
Chapter 10
Cooperation Enforcing in Multistage
Multicriteria Game: New Algorithm
and Its Implementation

Denis Kuzyutin, Ivan Lipko, Yaroslavna Pankratova, and Igor Tantlevskij

Abstract To enforce the long-term cooperation in a multistage multicriteria game
we use the imputation distribution procedure (IDP) based approach. We mainly
focus on such useful properties of the IDP like “reward immediately after the move”
assumption, time consistency inequality, efficiency and non-negativity constraint.
To overcome the problem of negative payments along the optimal cooperative trajec-
tory the novel refined A-incremental IDP is designed. We establish the properties of
the proposed A-incremental payment schedule and provide an illustrative example
to clarify how the algorithm works.

Keywords Dynamic game · Multistage game · Multicriteria game · Cooperative
solution · Shapley value · Time consistency · Imputation distribution procedure

10.1 Introduction

The theory of multicriteria games (multiobjective games or the games with vector
payoffs) develops at the overlap of classical game theory and multiple criteria
decision analysis. It can be used to model various real-world decision-making
problems where several objectives (or criteria) have to be taken into account
(see, e.g., [1, 2, 14, 26] a player aims at simultaneously increasing production,
obtaining large quote for the use of a common resource, saving costs of water
purification, saving health care costs, etc. Starting from [29], much research has
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been done on non-cooperative multicriteria games (see, e.g., [8, 12, 24, 31]).
Different cooperative solutions for static and dynamic multicriteria games were
examined in [9–11, 13, 22].

This paper is mainly focused on the dynamic aspects of cooperation enforcing in
an n-person multistage multicriteria games in extensive form (see, e.g., [6, 7, 20])
with perfect information. In order to achieve and implement a long-term cooperative
agreement in a multicriteria dynamic game the players have to solve the following
problems. First, when players seek to reach the maximal total vector payoff of the
grand coalition, they face the problem of choosing a unique Pareto optimal payoffs
vector. In the dynamic setting it is necessary that a specific method the players
agreed to accept in order to choose a particular Pareto optimal solution not only
takes into account the relative importance of the criteria, but also satisfies time
consistency [5, 6, 9, 17–20, 25, 27], i.e., a fragment of the optimal cooperative
trajectory in the subgame should remain optimal in this subgame. In the paper, we
assume that the players employ the refined leximin (RL) algorithm, introduced in
[11], to select a unique Pareto optimal solution for each multicriteria optimization
problem they face. This approach allows constructing time consistent cooperative
trajectory and vector-valued characteristic function. Another appropriate method—
the rule of the minimal sum of relative deviations from the ideal payoffs vector—was
suggested in [13].

After choosing the cooperative trajectory it is necessary to construct a vector-
valued characteristic function. For instance, when analyzing the Example 10.1, we
employ a friendly computable ζ -characteristic function introduced in [3] as well
as the RL-algorithm in order to choose a particular Pareto efficient solution for the
auxiliary vector optimization problems. To determine the optimal payoff allocation
we adopt the vector analogue of the Shapley value [9, 22, 28]. Such an approach
is based on the assumption that the payoff can be transferred between the players
within the same criterion. It is worth noting that the main measurable criteria used
in multicriteria resource management problems usually satisfy this component-wise
transferable utility property.

Lastly, to guarantee the sustainability of the achieved long-term cooperative
agreement the players are expected to use an appropriate imputation distribution
procedure (IDP), i.e. a payoff allocation rule that determines the actual current
payments to every player along the optimal cooperative trajectory. The IDP based
approach was extensively studied for single-criterion differential and multistage
games (see, e.g. [15, 16, 18, 20, 21]) and was extended to multicriteria multistage
games in [9, 10]. The detailed review of useful properties the IDP may satisfy for
multistage multicriteria games is presented in [9–13].

In particular, two novel properties an acceptable payment schedule for the
multistage game should satisfy which take into account the sequence of the players’
actions along the optimal cooperative trajectory were suggested in [12]. Firstly, a
player which moves at position x according to the cooperative scenario expects
to receive some reward for the “correct” move immediately after this move, while
the other players (which are inactive at x) should get zero current payments.
Furthermore, if the position x is the last player i’s node along the cooperative
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trajectory this player should get the rest of her optimal payoff right after her last
move. These properties were formalised in the so-called Reward Immediately after
the Move (RIM) assumption (see [12] for details).

In this paper we mainly focus on the RIM assumption, efficiency and non-
negativity constraint as well as time consistency property. The first so-called
“incremental” IDP was suggested in [18] to ensure time consistency of the solution
in differential single-criterion game, then this simple IDP was extended to different
classes of dynamic games. The A-incremental IDP that satisfies RIM assumption,
efficiency constraint and time consistency for multicriteria multistage game was
designed in [12]. However, as it is demonstrated in the paper, the A-incremental
IDP, as well as the classical incremental IDP may imply negative current payments
to some players at some nodes (see [4, 9, 20] for details). One approach how
to overcome this negative feature of the incremental IDP—the refined payment
schedule for multicriteria games—was constructed in [9]. Another regularisation
method for single-criterion multistage game was proposed in [4]. In this paper
we provide a refinement of the A-incremental imputation distribution procedure
for multicriteria multistage game. This “refined A-incremental IDP” is proved to
satisfy the RIM assumption, non-negativity constraint, efficiency condition and time
consistency inequality.

Hence, the main contribution of this paper is twofold:

– we reveal one possible disadvantage of the A-incremental payment schedule,
namely that it may imply negative current payments to the players. To overcome
this drawback we design the novel A-refined imputation distribution procedure
which satisfies a number of usefull properties (in particular, non-negativity).

– we provide the step-by-step algorithm how to implement this novel allocation
rule. Then we compare the implementation of the simple A-incremental IDP and
the refined A-incremental IDP for given 3-person bicriteria multistage game.

The rest of the paper is organized as follows: The class of r-criteria multistage n-
person games in extensive form with perfect information is formalized in Sect. 10.2.
The optimal cooperative trajectory and vector-valued characteristic function are
constructed in Sect. 10.3 using the refined leximin algorithm. We provide an
illustrative example of the 3-person bicriteria multistage game here. Different useful
properties of imputation distribution procedure are formulated in Sect. 10.4. In
Sect. 10.5, we discuss the implementation of the A-incremental IDP and reveal the
problem of negative payments. We provide a refined A-incremental IDP and the
algorithm of its implementation in Sect. 10.6 and a brief conclusion in Sect. 10.7.

10.2 Multistage Game with Vector Payoffs

We consider a finite multistage r-criteria game in extensive form with perfect
information following [7, 9, 20]. First we define the following notations that will
be used throughout the paper:
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• N = {1, . . . , n} is the finite set of players;
• K is the game tree with the root x0 and the set of all nodes P ;
• S(x) is the set of all direct successors (descendants) of the node x and S−1(y) is

the unique predecessor (parent) of the node y �= x0 such that y ∈ S(S−1(y));
• Pi is the set of all player i’s decision nodes, Pi ∩ Pj = ∅ for i �= j , and Pn+1 =

{yj }mj=1 is the set of all terminal nodes, S(yj ) = ∅ ∀yj ∈ Pn+1, ∪n+1
i=1 Pi = P ;

• ω = (x0, . . . , xt−1, xt , . . . , xT ) is the trajectory (or path) in the game tree,
xt−1 = S−1(xt ), 1 � t � T ; xT = yj ∈ Pn+1, the lower index t in xt denotes
the number of the node within the trajectory ω and can be interpreted as the “time
index”, T is an ordinal number of the last node of the trajectory ω;

• hi(x) = (hi/1(x), . . . , hi/r (x)) is the i-th player’s vector payoff at the node
x ∈ P\{x0}.
We assume that

hi/k(x) ≥ 0; ∀i ∈ N; k = 1, . . . , r; x ∈ P\{x0}.

Let us use MGP (n, r) to denote the class of all finite multistage n-person r-
criteria games in an extensive form with perfect information. Since we will focus on
the games with perfect information we restrict ourselves to the class of pure strate-
gies (see, e.g., [7, 20]). The pure strategy ui(·) of player i is a function with domain
Pi that specifies for every node x ∈ Pi the next node ui(x) ∈ S(x) which the player
i should choose at x. Let Ui denote the (finite) set of all i-th player’s pure strategies,
U = ∏

i∈N Ui . Every strategy profile u = (u1, . . . , un) ∈ U generates the trajectory
ω(u) = (x0, . . . , xt , xt+1, . . . , xT ) = (x0, x1(u), . . . , xt (u), xt+1(u), . . . , xT (u)),
where xt+1 = uj (xt ) ∈ S(xt ) if xt ∈ Pj , 0 ≤ t ≤ T − 1, xT ∈ Pn+1, and,
respectively, a collection of all players’ vector payoffs.

Denote by

Hi(u) = (Hi/1(u), . . . ,Hi/r (u)) = h̃i(ω(u)) =
T∑

τ=1

hi(xτ (u)),

the value of player i’s vector payoff function, given by the strategy profile u =
(u1, . . . , un).

In the multistage multicriteria game Γ x0 defined above every intermediate node
xt ∈ P\Pn+1 generates a subgame Γ xt with the subgame tree Kxt and the subroot
xt as well as a factor-game with the factor-game tree KD = {xt }∪(K\Kxt ) (see, for
instance [20]). Decomposition of the original extensive game Γ x0 at node xt into the
subgame Γ xt and the factor-game Γ D generates the corresponding decomposition
of pure strategies.

Let P
xt

i (PD
i ), i = 1, . . . , n denote the restriction of Pi on the subtree Kxt (KD),

and u
xt

i (uD
i ), i = 1, . . . , n, denote the restriction of the player i’s pure strategy

ui(·) in Γ x0 on P
xt

i (PD
i ). The strategy profile uxt = (u

xt

1 , . . . , u
xt
n ) generates

the trajectory ωxt (uxt ) = (xt , xt+1, . . . , xT ) = (xt , xt+1(u
xt ), . . . , xT (uxt )) and,
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respectively, a collection of all player’s vector payoffs in the subgame. Denote by

H
xt

i (uxt ) = h̃
xt

i (ωxt (uxt )) =
T∑

τ=t+1

hi(xτ (u
xt )), (10.1)

the value of player i’s vector payoff function in the subgame Γ xt , and by U
xt

i the
set of all player i’s pure strategies in Γ xt , Uxt = ∏

i∈N U
xt

i . Note that

Hi(u) = h̃i(ω(u)) =
T∑

τ=1

hi(xτ (u)) =
t∑

τ=1

hi(xτ (u))+
T∑

τ=t+1

hi(xτ (u
xt )) = h̃i (ω

xt (u)) + h̃
xt

i (ωxt (uxt )),

(10.2)

where ωxt (u) = (x0, x1, . . . , xt−1, xt ) denotes a part of trajectory ω(u) before the
subgame Γ xt starts.

Remark 10.1 Since Pi = P
xt

i ∪ PD
i while P

xt

i ∩ PD
i = ∅, one can compose

the player i’s pure strategy Wi = (uD
i , v

xt

i ) ∈ Ui in the original game Γ x0 from
his strategies v

xt

i ∈ U
xt

i and uD
i ∈ UD

i in the subgame Γ xt and factor-game Γ D

respectively [20].
Let a, b ∈ Rm; we use the following vector inequalities: a � b if ak � bk,∀k =

1, . . . ,m; a > b if ak > bk,∀k = 1, . . . ,m; a ≥ b, if a � b and a �= b. The last
vector inequality implies that vector b is Pareto dominated by a.

10.3 Designing a Cooperative Solution

If the players agree to cooperate in multicriteria game Γ x0 , they maximize w.r.t. the
binary relation ≥ the total vector payoff

∑n
i=1 Hi(u). Denote by PO(Γ x0) the set

of all Pareto optimal strategy profiles from U , i.e.:

u ∈ PO(Γ x0) if � v ∈ U :
∑

i∈N

Hi(v) ≥
∑

i∈N

Hi(u)

The set PO(Γ x0) is known to be nonempty (see, e.g., [23]) and in general it
contains multiple strategy profiles. Since the set PO(Γ x0) may contain more than
one strategy profile, the players face the problem how to select a unique Pareto
optimal cooperative strategy profile ū ∈ PO(Γ x0) and corresponding optimal
cooperative trajectory ω̄ = ω̄(ū) = (x̄0, x̄1, . . . , x̄T ). In a dynamic game it is
essential that a specific method the players agreed to employ in order to choose
a particular Pareto optimal solution has to satisfy time consistency, that is, a
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fragment ω̄xt (ūxt ) = (x̄t , x̄t+1, . . . , x̄T ) of the optimal trajectory ω̄ in the subgame
Γ x̄t ∈ G(ū) should remain optimal trajectory for this subgame.

We employ the so-called Refined Leximin algorithm, introduced in [11] to find
optimal cooperative trajectory in Example 10.1. This approach looks reasonable for
the special case when the criteria have significantly different importance, and all
the players rank the criteria in the same order. In other circumstances, the players
may employ other appropriate methods to choose a unique Pareto optimal solutions
(an example of such methods—the rule of minimal sum of relative deviations from
the ideal payoffs vector—was suggested in [13]). Note that the main result of the
paper—Proposition 10.1—does not depend on the particular time consistent rule
which the players have agreed to use in order to choose a unique Pareto optimal
solution.

Let us briefly remind the main idea of the RL algorithm and the notations (the
reader could find the comprehensive specification of this algorithm in [11, 12]).
Suppose that all the criteria are ordered in accordance with their relative importance
for the players, namely let criterion 1 be the most important for every player i ∈ N ,
the next to be the 2-nd criterion, and so on, and the last criterion r be the least
important one. When choosing the optimal cooperative trajectory the players are
expected to maximise the total vector payoff primarily on the first criterion, i.e.

max
u∈U

∑

i∈N

Hi/1(u) =
∑

i∈N

Hi/1(ū) = H̄1.

If there exists a unique trajectory ω̄ = ω(ū) satisfying this condition then this
trajectory is called the optimal cooperative trajectory while ū) is the optimal
cooperative strategy profile.

If there are several trajectories ω(u) with
∑

i∈N Hi/1(u) = H̄1 the players should
choose such trajectory from this set PO1(Γ

x0) that

max
u∈PO1(Γ x0 )

∑

i∈N

Hi/2(u) = H̄2,

and so on. Lastly, if there are several trajectories ω ∈ {ω(u), u ∈ POr(Γ
x0)}, the

players should choose the trajectory from this set with minimal number j of the
terminal node yj .

We will suppose henceforth that the players have agreed to use the RL algorithm
in order to choose the optimal cooperative strategy profile ū ∈ PO(Γ x0) and the
corresponding optimal cooperative trajectory ω̄ = ω(ū) = (x̄0, . . . , x̄T ).

Let

MaxL
u∈U

∑

i∈N

Hi(u) =
∑

i∈N

Hi(ū) (10.3)
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denote the maximal (in the sense of the RL algorithm) total vector payoff. Note that
the Pareto optimal cooperative trajectory ω̄ = ω(ū) = (x̄0, . . . , x̄T ) based on the
RL algorithm was proved to satisfy time consistency [11].

Let us use the following example to demonstrate how the players choose the
cooperative trajectory and then to explore and compare the A-incremental IDP and
the refined A-incremental payment schedule.

Example 10.1 (A 3-Player Bicriteria Multistage Game) The game tree K is shown
in Fig. 10.1. Let n = 3, r = 2, P1 = {x0, x2, x4, x6}, P2 = {x1, x5}, P3 = {x3},
Pn+1 = {z1, . . . , z9},

h(xt ) =
(

h1/1(xt ) h2/1(xt ) h3/1(xt )

h1/2(xt ) h2/2(xt ) h3/2(xt )

)

,

i.e. the columns correspond to the players while the rows correspond to the
criteria. The players’ payoffs at all nodes x ∈ P\{x0} are:

h(x1) =
(

0 6 0
0 0 12

)

, h(x2) =
(

6 0 0
0 0 12

)

, h(x3) =
(

0 6 0
0 0 12

)

,

h(x4) =
(

6 0 0
0 12 0

)

, h(x5) =
(

0 6 0
0 0 12

)

, h(x6) =
(

6 0 0
0 0 12

)

,

x0 x1

x2 x3 x4

x5 x6 x7 = z9

z1

z3

z2

z5

z6

z7

z8

z4

Fig. 10.1 The game tree
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h(x7) =
(

30 30 30
60 30 30

)

, h(z1) =
(

18 0 0
18 0 0

)

, h(z2) =
(

0 18 0
0 18 0

)

,

h(z3) =
(

18 0 0
18 0 0

)

, h(z4) =
(

0 0 18
0 0 18

)

, h(z5) =
(

0 18 0
60 18 0

)

,

h(z6) =
(

18 0 0
18 0 0

)

, h(z7) =
(

90 6 0
162 0 6

)

, h(z8) =
(

18 0 0
150 0 0

)

,

There are three pure strategy Pareto optimal strategy profiles in PO(Γ x0):

ū1(x0) = x1, ū2(x1) = x2, ū1(x2) = x3, ū3(x3) = x4, ū1(x4) = x5,

ū2(x5) = x6, ū1(x6) = x7

that generates trajectory ω̄(ū) = (x0, x1, x2, x3, x4, x5, x6, x7),

u′
1(x0) = x1, u′

2(x1) = x2, u′
1(x2) = x3, u′

3(x3) = x4, u′
1(x4) = z7,

that generates trajectory ω̄(u′) = (x0, x1, x2, x3, x4, z7) and

u′′
1(x0) = x1, u′′

2(x1) = x2, u′′
1(x2) = x3, u′′

3(x3) = x4, u′′
1(x4) = x5,

u′
2(x5) = x6, u′′

1(x6) = z8

that generates trajectory ω̄(u′′) = (x0, x1, x2, x3, x4, x5, z8).
Using RL algorithm the players choose the optimal cooperative strategy profile

ū = (ū1, ū2, ū3) which generates the optimal cooperative trajectory ω̄ = ω(ū) =
(x0, x1, x2, x3, x4, x5, x6, x7) = (x̄0, x̄1, x̄2, x̄3, x̄4, x̄5, x̄6, x̄7).

After selecting a cooperative trajectory it is necessary to construct a vector-
valued characteristic function for a multicriteria cooperative game. In Example 10.1
we use a vector-valued analogue of the so-called ζ -characteristic function intro-
duced in [3] and again the RL algorithm (see [11] for details). Namely:

V x0(S) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, S = ∅
MinL

uj ,j∈N\S
∑

i∈S

Hi(ūS, uN\S), S ⊂ N,

MaxL

u∈U

∑

i∈N

Hi(u), S = N

(10.4)

where

MinL

uj ,j∈N\S
∑

i∈S

Hi(ūS, uN\S) = − MaxL

uj ,j∈N\S(−
∑

i∈S

Hi(ūS, uN\S)).
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Let Γ x0(N, V x0) denote multicriteria game Γ x0 ∈ MGP (n, r) with characteris-
tic function V x0 . It is worth noting that one can use other approaches to construct
characteristic function (CF) for multicriteria game, say classical α-CF or δ-CF [21],
but as it was mentioned in [3] the ζ -characteristic function is much more easy to
compute (it is essential especially for multicriteria case). Note that the main result
of the paper—Proposition 10.1—does not depend on the specific method which the
players employ to calculate the vector-valued characteristic function.

We assumed that the players adopt a single-valued cooperative solution ϕx0 (for
instance, the vector analogue of the Shapley value [9, 28]) for the cooperative game
Γ x0(N, V x0) which satisfies the efficiency property

n∑

i=1

ϕ
x0
i = V x0(N) =

T∑

τ=1

n∑

i=1

hi(x̄τ ), (10.5)

and the individual rationality property

ϕ
x0
i � V x0({i}), i = 1, . . . , n. (10.6)

Denote by Γ x̄t (N, V x̄t ), x̄t ∈ ω̄(ū), t = 0, . . . , T − 1 a subgame along the
optimal cooperative trajectory with the characteristic function V x̄t which can be
computed in the subgame using (10.4). Note that V x̄t (N) = ∑T

τ=t+1
∑

i∈N hi(x̄τ ).

In addition, we assume that the same properties (10.5) and (10.6) are valid for
the cooperative solutions ϕx̄t at each subgame Γ x̄t (N, V x̄t ), t = 0, . . . , T − 1.

10.4 Imputation Distribution Procedure and Its Properties

Let β = {βi/k(x̄τ )}, i = 1, . . . , n; k = 1, . . . , r; τ = 1, . . . , T denote the
Imputation Distribution Procedure—IDP [9, 18, 20, 25] or the payment schedule.
The IDP-based approach implies that the players have agreed to accumulate the
cooperative vector payoff

∑
i∈N Hi(ū) = V x0(N), obtained using the initial payoffs

hi(x̄τ ), and then allocate this summary payoff between the players along the
optimal cooperative trajectory ω̄(ū). Then βi/k(x̄τ ) corresponds to the actual current
payment which the player i receives at x̄τ w.r.t. criterion k (instead of hi/k(x̄τ ))
according to the IDP β.

From now on we suppose that the IDP β should satisfy the following assumption
(see [12] for details):

Assumption RIM (Reward Immediately After the Move) If x̄t ∈ Pi , t =
0, . . . , T − 1, then βj (x̄t+1) = 0 for all j ∈ N\{i}, i.e. the only player who can
receive nonzero current payment at node x̄t+1 is the player i which moves at the
previous node x̄t = S−1(x̄t+1).
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For given player i ∈ N let (yi
1, y

i
2, . . . , y

i
T (i)) denote the ordered set of all the

positions from the set Pi ∩ ω̄ along the optimal trajectory ω̄, where nodes {yi
τ } are

listed in order of their location in ω̄. Namely,

yi
1 = x̄t i(1), yi

2 = x̄t i(2), . . . , y
i
T (i) = x̄t i (T (i));

and for all yi
λ = x̄t i(λ) and yi

m = x̄t i (m), we have λ < m if and only if t (λ) < ti(m).
Below, we introduce a number of useful properties an acceptable IDP may satisfy

(see [9–11]). Note that we need to modify known definitions of efficiency and time
consistency to take assumption RIM into account.

To simplify the notations, henceforth we will omit superscript i in t i (λ), λ =
1, . . . , T (i), i.e. we will write βi(x̄t (λ)+1) instead of βi(x̄t i (λ)+1), e.t.c.

Definition 10.1 ([12]) The imputation distribution procedure β = {βi/k(xt )}
satisfies the efficiency condition if

T∑

t=1

βi(x̄t ) =
T (i)∑

λ=1

βi(x̄t (λ)+1) = ϕ
x̄0
i , i = 1, . . . , n. (10.7)

Indeed, if (10.7) holds then the payment schedule for every player can be
considered as a rule for the step-by-step allocation of the player i’s optimal payoff.

Definition 10.2 The IDP β = {βi/k(x̄t )} meets the time consistency (TC) inequality
if for every player i ∈ N such that |T (i)| � 2, for all τ = 1, . . . , T (i) − 1 it holds
that

τ∑

λ=1

βi(x̄t (λ)+1) + ϕ
x̄t(τ )+1
i � ϕ

x̄0
i . (10.8)

The vector inequality (10.8) implies that every player has an incentive to continue
cooperation at every subgame along the cooperative trajectory.

Definition 10.3 ([9]) The imputation distribution procedure β = {βi/k(x̄t )} satis-
fies the balance condition if ∀t = 0, . . . , T ; ∀k = 1, . . . , r it holds that

t∑

τ=1

n∑

i=1

βi/k(x̄τ ) ≤
t∑

τ=1

n∑

i=1

hi/k(x̄τ ) (10.9)

Note that (10.9) is always satisfied for t = T due to the efficiency condi-
tion (10.7) and (10.5). If β does not satisfy (10.9) at some intermediate node x̄t , we
will suppose that the players may borrow the required amount on account of future
earnings. For the sake of simplicity we assume that an interest-free loan is available
for the grand coalition N while recognising that in general case the enforcing of a
cooperative agreement may require extra costs (see [9]).
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Definition 10.4 ([9]) The IDP β satisfies the non-negativity constraint if

βi/k(x̄t ) � 0, i = 1, . . . , n; k = 1, . . . , r; t = 1, . . . , T .

Note that there could be different payment schedules that may or may not satisfy
the properties listed above (several IDP for multicriteria games are examined in [9–
11]). The A-incremental IDP that satisfies RIM assumption, efficiency constraint
and time consistency (equation) for multicriteria multistage game was suggested in
[12]:

Definition 10.5 The A-incremental imputation distribution procedure β =
{βi/k(x̄t )}, t = 0, . . . , T ; i ∈ N is formulated as follows

(c1) βi/k(x̄0) = 0, i = 1, . . . , n; k = 1, . . . r;
(c2) if x̄t ∈ Pi , t = 0, . . . , T − 1, then βj (x̄t+1) = 0 for all j ∈ N\{i};
(c3) if x̄t ∈ Pi and T (i) = 1, i.e. ω̄ ∩ Pi = (yi

1) = {x̄t (1)}, then

βi(x̄t (1)+1) = ϕ
x̄0
i (10.10)

(c4) if x̄t ∈ Pi and T (i) = 2, i.e. ω̄ ∩ Pi = (yi
1, y

i
2) = (x̄t (1), x̄t (2)), then

βi(x̄t (1)+1) = ϕ
x̄0
i − ϕ

x̄t(1)+1
i ; βi(x̄t (2)+1) = ϕ

x̄t(1)+1
i (10.11)

(c5) if x̄t ∈ Pi and T (i) ≥ 3, i.e. ω̄ ∩ Pi = (yi
1, y

i
2, . . . , y

i
T (i)) =

(x̄t (1), x̄t (2), . . . , x̄t (T (i))), then

βi(x̄t (1)+1) = ϕ
x̄0
i − ϕx̄t(1)+1;

βi(x̄t (λ)+1) = ϕ
x̄t(λ−1)+1
i − ϕ

x̄t(λ)+1
i , λ = 2, . . . , T (i) − 1;

βi(x̄t (T (i))+1) = ϕ
x̄t(T (i))−1)+1
i .

(10.12)

10.5 A-Incremental IDP May Imply Negative Current
Payments

Let us use the game from Ex. 1 to demonstrate the A-incremental IDP implementa-
tion and properties and to reveal one possible disadvantage of this payment schedule.
We will adopt the vector analogue of the Shapley value as an optimal cooperative
solution when analysing Ex. 1.
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Definition 10.6 ([22, 28]) The Shapley value of Γ x0(N, V x0) denoted by ϕx0 is
defined for each player i ∈ N as

ϕ
x0
i =

∑

S⊂N,i∈S

(n − |S|)!(|S| − 1)!
n! (V x0(S) − V x0(S \ {i})). (10.13)

Example 10.1 (Continued) The values of the vector-valued ζ -characteristic func-
tion (10.4) for the game Γ x0 are

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x0(S) 0 0 0 18 0 0 126
0 0 0 0 12 0 192

and the Shapley value for original game Γ x0 is

ϕx0 =
(

45 45 36
66 60 66

)

.

The vector-valued ζ -characteristic functions and the respective Shapley values
for the subgames along the cooperative trajectory ω̄ can be constructed using the
same approach.

The subgame Γ x1(N, V x1):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x1(S) 0 0 0 12 0 0 120
0 0 0 0 0 12 180

ϕx1 =
(

42 42 36
56 62 62

)

.

The subgame Γ x2(N, V x2):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x2(S) 0 0 0 6 6 0 114
0 0 0 0 84 0 168

ϕx2 =
(

40 37 37
70 28 70

)

.
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The subgame Γ x3(N, V x3):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x3(S) 0 0 0 0 6 0 108
0 0 0 0 72 12 156

ϕx3 =
(

37 34 37
60 30 66

)

.

The subgame Γ x4(N, V x4):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x4(S) 0 0 0 72 0 0 102
60 0 0 90 72 0 144

ϕx4 =
(

46 46 10
95 29 20

)

.

The subgame Γ x5(N, V x5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x5(S) 0 0 0 66 0 0 96
60 0 0 90 60 12 132

ϕx5 =
(

43 43 10
85 31 16

)

.

The subgame Γ x6(N, V x5):

S {1} {2} {3} {1, 2} {1, 3} {2, 3} N

V x6(S) 30 0 0 60 60 0 90
60 0 0 90 90 0 120

ϕx6 =
(

60 15 15
90 15 15

)

.

Applying the A-incremental IDP (10.10), (10.12), (10.13) we obtain the follow-
ing current payments along the optimal cooperative path ω̄ = (x̄0 = y1

1 , x̄1 =
y2

1 , x̄2 = y1
2 , x̄3 = y3

1 , x̄4 = y1
3 , x̄5 = y2

2 , x̄6 = y1
4 , x̄7) : β1(x̄1) = ϕ

x̄0
1 − ϕ

x̄1
1 =
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(
3

10

)

, β1(x̄3) = ϕ
x̄1
1 −ϕ

x̄3
1 =

(
5

−4

)

, β1(x̄5) = ϕ
x̄3
1 −ϕ

x̄5
1 =

( −6
−25

)

, β1(x̄7) =

ϕ
x̄5
1 =

(
43
85

)

, since T (1) = 4;

βj (x̄1) = βj (x3) = βj (x5) = βj (x7) =
(

0
0

)

, j = 2, 3;

β2(x̄2) = ϕ
x̄0
2 − ϕ

x̄2
2 =

(
8

32

)

, β2(x̄6) = ϕ
x̄2
2 =

(
37
28

)

since T (2) = 2;

βj (x̄2) = βj (x̄6) =
(

0
0

)

, j = 1, 3;

β3(x̄4) = ϕ
x̄0
3 =

(
36
66

)

since T (3) = 1; βj (x̄4) =
(

0
0

)

, j = 1, 2.

The efficiency condition for the player 1 and criterion 2 takes the form:

7∑

t=1

β1/2(x̄t ) =
4∑

λ=1

β1/2(x̄t (λ)+1) = 10 − 4 − 25 + 85 = 66 = ϕ
x̄0
1 .

The time consistency equations for the player 1 and criterion 2 take the form:

τ = 1 :
1∑

λ=1

β1/2(x̄t (λ)+1) + ϕ
x̄1
1 = 10 + 56 = 66 = ϕ

x̄0
1 ;

τ = 2 :
2∑

λ=1

β1/2(x̄t (λ)+1) + ϕ
x̄3
1 = 10 − 4 + 60 = 66 = ϕ

x̄0
1 ;

τ = 3 :
3∑

λ=1

β1/2(x̄t (λ)+1) + ϕ
x̄5
1 = 10 − 4 − 25 + 85 = 66 = ϕ

x̄0
1 .

As it was mentioned in the Introduction, the A-incremental IDP, as well as the
classical incremental IDP may imply negative current payments to some players at
some nodes (see [4, 9, 20] for details). Thus, in Example 10.1 the A-incremental
IDP implies negative payments to player 1 at x̄3 and x̄5.

10.6 Refined A-Incremental IDP and Its Implementation

Below we introduce a refinement of A-incremental payment schedule that is
designed to satisfy assumption RIM, efficiency, time consistency inequality and non-
negativity constraint.
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We will use an auxiliary integer variable ai/k(λ) to denote the number of
nodes x̄t (τ )+1 on the optimal cooperative path ω̄ from x̄τ to x̄t (λ)+1 for which
βi/k(x̄t (τ )+1) = 0 after the last positive current payment (one may call it the
payment delay variable). We assume that t i (0) = −1 for any i.

Definition 10.7 The refined A-incremental imputation distribution procedure β̂ =
{β̂i/k(x̄t )}, t = 0, . . . , T ; i ∈ N is formulated as follows

(c1) β̂i/k(x̄0) = 0, i = 1, . . . , n; k = 1, . . . r;
(c2) if x̄t ∈ Pi , t = 0, . . . , T − 1, then β̂j (x̄t+1) = 0 for all j ∈ N\{i};
(c3) if x̄t ∈ Pi and T (i) = 1, i.e. ω̄ ∩ Pi = (yi

1) = {x̄t (1)}, then

β̂i/k(x̄t (1)+1) = ϕ
x̄0
i/k (10.14)

(c4) if x̄t ∈ Pi and T (i) = 2, i.e. ω̄ ∩ Pi = (yi
1, y

i
2) = (x̄t (1), x̄t (2)), then

β̂i/k(x̄t (1)+1) = max{ϕx̄0
i/k − ϕ

x̄t(1)+1
i/k , 0} (10.15)

β̂i/k(x̄t (2)+1) = ϕ
x̄0
i/k − β̂i/k(x̄t (1)+1) (10.16)

(c5) if x̄t ∈ Pi and T (i) ≥ 3, i.e. ω̄ ∩ Pi = (yi
1, y

i
2, . . . , y

i
T (i)) =

(x̄t (1), x̄t (2), . . . , x̄t (T (i))), then

Step 1 (λ = 1):

β̂i/k(x̄t (1)+1) = max{ϕx̄0
i/k − ϕx̄t(1)+1, 0}; (10.17)

• if β̂i/k(x̄t (1)+1) > 0, then ai/k(1) = 0 (no delay in payment compared to
A-incremental IDP);

• if β̂i/k(x̄t (1)+1) = 0, then ai/k(1) = 1 (the delay in payment for a one
step).

Step 2 (λ = 2):

β̂i/k(x̄t (2)+1) = max{ϕx̄t(1−ai/k(1))+1

i/k − ϕ
x̄t(2)+1
i/k , 0}, (10.18)

• if β̂i/k(x̄t (2)+1) > 0, then ai/k(2) = 0;
• if β̂i/k(x̄t (2)+1) = 0, then ai/k(2) = ai/k(1) + 1.
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Step λ (λ = 2, . . . , T (i) − 1):

β̂i/k(x̄t (λ)+1) = max{ϕx̄t(λ−1−ai/k(λ−1))+1

i/k − ϕ
x̄t(λ)+1
i/k , 0}, (10.19)

• if β̂i/k(x̄t (λ)+1) > 0, then ai/k(λ) = 0 (no delay in payment);
• if β̂i/k(x̄t (λ)+1) = 0, then ai/k(λ) = ai/k(λ− 1) + 1 (the delay in payment

at x̄t (λ)+1 for ai/k(λ) steps).

Step λ = T (i):

β̂i/k(x̄t (T (i))+1) = max{ϕx̄0
i/k−

T (i)−1∑

λ=1

β̂i/k(x̄t (λ)+1), 0} = ϕ
x̄t(T (i)−1−ai/k (T (i)−1))+1

i/k

(10.20)

By the construction of this refined payment schedule the following proposition
holds.

Proposition 10.1 Refined A-incremental IDP satisfies assumption RIM, efficiency
condition (10.7), non-negativity constraint and time consistency inequality (10.8).

Now we will apply the refined A-incremental algorithm (10.14)–(10.20) to the
game from Example 10.1.

Example 10.1 (Continued) Note that if the A-incremental IDP implies non-
negative current payments to the ith player w.r.t. criterion k at all nodes along
the cooperative trajectory ω̄, then β̂i/k(x̄t ) = βi/k(x̄t ), x̄t ∈ ω̄. Hence, the current
payments to the player 2 and 3 according to the refined A-incremental IDP β̂ will
not change compared to the A-incremental IDP β.

Let us now consider the payments to the player i = 1:

β̂1/1(x̄1) = max{ϕx̄0
1/1 − ϕ

x̄1
1/1; 0} = 3, a1/1(1) = 0;

β̂1/2(x̄1) = max{ϕx̄0
1/2 − ϕ

x̄1
1/2; 0} = 10, a1/2(1) = 0;

β̂1/1(x̄3) = max{ϕx̄1
1/1 − ϕ

x̄3
1/1; 0} = max{5; 0} = 5, a1/1(2) = 0;

β̂1/2(x̄3) = max{ϕx̄1
1/2 − ϕ

x̄3
1/2; 0} = max{−4; 0} = 0, a1/2(2) = 1;

β̂1/1(x̄5) = max{ϕx̄3
1/1 − ϕ

x̄5
1/1; 0} = max{−6; 0} = 0, a1/1(3) = 1;

β̂1/2(x̄5) = max{ϕx̄1
1/2 − ϕ

x̄5
1/2; 0} = max{−29; 0} = 0, a1/2(3) = 2;

β̂1/1(x̄7) = ϕ
x̄3
1/1 = 37;

β̂1/2(x̄7) = ϕ
x̄1
1/2 = 56.

All the payments to player i = 1 are non-negative now. Note that the current
payments at x̄7 are less than the relevant payments according to the simple A-
incremental IDP.
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The efficiency condition for the player 1 and criterion 2 now takes the form:

7∑

t=1

β̂1/2(x̄t ) =
4∑

λ=1

β̂1/2(x̄t (λ)+1) = 10 + 0 + 0 + 56 = 66 = ϕ
x̄0
1 .

The time consistency inequalities for the player 1 and criterion 2 take the form:

τ = 1 :
1∑

λ=1

β̂1/2(x̄t (λ)+1) + ϕ
x̄1
1 = 10 + 56 ≥ 66 = ϕ

x̄0
1 ;

τ = 2 :
2∑

λ=1

β̂1/2(x̄t (λ)+1) + ϕ
x̄3
1 = 10 + 0 + 60 ≥ 66 = ϕ

x̄0
1 ;

τ = 3 :
3∑

λ=1

β̂1/2(x̄t (λ)+1) + ϕ
x̄5
1 = 10 + 0 + 0 + 85 ≥ 66 = ϕ

x̄0
1 .

Note that the refined A-incremental IDP may not necessarily satisfy balance
condition (10.9). Let us for instance consider the balance condition in Example 10.1
for t = 4 and k = 2:

4∑

τ=1

3∑

i=1

β̂i/2(x̄τ ) = 108 >

4∑

τ=1

3∑

i=1

hi/2(x̄τ ) = 48.

As it was firstly noted in [9], in general it is impossible to design a time consistent
IDP which satisfies both the balance condition and non-negativity constraint.

10.7 Conclusion

When analyzing Example 10.1, we adopt the Shapley value as an optimal imputation
and use the RL algorithm for choosing a unique Pareto optimal solution (to
find optimal cooperative trajectory and to construct vector-valued characteristic
function). It is worth noting that the provided algorithm to calculate the refined
A-incremental IDP as well as Proposition 10.1 remains valid if the players employ
another optimal imputation, other approach to calculate the characteristic function
and other time consistent rule for choosing a particular Pareto optimal solution, for
instance, the rule of minimal sum of relative deviations from the ideal payoffs vector
[13].

Note that, since the set of active players in extensive form game changes while
the game is evolving along the optimal path, multistage game could be considered
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as an example of the so-called “games with changing conditions”. The RIM
assumption and the proposed refined A-incremental payment schedule allows taking
into account this specific feature of a n-person multistage game. It is worth noting
that similar assumptions could be implied implicitly in some ancient texts—cf., for
instance, the so-called “History of King David’s ascent to power” in connection
with David’s activity at the beginning of his career (see, e.g.: [30]). The detailed
interdisciplinary analysis of the relevant motivation for “optimal” behaviour could
be an interesting issue for further research.
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