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Abstract

We establish the analogue of the Cayley–Hamilton theorem for the quantum matrix

algebras of the symplectic type.
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1 Introduction

Let V be a vector space equipped with a bilinear nondegenerate (symmetric or antisymmetric)
form. The Brauer algebra [Br] generalizes the tower of the centralizing algebras which appears
in the Brauer–Schur–Weyl duality, related to V . The Birman–Murakami–Wenzl algebra [BW,
Mur] is the quantum deformation of the Brauer algebra. Important particular cases of local
representations of the tower of the Birman–Murakami–Wenzl (BMW) algebra are constructed
with the use of orthogonal and symplectic R-matrices. These R-matrices give rise to the quantum
matrix algebras of the orthogonal and symplectic types. More precisely, a quantum matrix
algebra is defined by a compatible pair {R,F} of R-matrices, we recall the definitions below.
The general structure properties of quantum matrix algebras with R of the BMW type were
investigated in [OP]. In the present work we mainly assume R to be of the symplectic type.
Our principal goal is to derive, for the quantum matrices of the symplectic type, an analogue of
the Cayley–Hamilton identity and to use it for a description of the spectra of the corresponding
quantum matrices.

In Section 2 we recall the necessary facts about the Birman-Murakami-Wenzl (BMW) al-
gebras, their R-matrix realizations, specializations to the symplectic and orthogonal cases and
some R-matrix technique.

2



Section 3 contains the information from [OP] about the quantum matrix algebra, its ‘char-
acteristic subalgebra’ (the subalgebra to which the coefficients of the Cayley-Hamilton identity
belong) and the ⋆-multiplication.

The main results are in Section 4. Here we establish the Cayley–Hamilton theorem for
the symplectic quantum matrix algebras. Classically, the symplectic group is defined by the
condition M tΩM = Ω where Ω is the symplectic form. However we have to a work with a bigger
group defined by the condition M tΩM = gΩ where g is a constant, that is with the group of
transformations which preserve the form up to a multiplicative factor. We call ‘2-contraction’
the quantum analogue of this factor. It is an element g of the quantum matrix algebra. For a
general compatible pair {R,F}, the element g is not necessarily central so we cannot harmlessly
set it to 1. We establish a strengthened form of the Cayley–Hamilton theorem which does
not assume the invertibility of the element g (and which is equivalent to the Cayley–Hamilton
theorem under the assumption of the invertibility of g).

Next, we define in Section 4 a homomorphism from the characteristic subalgebra to the
algebra of symmetric polynomials in some set of commuting (“spectral”) variables. The nature
of this homomorphism reflects the reciprocity properties of the characteristic polynomials for the
symplectic matrices. The Cayley-Hamilton identities under the action of this homomorphism
are completely factorized and hence the spectral variables can be treated as eigenvalues of the
quantum matrix. We then give the spectral parameterization of the three series of elements of
the characteristic subalgebra: the power sums pi, the elementary symmetric functions ai and
the complete symmetric functions si.

Section 4 contains also the low-dimensional examples illustrating the Cayley–Hamilton the-
orem for two most known quantum matrix algebras: the algebra of functions on the quantum
group (corresponding to the compatible pair {R,P} where P is the flip) and the reflection equa-
tion algebra [C, KS] (the reflection equation algebra corresponds to the compatible pair {R,R}).
Also we discuss the classical limit of the Cayley–Hamilton theorem.

The Cayley–Hamilton identity for the quantum matrix algebras of the orthogonal type will
be considered in a separate publication.

2 BMW algebra and their R-matrix representations

In this section we present definitions and describe necessary facts about the Birman-Murakami-
Wenzl algebras and the BMW type R-matrices. We follow notation of ref. [OP] where the
reader can find detailed derivations and the references. Later in the section we investigate two
families of the BMW type R-matrices, the Sp(2k) type and the O(k) type R-matrices. They are
related, respectively, to the symplectic and orthogonal series of the quantum groups. We identify
particular conditions on the eigenvalues which are specific for these families of R-matrices. In
the following section we will use the symplectic R-matrices for the definition of Sp(2k) type
quantum matrix algebras. Specific properties of the Sp(2k) type R-matrices will then dictate a
form of the Cayley-Hamilton identites in these algebras.
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2.1 BMW algebra

The Birman-Murakami-Wenzl (BMW) algebra Wn(q, µ) [BW, Mur] depending an two complex
parameters q ∈ C\{0,±1} and µ ∈ C\{0, q,−q−1} is defined in terms of generators {σi, κi}

n−1
i=1

and relations

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi ∀ i, j : |i− j| > 1,

σiκi = κiσi = µκi, κi =
(q1−σi)(q−11+σi)

µ(q−q−1)
, (2.1)

κi+1κi = κi+1σ
±1
i σ±1

i+1, κiκi+1κi = κi ∀ i.

The first line is the Artin’s presentation of the braid group Bn; the rest of relations define the
quotient algebra Wn(q, µ) ⊂ C[Bn].

Imposing further restrictions on the parameters

jq :=
qj − q−j

q − q−1
6= 0 , µ 6= ∓ q∓(2j−3) ∀ j = 2, 3, . . . , n , (2.2)

one can define recursively two sets of idempotents

a(1) := 1, s(1) := 1, (2.3)

a(i+1) :=
qi

(i+ 1)q
a(i) σ−

i (q
−2i) a(i), s(i+1) :=

q−i

(i+ 1)q
s(i) σ+

i (q
2i) s(i), (2.4)

where

σ±
i (x) := 1 +

x− 1

q − q−1
σi +

µ(x− 1)

µ∓ q∓1x
κi .

The idempotents a(n) and s(n) in the algebra Wn(q, µ) are primitive. They correspond to the
q-deformations of the ‘trivial’ (σi 7→ q) and the ‘alternating’ (σi 7→ −q−1) one-dimensional
representations. Therefore, they are called an n-th order antisymmetrizer and an n-th order
symmetrizer, respectively.

2.2 R-matrices and their compatible pairs

Let V denote a finite dimensional C-linear space, dimV = n. Fixing some basis {vi}
n
i=1 in V

we identify elements X ∈ End(V ⊗n) with matrices Xj1j2...jn
i1i2...in

.

Let X ∈ End(V ⊗k), k ≤ n. For 1 ≤ m ≤ n− k + 1, denote by Xm ∈ End(V ⊗n) an operator
given by the matrix

(Xm)j1...jni1...in
:= I

j1...jm−1

i1...im−1
X

jm...jm+k−1

im...im+k−1
I
jm+k...jn
im+k...in

.

Here I denotes the identity operator.

An element R ∈ Aut(V ⊗2) that fulfills an equation

R1R2 R1 = R2 R1R2 .
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is called an R-matrix. The permutation operator P , defined by P (u⊗ v) = v⊗ u ∀ u, v ∈ V is
the R-matrix. The operator R−1 is the R-matrix iff R is.

Any R-matrix R generates representations ρR of the series of braid groups Bn, n = 2, 3, . . .

ρR : Bn → Aut(V ⊗n) , σi 7→ Ri, 1 ≤ i ≤ n− 1.

An R-matrix is called skew invertible if there exists an operator Ψ
R
∈ End(V ⊗2) such that

Tr(2)R12ΨR23 = Tr(2)ΨR12R23 = P13 . (2.5)

Here we use notation Xij which shows explicitly indices i and j of the spaces where operator X

acts, e.g., P13 = P j1j3
i1i3

Ij2i2 . Symbol Tr(i) means taking the trace in the vector space with index i.

For a skew invertible R-matrix R define the operator DR ∈ End(V )

(DR)1 := Tr(2)ΨR12. (2.6)

The operator R is called strict skew invertible if DR is invertible. The R-matrix R−1 is skew
invertible iff R is strict skew invertible [I, O], the corresponding operator DR−1 reads

(DR−1)2 =
(
Tr(1)ΨR12

)−1
.

With a skew invertible R-matrix R we associate a linear map on the space of n×n matrices
whose entries belong to some C-linear space W

Tr
R
: End(V )⊗W → W, Tr

R
(M) =

∑n

i,j=1(DR)
j
iM

i
j , M ∈ End(V )⊗W ,

This map is called an R-trace.

It is easy to check that the R-matrix P is strict skew invertible and TrP coincides with the
usual trace. A characteristic property of the R-trace map is

Tr
R(2)R1 = I1. (2.7)

An ordered pair {R,F} of two R-matrices R and F is called a compatible R-matrix pair if
the following conditions

R1 F2 F1 = F2 F1 R2 , R2 F1 F2 = F1 F2 R1 , (2.8)

are satisfied. The equalities (2.8) are called twist relations. Clearly, {R,P} and {R,R} are
compatible pairs of R-matrices.

A compatible pair of R-matrices {R,F} gives rise to a new R-matrix

Rf := F−1RF , (2.9)

called the twisted R-matrix. The R-matrix pair {Rf , F} is compatible. If R is skew invertible and
F is strict skew invertible, then Rf is skew invertible; if additionally R is strict skew invertible,
then Rf is strict skew invertible as well [OP].
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2.3 BMW type R-matrices

Assume that an R-matrix R satisfies a third order minimal characteristic polynomial

(qI −R)(q−1I +R)(µI −R) = 0, (2.10)

and an element
K := µ−1(q − q−1)−1 (qI −R)(q−1I +R) (2.11)

fulfills conditions
K2K1 = K2R

±1
1 R±1

2 , K1 K2K1 = K1. (2.12)

In this case R generates representations ρR of the tower of the BMW algebras Wn(q, µ) →
End(V ⊗n) ∀n > 1

ρR : Wn(q, µ) → Aut(V ⊗n) , σi 7→ Ri, κi 7→ Ki, 1 ≤ i ≤ n− 1.

Such R-matrix is said to be of BMW type.

If the R-matrix R is skew invertible and of the BMW type, then it is strict skew invertible
and the rank of the associated operator K (2.11) equals 1; the R-trace map in this case fulfills
equalities [IOP3]

Tr
R(2)K1 = µ I1, TrR I = (q−µ)(q−1+µ)

q−q−1 . (2.13)

Let {R,F} be a compatible pair of R-matrices, where R is skew-invertible of the BMW type
and F is strict skew-invertible. In [OP] we associated with such a pair an invertible operator
G ∈ Aut(V ) and two invertible linear maps, φ and ξ, acting on the space End(V )⊗W whereW is
an arbitrary vector space. We extensively use the operator G and maps φ and ξ in investigations
of the BMW type quantum matrix algebras (see, e.g., sections 3, 4 below). Here we present
formulas for them and for their inverses. The operator G and its inverse read

G1 := Tr(23)K2F
−1
1 F−1

2 , G−1
1 = Tr(23)F2F1K2. (2.14)

The maps φ and ξ are defined by

φ(M)1 := Tr
R(2)

(
F1M1F

−1
1 R1

)
, (2.15)

ξ(M)1 := Tr
R(2)

(
F1M1F

−1
1 K1

)
. (2.16)

Here M is an arbitrary operator with values in a vector space W , M ∈ End(V ) ⊗ W . The
inverse maps read

φ−1(M)1 = µ−2Tr
R

(2)
f

(
F−1
1 M1R

−1
1 F1

)
(2.17)

ξ−1(M)1 = µ−2Tr
R

(2)
f

(
F−1
1 M1K1F1

)
. (2.18)

Here the matrix DRf
which is needed for calculations of the Rf -traces is

DRf
= DF−1(DR−1)−1DF .
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2.4 Orthogonal and symplectic type R-matrices

Consider R-matrix realizations ρR(a
(i)) of the antisymmetrizers (2.4). We impose additional

constraints on a skew invertible BMW-type R-matrix R demanding that

rk ρR(a
(i)) 6= 0 ∀ i = 2, 3, . . . , k and ρR

(
a(k)σ−

k (q
−2k)a(k)

)
≡ 0 (2.19)

for some k ≥ 2. Here we assume that the parameters q, µ fulfill conditions (c.f. with the
conditions (2.2) )

iq 6= 0 ∀ i = 2, 3, . . . , k; µ 6= −q−2i+1 ∀ i = 1, 2, . . . , k. (2.20)

Note that in case (k + 1)q 6= 0 the last condition in eq. (2.19) means vanishing of the (k + 1)-st
antisymmetrizer: ρR(a

(k+1)) = 0. We do not use this short form to avoid unnecessary restrictions
on the parameter q.

An R-matrix satisfying the conditions (2.19) is called an R-matrix of finite height; the number
k is called the height of the R-matrix.

Let us discuss some consequences of the relations (2.19). Applying Tr
R(i) to ρR(a

(i)) and
using the relations (2.4), (2.7) and (2.13), we calculate

Tr
R(i)ρR(a

(i)) = δi ρR(a
(i−1)) (2.21)

where δi ≡ δi(q, µ) := −
qi−1(µ+ q1−2i)(µ2 − q4−2i)

(µ+ q3−2i)(q − q−1)iq
. In view of eqs.(2.21), the last condition in

(2.19) implies, in particular, that δk+1 = 0, wherefrom one specifies three admissible values of
µ: µ ∈ {−q−1−2k,±q1−k}.

Notice that the choice µ = −q1−k contradicts the conditions (2.20) in the case when the
number k is even. In the case when k is odd, the choices µ = −q1−k and µ = q1−k are related
by a substitution R 7→ −R. On the algebra level, this corresponds to an algebra isomorphism
(see [OP], section 2.2) ι′′ : Wn(q, µ) → Wn(−q,−µ), ι′′(σi) = −σi, i = 1, . . . , n − 1. The anti-
symmetrizers a(i) are invariant under this map. Therefore we are left with only two essentially
different choices of the parameter µ: either µ = −q−1−2k or µ = q1−k. With these choices, the
consistency of the conditions on µ in eq.(2.20) follows from the conditions on q.

We are now ready to define families of the orthogonal and symplectic R-matrices.

Definition 2.1 Let R be a skew invertible BMW-type R-matrix. Assume additionally that the
R-matrix R has finite height k for some k ≥ 2. This implies, in particular, restrictions on q:
iq 6= 0 for i = 2, . . . , k. Then

a) R is called a Sp(2k)-type R-matrix in the case when µ = −q−1−2k;

b) R is called an O(k)-type R-matrix in the case when µ = q1−k and rk ρR(a
(k)) = 1.

For the standard R-matrices related to the quantum groups of the series Spq(2k) and SOq(k)
[RTF], the conditions a) and b), respectively, and the relations (2.19) are fulfilled. This explains
our terminology.
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The main subject of this paper is an investigation of the general structure of the quan-
tum matrix algebras associated with the R-matrices of symplectic type (see next sections). For
illustration purposes in subsection 4.3 we consider examples of such algebras related to the stan-
dard Sp(2k)-type R-matrices. For reader’s convenience we recall formulas for these particular
symplectic R-matrices.

The standard Sp(2k)-type R-matrix (see [RTF]) reads

R(st) :=
2k∑

i,j=1

q(δij−δij′ )Eij ⊗ Eji+(q − q−1)
2k∑

1≤j<i

{
Ejj ⊗ Eii − q(ρi−ρj)ǫiǫj Ei‘j ⊗ Eij′

}
. (2.22)

Here Eij are 2k × 2k matrix units; δij is the Kronecker symbol;

i′ = 2k + 1− i ; ǫi = −ǫi′ = 1 ; ρi = −ρi′ = (k + 1− i) ∀i : 1 ≤ i ≤ k. (2.23)

The corresponding matrices K(st) and DR(st) are

K(st) =
2k∑

i,j=1

q−(ρi+ρj)ǫiǫj′Eij ⊗ Ei′j′ , DR(st) =
2k∑

i=1

q−(2k+2ρi+1)Eii . (2.24)

Remark 2.2 For the family of symplectic R-matrices, the case k = 1 is particular: the antisym-
metrizer ρR(a

(2)) vanishes and the minimal polynomial of R becomes quadratic. The R-matrix
R(st), up to normalization and reparameterization q 7→ q1/2, is of the Hecke type GL(2) (see
Sp(2) examples in the subsection 4.3). This is a manifestation of the accidental isomorphism
SL(2) ∼ Sp(2). Accidental isomorphisms for quantum groups, corresponding to the standard
deformation, are discussed in [JO].

Remark 2.3 Functions

∆(i)(q, µ) := Tr
R(1, 2, . . . , i)ρR(a

(i)) =

i∏

j=1

δj(q, µ)

are, up to an overall factor, particular elements of a set of rational functions Qλ(µ
−1, q) labelled

by partitions λ ⊢ i; we have ∆(q, µ) = µiQ[1i](µ
−1, q). The functions Qλ(µ

−1, q) were introduced
in Theorem 5.5 in [W]. They describe the q-dimensions of the highest weight modules Vλ for
the orthogonal and symplectic quantum groups (see [W], Section 5 and [OrW], Lemma 3.1).

3 Quantum matrix algebra

In this section we recall definitions and main facts about the quantum matrix algebras from [OP].
A special attention is paid to the family of BMW type quantum matrix algebras. The notion
of the characteristic subalgebra is introduced and two of its generating sets are described. The
⋆-product of the quantum matrices is defined. It substitutes for the usual matrix multiplication
in the case of quantum matrices. All these data are necessary for a proper generalization of the
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Cayley-Hamilton theorem to the case of quantum matrix algebras. The latter is done in the
next section.

Let {R,F} be a compatible pair of R-matrices. In the sequel we assume that R and F are
strict skew invertible although some definitions can be given without this condition. A quantum
matrix algebra M(R,F ) is a quotient algebra of the free associative unital algebra W = C〈M b

a〉
by a two-sided ideal generated by entries of the matrix relation

R1M1M2 = M1M2R1 . (3.1)

Here M = ‖M b
a‖

n
a,b=1 is the matrix of generators; the matrix copies Mi are constructed with the

help of the R-matrix F in the following way

M1 := M1, Mi := Fi−1Mi−1F
−1
i−1 . (3.2)

The set of relations
RiMiMi+1 = MiMi+1Ri (3.3)

for any given value of the index i ≥ 1 is equivalent to (3.1) and can be as well used for the
definition of the quantum matrix algebra.

Denote by C(R,F ) a vector subspace of the quantum matrix algebra M(R,F ) spanned
linearly by the unity and elements

ch(α(n)) := Tr
R(1, . . . , n)(M1 . . .Mn ρR(α

(n))) , n = 1, 2, . . . , (3.4)

where α(n) is an arbitrary element of the braid group Bn. The space C(R,F ) is a commutative
subalgebra in M(R,F ) (this is proved in the article [IOP1] which deals with the Hecke type
quantum matrix algebras but the proof is valid for an arbitrary compatible pair {R,F}). The
algebra C(R,F ) is called the characteristic subalgebra of M(R,F ).

Denote by P(R,F ) a linear subspace of End(V ) ⊗ M(R,F ) spanned by C(R,F )-multiples
of the identity matrix, I ch ∀ ch ∈ C(R,F ), and by elements

M1 :=M, (Mα(n)
)1 :=Tr

R(2, . . . , n)(M1 . . .Mn ρR(α
(n))), n = 2, 3, . . . , (3.5)

where α(n) belongs to the braid group Bn. The space P(R,F ) carries a structure of a right
C(R,F )–module

Mα(n)
ch(β(i)) = M (α(n)β(i)↑n) ∀α(n) ∈ Bn, β

(i) ∈ Bi , n, i = 1, 2, . . . , (3.6)

Here, in the right hand side, we denoted by the same symbol α(n) the image of the element
α(n) under the natural monomorphism Bn →֒ Bn+i : σj 7→ σj. The symbol β(i)↑n in the right
hand side denotes the image of the element β(i) under the natural monomorphism Bi →֒ Bn+i :

σj 7→ σj+n−1. Formula (3.6) is just a component-wise multiplication of the matrix Mα(n)
by the

element ch(β(i)).

9



We call ⋆-product the binary operation P(R,F ) ⊗ P(R,F ) →⋆ P(R,F ) defined by

(ch(β(i))I) ⋆Mα(n)
:= Mα(n)

ch(β(i)) =: Mα(n)
⋆ (ch(β(i))I),

(ch(α(n))I) ⋆ (ch(β(i))I) := (ch(α(n))ch(β(i)))I,

Mα(n)
⋆ Mβ(i)

:= M (α(n)⋆β(i)), (3.7)

where we use the notation α(n) ⋆ β(i) := α(n)β(i)↑n(σn . . . σ2σ1σ
−1
2 . . . σ−1

n ).

The ⋆-product on P(R,F ) is associative [OP].

In what follows we often use the ⋆-multiplication by the matrix of generators of the quantum
matrix algebra M(R,F ). Explicitly it reads, see [OP],

M ⋆N = M · φ(N) ∀N ∈ P(R,F ), (3.8)

where · denotes the usual matrix multiplication and the map φ is defined in (2.15). In particular,
one can introduce the noncommutative analogue of the matrix power:

M0 := I , Mn := M ⋆M ⋆ · · · ⋆ M︸ ︷︷ ︸
n times

= M (σ1σ2...σn−1). (3.9)

Here we use symbol Mn for the n-th power of the matrix M .

3.1 BMW type

If R is an R-matrix of the BMW, Sp(2k) or O(k) type then M(R,F ) is called, respectively, a
BMW, Sp(2k) or O(k) type quantum matrix algebra.

For the BMW type quantum matrix algebra the following relations are satisfied as a conse-
quence of (3.1)

KiMiMi+1=µ
−2Ki g = MiMi+1 Ki ∀ i ≥ 1, (3.10)

where

g :=
µ(q − q−1)

(q − µ)(q−1 + µ)
Tr

R(1, 2) (M1M2 K1) . (3.11)

The element g is called a 2-contraction of M .

For the quantum matrix algebra of the BMW type the 2-contraction g is an element of
the characteristic subalgebra. The characteristic subalgebra of the BMW type quantum matrix
algebra is generated by either one of the sets {g, pi}i≥0, where

p0 = TrRI = (q−µ)(q−1+µ)
q−q−1 , p1=TrR M, pi = ch(σi−1 . . . σ2σ1) i = 2, 3, . . . , (3.12)

or {g, ai}i≥0, where

a0 = 1, ai = ch(a(i)) i = 1, 2, . . . . (3.13)

Elements pi and ai are called power sums and elementary symmetric functions, respectively.
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For the Hecke type quantum matrix algebra, the corresponding algebra P(R,F ), as the
C(R,F )-module, is spanned by the matrix powers Mn, n ≥ 0, of the generating matrix M . For
the BMW type quantum matrix algebra this is not the case. Namely, as the C(R,F )–module,
the BMW type algebra P(R,F ) is spanned by matrices (see [OP], proposition 4.11)

Mn and M⊺(Mn+2) , n = 0, 1, . . .

Here we introduced a C(R,F )–module map M⊺ : P(R,F ) → P(R,F )

M⊺(N) := M · ξ(N), ∀N ∈ P(R,F ), (3.14)

where the map ξ is given in (2.16).

The BMW type algebra P(R,F ) is commutative [OP].

To define inverse powers of the quantum matrix M one considers the extension of the BMW
type algebra M(R,F ) by the inverse g−1 of the 2-contraction

g−1 g = g g−1 = 1 , g−1 M = (G−1MG) g−1 . (3.15)

where the numeric matrices G±1 ∈ Aut(V ) are defined in eqs. (2.14). The latter relation
in (3.15) is justified by the permutation rules for the 2-contraction. For an arbitrary matrix
N ∈ P(R,F ) it reads

N g = g (G−1NG). (3.16)

Proof. In a particular case N = M — the matrix of generators of M(R,F ) this formula
is proved in [OP], lemma 4.13. Consequently, by lemma 3.11, eq. (3.45), [OP], we have
Mj g = g (G−1

j Mj Gj), j = 1, 2, . . . Thus for u = M1 . . .Mn ρR(α
(n))), α(n) ∈ Bn, we have

ug = gG1G2 . . . GnuG
−1
n . . . G−1

2 G−1
1 . By the cyclic property of the trace and lemma 3.11, eq.

(3.44), G2 . . . Gn cancels with G−1
n . . . G−1

2 which proves eq.(3.16) for N = Tr
R(2, . . . , n)(u). �

The extended algebra, which we shall further denote by M
•
(R,F ), contains the inverse

matrix to the matrix M

M−1 = µ ξ(M) g−1, M ·M−1 = I = M−1 ·M. (3.17)

The matrix M−1 is the inversion of M with respect to the usual matrix product. Inversion with
respect to the ⋆-product looks differently

M−1 = φ−1(M−1), M−1 ⋆ M = I = M ⋆M−1. (3.18)

In general, M−1 6= M−1.

One can define the unique extension P
•
(R,F ) of the algebra P(R,F ) by a repeated ⋆-

multiplication with M−1

M−1 ⋆ N := φ−1(M−1 ·N) =: N ⋆M−1 ∀ N ∈ P
•

(R,F ) . (3.19)

The algebra P
•
(R,F ) is associative and commutative with respect to the ⋆-product. It is also

the right C
•
(R,F )-module algebra with respect to the extension C

•
(R,F ) ⊃ C(R,F ) of the

characteristic subalgebra by the element g−1.
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Particular examples of the ⋆-multiplication by M−1 are the inverse ⋆-powers of M

M−n := M−1 ⋆ · · · ⋆ M−1⋆︸ ︷︷ ︸
n times

I.

The ⋆-powers obey the usual rules of the ⋆-product of matrix powers: M i⋆Mn = M i+n ∀ i, n ∈
Z.

4 Cayley-Hamilton theorem

The Cayley-Hamilton theorem for the orthogonal and symplectic quantum groups was stated in
the unpublished text [OP2]. Here we establish and discuss in details a strengthened version of
the Cayley-Hamilton theorem in the symplectic case.

Throughout this section we assume that {R,F} is a compatible pair of R-matrices, in which
the operator F is strict skew invertible and the operator R is skew invertible of the BMW-type
and, hence, strict skew invertible.

In the subsection 4.1 we investigate matrix relations in the algebra P(R,F ) involving ‘wedge’

powers of the quantum matrix M : Ma(i) , 0 ≤ i ≤ n. We confine the eigenvalues q and µ of the
matrix R by conditions

iq 6= 0, µ 6= −q3−2i ∀ i = 2, 3, . . . , n,

in which case all the antisymmetrizers a(i) ∈ Wn(q, µ), i = 2, 3, . . . , n, and, hence, the elements

ai ∈ C(R,F ) and the matrices Ma(i) ∈ P(R,F ) are well defined.

Conditions on R specific for the R-matrices of the type Sp(2k), are imposed in Subsection
4.2.

4.1 Basic identities

Consider a set of ‘wedge’ powers of the quantum matrix M : Ma(i) ∈ P(R,F ). Following [OP],
we introduce series of matrices in P(R,F ), which we further refer to as ‘descendants’ of the

matrices Ma(i) .

A(m,i) := iq M
m ⋆ Ma(i)

B(m+1,i) := iq M
m ⋆ M⊺(Ma(i))

∀ i,m : 1 ≤ i ≤ n, m ≥ 0. (4.1)

It is suitable to set, by definition,

A(m,0) := 0 and B(m,0) := 0 ∀ m ≥ 0 . (4.2)

and to complement the series by the elements1

A(−1,i) := iq φ
−1
(
Tr

R(2, 3, . . . i)M2M3 . . .Mi ρR(a
(i))
)

,

B(0,i) := iq φ
−1
(
ξ
(
Ma(i)

))
.

(4.3)

The following recursive relations among the descendants are derived in [OP]:

1Note that A(−1,i) and B(0,i) belong to the extension of the algebra P(R,F ) by the ⋆-inverse matrix M−1.
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Lemma 4.1 For 0 ≤ i ≤ n − 1 and m ≥ 0, the matrices A(m−1,i+1) and B(m+1,i+1) satisfy
equalities

A(m−1,i+1) = qiMm ai − A(m,i) −
µq2i−1(q − q−1)

1 + µq2i−1
B(m,i) , (4.4)

B(m+1,i+1) =
(
µ−1q−iMm ai +

q − q−1

1 + µq2i−1
A(m,i) − B(m,i)

)
g . (4.5)

By a repeated use of these recurrent relations one can derive for a certain subset of the
descendants their expansions in terms of non-negative matrix powers M j, j ≥ 0, only2. For
the Hecke type QM-algebras analogues of these expansions are known as the Cayley-Hamilton-
Newton identities [IOP, IOP1, IOPS].

Proposition 4.2 For 1 ≤ i ≤ n and m ≥ i− 2, one has

A(m,i) = (−1)i−1
i−1∑

j=0

(−q)j
{
Mm+i−j +

1− q−2

1 + µq2i−3

i−j−1∑

r=1

Mm+i−j−2r(q2g)r
}
aj . (4.6)

For 1 ≤ i ≤ n and m ≥ i, one has

B(m,i) = (−1)i−1
i−1∑

j=0

(−q)j
{
µ−1q−2jMm−i+jgi−j

−
q−1(1− q−2)

1 + µq2i−3

i−j−1∑

r=1

Mm+i−j−2r(q2g)r
}
aj . (4.7)

Proof. We employ induction on i. In the case i = 1, the relations (4.6) and (4.7) reproduce
the definitions (4.1):

A(m,1) = Mm+1 , B(m,1) = µ−1Mm−1g .

It is then straightforward to verify the induction step i → i+1 with the help of the relations
(4.4) and (4.5). �

Remark 4.3 When m ≥ i − 2 (respectively, m ≥ i), all the ⋆ -powers of M in the right
hand side of the relation (4.6) (respectively, the relation (4.7) ) are non-negative. This is why
we specify these restrictions on m. For an invertible matrix M , the restrictions on m can be
removed.

Remark 4.4 The Hecke type version of these relations can be reproduced by setting g = 0
in formulas of Proposition 4.2. Relation for B(m,j) becomes trivial. Relation (4.6) for A(m,j)

2By Proposition 4.11 [OP], one expects also presence of the terms M⊺(M j) in the expansions of generic
descendants.
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simplifies drastically, the terms with the element g disappear and the condition m ≥ i − 2
weakens to m ≥ −1. For m = 0, the relation (4.6) reproduces the Cayley–Hamilton–Newton
identities found in [IOP, IOP1]. The R-trace maps of these identities are the Newton relations.
In the GL(k)-case, that is, if the operator R fulfills the condition ρR(a

(k+1)) = 0, the left hand
side of the relation (4.6) vanishes in the case i = k + 1. Then, with the choice m = −1 the
relation (4.6) reproduces the Cayley–Hamilton identity.

4.2 Cayley-Hamilton theorem: type Sp(2k)

Specifying to the case of the Sp(2k)-type quantum matrix algebra, we notice that the condi-
tion µ = −q−1−2k leads to the following linear dependency between A(m−1,k+1), see (4.4), and
B(m+1,k+1), see (4.5):

(
B(m+1,k+1) + qA(m−1,k+1)g

)∣∣∣
µ=−q−1−2k

= 0 ∀ m ≥ 0 . (4.8)

The height k condition (2.19) on the Sp(2k)-type R-matrix R cuts the series of ’descendants’
A(m,i) and B(m,i) at the level i = k + 1: A(m−1,k+1) = B(m+1,k+1) = 0 ∀ m ≥ 0. The Cayley-
Hamilton theorem follows exactly from these cutting conditions. The relations (4.8) show that
all the conditions for B(m+1,k+1) follow from the conditions for A(m−1,k+1). In turn, by eqs.
(4.1) and (4.3) we have

A(m−1,k+1) = Mm ⋆ A(−1,k+1). (4.9)

Thus, all the cutting conditions arise from the single one

A(−1,k+1) = 0 . (4.10)

Unfortunately, the latter condition cannot be expressed in terms of nonnegative powers of the
matrix M only. By Proposition 4.2, for the condition

A(k−1,k+1) = 0 (4.11)

such an expression does exist.
The relations (4.10) and (4.11) are equivalent if the 2-contraction g and, hence, the matrix

M are invertible. We shall first investigate the condition (4.11). Substituting µ = −q−1−2k and
(4.6) into (4.11) and rearranging terms of the sum we obtain the Cayley-Hamilton theorem for
the quantum matrices of the type Sp(2k):

Theorem 4.5 Let M(R,F ) be the Sp(2k)-type quantum matrix algebra. Then the quantum
matrix M of the algebra generators satisfies the Cayley-Hamilton identity

2k∑

i=0

(−q)iM2k−iǫi = 0 , (4.12)

where

ǫi :=

[i/2]∑

j=0

ai−2j g
j , ǫk+i := ǫk−i g

i ∀ i = 1, 2, . . . , k . (4.13)
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Let us now consider the matrix identity (4.10). In case of non-invertible g, this identity is
more informative than the Cayley-Hamilton identity (4.12). Matrix components of its left hand
side are k-th order homogeneous polynomials in the components of the quantum matrix M ,
containing, apart of M , ⋆-powers of yet another quantum matrix obtained from M by a linear
map π := µφ−1◦ ξ (see eqs. (2.16), (2.17)).

Lemma 4.6 For the compatible pair {R,F} of strict skew invertible R-matrices, where R is of
the BMW-type, the map π := µφ−1◦ ξ does not depend on F . The explicit formulas for π and
π−1 read:

π(M)1 = Tr
R(2)R12M1K12 = Tr

R(2)K12M1R12 . (4.14)

π−1(M)1 = µ−2Tr
R(2)R

−1
12 M1K12 = µ−2 Tr

R(2)K12M1R
−1
12 . (4.15)

Proof. Instead of proving the first equality in (4.14) directly it is easier to verify the relation
φ(Tr

R(2)R1M1K1) = µ ξ(M)1:

φ
(
Tr

R(2)R1M1K1

)
= Tr

R(2)F12

{
Tr

R(2′)R12′M1K12′

}
F−1
12 R12

= Tr
R(23)F1

{
F2R1M1K1F

−1
2

}
F−1
1 R1

= Tr
R(23)R2F1F2M1F

−1
2 F−1

1 K2R1

= Tr
R(23)F1M1F

−1
1 K2R1R2 (4.16)

= Tr
R(23)F1M1F

−1
1 K2K1

= µTr
R(2)F1M1F

−1
1 K1 = µ ξ(M).

Here in calculations we underline terms which undergo a transformation in the next step. For
the transformations we used the compatibility relations for the pair {R,F} (2.8), BMW algebra
relations for the matrices R and K (2.12), first formula in (2.13), and the following properties
of the R-trace (see [OP], lemma 3.2 and corollary 3.4)

Tr
R(2)F

±1
1 X1 F

∓1
1 = I1 TrRX ∀ X ∈ End(V )⊗W,

where W is a C-linear space, and
[
R12, DR1DR2

]
= 0

which is equivalent to

Tr
R(12)Y1 R1 = Tr

R(12)R1 Y1 ∀ Y ∈ End(V ⊗2)⊗W.

The second equality in relation (4.14) holds for an arbitrary BMW type R-matrix R.

To prove formula (4.15) one notices that the map π is proportional to the map ξ for the pair
{R,R}. Thus the first equality in (4.15) follows from the formula for ξ−1 for the pair {R,R},
see (2.18). The second equality in (4.15) is obtained from the first one by the same remark as
for the map π. �
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Until the end of this subsection we let M to be the matrix of generators of the BMW type
quantum matrix algebra M(R,F ).

In general, the matrix π(M) does not belong to the algebra P(R,F ). On the other hand,
π(M) is related to the ⋆-inverse of the matrix M (see (3.18))

π(M) = M−1g = M−1 ⋆ Ig (4.17)

and thus belongs to the extended algebra P
•
(R,F ). The formula for the ⋆-product for the matrix

π(M) is clearly induced from that for M−1 (see (3.19)) and the permutation rules for g (see
(3.16)):

π(M) ⋆ N := N ⋆ π(M) := µφ−1(ξ(M) ·G−1NG), ∀ N ∈ P(R,F ). (4.18)

Complementing the algebra P(R,F ) with the ⋆-multiples of π(M)

π(M)n := π(M) ⋆ · · · ⋆ π(M)︸ ︷︷ ︸
n times

one obtains an intermediate extension P◦(R,F ) ⊃ P(R,F ), P◦(R,F ) ⊂ P•(R,F ). It is this
algebra where the matrix A(−1,k+1) belongs to.

Now we are ready to write down the identity (4.10) in terms of ⋆-powers of the matrices M
and π(M).

Proposition 4.7 Let M(R,F ) be the Sp(2k)-type quantum matrix algebra. The matrix M of
generators of this algebra and its image π(M) under the map (4.14) satisfy the following k-th
order matrix polynomial identity

k∑

i=0

(−q)iMk−iǫi + q2k
k−1∑

i=0

(−q)−iπ(M)k−iǫi = 0 . (4.19)

Here the coefficients ǫi, i = 1, . . . , k, are given by eq. (4.13).

4.3 Simple examples and classical limit.

In this section we present the Cayley-Hamilton and ‘pre-Cayley-Hamilton’ identities (4.12) and
(4.19) for the standard RTT- and RE-algebras corresponding to the Sp(2k)-type R-matrix (2.22)
in cases k = 1, 2.

Standard Sp(2)-type RTT-algebra is the quantum matrix algebra M(R(st), P ), where the R-
matrix R(st) (2.22) and permutation P act on a tensor square of the 2-dimensional vector space.
We use the symbol T for the 2 × 2 matrix of generators of this algebra. Permutation relations
for its components T i

j , i, j ∈ {1, 2} are identical to the permutaton relations of the standard
GLq2(2)-type RTT-algebra:

q2T i
2T

i
1 = T i

1T
i
2, q2T 2

i T
1
i = T 1

i T
2
i , [T 2

1 , T
1
2 ] = 0, [T 2

2 , T
1
1 ] = (q−2 − q2)T 1

2 T
2
1 . (4.20)

The R-matrix image ρR(st)(a(2)) of the second order antisymmetrizer vanishes in this particular
case and, therefore, there is no any additional g-covariance conditions.
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The two generators of the characteristic subalgebra g and a1 read

g =
q−6

q2 + q−2

(
q−2 T 1

1 T
2
2 + q2 T 2

2 T
1
1 − T 1

2 T
2
1 − T 2

1 T
1
2

)

= q−6
(
T 1
1 T

2
2 − q2 T 1

2 T
2
1

)
, (4.21)

a1 = Tr
R
T = q−5 T 1

1 + q−1 T 2
2 ,

where the second simplified expression for g is obtained with the help of the permutation relations
(4.20). The 2-contraction g is central in this case (the matrix G for the R-matrix pair {R(st), P}
equals the unity), while the element a1 is not.

To write down the characteristic identities for this algebra we need explicit expressions for
the maps φ (2.15) and π (4.14)

φ(T ) =

(
q−4 T 1

1 +(1−q−4)T 2
2 q−6 T 1

2

q−2 T 2
1 T 2

2

)
, π(T ) =

(
(q−6+q−2)T 1

1+q−2 T 2
2 −q−2 T 1

2

−q−2 T 2
1 q−6 T 2

2

)
. (4.22)

The Cayley-Hamilton identity (4.12) and its parent identity (4.19), respectively, read

T 2 − q T a1 + q2 I g = 0, (4.23)

T − q I a1 + q2 π(T ) = 0, (4.24)

where T 2 = T · φ(T ).

We note that the identity (4.23) coincides with the Cayley-Hamilton identity for the standard
GLq2(2)-type RTT-algebra (see [EOW, IOP, IOP2]), where the 2-contraction g plays the role of
the quantum determinant of the matrix T . In this particular case the Cayley-Hamilton identity
(4.23) encodes the half of the permutation relations (4.20); in general, a half-quantum matrix
of GL type satisfies the Cayley-Hamilton identity [CFR, IO].

Another specific feature of the Sp(2) case is that the ‘parent’ Cayley-Hamilton identity
(4.24) being linear in generators is satisfied without any reference to the quadratic permutation
relations.

The standard Sp(2)-type Reflection Equation (RE) algebra is the quantum matrix algebra
M(R(st), R(st)), where the R-matrix R(st) (2.22) acts on the tensor square of the 2-dimensional
vector space. We use the symbol L for the 2 × 2 matrix of generators of this algebra. The
permutation relations for its components Li

j, i, j ∈ {1, 2}, are identical to the permutation
relations for the standard GLq2(2)-type RE-algebra:

Li
jL

1
1 = q4(j−i) L1

1L
i
j, [L2

2, L
1
2] = (1− q−4)L1

1L
1
2,

[L2
2, L

2
1] = −q−4(1− q−4)L1

1L
2
1, (4.25)

[L2
1, L

1
2] = (1− q−4)L1

1(L
1
1 − L2

2).

The two generators of the characteristic subalgebra g and a1 are

g =
q−4

q2 + q−2

(
L1
1L

2
2 + L2

2L
1
1 − (1− q−4) (L1

1)
2 − L1

2L
2
1 − q4 L2

1L
1
2

)

= q−2
(
L1
1L

2
2 − (1− q−4) (L1

1)
2 − L1

2L
2
1

)
, (4.26)

a1 = Tr
R
L = q−5 L1

1 + q−1 L2
2,
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where the second expression for g is obtained with the use of permutation relations (4.25). As
for any RE-algebra, the generators g and a1 are central.

Another distinguishing property of the RE-algebras — the identity of the map φ — makes
their characteristic identity (4.23) particularly simple and similar to the classical case. In our
situation it reads

L2 − q L a1 + q2 I g = 0, (4.27)

where L2 means the usual matrix square of L and the coefficients g and a1 are given by (4.26).
Again, this matrix equality encodes half of the permutation relations (4.25).

As stated in lemma 4.6 the map π depends on the first R-matrix from the compatible pair
{R,F} only. Hence, for the RTT- and RE-algebra generating matrices T and L the map π
is literally the same (see (4.22)), and the parent Cayley-Hamilton identities for the Sp(2)-type
RTT- and RE-algebras coincide (see 4.24).

Next, we consider a less trivial example in order to demonstrate the results of this section in
a greater generality. It is the standard Sp(4)-type RTT-algebra — the quantum matrix algebra
M(R(st), P ), where the R-matrix R(st) (2.22) and the permutation P now act on the tensor square
of the 4-dimensional vector space. We keep notation M for the 4×4 matrix of generators of this
algebra. Quadratic relations in this algebra consist of 120 permutation relations for 16 matrix
components, and of 10 additional conditions. The latter ones together with expression for the
2-contraction g can be extracted from the matrix equalities (3.10), where i = 1 and µ = −q−5

in our case. All the quadratic relations and the expressions for g are collected in the Appendix.
There and in the formulas below it is suitable to break the 4×4 matrix M into four 2×2 blocks
A, B, C and D:

M =

(
A B
C D

)
. (4.28)

The coefficients ǫ1 and ǫ2 of the Cayley-Hamilton identity, together with the 2-contraction g
generate the characteristic subalgebra. The 2-contraction g is central, while ǫi, i = 1, 2, are not.
Expression for g is given in the Appendix (see eq.(A.2)); formulas for ǫi read

ǫ1 = a1 = q−9A1
1 + q−7A2

2 + q−3D1
1 + q−1D2

2,

ǫ2 = a2 + g = q−16(A1
1A

2
2 − qA1

2A
2
1)

+ q−4(D1
1D

2
2 − qD1

2D
2
1) + q−12(D1

1 + q2D2
2)(A

1
1 + q2A2

2)

− q−12
(
q−1C1

1B
1
1 − (q − q−1)C1

1B
2
2 + C1

2B
2
1 + C2

1B
1
2 + q3C2

2B
2
2

)
.

To write down the characteristic identities we also need expressions for the maps ξ±1, φ±1. They
are

ξ(M) =

(
−q−5σq(D) q−8σq(B)

q−2σq(C) −q−5σq(A)

)
,

φ(M) =

(
q−6α+

q (A) + (1− q−2)βq(D) q−7α−
q (B)

q−1α−
q (C) α+

q (D)

)
,

ξ−1(M) = ξ(M)|q↔q−1 , φ−1(M) = φ(M)|q↔q−1 . (4.29)
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Here σq, α
±
q , βq are linear maps of the 2× 2 matrices

σq(X) =

(
X2

2 q−1X1
2

qX2
1 X1

1

)
, α±

q (X) =

(
q−2X1

1 ± (1−q−2)X2
2 q−3X1

2

q−1X2
1 X2

2

)
,

βq(X) = (q−2X1
1+X2

2 )I + q−4σq(X), (4.30)

The following properties of these maps make the check of the relations (4.29) staightforward:

(σq)
−1 = σ1/q, (α±

q )
−1 = α±

1/q
, βq ◦ α

+
1/q

= q−4 α+
q ◦ β1/q.

The composite map π = −q−5(φ−1 ◦ ξ)(M) reads explicitly

π(M) =

(
q−4(α+

1/q ◦ σq)(D)− q−8(1− q−2)(β1/q ◦ σq)(A) −q−6(α−
1/q ◦ σq)(B)

−q−6(α−
1/q ◦ σq)(C) q−10(α+

1/q ◦ σq)(A)

)
.

Now we are ready to write down the characteristic identities (4.12) and (4.19) for the case
of the standard Sp(4)-type RTT-algebra:

M4 − qM3 ǫ1 + q2M2 ǫ2 − q3M ǫ1g + q4I g2 = 0, (4.31)

M2 − qM ǫ1 + q2I ǫ2 − q3π(M) ǫ1 + q4π2(M) = 0. (4.32)

For reader’s convenience we recall formulas for the powers of quantum matrices:

M i+1 = M · φ(M i) ∀ i ≥ 1, π2(M) = −q−5 φ−1(ξ(M) · π(M)),

where in the last formula we took into account that µ = −q−5 and G = I in our particular case.

Using the definitions of the maps ξ, φ±1, π and of the elements ǫ1, ǫ2 given above, and apply-
ing the quadratic relations from the Appendix one can check the parent characteristic identity
(4.32) directly. The Cayley-Hamilton identity (4.31) follows from it by the ⋆-multiplication by

M2.

Finally, we consider the classical limit of the parent Cayley-Hamilton identities. In the
limit q → 1 the standard Sp(2k)-type R-matrix (2.22) becomes the usual permutation and the
quadratic relations (3.1) in the corresponding algebra M(P,P ) imply the commutativity of the
components of matrix M . The rank = 1 projector K(st) (2.24) decouples from the R-matrix and
the g-invariance conditions (3.10) become independent of (3.1) and should be treated separately.
We rewrite them in the familiar form

M tΩM = gΩ = M ΩM t. (4.33)

Here M t is the transposed matrix and Ω is the 2k×2k matrix of the symplectic quadratic form.
With our choice of the rank = 1 matrix K(st) it reads

Ω =

(
0 w

−w 0

)
,
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where w is the k × k antidiagonal matrix: wi
j = δij′ , j′ = k + 1− j.

Notice that in case g 6= 0 (more formally, if g is invertible) the left and right equalities in
(4.33) result in equivalent sets of conditions. On the contrary, in case g = 0 these equalities are
not equivalent and only together they give the complete set of the g-invariance conditions.

Again, it is suitable to use the block notation (4.28) for the matrix M , where now A, B, C
and D are k × k matrices. The matrix π(M) in this notation is

π(M) = −ΩM tΩ =

(
D′ −B′

−C ′ A′

)
,

where X ′ = wXtw. This operation is a classical counterpart of the map σq from our previous
example.

The classical parent Cayley-Hamilton identity reads

k∑

i=0

(−1)iMk−iǫi +

k−1∑

i=0

(−1)iπ(M)k−iǫi = 0 , (4.34)

where now all matrix powers are calculated according to the usual rules (the map φ in the
classical limit is identical) and the coefficients ǫi become usual traces of the i-th wedge powers
of the matrix M : ǫi = Tr (∧iM) (the antisymmetrizers computed with the permutation matrix
P automatically include contributions from the 2-contraction g).

Assuming the invertibility of the matrix A one can solve the g-invariance relations explicitly

M =

(
A AY
XA XAY + gA′−1

)
=

(
I 0
X I

)(
A 0
0 gA′−1

)(
I Y
0 I

)
. (4.35)

where matrices X, Y are such that X ′ = X, Y ′ = Y .

Substituting this parameterization for M into the identity (4.34) one can reduce it, at least
in cases k = 1, 2, to the Cayley-Hamilton identities for k × k matrices A and XY .

4.4 Spectral parameterization

In this section we describe the parameterization the coefficients of the characteristic polynomial
(4.12) by means of a C-algebra E2k of polynomials in 2k + 1 pairwise commuting variables νi,
i = 0, 1, . . . , 2k, satisfying conditions

νk+i νk+1−i = ν20 ∀ i = 1, 2, . . . , k . (4.36)

We call νi, i = 0, 1, . . . , 2k, spectral variables. These variables play a role of the eigenvalues of the
symplectic type quantum matrix M . This parameterization was initially aimed at comparing
our results with expressions given for the power sums for the RE-algebras in [Mudr] (see the
subsection 8.3 there). Although the derivation methods are very different the results agree up
to some obvious changes in a notation. Notice that compared to [Mudr] we are working in a
more general setting. The generalization goes in several directions. First, we do not assume a
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“standard” Drinfel’d-Jimbo’s form for the R-matrices defining the algebra and, moreover, we do
not use any deformation assumptions in our constructions. Next, we are working with a wider
family of QM-algebras. And, finally, we are working directly in the algebra without passing to
representations3.

We are going to factorize the polynomial in the left hand side of the equation (4.12). To this
end, we realize elements of the characteristic subalgebra C(R,F ) as polynomials in the spectral
variables and construct a corresponding extention of the algebra P(R,F ).

Proposition 4.8 In the setting of the theorem 4.5, assume that the elements ai, i = 1, 2, . . . , k,
are algebraically independent. Consider an algebra homomorphism of the characteristic subalge-
bra C(R,F ) to the algebra of the spectral variables E2k, πSp(2k) : C(R,F ) → E2k , defined on the
generators by

πSp(2k) : g 7→ ν20 , ai 7→ ei(ν0,−ν0, ν1, ν2, . . . , ν2k) ∀ i = 1, . . . , k , (4.37)

where ei are the elementary symmetric polynomials of their arguments (for the symmetric poly-
nomials we adopt a notation of [Mac]). The map πSp(2k) defines naturally a left C(R,F )–module
structure on the algebra E2k. Consider a corresponding completion of the algebra P(R,F ),

PSp(2k)(R,F ) := P(R,F )
⊗

C(R,F )
E2k ,

where the ⋆ -product on the completed space is given by the formula

(N
⊗

C(R,F )
ν)⋆(N ′ ⊗

C(R,F )
ν ′) := (N⋆N ′)

⊗

C(R,F )
(νν ′) ∀ N,N ′ ∈ P(R,F ) and ∀ ν, ν ′ ∈ E2k . (4.38)

Then, in the completed algebra PSp(2k)(R,F ), the Cayley-Hamilton identity (4.12) acquires a
factorized form

2k∏

i=1

⋆ (M − qνiI) = 0 , (4.39)

where the symbol
∏
⋆ denotes the product with respect to the ⋆ -multiplication (4.38).

Remark 4.9 For the classical symplectic groups, the functions ai, i = 1, . . . , k, on the manifold
Sp(2k) are functionally independent. This justifies, at least perturbatively, the corresponding
assumptions about the independence of the elements ai in the proposition above.

Remark 4.10 For a general quantum matrix algebra M(R,F ) the characteristic subalgebra
does not belong to its center. So, there is no general rule to define an extension by the spectral
variables {νi} of the algebra M(R,F ). Nevertheless the commutative algebra PSp(2k)(R,F )
admits the central extension by the spectral variables. Therefore we formulate the factorized
Cayley-Hamilton identity for this extension.

However, for the reflection equation algebra M(R,R) the characteristic subalgebra lies in
the center, the ⋆-product coincides with the usual matrix product and therefore one can assume
that eq.(4.39) is satisfied in the central extension of M(R,R) by the spectral variables {νi}.

3Passing to the representations level is hardly possible except in the RE-algebra case. The reason is that the
characteristic subalgebra belongs to the center of the RE-algebra, which is not true for the general QM-algebra.
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Proof. Using the equalities

ei(ν0,−ν0, ν1, ν2, . . . , ν2k) = ei(ν1, ν2, . . . , ν2k)− ν20 ei−2(ν1, ν2, . . . , ν2k) ∀ i ≥ 0

and ek+i(ν1, ν2, . . . , ν2k) = ν2i0 ek−i(ν1, ν2, . . . , ν2k) ∀ i = 1, . . . , k,

if {νi} verifies eqs.(4.36), it is straightforward to check that the map πSp(2k) sends the coefficients
(4.13) of the Cayley-Hamilton identity to the elementary symmetric functions in the spectral
variables: ǫi 7→ ei(ν1, ν2, . . . , ν2k) ∀ i = 1, . . . , 2k . �

In [OP] we have derived the quantum analogs of the Newton and Wronsky relations among
three series of elements of the characteristic subalgebra: the power sums pi, the elementary
symmetric functions ai and the complete symmetric functions si. Using these relations we now
obtain the parameterization of the series pi and si in terms of the spectral variables.

Proposition 4.11 Let M(R,F ) be the Sp(2k)-type quantum matrix algebra. Assume that the
algebra parameter q fulfills the conditions iq 6= 0, i = 2, . . . , n, for some n.4 Then the elements
an and sn can be defined recursively by the use of the Newton relations (see [OP], theorem 5.2)

n−1∑

i=0

(−q)iai pn−i = (−1)n−1nq an + (−1)n
⌊n/2⌋∑

i=1

(
µqn−2i − q1−n+2i

)
an−2i g

i, (4.40)

n−1∑

i=0

q−isi pn−i = nq sn +

⌊n/2⌋∑

i=1

(
µq2i−n + qn−2i−1

)
sn−2i g

i. (4.41)

In this situation the elements sn and pn have the following images under the homomorphism
πSp(2k) (4.37):

πSp(2k) : sn 7→ hn(ν1, ν2, . . . , ν2k), pn 7→ qn−1
2k∑

i=1

diν
n
i , (4.42)

where hn denotes the complete symmetric polynomial in its arguments and

di :=
νi − q−4ν2k+1−i

νi − ν2k+1−i

2k∏

j=1
j 6=i, 2k+1−i

νi − q−2νj
νi − νj

. (4.43)

The power sums contain the rational functions di in the spectral variables and are themselves
rational functions in {νi}. However, as it follows from the Newton recursion (4.40), the power
sums simplify, modulo the relations (4.36), to polynomials in the spectral variables.

Proof. For the proof, we use the following auxiliary statement:

4For n ≤ k these conditions enter the initial settings for the Sp(2k) type quantum matrix algebras.
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Lemma 4.12 In the assumptions of proposition 4.11, consider the iterations

s′0 = s0 , s′1 = s1 , s′i = si + s′i−2 g ; (4.44)

p′0 = (1− µ2q2)/(q − q−1) , p′1 = p1 , p′i = pi + (q−2p′i−2 − pi−2) g ∀i ≥ 2. (4.45)

The modified sequences {s′i}
n
i=0, {p

′
i}

n
i=0 satisfy the following versions of the Newton and Wronski

relations

n−1∑

i=0

q−isip
′
n−i = nqsn ∀ n ≥ 1 ; (4.46)

n∑

i=0

(−1)iais
′
n−i = δn,0 ∀ n ≥ 0 . (4.47)

Proof. For n < 2, the equalities (4.46)–(4.47) are clearly satisfied. For n ≥ 2, one can check
them inductively, applying the iterative formulas (4.44), (4.45). �

We now notice that the images of the elements ai, i = 1, . . . , n, are given by the elementary
symmetric functions (see eq.(4.37)). Hence, by the Wronski relations (4.47), the images of the
modified elements s′n, i = 1, . . . , n, are the complete symmetric functions in the same arguments.
Using then eq.(4.44) and taking into account the relation hn(ν0, ν1, . . . ) =

∑n
i=0 ν

i
0 hn−i(ν1, . . . ),

it is easy to check the formulas for the images of the elements sn, which are given in eq.(4.42).

To check the formulas for the power sums, we use the following statement, which was proved
in [GS]: if the elements si for i = 0, 1, . . . , n ≥ 1 are realized as the complete symmetric
polynomials hi in some set of variables {νi}

2k
i=1, then the elements p′n, defined by eqs.(4.46), have

the following expressions in terms of the variables νi

p′n = qn−1
p∑

i−1

d̂iν
n
i , where d̂i :=

p∏

j=1
j 6=i

νi − q−2νj
νi − νj

. (4.48)

The proof of (4.42), (4.43) for the power sums pn proceeds as follows.

Assuming that the relation (4.48) stays valid for p′0 (note, p′0 is not fixed by the recursion
(4.46)) and making the Ansatz (4.42) for the power sums pi for i = 0, 1, . . . , n, we make use of
the recursion (4.45). Upon substitutions, we find that the relations (4.45) hold valid provided
that

di =
ν2i − q−4ν20
ν2i − q−2ν20

d̂i . (4.49)

Taking into account the relations (4.36) for the spectral variables νi ∈ E2k, we observe that the
conditions (4.49) dictate the choice (4.43) for di.

It remains to verify the initial settings for the recursion (4.45). They are:

p′0 = q−1
2k∑

i=1

d̂i =
1− µ2q2

q − q−1
|µ=−q−1−2k = q−2k(2k)q , (4.50)

p1 = p′1 ⇔

2k∑

i=1

νi(di − d̂i) = 0, (4.51)
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as well as the expression (3.12) for p0:

p0 = q−1
2k∑

i=1

di = TrRI|µ=−q−1−2k = q−1−2k
(
(2k + 1)q − 1

)
. (4.52)

To verify them, we use expansions of the following rational functions

w1(z) :=

2k∏

i=1

z − q−2νi
z − νi

, w2(z) :=
ν20w1(z)

z2 − q−2ν20
, w3(z) := zw2(z)

in simple ratios.
Expanding w1(z) and evaluating the result at z = 0, we prove immediately the condition

(4.50).
A less trivial check of the condition (4.52) we comment in more details. Expanding w2(z),

we obtain

w2(z) =

2k∑

i=1

q2(di − d̂i)
νi

z − νi
+

qν0
2

(w1(q
−1ν0)

z − q−1ν0
−

w1(−q−1ν0)

z + q−1ν0

)
.

Here, for the transformation of the first term in the right hand side, we used the formulas (4.48)
and (4.49) and applied the relations (4.36), which confine the variables νi ∈ E2k. The relations
(4.36) also allow us to calculate w1(±q−1ν0) = q−2k. Thus, evaluating w2(z) at z = 0, we obtain

w2(0) = −q2−4k = −q3(p0 − p′0) − q2−2k ,

wherefrom the condition (4.52) follows.

A check of the condition (4.51), by the expansion and evaluation of w3(z) at z = 0, is a
similar calculation. �

A Standard Sp(4)-type RTT-algebra.

Here we present quadratic relations for the Sp(4)-type RTT-algebra M(R,P ) corresponding to
the standard symplectic R-matrix (2.22), where we take k = 2. The 2-contraction g turns out
to be central in this algebra. With the additional condition g = µ2 1 = q−10 1 this algebra can
be interpreted as the quantized algebra of functions on the Lie group Sp(4).

For the 4× 4 matrix of generators of this algebra we use the following notation

M =

(
A B
C D

)
, (A.1)

where A, B, C, and D are 2×2 matrices. For any matrix X ∈ {A,B,C,D} we denote its matrix
components as Xi

j , i, j ∈ {1, 2}.

Quadratic relations in the standard Sp(4)-type RTT-algebra contain 120 permutation rela-
tions for 16 components of the quantum matrix M and 10 additional conditions (3.10) which
are responsible for invariance of the symplectic form encoded in the rank= 1 projector K.
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For the presentation of the permutation relations we fix the following linear order on the
components of M :

X1
1 < X1

2 < X2
1 < X2

2 ∀X ∈ {A,B,C,D}, Di1
j1

< Ci2
j2

< Bi3
j3

< Ai4
j4

∀ ik, jk = {1, 2}.

Permutation relations among the components of the 2x2 matrices A, . . . ,D take a universal
form:

q Xi
2X

i
1 = Xi

1X
i
2, q X2

i X
1
i = X1

i X
2
i , [X2

1 ,X
1
2 ] = 0, [X2

2 ,X
1
1 ] = −λX1

2X
2
1 ,

where in the last formula and below we use the shorthand notation λ := q − q−1.
The rest 96 permutation relations between the components of different matrices A, B, C

and D are separated into eight groups according to the type of permutation. In the formulas
below indices i, j take values 1 or 2; i′ := 3− i.

Commutators:

[A2
i , B

1
i ] = [Ai

2, C
i
1] = [Bi

2,D
i
1] = [C2

i ,D
1
i ] = 0,

[Bi
j , C

i
j ] = 0, [B1

2 , C
2
1 ] = 0;

q-commutators:

Ai
jB

i
j − q Bi

jA
i
j = Ai

jC
i
j − q Ci

jA
i
j = Bi

jD
i
j − q Di

jB
i
j = Ci

jD
i
j − q Di

jC
i
j = 0,

A2
1B

1
2 − q B1

2A
2
1 = A1

2C
2
1 − q C2

1A
1
2 = B1

2D
2
1 − q D2

1B
1
2 = C2

1D
1
2 − q D1

2C
2
1 = 0,

B1
iC

2
i − q C2

i B
1
i = 0, Bi

2C
i
1 − q−1Ci

1B
i
2 = 0;

q2-commutators:

Ai
1B

i
2 − q2Bi

2A
i
1 = A1

iC
2
i − q2C2

i A
1
i = B1

iD
2
i − q2D2

iB
1
i = Ci

1D
i
2 − q2Di

2C
i
1 = 0;

commutators with ±λ-additional term (this just means that the numeric coefficient of an extra
term is equal to ±λ):

[A1
i , B

2
i ]− λB1

i A
2
i = [Ai

1, C
i
2]− λCi

1A
i
2 = [Bi

1,D
i
2]− λDi

1B
i
2 = [C1

i ,D
2
i ]− λD1

iC
2
i = 0,

[Ai
j ,D

i
j ]− λCi

jB
i
j = 0, [B2

2 , C
1
1 ]− λC2

1B
1
2 = 0, [B1

1 , C
2
2 ] + λC2

1B
1
2 = 0;

q-commutators with ±q±1λ-additional term:

Ai
iB

i′

i′ − q Bi′

i′A
i
i − λq B1

2A
2
1 = Ai

iC
i′

i′ − q Ci′

i′A
i
i − λq C2

1A
1
2 = 0,

Bi
iD

i′

i′ − q Di′

i′B
i
i − λq D2

1B
1
2 = Ci

iD
i′

i′ − q Di′

i′C
i
i − λq D1

2C
2
1 = 0,

A1
iD

2
i − q D2

iA
1
i − λq C2

i B
1
i = B2

i C
1
i − q C1

i B
2
i − λq C2

i B
1
i = 0,

Bi
1C

i
2 − q−1Ci

2B
i
1 + λq−1Ci

1B
i
2 = 0;

q-commutators with ±λ-additional term:

Ai
1D

i
2 − q Di

2A
i
1 − λCi

1B
i
2 = 0.
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q2-commutators with ±q2λ-additional term:

Ai
2B

i
1 − q2Bi

1A
i
2 − λq2Bi

2A
i
1 = A2

iC
1
i − q2C1

i A
2
i − λq2C2

i A
1
i = 0,

B2
i D

1
i − q2D1

iB
2
i − λq2D2

iB
1
i = Ci

2D
i
1 − q2Di

1C
i
2 − λq2Di

2C
i
1 = 0.

More complicated relations:

Ai
2D

i
1 − q−1Di

1A
i
2 = λq−3Ci

1B
i
2 + λ2qq

−1Ci
2B

i
1,

A2
iD

1
i − q−1D1

iA
2
i = λq2C2

i B
1
i + λ2q C

1
i B

2
i ,

A1
2B

2
1 − q−1B2

1A
1
2 = λq2B1

2A
2
1 + λ2q B

1
1A

2
2,

A2
1C

1
2 − q−1C1

2A
2
1 = λq2C2

1A
1
2 + λ2q C

1
1A

2
2,

B2
1D

1
2 − q−1D1

2B
2
1 = λq2D2

1B
1
2 + λ2q D

1
1B

2
2 ,

C1
2D

2
1 − q−1D2

1C
1
2 = λq2D1

2C
2
1 + λ2q D

1
1C

2
2 ,

[B2
1 , C

1
2 ] = λC2

2B
1
1 − λC1

1B
2
2 + λ2C2

1B
1
2 ,

[A1
1,D

2
2 ] = −λD1

2A
2
1 + λq−2C1

1B
2
2 + λ2q C

2
1B

1
2 ,

[A1
2,D

2
1 ] = λq−2C2

1B
1
2 + λ2q C

2
2B

1
1 ,

[A2
1,D

1
2 ] = λq2C2

1B
1
2 + λ2q C

1
1B

2
2 ,

[A2
2,D

1
1] = λD2

1A
1
2 + λq−2C1

1B
2
2 + λ2q C

1
2B

2
1 + λ2q−2C2

1B
1
2 + λ22q C

2
2B

1
1 .

Finally, from the matrix relations

M1M2K12 = K12M1M2 = µ−2K12 g = q10K12 g

we extract two equivalent expressions for g

g = q−10
(
D1

1A
2
2 + qD1

2A
2
1 − q−2C1

2B
2
1 − q−3C1

1B
2
2

)

= q−10
(
D2

2A
1
1 + q−1D1

2A
2
1 − q−2C2

1B
1
2 − q−3C1

1B
2
2

)
, (A.2)

and 10 invariance conditions

B1
1A

2
2 + q B1

2A
2
1 − q B2

1A
1
2 − q2B2

2A
1
1 = D1

1C
2
2 + q D1

2C
2
1 − q D2

1C
1
2 − q2D2

2C
1
1 = 0,

C1
1A

2
2 + q C2

1A
1
2 − q C1

2A
2
1 − q2C2

2A
1
1 = D1

1B
2
2 + q D2

1B
1
2 − q D1

2B
2
1 − q2D2

2B
1
1 = 0,

Ci
1B

i
2 + q Ci

2B
i
1 − q3Di

1A
i
2 − q4Di

2A
i
1 = C1

i B
2
i + q C2

i B
1
i − q D1

iA
2
i − q2D2

iA
1
i = 0,

C1
1B

2
2 − C2

2B
1
1 + λC2

1B
1
2 − q2D1

2A
2
1 + q2D2

1A
1
2 = 0,

C1
2B

2
1 − C2

1B
1
2 − q2D1

1A
2
2 + q2D2

2A
1
1 − λq2D1

2A
2
1 = 0.
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