allows generating it precisely.

The proof that G = {g3, g7} is indeed the unique cautious path stable set is provided in the

Supplementary Appendix. It follows from three observations. First, the complete network g7

belongs to any cautious path stable set because there are no even simple improving paths that

start at this network. Second, since g7 is included in any cautious path stable set, g3 must belong

to any cautious path stable set, too, as no improving paths from g3 are surely improving relative

to the set containing g7. Third, for any other network in G \G there exists a path that is surely

improving relative to G and leads to one of the networks in G.

Game 3: Co-author model The underlying story for the co-author model of Jackson and

Wolinsky (1996) is that each player is a researcher, and the amount of time she spends on a given

project is inversely related to the number of projects, ni, that she is involved in. A link between

two players indicates that they are working on the project together. Formally, the payoff of Player

i in a network of co-authorships g is given by

Yi(g) =
∑
j:ij∈g

(
1

ni
+

1

nj
+

1

ninj

)
for any ni > 0, and Yi(g) = 0 for ni = 0. In the 3-player case, this model generates the set of

network payoffs depicted in Figure 3.
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Figure 3: Game 3.

Suppose that in this network formation game, path payoffs of all players are defined by ex-

ponential discounting with factor 0 < δ < 1. We find that whenever the discount factor is high
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enough (δ > 2
3), the unique cautious path stable set is G = {g1, g2, g3, g7}, otherwise the unique

cautious path stable set is G = {g7}. The predictions of other stability concepts are either the

same as with our concept at δ > 2
3 (vN-MFS, LPWC and LFC), or the same as with our concept at

δ ≤ 2
3 (PWS, PWMS and Level-K, for all K ≥ 1), or indicate, in addition, the potential stability

of 2-link networks (PWFS). The fact that 2-link networks are identified as stable in some of the

PWFS sets is a result of certain incautiousness or optimism assumed on the part of the players.

For example, the set G′ = {g1, g6, g7} is PWFS because there exists a farsighted improving path

from 1-link networks g2 and g3 to g6 (but not to other networks in G′). However, the fact that

Player 3 in g2 and g3 is willing to add a link on this path assumes that she disregards the pos-

sibility that in g6, the unconnected players have an incentive to add the last missing link, which

would decrease her payoff. Using our definition and exponential discounting for path payoffs, this

particular farsighted improving path is improving but not surely improving as long as players

assign sufficiently high weight to the final network (δ > 2
3).

To derive predictions of our concept for this game, we first observe that irrespective of the

discount factor, the complete network, g7, must belong to any cautious path stable set as there

are no improving paths from g7 to any other network. Next, we consider two cases, where δ > 2
3

and δ ≤ 2
3 , in turn. If δ > 2

3 , we show that since g7 belongs to each stable set, all 1-link networks

must belong to each stable set, too, as no path starting at a 1-link network is surely improving

relative to a set containing g7. Then all the remaining networks are unstable, since there exists a

surely improving path leading from these networks either to the complete or to a 1-link network.

If δ ≤ 2
3 , then it is easy to show that g7 is the only network in the cautious path stable set as

from any other network there exists a surely improving path to g7. The Supplementary Appendix

provides details of the argument.

Game 4: Criminal networks In the model of delinquent behavior on networks studied by

Calvó-Armengol and Zenou (2004) criminals compete with each other in criminal activities but

benefit from friendship with other criminals by sharing the know-how about the crime business.

Individuals first decide whether to work or become a criminal and then choose their crime effort.

Here, we consider a simplified version of the model to focus on the formation of links, while keeping

the level of criminal efforts fixed. So, let players be criminals, and links between players mean

that they belong to the same criminal network. Each criminal group has a positive probability

of winning the loot B > 0, which is then divided among the connected individuals based on the

network architecture. Criminal i’s payoff in a network g is given by

Yi(g) = pi(g)[yi(g)(1− ϕ)] + (1− pi(g))yi(g),

where yi(g) is i’s expected share of the loot, pi(g) is the probability of being caught, and ϕ > 0 is

the penalty rate. The values of yi(g) and pi(g) are determined by the size of the criminal component

to which i belongs and by the number of connections of each criminal in the component. The

exact expressions are provided in the Supplementary Appendix, while Figure 4 depicts the payoffs

(in 1/9-th’s) for the 3-player networks with B = 1 and ϕ = 0.5.
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Figure 4: Game 4.

Suppose that on any path of networks players care about their average payoff but no further

than one step away from their status quo network. That is, for any path P = (g1, .., gK) of

length K ≥ 2 the path payoff of player i is given by πi(P ) = 1
2 (Yi(g1) + Yi(g2)), while for a path

consisting of a single network (K = 1) πi(P ) = Yi(g1). In the Supplementary Appendix we show

that in this case, the unique cautious path stable set is G = {g1, g2, g3, g7}. Other pairwise stability

concepts predict the stability of either the same set of networks (PWS, PWMS, LPWC, LFC and

Level-K for K = 1), or identify only the complete network as stable (PWFS, vN-MFS, Level-K

for K ≥ 2). The reason why 1-link networks are not stable according to PWFS, vN-MFS and

Level-K for K ≥ 2 is the existence of a two-step farsighted improving path from 1-link networks

to the complete network. Such path is improving when players care only about the final network

but not improving in case of our path payoff definition, where the intermediate 2-link network

matters, too.

The predictions of different farsighted and myopic stability concepts in Games 1 – 4 are

summarised below:

Concept Game 1 Game 2 Game 3 Game 4
PWS g1, g2, g3 g7 g7 g1, g2, g3, g7
PWMS {g1, g2, g3} {g7} {g7} {g1, g2, g3, g7}
PWFS {g1}, {g2}, {g3} {g1, g2, g3, g7}, {g1, g2, g3, g7}, {g7}

{g1, g6, g7}, {g1, g6, g7},
{g2, g5, g7}, {g2, g5, g7},
{g3, g4, g7}, {g3, g4, g7},
{g0, g4, g5, g7}, {g4, g5, g7},
{g0, g4, g6, g7}, {g4, g6, g7},
{g0, g5, g6, g7} {g5, g6, g7}

vN-MFS {g1}, {g2}, {g3} {g1, g2, g3, g7} {g1, g2, g3, g7} {g7}
LPWC {g1, g2, g3, g4, g5, g6, g7} {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7}
LFC {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7} {g1, g2, g3, g7}
Level-K K = 1: {g1, g2, g3} K ≥ 1: {g7} K ≥ 1: {g7} K = 1: {g1, g2, g3, g7}
stable set K ≥ 2: {g1}, {g2}, {g3} K ≥ 2: {g7}
CPS {g1, g2, g3, g7} {g3, g7} {g1, g2, g3, g7} if δ > 2

3 {g1, g2, g3, g7}
{g7} if δ ≤ 2

3

Table 1: Summary of predictions.
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6 Relationship with other farsighted stability concepts when only
final network payoffs matter

Let us now consider the relationship between cautious path stability and other farsighted stability

concepts.19 Of course, as predictions of the cautious path stable set depend on the exact definition

of players’ path payoffs, it is not possible to derive a general relationship between the existing

concepts and cautious path stable set in case of arbitrary path payoffs. It is therefore natural to

focus on special path payoffs that are considered by these other concepts, where players care only

about the last network of a path. Formally, let a path payoff function of player i be πi(P ) = Yi(gK),

where gK is the final network of path P , and Yi(gK) is the payoff of player i in this network.

6.1 Notation and results in this special case

To begin with, note that our definitions of improving and surely improving paths can be simplified

since for any path P and any step 1 ≤ k ≤ K−1 on the path, πi(Pk+1) = Yi(gK) and πi(g
|Pk+1|
k ) =

Yi(gk). In fact, with such payoffs, the definition of the improving path becomes identical to the

one of the farsighted improving path in Herings et al. (2009): at each step of this path a player or

a pair of players prefer the final network to the network from which they deviate. Similarly, a path

is surely improving relative to set G if it is an improving path and at each step a player or a pair

of players prefer the final network of any credible improving path starting after their deviation to

the network from which they deviate. For convenience, in the following we will denote by F I(g)

the “ends” of all improving paths that start at network g, that is, the set of all networks that can

be reached from g via an improving path. Similarly, FSI(g,G) will denote the set of all networks

that can be reached from network g via a path that is surely improving relative to G. By analogy

with the paths, the set of networks that can be reached from g via a surely improving path is a

subset of the networks that can be reached via an improving path, i.e., FSI(g,G) ⊆ F I(g) for any

G ⊆ G. Furthermore, Lemmas 1 and 2 in the setting where only the final network payoffs matter,

imply that 1) if g′ ∈ FSI(g,G) and g′′ ∈ FSI(g′, G′)
⋂
G, where G∩G′ 6= ∅, then g′′ ∈ FSI(g,G′′)

for any G′′ ⊆ G ∩G′, and 2) if g′ ∈ FSI(g,G) and g′′ ∈ F I(g′)
⋂
G, then g′′ ∈ F I(g).

Using this new notation, we can also rewrite the definition of a cautious path stable set of

networks. To emphasise the specific end-of-path payoff specification, we will refer to it as a

cautious final-network stable set, or briefly, a CFNS set.

Definition 4 A set of networks G ⊆ G is cautious final-network stable (CFNS) if (1) ∀ g′ ∈ G\G
FSI(g′, G)

⋂
G 6= ∅, and (2) ∀ G′ ( G it holds that G′ violates (1).

Clearly, all results proved for the cautious path stable set continue to hold in this special

case. Most importantly, a cautious final-network stable set always exists and if for every g ∈ G
F I(g) = ∅, while for every g′ ∈ G \ G FSI(g′, G)

⋂
G 6= ∅, then G is the unique cautious final-

network stable set. As before, any cautious final-network stable set satisfies not only external but

also internal stability. Moreover, in line with Proposition 2, any set that satisfies external and

19For formal definitions of these concepts see Supplementary Appendix B.
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internal stability and that is minimal with respect to these two conditions is cautious final-network

stable. Thus, an equivalent representation of a cautious final-network stable set G in terms of

these conditions is: (1) ∀ g′ ∈ G \G FSI(g′, G)
⋂
G 6= ∅, (2) ∀ g ∈ G FSI(g,G)

⋂
G = ∅, and (3)

∀ G′ ( G it holds that G′ violates at least one of conditions (1), (2). In fact, with the end-of-path

payoff specification, the internal stability condition is even stronger: ∀ g ∈ G FSI(g,G) = ∅, that

is, there are no surely improving paths starting at a network in G. This is implied by Proposition

3: if there exists a surely improving path starting at a network in G, it should eventually lead back

to exactly the same network. But with the end-of-path payoffs, a path from a network to itself is

never surely improving (not even simple improving). Thus, networks in a cautious final-network

stable set are “absorbing” in even stronger sense: as soon as a network in G is reached, it cannot

be left by any surely improving path. At last, for a set consisting of a single network Remark 1

implies that set {g} is cautious final-network stable if and only if ∀ g′ 6= g g ∈ F I(g′).

6.2 Comparison with other farsighted concepts

Definition 4, stated in terms of network sets FSI rather than path sets PSI , brings our concept

of stability closer to the existing definitions of farsighted stability. In particular, Proposition

6 provides an alternative interpretation of our stability concept that reveals its similarity to

the concept of PWFS. This alternative interpretation is obtained by requiring the deterrence of

external deviations, external stability and minimality – close counterparts of the corresponding

conditions in the definition of the PWFS set. However, in contrast to PWFS, our notion assumes

cautiousness not only when players are located on a network inside but also outside the stable

set. To be more precise, a set of networks G is cautious final-network stable if and only if (i) all

possible pairwise deviations from any network g ∈ G to a network outside G are deterred by a

credible threat of ending up worse off or equally well off, (ii) there exists a surely improving path

relative to G from any network outside the set leading to some network in the set, and (iii) there

is no proper subset of G that satisfies conditions (i) and (ii).

Proposition 6 The set G is cautious final-network stable if and only if three conditions hold:

(i) ∀ g ∈ G,

(ia) ∀ij /∈ g such that g + ij /∈ G, ∃g′ ∈ F I(g + ij)
⋂
G such that (Yi(g

′), Yj(g
′)) =

(Yi(g), Yj(g)) or Yi(g
′) < Yi(g) or Yj(g

′) < Yj(g),

(ib) ∀ij ∈ g such that g − ij /∈ G, ∃g′, g′′ ∈ F I(g − ij)
⋂
G such that Yi(g

′) ≤ Yi(g) and

Yj(g
′′) ≤ Yj(g),

(ii) ∀ g′ ∈ G \G FSI(g′, G)
⋂
G 6= ∅,

(iii) ∀G′ ( G at least one of conditions (ia), (ib), (ii) is violated by G′.

Condition (i) of the proposition requires that when players are in a network inside G, they do

not have incentives to add or delete a link which would lead to a network outside G, as there

exists a risk that after such a deviation some improving path will be followed and lead to g′ ∈ G,
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where the payoff of these players is lower or equal to their payoff in the status quo. This means

that players in a network inside G are cautious and compare their current payoff to the (credible)

worst-case scenario in case of a deviation. In exactly the same way, condition (ii) implies that

players are also cautious when they are in a network outside G. From any network outside G

there must exist a surely improving path leading to some network in G, that is, players are only

willing to add or delete a link on the path if after that move, their payoff is certain to increase.

This cautiousness of players’ behaviour assumed in the second, external stability condition is

where the key difference from the concept of PWFS comes in. According to the corresponding

condition in the PWFS, when players are in a network outside G, they behave optimistically, or

otherwise, have a possibility to fully communicate and commit. They rely on the existence of some

farsighted improving path that leads to a network in G (and improves their payoffs), but disregard

the possibility of potentially “bad” diversions from this path.20 Therefore, our concept “adds more

cautiousness” to players’ behaviour relative to what is assumed in Herings et al. (2009).

In what follows we use Definition 4 and Proposition 6 to establish some regularities in the

relationship between cautious final-network stable sets and sets identified as stable by concepts of

PWFS, vN-MFS and LPWC (Herings et al., 2009). First, observe that since any surely improving

path is farsighted improving but not vice versa, the external stability condition in our definition

is harder to satisfy, while the internal stability condition is easier. Therefore, given otherwise

identical definitions of the cautious final-network stable set and the vN-MFS set, it is intuitive

that our stable set must be larger. Similarly, given the characterization of a cautious final-network

stable set in Proposition 6, our stable set must be larger than a PWFS set: while both satisfy the

same condition (i) about the deterrence of external deviations, the cautious final-network stable

set satisfies a stronger external stability condition. This intuition is formalised by Proposition 7:

Proposition 7 (vN-MFS and PWFS) The following relationships hold:

1. For any vN-MFS set G, there exists a cautious final-network stable set G∗, such that G ⊆ G∗,
and there does not exist a cautious final-network stable set G∗∗ such that G∗∗ ⊂ G.

2. For any cautious final-network stable set G∗, there exists a PWFS set G such that G ⊆ G∗,
and there does not exist a PWFS set G′ such that G∗ ⊂ G′.

Note that the first statement of Proposition 7 cannot be extended to a claim that any CFNS

set G∗ includes a vN-MFS set as a subset, because a vN-MFS set may not exist. Also, the second

statement cannot be extended to a claim that G ⊆ G∗ holds for any PWFS set G. That is, given

a PWFS set, one cannot always find a cautious final-network stable set to which this PWFS set

belongs. This can be demonstrated by Games 2 and 3 discussed in section 5. In both games, the

unique CFNS set is {g1, g2, g3, g7}, and many PWFS sets are not subsets of this set. Intuitively,

the reason for that is suggested by Proposition 6: while the external stability condition (ii) allows

20More formally, by definition of the PWFS set, being in a network inside G means that players do not have
incentives to deviate to a network outside G as after such a deviation, there exists a farsighted improving path that
leads back to G and makes these players worse off or equally well off. On the other hand, being in a network outside
G means that there exists some farsighted improving path that leads to G.
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for more networks in the CFNS set than the corresponding condition in the PWFS definition, as

more networks are added to a given PWFS set to meet this condition, some other networks may

become “redundant” due to the minimality condition (iii). However, if G is the unique PWFS

set, in which case it is also the unique vN-MFS set (by Corollary 5 in Herings et al. (2009)), then

G must be a subset of any cautious final-network stable set.

Corollary 1 If G is the unique PWFS set (and the unique vN-MFS set), then for any cautious

final-network stable set G∗, G ⊆ G∗.

Next, we observe that when a cautious final-network stable set G satisfies an additional constraint

that there are no improving paths between any two networks in G, then G is PWFS and also

vN-MFS. Furthermore, if there are no improving paths at all that start at networks in G, then

the cautious final-network stable set is the unique PWFS and vN-MFS set. In the latter case,

also the cautious final-network stable set itself is unique, as follows from Proposition 4.

Proposition 8 (vN-MFS and PWFS) If G is a cautious final-network stable set such that

∀g ∈ G F I(g)
⋂
G = ∅, then G is a PWFS set and a vN-MFS set. Furthermore, if ∀g ∈ G

F I(g) = ∅, then G is the unique cautious final-network stable, PWFS and vN-MFS set.

The converse of Proposition 8 is, in general, not true. That is, it is not always the case that

a PWFS set or a vN-MFS set is at the same time cautious final-network stable. For example, in

Games 2 and 3, the first part of Proposition 8 applies but the converse is not true: there are seven

PWFS sets and only one of them is cautious final-network stable. On the other hand, if a PWFS

set or vN-MFS set consists of a single network, then it is also a cautious final-network stable set.

The argument is simple: when G = {g} and players care only about their final network payoffs,

any improving path to g is also surely improving relative to G. Therefore, the external stability

satisfied by the PWFS and vN-MFS set {g} holds in the stronger sense assumed by our definition.

Corollary 2 The set {g} is cautious final-network stable if and only if it is PWFS and vN-MFS.

If in addition, F I(g) = ∅, then {g} is the unique cautious final-network stable, PWFS and vN-MFS

set.

Finally, let us consider the relationship between cautious final-network stability and concepts

of the LPWC and LFC sets, that also feature cautiousness. The important finding stated by

Proposition 9 is that any cautious final-network stable set is pairwise consistent. Therefore, by

definition, it is a subset of the largest pairwise consistent set (LPWC).

Proposition 9 (LPWC) If G∗ is a cautious final-network stable set, then G∗ is pairwise consis-

tent. Therefore, any cautious final-network stable set G∗ is a subset of the LPWC set G, G∗ ⊆ G.

The fact that any cautious final-network stable set is pairwise consistent means that both external

and internal deviations are deterred from any network in the set. On the other hand, a pairwise

consistent set is not always cautious final-network stable, as it does not necessarily satisfy the

external stability condition or is not minimal with respect to this condition. Therefore, in general,
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the LPWC set is larger than the set identified by our concept. One example where this is not the

case is when the LPWC set is a singleton, as then its only subset is the set itself:

Corollary 3 If {g} is the LPWC set, then {g} is the unique cautious final-network stable set.

The converse is not true. For example, in Game 4, the unique cautious final-network stable set is

{g7} (in accordance with Corollary 2), while the LPWC set is {g1, g2, g3, g7}.
As for the concept of LFC, note that when considered in a special case of 2-player coalitions

and pairwise approach to network formation, it is essentially identical to the LPWC set but relies

on a different rule of link formation: when a link is added, not one but both involved players

must strictly improve their payoff in a final network. Instead, our definition, as most of the

other pairwise approaches to network formation, assumes that benefits from a new link must be

strict for just one of the two players. For this reason and as we explain in more detail in the

Supplementary Appendix (see Definition 6), a general relationship between the predictions of our

concept and those of LFC is hard to derive. On the other hand, due to the similarity between

LFC and LPWC, it is easy to show, by analogy with Proposition 9, that if also in our definition

improvements by creation of new links required both agents to become strictly better off, then any

cautious final-network stable set would be farsightedly consistent and form a subset of the largest

farsightedly consistent set (LFC).

To conclude the discussion, we note that here we focused on concepts that assume perfect

foresight, leaving aside the comparison with such concepts as level-K farsighted stability (Herings

et al., 2014) and K-step pairwise stability (Morbitzer et al., 2014). Addressing the case of limited

foresight would require modifying our theory in a way proposed by the above papers, where players

look only a few steps ahead and decide on whether or not a path is improving by considering the

chains of others’ reactions that are no longer than K steps. The theoretical investigation of such

alternative approach remains for future research.

7 Conclusion

The key contribution of this work to the network formation literature is that it proposes a frame-

work and necessary formalism for the analysis of cooperative pairwise network formation in the

environment involving a regular flow of payoffs. This framework allows for (a) arbitrary prefer-

ences over finite paths of consecutively formed networks, which incorporate extreme myopic and

extreme farsighted preferences as special cases, and (b) heterogeneity of preferences across players.

In addition, it assumes that players are cautious, and when at least one of full communication or

commitment is not possible, they will not add or delete a link if there is a possibility that it will

make them worse off in the longer run.

We call a set of networks G cautious path stable (CPS) if it is a minimal set that satisfies

external stability. We show that such set of networks always exists and that it can be alternatively

characterized in terms of both, external and internal stability conditions and minimality with

respect to both conditions. The key features underlying this definition – players’ cautiousness and

arbitrary preferences – distinguish our concept from other notions of farsighted pairwise stability.
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Using examples, we demonstrate the predictions of a CPS set and emphasize the importance

of developing a concept of network stability that takes into account a broader set of preference

definitions than those that are typically assumed in the existing myopic and farsighted approaches.

Finally, to provide a meaningful comparison between predictions of our concept and those of the

existing farsighted concepts of network stability, we consider the case where players care only

about their end-of-path payoffs, as in most of the farsighted theories of network formation. In this

setting we identify some general relationships between our concept, which in this case we refer to as

cautious final-network stable set, and the concepts of pairwise farsightedly stable set (PWFS), von

Neumann-Morgenstern pairwise farsightedly stable set (vN-MFS) and largest pairwise consistent

set (LPWC). In a nutshell, a cautious final-network stable set is at least as large as a PWFS set

and a vN-MFS set of networks but not as large as the LPWC set.

8 Appendix

Appendix A: Brief description of network stability concepts

Acronym Name Short description and reference

PWS Pairwise stable network A network in which no player can immediately benefit from deleting
deleting one of her links, and no pair of players can benefit from
forming a link. (Jackson and Wolinsky, 1996)

PWMS Pairwise myopically A set of networks G for which three conditions hold: (i) all possible
stable set myopic pairwise deviations from any network g ∈ G to a network

outside G are deterred by the threat of ending worse off or equally
well off, (ii) there exists a myopic improving path from any network
outside G leading to some network in G, and (iii) there is no proper
subset of G satisfying conditions (i) and (ii). (Herings et al., 2009)

PWFS Pairwise farsightedly A set of networks G for which three conditions hold: (i) all possible
stable set pairwise deviations from any network g ∈ G to a network outside G

are deterred by a credible threat of ending worse off or equally well
off, (ii) there exists a farsighted improving path from any network
outside G leading to some network in G, and (iii) there is no proper
subset of G satisfying conditions (i) and (ii). (Herings et al., 2009)

vN-MFS Von Neumann-Morgenstern A set of networks G such that no farsighted improving path exists
pairwise farsightedly between any pair of networks in G, and from any network outside
stable set G there is a farsighted improving path leading to some network in G.

(Herings et al., 2009)

LPWC Largest pairwise The largest set G such that for any network in G all pairwise
consistent set deviations to a network in or outside set G are deterred by a credible

threat of ending worse off or equally well off. (Herings et al., 2009)

LFC Largest farsightedly Same as LPWC but assuming a different notion of a farsightedly
consistent set improving deviation: whenever a link is added, both involved players

must strictly improve their payoff in a final network.
(Page Jr et al., 2005)

Level-K Level-K farsightedly A set of networks GK for which three conditions hold: (i) all pairwise
stable set deviations from any network g ∈ GK to a network outside GK are

deterred by a threat of ending worse off or equally well off (by means
of a farsighted improving path of length at most K), (ii) there exists a
combination of farsighted improving paths of length at most K from
any network outside GK leading to some network in GK , and
(iii) there is no proper subset of GK satisfying conditions (i) and (ii).
(Herings et al., 2014)

Table 2: Network stability concepts in the existing literature.
Formal definitions can be found in Supplementary Appendix B.
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Appendix B: Proofs

Proof of Lemma 1. Suppose P = (g1, .., gK) and P ′ = (gK , .., gK+N ), where g1 = g, gK = g′

and gK+N = g′′. Let P ∈ PSI(g1, G) and P ′ ∈ PSI(gK , G′), where G ∩ G′ 6= ∅ and gK+N ∈ G.

Consider P ′′ = P ⊕ P ′2 = (g1, .., gK , gK+1, .., gK+N ). Below we will show recursively that for any

k in the decreasing sequence K − 1,K − 2, .., 1, the continuation of path P ′′ from step k, P ′′k , is a

surely improving path relative to set G′′, where G′′ is any subset of G ∩ G′. Then, as P ′′1 = P ′′,

the last step of the argument will complete the proof.

Consider P ′′K−1 = (gK−1, gK , gK+1, .., gK+N ) = (gK−1) ⊕ P ′. Suppose that i and j are the

players involved in the first-step change on this path, from gK−1 to gK , i.e., gK = gK−1 + ij or

gK = gK−1 − ij. To show that P ′′K−1 ∈ PSI(gK−1, G′′), let us first verify that P ′′K−1 ∈ P I(gK−1).
This follows from the fact that P ′ ∈ P I(gK) by definition, and players i, j prefer path P ′ to

staying in gK−1 for |P ′| steps. The latter is an immediate implication of the fact that P is a surely

improving path relative to G, so that by definition, for any P̃ ∈ P I(gK) leading to G, including

the path P ′, the following inequalities hold: (a) πi(P̃ ) ≥ πi(g|P̃ |K−1) and πj(P̃ ) ≥ πj(g|P̃ |K−1), with at

least one inequality being strict, if gK = gK−1 + ij, or (b) πi(P̃ ) > πi(g
|P̃ |
K−1) if gK = gK−1 − ij.

Now, given that P ′ is a surely improving path relative to G′ and hence, also relative to G′′ ⊆ G′,
that is, P ′ ∈ PSI(gK , G′′), and inequalities (a), (b) hold for any P̃ ∈ P I(gK) that leads to G and

hence, also for any improving path that leads to G′′ ⊆ G, it follows that conditions (i) and (ii)

of the definition of a surely improving path relative to G′′ are satisfied for all steps on the path

P ′′K−1 = (gK−1)⊕ P ′. Thus, P ′′K−1 ∈ PSI(gK−1, G′′).
Next, consider P ′′K−2 = (gK−2, gK , gK−1, gK , .., gK+N ) = (gK−2) ⊕ P ′′K−1. By the same argu-

ment as before, P ′′K−2 ∈ PSI(gK−2, G′′). Then by analogy, we can construct a sequence of surely

improving paths P ′′K−1, P
′′
K−2, P

′′
K−3, .., P

′′
2 , P ′′. Thus, P ′′ ∈ PSI(g1), where g1 = g.

Proof of Proposition 2.

(⇒): Suppose that set G is cautious path stable. Then by definition it is a minimal set that

satisfies condition (1), and it only remains to verify that it also satisfies condition (2). Suppose

that this is not the case, and there exists a pair of networks g, g′ ∈ G such that there is a surely

improving path relative to G leading from g to g′. Denote this path by P . Below we show that a

smaller set G′ = G \ {g} satisfies condition (1). This will contradict the assumption of minimality

of set G and thus, complete the proof.

Note that since path P from g to g′ is surely improving relative to G, it is also surely improving

relative to the smaller set G′. The same is true about surely improving paths from other networks

outside G, which by condition (1) have at least one surely improving path leading to G. If for

some of these other networks, say, network g′′, a surely improving path to G does not lead to G′,

then it must be that it leads to g. Denote this path by P̃ . So, there exist two surely improving

paths relative to G′: P̃ that leads from g′′ to g and P that leads from g to g′. Then by Lemma 1,

path P̃ ⊕ P2 is surely improving relative to G′ and it leads to G′. Thus, set G′ satisfies condition

(1) and we arrive at the desired contradiction.

(⇐): Suppose that set G satisfies the conditions of external stability (1), internal stability (2) and
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it is also a minimal set that satisfies these both conditions (3). We need to verify that set G is, in

fact, a minimal set that satisfies condition (1) alone. Suppose, on the contrary, that there exists

a proper subset G′ ( G which also satisfies (1). Below we argue that such smaller set G′ either

satisfies (2) or contains another proper subset that satisfies both conditions, (1) and (2). In either

case, this will contradict the assumed minimality of set G and thus, conclude the proof.

Suppose that G′ does not satisfy (2), so that there exists a network g′ ∈ G′ and path P ∈
PSI(g′, G′) such that P leads to G′ \ {g′}. The following algorithm constructs a proper subset of

G′ that satisfies both, (1) and (2).

Consider G1 = G′ \ {g′}. G1 satisfies condition (1). Indeed, from g′ there exists a path P

leading to G1 that is surely improving relative to G1. Similarly, from any other network outside

G′, which by condition (1) has at least one surely improving path leading to G′, this path is also

surely improving relative to G1 and it leads either to G1 or to g′. When the latter is true, so that

for some network g′′ outside G1 the surely improving path from g′′ to G′ ends at g′, then denote

this path by P̃ and consider a longer path P̃ ⊕ P2. By Lemma 1, this path is surely improving

relative to G1 and it leads to G1. Thus, G1 satisfies condition (1).

If G1 also satisfies condition (2), then we obtain the desired contradiction. If condition (2) is

not satisfied, then we reduce the set further by constructing G2 = G1 \ {g1}, where g1 is such a

network in G1 from which there exists a surely improving path relative to G1 leading to G1 \{g1}.
Iterating this reasoning, we can build a decreasing sequence {Gk}k≥1 of proper subsets of G′,

satisfying condition (1). As G′ has a finite cardinality, and as a set consisting of a single network

trivially satisfies condition (2), there exists K ≥ 1 such that GK 6= ∅ and satisfies both conditions,

(1) and (2). The existence of such set GK establishes the desired contradiction.

Proof of Proposition 6. Throughout this proof we will employ the alternative definition of a

CFNS, established by Proposition 2, in terms of three conditions: external stability (1), internal

stability (2) and minimality with respect to these first two conditions (3).

(⇒): Let G be CFNS set. Let us verify that conditions (i), (ii) and (iii) of Proposition 6 hold. In

fact, it is enough to verify that conditions (i) and (ii) hold, as then (iii) is satisfied, too. Indeed, if

(iii) is not satisfied, then there exists a proper subset of G, G′ ( G, such that (i) and (ii) hold for

G′. Consider a minimal among such subsets, i.e., G′ ( G that satisfies all three conditions, (i), (ii)

and (iii).21 But then from the proof of sufficiency (⇐) it follows that G′ must satisfy conditions

(1) and (2) of a CFNS set, which contradicts the minimality of the CFNS set G.

So, let us focus on conditions (i) and (ii). Clearly, condition (ii) follows immediately from

the definition of a CFNS set. Also, condition (i) is trivially satisfied when G is a singleton, i.e.,

G = {g}. Now, suppose that G contains at least two networks, and condition (i) does not hold.

This means that at least one of the two statements, (a) or (b), is true:

(a) ∃g ∈ G and ij /∈ g such that g + ij /∈ G, and ∀g′ ∈ F I(g + ij)
⋂
G it holds that

(Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g));22
21Such minimal subset of G exists as otherwise we could construct an infinite declining sequence of subsets of G,

all satisfying conditions (i) and (ii). This, however, contradicts the fact that G has a finite cardinality.
22We use the notation (Yi(g

′), Yj(g
′)) > (Yi(g), Yj(g)) for Yi(g

′) ≥ Yi(g) and Yj(g
′) ≥ Yj(g) with at least one
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(b) ∃g ∈ G and ij ∈ g such that g−ij /∈ G, and ∀g′ ∈ F I(g−ij)
⋂
G it holds that Yi(g

′) > Yi(g).

If (a) is true, then the inequality (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)) holds, in particular, for g′ =

g̃ ∈ FSI(g + ij,G)
⋂
G. Such network g̃ exists, as FSI(g + ij,G)

⋂
G 6= ∅ due to condition (1)

of the definition of a CFNS set. Then, as (Yi(g
′), Yj(g

′)) > (Yi(g), Yj(g)) holds for any g′ ∈
F I(g + ij)

⋂
G, we obtain that a path from g to g − ij (one step) and further – along the surely

improving path to g̃ is surely improving altogether, that is, FSI(g,G)
⋂
G 6= ∅. However, this

contradicts the internal stability condition (2) of a CFNS set.

Similarly, if (b) is true, then the inequality Yi(g
′) > Yi(g) holds, in particular, for g̃ ∈ FSI(g−

ij,G)
⋂
G. As before, such network g̃ exists due to condition (1) of the definition of a CFNS

set. This, together with the fact that Yi(g
′) > Yi(g) for any g′ ∈ F I(g − ij)

⋂
G, means that

FSI(g,G)
⋂
G 6= ∅. However, this contradicts the internal stability condition (2) of a CFNS set.

Thus, neither (a) or (b) holds, hence, condition (i) is satisfied.

(⇐): Suppose that set G is such that conditions (i), (ii) and (iii) of Proposition 6 hold. Let us

verify that G is a CFNS set, that is, satisfies conditions (1), (2) and (3). In fact, it is enough to

verify conditions (1) and (2), as then (3) follows. Indeed, if not, then there must exist a proper

subset of G, G′ ( G, such that G′ satisfies (1) and (2). But from the proof of necessity (⇒) we

know that conditions (1) and (2) imply (i) and (ii), that is, a proper subset of G, G′, must satisfy

(i) and (ii). This, however, contradicts the minimality of set G established by condition (iii).

Let us focus on conditions (1) and (2). Condition (1) is trivially satisfied, as it is identical to

(ii). If condition (2) is also satisfied, then the proof is completed. Note that this is trivially the

case when G is a singleton. Suppose now that set G contains at least two networks, i.e., |G| ≥ 2,

and condition (2) is not satisfied. This means that there exists a pair of networks g, g′ ∈ G such

that there is a surely improving path relative to G that leads from g to g′. We claim that this

violates condition (iii) of minimality in Proposition 6.

Claim: There exists G′ ( G that satisfies conditions (i) and (ii).

Let us construct this set G′. Consider G1 = G \ {g}. Note that |G1| ≥ 1 as |G| ≥ 2. G1

satisfies condition (ii). Indeed, a path from g to g′ ∈ G1 that is surely improving relative to G is

also surely improving relative to the subset G1. Also, surely improving paths from other networks

outside G leading to G are surely improving relative to G1. Note that such surely improving paths

from other networks outside G exist since set G satisfies condition (ii). If for some of these other

networks, say, network g′′, a surely improving path to G does not lead to G1, then it must be

that it leads to g. Thus, we have two surely improving paths relative to G1: one that leads from

g′′ to g and another that leads from g to g′. By Lemma 1, the concatenation of these two paths

produces a surely improving path path relative to G1, and it leads to G1. Thus, G1 satisfies (ii).

Now, if G1 also satisfies (i), then the proof is completed. Note that this is trivially the case

when G1 is a singleton. So, suppose that |G1| ≥ 2, and condition (i) is not satisfied. This means

that at least one of the two statements, (a) or (b), is true:

inequality being strict.
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(a) ∃g1 ∈ G1 and ij /∈ g1 such that g1 + ij /∈ G1, and ∀g′1 ∈ F I(g1 + ij)
⋂
G1 it holds that

(Yi(g
′
1), Yj(g

′
1)) > (Yi(g1), Yj(g1));

(b) ∃g1 ∈ G1 and ij ∈ g1 such that g1 − ij /∈ G1, and ∀g′1 ∈ F I(g1 − ij)
⋂
G1 it holds that

Yi(g
′
1) > Yi(g1).

In particular, the above is true for g′1 = g̃ ∈ FSI(g1 ± ij,G1)
⋂
G1, where g1 satisfies either (a)

or (b). Such network g̃ exists due to the fact that G1 satisfies (ii). This, together with the fact

that the payoffs of i and j improve at any g′1 ∈ F I(g1 ± ij)
⋂
G1 (i.e., the step from g1 to g1 ± ij

is surely improving), means that there is a surely improving path relative to G1 from g1 to g̃:

FSI(g1, G1)
⋂
G1 6= ∅.

Let us define G2 = G1 \ {g1}. |G2| ≥ 1 as |G1| ≥ 2. Repeating the same argument as before,

but with respect to G2 instead of G1, we can show that G2 satisfies condition (ii). If it also

satisfies condition (i), then the proof is completed; otherwise, we construct G3, etc. Iterating this

reasoning, we can construct a decreasing sequence {Gk}k≥1 of proper subsets of G, each satisfying

condition (ii). As G has a finite cardinality, and as a set consisting of a single network trivially

satisfies condition (i), there exists K ≥ 1 such that GK 6= ∅ and satisfies both conditions, (i) and

(ii). Denoting this set GK by G′, we complete the proof of the claim, and of the proposition.

Proof of Proposition 7. Below we prove each of the two statements in turn.

1. To start with, observe that for any vN-MFS set G and any g ∈ G, there are no surely

improving paths relative to G that start at g (and lead anywhere in G), i.e., FSI(g,G) = ∅.
Clearly, no surely improving path exists from g to any other network in G, and if there

existed a surely improving path from g to some network g′ outside G, then by Lemma 2

we would obtain a contradiction to the internal stability of a vN-MFS set: by definition of

vN-MFS set, from any network outside G there exists an improving path to G, and thus,

the concatenation of a surely improving path from g to g′ and an improving path from g′ to

G would give an improving path between two networks in G.

We now construct a CFNS set to which a given vN-MFS set belongs. Observe that the

whole network space G trivially satisfies the external stability condition (1) of Definition 4.

If it is also the minimal set that satisfies this condition, then G is CFNS, and the proof is

completed. Otherwise, there must exist a network g1 ∈ G from which a surely improving

path leads to some other network in G: FSI(g1,G) 6= ∅. Note that this network g1 lies

outside the vN-MFS set G, as for any g ∈ G, FSI(g,G) ⊆ FSI(g,G) = ∅.

The smaller set G1 = G \ {g1} trivially satisfies the external stability condition. If it is also

the minimal set that satisfies this condition, then G1 is CFNS, and the proof is completed.

Otherwise, we reduce the set further by constructing G2 = G1 \ {g2}, where g2 is such a

network in G1 from which there exists a surely improving path relative to G1 leading to

some other network in G1: F
SI(g2, G1)

⋂
G2 6= ∅. Note again, that g2 does not belong to

the vN-MFS set G, as for any g ∈ G, FSI(g,G1) ⊆ FSI(g,G) = ∅.
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The smaller set G2 satisfies external stability: a path from g2 to G2 that is surely improving

relative toG1 is also surely improving relative to the subsetG2. The same is true about surely

improving paths from other networks outside G1, which at this step is just one network g1,

that was withdrawn first. Note that a surely improving path from that network to G2 exists:

it either leads to G2 directly or via network g2, as in the latter case, the concatenation of two

surely improving paths – from g1 to g2 and from g2 to G2 – is surely improving (Lemma 1).

If set G2 is also the minimal set that satisfies external stability, then G2 is CFNS. Otherwise,

we construct a set G3 = G2 \ {g3}, etc. Iterating this reasoning, we can build a decreasing

sequence {Gk}k≥1 of proper subsets of G that (a) satisfy the external stability condition (1)

of Definition 4, and (b) contain the vN-MFS set G (as the networks withdrawn at each step

lie outside the vN-MFS set G). As G has a finite cardinality, and as the vN-MFS set G

cannot be reduced further, there exists K ≥ 1 such that GK is CFNS and G ⊆ GK . This

proves the first part of the first statement.

The second part follows from the observation that the existence of a CFNS set G∗∗ such

that G∗∗ ⊂ G would imply that G∗∗ is a strict subset of another CFNS set that contains G.

This is however a contradiction to the minimality of a CFNS set.

2. For the second statement, observe that any CFNS set G∗ satisfies conditions (i) and (ii) in

the definition of the PWFS set, as condition (i) is identical to the one of Proposition 6 and

condition (ii) is weaker than the corresponding external stability condition of Proposition 6.

If G∗ also satisfies the minimality condition (iii) of PWFS, then it is PWFS. Otherwise, there

exists a proper subset of G∗ that satisfies all three conditions and is thus PWFS. Indeed, as

the cardinality of G∗ is finite, the sequence of nested subsets of G∗, each satisfying (i) and

(ii), is finite, and the last, “smallest” subset in this sequence is minimal.

To prove that no PWFS set contains a CFNS set as a strict subset, observe that the existence

of such PWFS set, say G′, would imply that G ⊂ G′, where set G is also PWFS. However,

this is ruled out by minimality of a PWFS set.

Proof of Proposition 8. First, from the external stability of a CFNS set it follows that ∀
g′ ∈ G \G F I(g′)

⋂
G 6= ∅. This, together with the fact that ∀g ∈ G F I(g)

⋂
G = ∅, implies that

G is a vN-MFS set by definition and a PWFS set by Theorem 3 of Herings et al. (2009).

If in addition F I(g) = ∅, then the external stability condition in the definition of all con-

cepts (CFNS, PWFS and vN-MFS) implies that G must be a subset of any stable set. Then by

minimality, also present in each definition, G is the unique CFNS, PWFS and vN-MFS set.

Proof of Proposition 9. Suppose that G∗ is a CFNS set. Below we show that G∗ satisfies

the definition of a pairwise consistent set (see Definition 5 in the Supplementary Appendix), i.e.,

∀g ∈ G∗, both external and internal pairwise deviations are deterred. The deterrence of external

deviations is already established by condition (i) of Proposition 6. Now, we verify that ∀g ∈ G∗ an
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internal deviation to a network g± ij ∈ G∗ is also deterred as it results in lower or equal payoff(s)

either immediately or at the end of some credible improving path starting at g ± ij.
Suppose that this is not the case and there exist g ∈ G∗ and an internal deviation to g±ij ∈ G∗

such that both, immediate payoff(s) and payoff(s) at the end of all credible improving paths from

g ± ij (if any) improve. Formally this means that at least one of the conditions holds:

(a) ∃ij /∈ g such that for g′ = g+ij ∈ G and ∀g′ ∈ F I(g+ij)
⋂
G∗ it holds that (Yi(g

′), Yj(g
′)) >

(Yi(g), Yj(g));

(b) ∃ij ∈ g such that for g′ = g− ij ∈ G and ∀g′ ∈ F I(g− ij)
⋂
G∗ it holds that Yi(g

′) > Yi(g).

We obtain that a one-step path from g to g + ij in case (a) and from g to g − ij in case (b) is

surely improving relative to G∗. But this contradicts the internal stability of a CFNS set.
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