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Abstract. LHCb is one of the major experiments operating at the Large Hadron
Collider at CERN. The richness of the physics program and the increasing pre-
cision of the measurements in LHCb lead to the need of ever larger simulated
samples. This need will increase further when the upgraded LHCb detector will
start collecting data in the LHC Run 3. Given the computing resources pledged
for the production of Monte Carlo simulated events in the next years, the use of
fast simulation techniques will be mandatory to cope with the expected dataset
size. Generative models, which are nowadays widely used for computer vision
and image processing, are being investigated in LHCb to accelerate generation
of showers in the calorimeter and high-level responses of Cherenkov detector.
We demonstrate that this approach provides high-fidelity results and discuss
possible implications of these results. We also present an implementation of
this algorithm into LHCb simulation software and validation tests.

1 Introduction

Detailed simulation of the detector response on different types of physics events is a vi-
tal component of every experiment in high energy physics. Without such simulation it is
virtually impossible to infer a physics result from the experimental observations. Detailed
simulation however requires significant computing resources. Moreover, simulation is the
primary consumer of computing resources: about 80% of the total computing is used by HEP
experiment for simulation.

A significant increase in total event rate is expected due to upgrades to LHC machine
and detectors [1]. The simulation rate will need to be increased accordingly. However, we
can not expect a significant increase of computational power for computing hardware. Be-
cause computation constraints make it impossible to work harder, we have to work smarter
to accommodate the challenge of simulation.

Using surrogate generative models is one of the possible approaches to this challenge. It is
driven by the observation, that if the physics detectors has a granularity significantly coarser
than the level of the corresponding Geant4 simulation, the surrogate model can aggregate
micro-level simulation effects into the required macro-level response.

2 Generative Model for Calorimeter Response Simulation

The simulation of particle showers in the electromagnetic calorimeter is the most computa-
tionally expensive component of the Monte Carlo event simulation for the LHCb detector.
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Figure 1: Model architecture. Pre-trained regressor for the particle parameters prediction
makes our model conditional. Thanks to building up the information from the pre-trained re-
gressor into the discriminator gradient we learn G to produce a specific calorimeter response.

(a)
E0 = 63.7 GeV

(b)
E0 = 6.5 GeV

(c)
E0 = 15.6 GeV

(d)
E0 = 15.9 GeV

Figure 2: Visual comparison of generated calorimeter showers. Showers generated with
Geant4 (first row) and the showers, simulated with our model (second row) for four different
sets of input parameters. Colour represents log10( E

MeV ) for every cell.

The relatively coarse 2D granularity of the calorimeter allows the use of surrogate generative
models to be built on top of the detailed Geant4 simulation. Thus, this approach seems to be
promising to speed up the calorimeter simulation. Wasserstein GAN with gradient penalty
[2] is considered to be a state-of-the-art technique for image production. We use Wasser-
stein GAN as a model for generating calorimeter responses. The architecture of this Neural
Network and details of training the generative model are presented in Ref. [3].

After the generative model is built and trained, we compare the original clusters produced
by full Geant4 simulation with the clusters generated by the trained model for the same pa-
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(a) The transverse width of
clusters.

0 2 4 6 8 10 12 14 16
Cluster longitudual width [cm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A
rb

it
ra

ry
 u

n
it

s

Geant

GUN

(b) The longitudinal width of
clusters.

10 5 0 5 10
∆X [cm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Geant

GAN

(c) ∆X between cluster centre
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(d) The sparsity in the 30x30
cells matrix containing clus-
ters.
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(e) The transverse asymmetry
of clusters.
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(f) The longitudinal asymme-
try of clusters.

Figure 3: Comparing physics characteristics for Geant4 simulated (red) and generated (blue)
clusters.

rameters of the incident particles: the same energy, the same direction, and the same position
on the calorimeter face. Corresponding images for the four arbitrary parameter sets are pre-
sented in Fig. 2. These images demonstrate very good visual similarity between simulated
and generated clusters.

Then, the quantitative evaluation of the proposed simulation method is performed. While
generic evaluation methods for generative models exist, the evaluation is based on physics-
driven similarity metrics. A few cluster properties, which essentially drive the cluster prop-
erties used in the reconstruction of the calorimeter objects and following physics analysis,
are selected. If the initial particle direction is not perpendicular to the calorimeter face, the
produced cluster is elongated in that direction. Therefore, cluster widths in the direction of
the initial particle and in the transverse direction are considered separately. Spatial resolution,
which is the distance between the centre of mass of the cluster and the initial track projection
to the shower max depth, is another important characteristic affecting physics properties of
the cluster. Cluster sparsity, which is the fraction of cells with energies above some thresh-
old, reflects marginal low energy properties of the generated clusters. These characteristics
are presented in Fig. 3.
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Figure 4: RICH GAN model architecture. Generator is trained to produce five particle iden-
tification responses for the RICH detector for three input parameters: particle momentum,
pseudorapidity, and the total event track multiplicity.

3 Generative Model for the RICH Particle Identification

The appropriate generation of the LHCb RICH detector [4] response requires detailed sim-
ulation of the Cherenkov photon production in the body of the detector, its transport to the
photodetector, including reflection and refraction on the way, its registering by the photode-
tectors, providing good angular precision for the Cherenkov photons. Collected signals are
used then for testing each charged particle candidate reconstructed in the tracker against six
possible mass hypotheses: electron, muon, pion, kaon, proton, "below threshold". The log-
arithm of the ratio of the likelihood for each hypothesis, except the pion one, to the likeli-
hood of the pion hypothesis, RichDLL*, with ‘*’ standing for ’e’, ’mu’, ’k’, ’p’, and ’bt’
respectively is associated with every reconstructed charged track and is used for the particle
identification in the following physics analyses.

Taking into account symmetry around the beam axis, this chain in fact converts kinematics
of the track, momentum p and pseudorapidity η into five likelihoods for different hypothesis.
This gives a possibility to substitute the directly calculated transfer function which includes
micro-level detector simulation and detector reconstruction for the effective surrogate model.
RichDLL* values also depend on the multiplicity in the event, since high track density might
lead to a reconstruction algorithm confusion. The proxy variable to a total multiplicity is the
number of reconstructed tracks in the event. Thus, the full surrogate model may have three
input parameters: (p, η,Ntracks) where the latter is a total number of tracks in the event.
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Figure 5: Visual comparison of RICH GAN quality. Weighted real data (filled histograms)
and generated (open histograms) distributions of RichDLLk for kaon (red) and pion (blue)
track candidates in bins of pseudorapidity (ETA) and momentum (P) over full phase-space.
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Figure 6: Separation power comparison. Differences between ROC AUC for discriminat-
ing pions from kaons, muons and protons classifiedd with the RichDLLk, RichDLLmu and
RichDLLp variables, respectively for real calibration samples and using RICH GAN gener-
ated values, divided by the ROC AUC uncertainties, in bins of momentum and pseudorapidity.

Technical details of this approach are described in Ref. [5]. The Cramer GAN approach
[6] build using fully connected neural network layers presented in Fig. 4 is used to build and
train the surrogate generative model. The model was trained using calibration sample of well
identified decays in real data [7]. While true id of the particles is stochastic, thus unknown,
the usage of identified decays provides the information of sWeights [8], which is used in the
training process.
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(a) Loose proton ID
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(b) Mild proton ID
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(c) Tight proton ID

Figure 7: Comparing proton identification efficiency. Efficiency of three different require-
ments on the output of a Multi-Layer Perceptron trained to identify protons as evaluated on
protons tagged through the decay Λ0

b → Λ+
c µν̄µ with Λ+

c → pK−π+. The efficiency is com-
pared, in bins of the proton momentum, for a dataset selected without introducing bias on
the particle identification of the proton (cyan shaded area), and a Fast Simulation sample
where the rich and the calorimeter responses are modeled through a Generative Adversarial
Network trained using protons from Λ0 → pπ− decays, only (purple markers).

The distributions for RichDLLk values obtained for pions and kaons directly from the
corresponding calibration data samples and generated by the surrogate model for MC pions
and kaons for different regions in (p, η) phase space are presented in Fig. 5.

The primary requirement for the surrogate model is to properly reproduce a discrimina-
tion power of corresponding hypothesis estimators RichDLL*. Thus, Fig. 6 represents the
difference between separation power, ROC AUC, of original and surrogate RichDLL* values,
relative to the uncertainty of the ROC AUC calculation. This comparison is presented in
different bins in momentum and pseudorapidity, and demonstrates that the deviation in most
cases does not exceed 1-2 standard deviations, and is essentially unbiased for different bins.

As the results of simulation are used in the subsequent PID algorithm, the ultimate met-
ric ultimate quality metrics for the surrogate RichDLL* model is the correct reproduction
of identification power. Fig. 7 presents such a comparison for the proton identification ef-
ficiency for different proton ID requirements. Demonstrated consistency, especially for the
tight requirements, confirms the feasibility of this approach.

4 Conclusions

In this paper we demonstrated two approaches to significant speedup of the simulation of
two most expansive computationally components of the LHCb detector: electromagnetic
calorimeter and RICH. In the first case the surrogate generative model is built on top of
the highly detailed Geant4 response. The surrogate model for the RICH based particle iden-
tification is built on top of real calibration data samples, thus bypassing the simulation and
digitization steps of the MC event production for this detector completely.
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