The computational complexity of weighted vertex coloring for $\$ \$ \backslash\left\{P _5, K _\{2,3\}, K^{\wedge}\right.$ +_\{2,3\}\\$\$\$\{P 5, K 2, 3, K 2, 3+\}-free }$ graphs

D. S. Malyshev, O. O. Razvenskaya \& P. M. Pardalos

Optimization Letters
ISSN 1862-4472
Volume 15
Number 1
Optim Lett (2021) 15:137-152
DOI 10.1007/s11590-020-01593-0

Your article is protected by copyright and all rights are held exclusively by SpringerVerlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

ORIGINAL PAPER

The computational complexity of weighted vertex coloring for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs

D. S. Malyshev ${ }^{1} \cdot$ O. O. Razvenskaya ${ }^{1} \cdot$ P. M. Pardalos ${ }^{2}$

Received: 5 October 2019 / Accepted: 13 May 2020 / Published online: 23 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

In this paper, we show that the weighted vertex coloring problem can be solved in polynomial on the sum of vertex weights time for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs. As a corollary, this fact implies polynomial-time solvability of the unweighted vertex coloring problem for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs. As usual, P_{5} and $K_{2,3}$ stands, respectively, for the simple path on 5 vertices and for the biclique with the parts of 2 and 3 vertices, $K_{2,3}^{+}$denotes the graph, obtained from a $K_{2,3}$ by joining its degree 3 vertices with an edge.

Keywords Coloring problem \cdot Hereditary class \cdot Computational complexity

1 Introduction

In this paper, we consider only simple graphs, i.e. unlabelled, non-oriented graphs without loops and multiple edges. An induced subgraph is formed by a subset of vertices of a graph together with all edges, whose endvertices are both in this subset.

Any subset of pairwise non-adjacent vertices of a graph is called independent. A clique of a graph is any subset of its pairwise adjacent vertices. A dominating set of a graph is any subset of its vertices, such that any vertex outside the set has a neighbour in the set.

[^0]A coloring of a graph $G=(V, E)$ is a mapping $c: V \longrightarrow \mathbb{N}$, such that $c(u) \neq$ $c(v)$, for any adjacent vertices u and v of G. All elements of $\{c(v) \mid v \in V\}$ are said to be colors. In other words, a graph coloring is a partition of its vertex set into independent sets of vertices of the same color. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k, such that G can be colored in k colors. For a given graph G and a number k, the coloring problem (the COL problem, for short) is to decide whether $\chi(G) \leq k$ or not.

The weighted coloring problem is a generalization of the coloring problem. For given a graph $G=(V, E)$ and a function $w: V \longrightarrow \mathbb{N} \cup\{0\}$, a pair (G, w) is called a weighted graph. A coloring of a weighted graph (G, w) is any function $c: V \longrightarrow 2^{\mathbb{N}}$, where $|c(v)|=w(v)$, for any $v \in V$, and $c\left(v_{1}\right) \cap c\left(v_{2}\right)=\emptyset$, for any edge $v_{1} v_{2}$ of G. All elements of $\bigcup_{v \in V} c(v)$ are also called colors. The weighted coloring problem (the wCOL problem, for short), for a given weighted graph (G, w), is to find the minimum number k, denoted by $\chi_{w}(G)$, such that (G, w) admits a coloring in k colors. The WCOL problem becomes the COL problem for the all-ones vector of vertex weights. Notice that none of the colors should be arranged to any zero-weight vertex, and all these vertices can be removed from any weighted graph with their incident edges.

A class of graphs is called hereditary if it is closed under deletion of vertices. Any hereditary (and only hereditary) graph class \mathcal{X} can be defined by a set of its forbidden induced subgraphs \mathcal{S}, i.e. the minimal under deletion of vertices graphs that do not belong to \mathcal{X}. We write $\mathcal{X}=\operatorname{Free}(\mathcal{S})$, and the graphs in \mathcal{X} are said to be \mathcal{S}-free. If $\mathcal{S}=\{G\}$, then we write " G-free" instead of " $\{G\}$-free".

The computational complexity of the COL problem was intensively studied for families of hereditary classes, defined by small graphs only or by a small number of forbidden induced structures. We should mention the papers [1-16,18-23] in this field. We should also mention the interesting papers [17,24-26], concerning graph coloring. The computational complexity of the COL problem was completely determined for all classes of the form $\operatorname{Free}(\{G\})$ [16]. A study of forbidden pairs was also initiated in [16]. For all but 3 cases, either NP-completeness or polynomial-time solvability was shown for the COL problem in the family of all hereditary classes, defined by 4-vertex forbidden induced structures [18].

As usual, O_{n} stands for the empty graph on n vertices, P_{n} stands for the simple path on n vertices, $K_{p, q}$ stands for the complete bipartite graph with p vertices in the first part and q vertices in the second one. By $K_{2,3}^{+}$we denote the graph, obtained from a $K_{2,3}$ by joining its degree 3 vertices with an edge. The graphs $K_{2,3}^{+}$, bull, butterfly, W_{4} are depicted in Fig. 1.

The computational complexity of the COL problem for pairs of connected 5-vertex forbidden induced fragments was considered in [14,15,19,20,22,23]. At the present time, the complexity of this problem is still open only for the following pairs of the mentioned type:

- $\left\{K_{1,3}, G\right\}$, where $G \in\{$ bull, butterfly $\}$,
- $\left\{P_{5}, H\right\}$, where $H \in\left\{K_{2,3}, K_{2,3}^{+}, W_{4}\right\}$.

Unfortunately, for none of these 5 open cases, we clarify the complexity status of the cOL problem. We consider the intersection of two of them and present a polynomial-

Fig. 1 The graphs $K_{2,3}^{+}$, bull, butterfly, and W_{4}
time algorithm for its graphs. Perhaps, this result will help to design polynomial-time algorithms for graphs from the initial classes.

In this paper, we show that the WCOL problem can be solved in polynomial on the sum of vertex weights time for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs. Hence, the cOL problem can be solved in polynomial time on the length of input data for these graphs.

2 Some definitions and notations

For a vertex x of a graph, $N(x)$ is its neighbourhood. Let A and B be non-intersecting subsets of vertices of a given graph. If all possible edges are present between the sets A and B, then A is said to be complete to B. If no edges between A and B are present, then A is said to be anti-complete to B. We assume that A is simultaneously complete and anti-complete to B, whenever $B=\emptyset$.

For a graph $G=(V, E)$ and a subset $V^{\prime} \subset V, G\left[V^{\prime}\right]$ means its subgraph, induced by V^{\prime}, and $G \backslash V^{\prime}$ means the result of deletion of all vertices in V^{\prime} with their incident edges.

3 Irreducible graphs and their properties

Let $G=(V, E)$ be a graph. A set $M \subseteq V$ is a module in G if, for any $x \in V \backslash M, x$ is adjacent either to all elements of M or to none of them. A module in a graph is trivial if it contains only one vertex or all vertices of the graph, otherwise, it is non-trivial. A separating clique in a graph is a clique, whose removal increases the number of connected components. A graph is called atomic, if it does not contain non-trivial modules and separating cliques. The following result is well-known, see, for example, the paper [23].
Lemma 1 For any hereditary class, the WCOL problem can be reduced in polynomial on the length of input data time to its atomic graphs.

The anti-neighbourhood of a vertex $v \in V$ is the set $V \backslash N(v)$, denoted by $\overline{N(v)}$.
Lemma 2 Let (G, w) be a weighted graph, containing a vertex v, such that $\overline{N(v)}=$ $\left\{v, v_{1}, \ldots, v_{k}\right\}$ is an independent set. Then, $\chi_{w}(G)=\chi_{w^{\prime}}(G \backslash\{v\})+w(v)$, where $w^{\prime}(u)=w(u)$, for any u, not belonging to $\overline{N(v)}$, and $w^{\prime}(u)=\max (w(u)-w(v), 0)$, for any $u \neq v$, belonging to $\overline{N(v)}$.

Proof As $\overline{N(v)}$ is independent, then any color, used for v, can also be used for all other vertices from $\overline{N(v)} \backslash\{v\}$ without changing the feasibility and the total number of used colors. Therefore, it is sufficient to consider colorings of (G, w), where, for any $u \in \overline{N(v)}$, some of $\min (w(v), w(u))$ colors of u coincide with some of $\min (w(v), w(u))$ colors of v. Removing v from G and decreasing $w(u)$, for any $u \in \overline{N(v)} \backslash\{v\}$, by $\min (w(v), w(u))$ gives the weighted graph $\left(G \backslash\{v\}, w^{\prime}\right)$, which can be colored in $\chi_{w}(G)-w(v)$ colors. Hence, $\chi_{w}(G) \geq \chi_{w^{\prime}}(G \backslash\{v\})+w(v)$. On the other hand, any coloring of ($G \backslash\{v\}, w^{\prime}$) can be extended to a coloring of (G, w) by using new $w(v)$ colors to color v and to add any of $w(u)-w^{\prime}(u)$ new colors to u, for any $u \in \overline{N(v)} \backslash\{v\}$. Hence, $\chi_{w}(G) \leq \chi_{w^{\prime}}(G \backslash\{v\})+w(v)$. Therefore, the statement of this lemma is true.

A graph is irreducible if it is connected, atomic, and the anti-neighbourhood of any its vertex is not independent. By Lemmas 1 and 2, the following result is true.

Lemma 3 For any hereditary class, the WCOL problem can be reduced in polynomial on the length of input data time to its irreducible graphs.

4 Some complexity results for the weighted coloring problem

The next two Lemmas have been proven in [23].
Lemma 4 The WCOL problem for any O_{3}-free weighted graph $(G=(V, E), w)$ can be solved in $O\left(\left(\sum_{v \in V} w(v)\right)^{3}\right)$ time.
Lemma 5 For each fixed C, the WCOL problem can be solved in polynomial time on the sum of vertex weights in the class of all graphs, having at most C vertices.

Let \mathcal{X} be a graph class. By \mathcal{X}^{*} we denote the set of all graphs, obtained from graphs in \mathcal{X} as follows. We take a graph $G=(V, E) \in \mathcal{X}$, add vertices $v_{1}, v_{2}, u_{1}, u_{2}$, add all edges of the form $v v_{i}$, where $v \in V, i \in\{1,2\}$, and the edges $v_{1} u_{1}, u_{1} u_{2}, u_{2} v_{2}$. It is easy to check that the new graph contains exactly one induced P_{4} with degree 2 internal vertices, assuming that G has at least 2 vertices. Hence, for graphs in \mathcal{X}^{*}, it is possible to uniquely restore their prefiguration graphs from \mathcal{X} in polynomial on the number of vertices time.

Lemma 6 If \mathcal{X} is a hereditary class, then the wcol problem for graphs in \mathcal{X}^{*} can be reduced in polynomial on the sum of vertex weights time to the same problem in \mathcal{X}.

Proof Let (H, w) be a weighted graph, where $H \in \mathcal{X}^{*}$. The prefiguration graph G_{H} for H can be found in polynomial on the number of its vertices time. By symmetry, one can assume that $w\left(v_{1}\right) \geq w\left(v_{2}\right)$. Let x mean the number of common colors of v_{1} and v_{2} in a considering coloring of (H, w). Hence, there are exactly $w\left(v_{1}\right)+w\left(v_{2}\right)-x$ distinct colors for $\left\{v_{1}, v_{2}\right\}$, each of which cannot be used to color any vertex in G_{H}. To minimize the number of colors, used for $\left\{u_{1}, u_{2}\right\}$, all of the remaining $w\left(v_{1}\right)-x$ colors for v_{1} can be used to color u_{2}. Similarly, all of the remaining $w\left(v_{2}\right)-x$ colors for v_{2} can be used to color u_{1}. Hence, to color u_{1} and u_{2}, we need exactly

$$
\chi_{x}^{\prime}=\max \left(w\left(u_{1}\right)-w\left(v_{2}\right)+x, 0\right)+\max \left(w\left(u_{2}\right)-w\left(v_{1}\right)+x, 0\right)
$$

colors. Therefore, $\chi_{w}(H)=\min _{x \leq w\left(v_{2}\right)}\left(w\left(v_{1}\right)+w\left(v_{2}\right)-x+\max \left(\chi_{w}(G), \chi_{x}^{\prime}\right)\right)$. So, this lemma holds.

5 Some properties of irreducible $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs

Let $G=(V, E)$ be an irreducible $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graph and $C=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ be an arbitrary its induced cycle with 4 vertices. We associate with G and C the following notations, assuming throughout the paper for indices to be taken modulo 4 :

1. for any $1 \leq i \leq 4, V_{i}$ is the set of all vertices v, such that $N(v) \cap V(C)=\left\{v_{i}\right\}$.
2. for any $1 \leq i \leq 4, V_{i}^{\prime}$ is the set of all vertices v, such that $N(v) \cap V(C)=\left\{v_{i}, v_{i+1}\right\}$.
3. for any $1 \leq i \leq 4, V_{i}^{\prime \prime}$ is the set of all vertices v, such that $N(v) \cap V(C)=$ $\left\{v_{i}, v_{i+1}, v_{i+2}\right\}$.
4. W_{C} is the set of all vertices, adjacent to all vertices of C, and S_{C} is the set of all vertices, not having a neighbour on C.

Further, we will prove several relations between the sets, defined above.
Lemma 7 Any vertex of G, having a neighbour on C, belongs to

$$
V(C) \cup \bigcup_{i=1}^{4}\left(V_{i} \cup V_{i}^{\prime} \cup V_{i}^{\prime \prime}\right) \cup W_{C}
$$

Any element in $\bigcup_{i=1}^{4}\left(V_{i} \cup V_{i}^{\prime}\right)$ has no neighbours in S_{C}.
Proof Assume that there is a vertex $v \notin V(C) \cup \bigcup_{i=1}^{4}\left(V_{i} \cup V_{i}^{\prime} \cup V_{i}^{\prime \prime}\right) \cup W_{C}$ with $N(v) \cap V(C) \neq \emptyset$. Clearly, v must be adjacent to exactly two non-adjacent vertices of C. Then, $v, v_{1}, v_{2}, v_{3}, v_{4}$ induce a $K_{2,3}$.

Assume that some element of $v \in V_{i} \cup V_{i}^{\prime}$ has a neighbour $u \in S_{C}$. Then either $u, v, v_{i}, v_{i+1}, v_{i+2}$ or $u, v, v_{i+1}, v_{i+2}, v_{i+3}$ induce a P_{5}.

Lemma 8 For any i, V_{i} is anti-complete to

$$
V_{i-1} \cup V_{i+1} \cup V_{i}^{\prime} \cup V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}
$$

and complete to $V_{i+2} \cup V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$. For any i, V_{i}^{\prime} is complete to $V_{i+1}^{\prime} \cup V_{i+3}^{\prime}$. For any $i, V_{i}^{\prime \prime}$ is a clique.

Proof Let $v \in V_{i}$. If v is adjacent to a vertex $u \in V_{i-1} \cup V_{i+1}$, then either $u, v, v_{i}, v_{i+1}, v_{i+2}$ or $u, v, v_{i}, v_{i+3}, v_{i+2}$ induce a P_{5}. If v is adjacent to a vertex $u \in V_{i}^{\prime} \cup V_{i+3}^{\prime}$, then either $v, u, v_{i+1}, v_{i+2}, v_{i+3}$ or $v, u, v_{i+3}, v_{i+2}, v_{i+1}$ induce a P_{5}. If v is adjacent to a vertex $u \in V_{i+3}^{\prime \prime} \cup W_{C}$, then $v, u, v_{i+3}, v_{i}, v_{i+1}$ induce a $K_{2,3}^{+}$. If v is adjacent to a vertex $u \in V_{i+1}^{\prime \prime}$, then $v, u, v_{i}, v_{i+1}, v_{i+3}$ induce a $K_{2,3}$.

Let $v \in V_{i}$ and $u \in V_{i+2}$. If v and u are not adjacent, then $v, v_{i}, v_{i+1}, v_{i+2}, u$ induce a P_{5}. Now, let $v \in V_{i}$ and $u \in V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$. If v and u are not adjacent, then either $u, v_{i+2}, v_{i+3}, v_{i}, v$ or $v, v_{i}, v_{i+1}, v_{i+2}, u$ induce a P_{5}.

Let $v \in V_{i}^{\prime}$ and $u \in V_{i+1}^{\prime} \cup V_{i+3}^{\prime}$. If $v u \notin E$, then either $v, v_{i}, v_{i+3}, v_{i+2}, u$ or $v, v_{i+1}, v_{i+2}, v_{i+3}, u$ induce a P_{5}.

Assume that vertices $v \in V_{i}^{\prime \prime}$ and $u \in V_{i}^{\prime \prime}$ are not adjacent. Then, $v, u, v_{i}, v_{i+2}, v_{i+3}$ induce a $K_{2,3}$.
Lemma 9 If $V_{i} \neq \emptyset$, then each of the pairs $\left(V_{i}^{\prime}, V_{i+2}^{\prime}\right)$ and $\left(V_{i+1}^{\prime}, V_{i+3}^{\prime}\right)$ contains the empty set. If $V_{i} \neq \emptyset$ and $V_{i+1} \neq \emptyset$, then $V_{i+2}=V_{i+3}=\emptyset$ and $V_{i+2}^{\prime} \neq \emptyset, V_{i}^{\prime}=\emptyset$.
Proof Let us prove the first statement. By symmetry, it is enough to consider the case, when $a \in V_{i}^{\prime}$ and $b \in V_{i+2}^{\prime}$. By Lemma 8, we have $b c \in E$ and $a c \notin E$, where $c \in V_{i}$. Then, $c, b, v_{i+2}, v_{i+1}, a$ induce a P_{5}, if $b a \notin E$, or c, b, a, v_{i}, v_{i+3} induce a $K_{2,3}$, if $b a \in E$.

Assume that $V_{i} \neq \emptyset$ and $V_{i+1} \neq \emptyset$. By Lemma 8, V_{i} is anti-complete to V_{i+1}. Additionally, suppose that $V_{i+2} \cup V_{i+3} \neq \emptyset$. If $V_{i+2} \neq \emptyset$, then V_{i+2} is complete to V_{i} and anti-complete to V_{i+1}, by Lemma 8. Then, any vertex of V_{i+2}, any vertex of V_{i}, v_{i}, v_{i+1}, any vertex of V_{i+1} induce a P_{5}. Hence, $V_{i+2}=\emptyset$. Similarly, $V_{i+3}=\emptyset$.

Now, additionally suppose that $V_{i+2}^{\prime}=\emptyset$. By Lemma 7, the set S_{C} is anti-complete to $V_{i} \cup V_{i+1}$. By Lemma 8, V_{i} is anti-complete to $V_{i}^{\prime} \cup V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}$. By the same reasons, V_{i+1} is anti-complete to $V_{i}^{\prime} \cup V_{i+1}^{\prime} \cup V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime} \cup W_{C}$. The set $V_{i+2}^{\prime \prime}$ is anti-complete to V_{i}, otherwise, any element of V_{i}, any element of $V_{i+2}^{\prime \prime}, v_{i+2}, v_{i+1}$, and any element of V_{i+1} induce a P_{5}. Similarly, $V_{i+1}^{\prime \prime}$ is anti-complete to V_{i+1}.

As $\left\{v_{i}, v_{i+1}\right\}$ is a clique, but not separating, since G is irreducible, then some element of V_{i} and some element of V_{i+1} must be adjacent to elements in $\bigcup_{i=1}^{4}\left(V_{i}^{\prime} \cup\right.$ $\left.V_{i}^{\prime \prime}\right)$. Let x be an arbitrary element of V_{i} and y be an arbitrary element of V_{i+1}, both having neighbours in $\bigcup_{i=1}^{4}\left(V_{i}^{\prime} \cup V_{i}^{\prime \prime}\right)$. Suppose that $z^{\prime} \in V_{i+3}^{\prime}$. Then, $y z^{\prime} \in E$, by Lemma 8 . Then, by the first part of this lemma, $V_{i+1}^{\prime}=\emptyset$. Hence, there is a vertex $z^{\prime \prime} \in V_{i}^{\prime \prime}$, such that $x z^{\prime \prime} \in E$. If $z^{\prime} z^{\prime \prime} \notin E$, then $y, z^{\prime}, v_{i+3}, v_{i+2}, z^{\prime \prime}$ induce a P_{5}, otherwise, $x, v_{i}, v_{i+1}, z^{\prime}, z^{\prime \prime}$ induce a $K_{2,3}^{+}$. Therefore, we will consider that $V_{i+3}^{\prime}=V_{i+1}^{\prime}=\emptyset$. If $y z_{1} \in E$ and $x z_{2} \in E$, where $z_{1} \in V_{i+3}^{\prime \prime}, z_{2} \in V_{i}^{\prime \prime}$, then $z_{1} z_{2} \in E$, otherwise, $y, z_{1}, v_{i+3}, v_{i+2}, z_{2}$ induce a P_{5}. By this fact and as $V_{i}^{\prime \prime}, V_{i+3}^{\prime \prime}$ are both cliques, by Lemma $8,\left\{v_{i}, v_{i+1}\right\} \cup V_{i}^{1} \cup V_{i}^{2}$ is a separating clique, where

$$
V_{i}^{1}=\left\{v \in V_{i+3}^{\prime \prime} \mid \exists u \in V_{i+1}, v u \in E\right\} \text { and } V_{i}^{2}=\left\{v \in V_{i}^{\prime \prime} \mid \exists u \in V_{i}, v u \in E\right\} .
$$

Hence, V_{i+2}^{\prime} must be non-empty. By Lemma 8, V_{i+2}^{\prime} is complete to $V_{i} \cup V_{i+1}$. Suppose that $V_{i}^{\prime} \neq \emptyset$. Then, by Lemma 8, V_{i}^{\prime} is anti-complete to $V_{i} \cup V_{i+1}$. Hence, V_{i}^{\prime} is anti-complete to V_{i+2}^{\prime}, as G is $K_{2,3}-$ free. Then, G contains an induced P_{5}. Thus, $V_{i}^{\prime}=\emptyset$.
Lemma 10 For any i, V_{i} is either empty or independent.
Proof Assume the opposite, i.e. that $V_{i} \neq \emptyset$ and it is not independent, for some i. Let \tilde{V} be the vertex set of an arbitrary connected component with at least 2 vertices of $G\left[V_{i}\right]$. Notice that \tilde{V} exists, as V_{i} is not independent. Let us show that \tilde{V} is a non-trivial module in G.

By Lemmas 7, 8, and the choice of \tilde{V}, \tilde{V} is anti-complete to

$$
\left(V_{i} \backslash \tilde{V}\right) \cup S_{C} \cup V_{i+3} \cup V_{i+1} \cup V_{i}^{\prime} \cup V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}
$$

and complete to $V_{i+2} \cup V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$. Let $j \in\{i, i+2\}$. If \tilde{V} is not complete to $V_{j}^{\prime \prime}$, then either \tilde{V} is anti-complete to $V_{j}^{\prime \prime}$ or there are vertices $x, y \in \tilde{V}, z \in V_{j}^{\prime \prime}$, such that $x y \in E, y z \in E, x z \notin E$. Hence, either $x, y, z, v_{i+2}, v_{i+3}$ or $x, y, z, v_{i+2}, v_{i+1}$ induce a P_{5}. We have a contradiction. Hence, the assumption was false.

Lemma 11 If C dominates the maximum number of vertices among all induced cycles with 4 vertices, then S_{C} must be empty.

Proof Assume the opposite. By \tilde{V} we denote the set of all vertices, each of which lies outside S_{C} and has a neighbour in S_{C}. This set is not empty. By Lemma 7, we have that $\tilde{V} \subseteq \bigcup_{i=1}^{4} V_{i}^{\prime \prime} \cup W_{C}$. If an element $v \in \bigcup_{i=1}^{4} V_{i}^{\prime \prime}$ has a neighbour $s \in S_{C}$ and $s s^{\prime} \in E$, where $s^{\prime} \in S_{C}$ and $s^{\prime} v \notin E$, then s^{\prime}, s, v, and some two vertices of C induce a P_{5}. If non-adjacent elements $v_{1}, v_{2} \in \bigcup_{i=1}^{4} V_{i}^{\prime \prime} \cup W_{C}$ have neighbours $u_{1} \in S_{C} \cap\left(N\left(v_{1}\right) \backslash N\left(v_{2}\right)\right)$ and $u_{2} \in S_{C} \cap\left(N\left(v_{2}\right) \backslash N\left(v_{1}\right)\right)$, then $u_{1} u_{2} \in E$, otherwise, $v_{1}, v_{2}, u_{1}, u_{2}$, and some vertex of C induce a P_{5}. Hence, if v_{1} or v_{2} belongs to $\bigcup_{i=1}^{4} V_{i}^{\prime \prime}$, then G is not P_{5}-free, by the previous statement.

As G does not contain separating cliques, then \tilde{V} is not a clique. Therefore, there are non-adjacent vertices in \tilde{V}. Suppose that $a \in \tilde{V}$ and $b \in \tilde{V}$ are arbitrary non-adjacent vertices.

Suppose that there is a vertex $c \in S_{C}$, simultaneously adjacent to a and b. If $\{a, b\} \cap W_{C} \neq \emptyset$, then both a and b are simultaneously adjacent to two non-adjacent vertices of C. Hence, G contains an induced copy of a $K_{2,3}$. Therefore, $a \in V_{i}^{\prime \prime}$ and $b \in V_{j}^{\prime \prime}$. By Lemma $8, j \neq i$. If $j=i+2$, then $v_{i+1}, a, c, b, v_{i+3}$ induce a P_{5}. Thus, we may consider that $j=i+1$. As C dominates the maximum number of vertices and $\left(v_{i}, a, v_{i+2}, v_{i+3}\right),\left(v_{i}, v_{i+1}, b, v_{i+3}\right)$ are induced cycles, then $V_{i+1} \neq \emptyset$ and $V_{i+2} \neq$ \emptyset. Hence, by Lemma 9, there exists a vertex $d \in V_{i+3}^{\prime}$. By Lemma 7, $d c \notin E$. To avoid the induced paths $\left(d, v_{i}, v_{i+1}, b, c\right)$ and $\left(d, v_{i+3}, v_{i+2}, a, c\right), d a$ and $d b$ are edges of G. Then, a, d, c, d, v_{i+1} induce a $K_{2,3}$. Therefore, any two non-adjacent elements of \tilde{V} have no a common neighbour in S. Hence, $a, b \in W_{C}$ and $S_{C} \cap(N(a) \backslash N(b))$ is complete to $S_{C} \cap(N(b) \backslash N(a))$. Let $a^{\prime} \in S_{C} \cap(N(a) \backslash N(b))$ and $b^{\prime} \in S_{C} \cap(N(b) \backslash N(a)$.

Suppose that some vertex $x \in \tilde{V} \backslash\{a, b\}$ has a neighbour $x^{\prime} \in S_{C}$. If $x^{\prime} \in N(a) \cup$ $N(b)$, then x^{\prime}, two non-adjacent vertices of C, x, and a vertex in $\{a, b\}$ induce either a $K_{2,3}$ or a $K_{2,3}^{+}$. Hence, x has no neighbours in $(N(a) \cup N(b)) \cap S_{C}$. The vertex x is simultaneously adjacent to a and b, otherwise, $x, v_{j}, a, a^{\prime}, b^{\prime}$ or $x, v_{j}, b, b^{\prime}, a^{\prime}$ induce a P_{5}, for some j. The vertex x^{\prime} is adjacent to at least one vertex in $\left\{a^{\prime}, b^{\prime}\right\}$ (say, a^{\prime}), otherwise, $x^{\prime}, x, a, a^{\prime}, b^{\prime}$ induce a P_{5}. Hence, $b, v_{1}, a, a^{\prime}, x^{\prime}$ induce a P_{5}. Thus, $\tilde{V}=\{a, b\}$.

If there is a vertex $v^{\prime} \in \bigcup_{i=1}^{4} V_{i}$, then $a v^{\prime} \notin E, b v^{\prime} \notin E, v^{\prime} a^{\prime} \notin E, v^{\prime} b^{\prime} \notin E$, by Lemmas 7 and 8 . Then, v^{\prime}, a vertex on $C, a, a^{\prime}, b^{\prime}$ induce a P_{5}. Hence, $\bigcup_{i=1}^{4} V_{i}=\emptyset$. If there is a vertex $v^{\prime \prime} \in V_{i}^{\prime}$, non-adjacent to a, then $v^{\prime \prime} a^{\prime} \notin E, v^{\prime \prime} b^{\prime} \notin E$, and $v^{\prime \prime}, v_{i}, a, a^{\prime}, b^{\prime}$ induce a P_{5}. Hence, $\{a, b\}$ is complete to V_{i}^{\prime}. Similarly, $\{a, b\}$ is complete to $\bigcup_{i=1}^{4} V_{i}^{\prime \prime} \cup\left(W_{C} \backslash\{a, b\}\right)$. Hence, $\bigcup_{i=1}^{4}\left(\left\{v_{i}\right\} \cup V_{i}^{\prime} \cup V_{i}^{\prime \prime}\right) \cup\left(W_{C} \backslash\{a, b\}\right)$ is a non-trivial module in G.

So, our initial assumption was false.
We will assume up to the end of this section that C is an induced cycle with 4 vertices, dominating the maximum number of vertices of G. By Lemma 11, $S_{C}=\emptyset$.

Lemma 12 If $V_{i} \neq \emptyset$ and $V_{i+1} \neq \emptyset$, then $|V| \leq 11$.
Proof By Lemmas 8 and $9, V_{i+2}=V_{i+3}=\emptyset, V_{i+2}^{\prime} \neq \emptyset, V_{i}^{\prime}=\emptyset$, and $V_{i} \cup V_{i+1}$ is complete to V_{i+2}^{\prime}. Hence, by Lemma 10, we have $V_{i}=\{a\}$, otherwise, V_{i} is independent and any two its elements, v_{i}, v_{i+3}, any element of V_{i+2}^{\prime} induce a $K_{2,3}$. Similarly, $V_{i+1}=\{b\}$. By Lemma $8, a b \notin E$ and $V_{i+3}^{\prime \prime}$ is anti-complete to $\{a\}$. By Lemma 8, V_{i+2}^{\prime} is complete to $V_{i+1}^{\prime} \cup V_{i+3}^{\prime}, W_{C}$ is anti-complete to $\{a, b\}, V_{i+1}^{\prime}$ is complete to $\{a\}$ and anti-complete to $\{b\}, V_{i+3}^{\prime}$ is complete to $\{b\}$ and anti-complete to $\{a\}$.

The set $V_{i+3}^{\prime \prime}$ is complete to V_{i+2}^{\prime}, otherwise, v_{i+2}, some vertex of $V_{i+2}^{\prime}, a, v_{i}$, and some vertex of $V_{i+3}^{\prime \prime}$ induce a P_{5}. Hence, $V_{i+3}^{\prime \prime}$ is complete to $\{b\}$, otherwise, any element of $V_{i+3}^{\prime \prime}, b, v_{i+1}, v_{i+2}$, any element of V_{i+2}^{\prime} induce a $K_{2,3}$. Therefore, $V_{i+3}^{\prime \prime}$ is complete to $V_{i+2}^{\prime} \cup\{b\}$ and anti-complete to $\{a\}$. Similarly, $V_{i}^{\prime \prime}$ is complete to $V_{i+2}^{\prime} \cup\{a\}$ and anti-complete to $\{b\}$. The set V_{i+2}^{\prime} is complete to W_{C}, otherwise, b, an element of $V_{i+2}^{\prime}, a, v_{i}$, an element of W_{C} induce a P_{5}. Hence, V_{i+1}^{\prime} is complete to W_{C}, otherwise, v_{i+3}, an element of W_{C}, v_{i+1}, an element of V_{i+1}^{\prime}, a induce a P_{5}. Thus, W_{C} is complete to $V_{i+1}^{\prime} \cup V_{i+3}^{\prime}$. The set $V_{i+3}^{\prime \prime}$ is complete to W_{C}, otherwise, any element of V_{i+2}^{\prime}, an element of W_{C}, v_{i}, a, an element of $V_{i+3}^{\prime \prime}$ induce a $K_{2,3}$. Hence, $V_{i+3}^{\prime \prime} \cup V_{i}^{\prime \prime}$ is complete to W_{C}.

Let us show that $V_{i+2}^{\prime \prime}=\emptyset$. Suppose the opposite, and let $v \in V_{i+2}^{\prime \prime}$. By Lemma 8, $b v \notin E$. Then, $v a \notin E$, otherwise, $a, v, v_{i+2}, v_{i+1}, b$ induce a P_{5}. Thus, $\{a, b\}$ is anti-complete to $V_{i+2}^{\prime \prime}$. The vertex v is adjacent to all vertices of V_{i+2}^{\prime}, otherwise, v, v_{i}, a, an element of V_{i+2}^{\prime}, b induce a P_{5}. The vertex v is adjacent to all vertices of W_{C}, otherwise, v, v_{i+3}, an element of W_{C}, v_{i+1}, b induce a P_{5}. Therefore, $V_{i+2}^{\prime \prime}$ is complete to $V_{i+2}^{\prime} \cup W_{C}$. The set $V_{i+2}^{\prime \prime}$ is complete to $V_{i+3}^{\prime \prime}$, otherwise, a, v_{i}, any element of V_{i+2}^{\prime}, an element of $V_{i+2}^{\prime \prime}$, an element of $V_{i+3}^{\prime \prime}$ induce a $K_{2,3}$. The set $V_{i+2}^{\prime \prime}$ is anti-complete to $V_{i}^{\prime \prime}$, otherwise, v_{i+3}, some element of $V_{i+2}^{\prime \prime}$, some element of $V_{i}^{\prime \prime}$, v_{i+1}, b induce a P_{5}.

Suppose that $u \in V_{i+1}^{\prime} \cup V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime}$. If $u \in V_{i+3}^{\prime}$, then $b u \in E$. The vertices u and v must be adjacent, otherwise, v, u, a, v_{i}, an element of V_{i+2}^{\prime} induce a $K_{2,3}$. If $u \in V_{i+1}^{\prime \prime}$, then $a u \notin E$. The vertices u and v must be adjacent, otherwise, a, v_{i}, v, v_{i+2}, u induce a P_{5}. Suppose that $u \in V_{i+1}^{\prime}$. Then, v and u must be non-adjacent, otherwise, $v_{i+3}, v, u, v_{i+1}, b$ induce a P_{5}. Hence, $V_{i+2}^{\prime \prime}$ is complete to $V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime}$ and anticomplete to V_{i+1}^{\prime}. Recall that $V_{i+2}^{\prime \prime}$ is a clique, by Lemma 8. Then, $V_{i+2}^{\prime \prime} \cup\left\{v_{i+3}\right\}$ is a non-trivial module in G. Thus, $V_{i+2}^{\prime \prime}=\emptyset$. Similarly, $V_{i+1}^{\prime \prime}=\emptyset$.

Suppose that $V_{i+3}^{\prime \prime} \neq \emptyset$. Suppose that there is a vertex $x \in V_{i+1}^{\prime} \cup V_{i}^{\prime \prime}$. Then, $\{x\}$ is complete to $V_{i+2}^{\prime} \cup\{a\}$ and $x b \notin E$. To avoid an induced P_{5}, formed by a, b, x, any vertex of V_{i+2}^{\prime}, and any vertex of $V_{i+3}^{\prime \prime},\{x\}$ must be complete to $V_{i+3}^{\prime \prime}$. Then, a, any vertex of $V_{i+3}^{\prime \prime}, x, v_{i+2}$, and any vertex of V_{i+2}^{\prime} induce a $K_{2,3}^{+}$. Hence, $V_{i+1}^{\prime} \cup V_{i}^{\prime \prime}=\emptyset$. The set V_{i+3}^{\prime} is complete to $V_{i+2}^{\prime} \cup\{b\}$ and anti-complete to $\{a\}$. Hence, V_{i+3}^{\prime} must be complete to $V_{i+3}^{\prime \prime}$, otherwise, some element of $V_{i+3}^{\prime \prime}$, some element of V_{i+3}^{\prime}, some element of $V_{i+2}^{\prime}, a, v_{i+3}$ induce a $K_{2,3}$. Thus, each of the sets $W_{C}, V_{i+1}^{\prime}, V_{i+2}^{\prime}, V_{i+3}^{\prime}, V_{i}^{\prime \prime}, V_{i+3}^{\prime \prime}$ has at most one element, as it is a module in G. By Lemma 9, at least one of the sets V_{i+1}^{\prime} and V_{i+3}^{\prime} is empty. Hence, G has at most 11 vertices. The same is true, if $V_{i}^{\prime \prime} \neq \emptyset$.

Suppose that $V_{i}^{\prime \prime}=V_{i+3}^{\prime \prime}=\emptyset$. Each of the sets $W_{C}, V_{i+1}^{\prime}, V_{i+2}^{\prime}, V_{i+3}^{\prime}$ has at most one element, as it is a module in G. Therefore, $\left|V_{i+2}^{\prime}\right|=1$. By Lemma 9, at least one of the sets V_{i+1}^{\prime} and V_{i+3}^{\prime} is empty. So, $|V| \leq 9$.

Lemma 13 If $V_{i} \neq \emptyset$ and $V_{i+1}^{\prime} \neq \emptyset, V_{i+2}^{\prime} \neq \emptyset$, then $|V| \leq 12$.
Proof By Lemma 8, V_{i} is complete to $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$ and V_{i+1}^{\prime} is complete to V_{i+2}^{\prime}. By Lemma 9, $V_{i}^{\prime}=V_{i+3}^{\prime}=\emptyset$. By Lemma 12, we may assume that $V_{i+1}=V_{i+3}=\emptyset$. The set V_{i} contains only one element (say, a), otherwise, by Lemmas 8 and $10, V_{i}$ is independent and any two its elements, v_{i}, v_{i+3}, any element of V_{i+2}^{\prime} induce a $K_{2,3}$. If $\left|V_{i+2}\right| \geq 2$, then V_{i+2} is independent, by Lemma $10, V_{i+2}$ is complete to V_{i} and anti-complete to $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$, by Lemma 8. Hence, a, v_{i+2}, any two elements of V_{i+2}, any element of V_{i+2}^{\prime} induce a $K_{2,3}$. Therefore, $\left|V_{i+2}\right| \leq 1$.

Let us show that $V_{i+3}^{\prime \prime}=\emptyset$ and each of the sets $V_{i+1}^{\prime}, V_{i+2}^{\prime}, V_{i}^{\prime \prime}, V_{i+1}^{\prime \prime}, V_{i+2}^{\prime \prime}, W_{C}$ is a module in G. By Lemma 8, W_{C} is anti-complete to $V_{i} \cup V_{i+2}$. The set W_{C} is complete to $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$, otherwise, v_{i+3}, an element of W_{C}, v_{i+1}, an element of $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$, a induce a P_{5}.

If $v \in V_{i+3}^{\prime \prime}$, then $v a \notin E$, by Lemma 8 . The set $\{v\}$ is complete to V_{i+2}^{\prime}, otherwise, v, v_{i}, a, an element of $V_{i+2}^{\prime}, v_{i+2}$ induce a P_{5}. Similarly, $\{v\}$ is complete to V_{i+1}^{\prime}. Hence, v, a, v_{i+2}, any element of V_{i+1}^{\prime}, any element of V_{i+2}^{\prime} induce a $K_{2,3}^{+}$. Hence, $V_{i+3}^{\prime \prime}=\emptyset$.

By Lemma 8, $V_{i+1}^{\prime \prime}$ is anti-complete to $V_{i} \cup V_{i+2}$. The set $V_{i+1}^{\prime \prime}$ is complete to W_{C}, otherwise, an element of $V_{i+1}^{\prime \prime}, v_{i+2}$, an element of W_{C}, v_{i}, a induce a P_{5}. The set $V_{i+1}^{\prime \prime}$ is complete to $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$, otherwise, v_{i+1}, v_{i+3}, a, an element of $V_{i+1}^{\prime \prime}$, an element of $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$ induce a P_{5}.

Suppose that u is an arbitrary vertex of $V_{i}^{\prime \prime}$. If u is adjacent to a vertex $u^{\prime} \in V_{i+2}^{\prime}$, then it must be adjacent to a, otherwise, $u, a, v_{i}, v_{i+3}, u^{\prime}$ induce a $K_{2,3}$. Then, $a, v_{i+1}, u^{\prime}, u$, and any vertex of V_{i+1}^{\prime} induce either a $K_{2,3}$ or a $K_{2,3}^{+}$. Therefore, $\{u\}$ is anti-complete to V_{i+2}^{\prime}. Then, $a u \notin E$, otherwise, v_{i+1}, u, a, an element of $V_{i+2}^{\prime}, v_{i+3}$ induce a P_{5}. The set $\{u\}$ is complete to V_{i+1}^{\prime}, otherwise, v_{i+3}, an element of V_{i+2}^{\prime}, any element of $V_{i+1}^{\prime}, v_{i+1}, u$ induce a P_{5}. The vertex u is not adjacent to the vertex in V_{i+2}, otherwise, u, the vertex in V_{i+2}, a, any vertex in $V_{i+2}^{\prime}, v_{i+3}$ induce a P_{5}. The set $\{u\}$ is complete to W_{C}, otherwise, u, v_{i+1}, some vertex of W_{C}, v_{i+3}, and any element of V_{i+2}^{\prime} induce a P_{5}. The set $\{u\}$ is complete to $V_{i+1}^{\prime \prime}$, otherwise, a, v_{i}, u, v_{i+2}, an element of $V_{i+1}^{\prime \prime}$ induce a P_{5}.

Hence, $V_{i}^{\prime \prime}$ is complete to $V_{i+1}^{\prime} \cup V_{i+1}^{\prime \prime} \cup W_{C}$ and anti-complete to $V_{i} \cup V_{i+2} \cup V_{i+2}^{\prime}$. Similarly, $V_{i+2}^{\prime \prime}$ is complete to $V_{i+2}^{\prime} \cup V_{i+1}^{\prime \prime} \cup W_{C}$ and anti-complete to $V_{i} \cup V_{i+2} \cup V_{i+1}^{\prime}$. If u is adjacent to $u^{\prime \prime} \in V_{i+2}^{\prime \prime}$, then $v_{i+1}, u, u^{\prime \prime}$, any vertex in V_{i+2}^{\prime}, a induce a P_{5}. Hence, $V_{i}^{\prime \prime}$ is anti-complete to $V_{i+2}^{\prime \prime}$.

So, each of the sets $V_{i+1}^{\prime}, V_{i+2}^{\prime}, V_{i}^{\prime \prime}, V_{i+1}^{\prime \prime}, V_{i+2}^{\prime \prime}, W_{C}$ is a module in G. Therefore, each of them has at most one element and $|V| \leq 12$.

Lemma 14 If $V_{i} \neq \emptyset$, then either $V_{i+1} \cup V_{i+2} \cup V_{i+3} \neq \emptyset$ or $V_{i+1}^{\prime} \neq \emptyset, V_{i+2}^{\prime} \neq \emptyset$.
Proof Assume the opposite. Then, $V_{i+1}=V_{i+2}=V_{i+3}=\emptyset$ and $\left(V_{i+1}^{\prime}=\emptyset\right.$ or $\left.V_{i+2}^{\prime}=\emptyset\right)$. By Lemma 10, V_{i} is an independent set. By Lemma 8, V_{i} is anti-complete to $V_{i}^{\prime} \cup V_{i+3}^{\prime} \cup V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}$. Let

$$
V_{i}^{1}=\left\{v \in V_{i}^{\prime \prime} \mid \exists u \in V_{i}, v u \in E\right\} \text { and } V_{i}^{2}=\left\{v \in V_{i+2}^{\prime \prime} \mid \exists u \in V_{i}, v u \in E\right\} .
$$

Let us show that $V_{i}^{1} \cup V_{i}^{2}$ is the empty set or a clique. Suppose the opposite. Then, there are non-adjacent vertices $u_{1} \in V_{i}^{1}, u_{2} \in V_{i}^{2}$, such that there are vertices $v_{1}, v_{2} \in V_{i}$, for which we have $v_{1} u_{1} \in E$ and $v_{2} u_{2} \in E$. By Lemma 8, one may consider that $u_{1} \in V_{i}^{\prime \prime}, u_{2} \in V_{i+2}^{\prime \prime}$, as, by Lemma $8, V_{i}^{1}$ and V_{i}^{2} are cliques. As G is $K_{2,3}^{+}$-free, $v_{2} u_{1} \notin E, v_{1} u_{2} \notin E$. Therefore, $v_{1}, u_{1}, v_{i+2}, u_{2}, v_{2}$ induce a P_{5}. Hence, $V_{i}^{1} \cup V_{i}^{2}$ is the empty set or a clique.

As G is irreducible, $\left\{v_{i}\right\} \cup V_{i}^{1} \cup V_{i}^{2}$ is a clique, but not separating. Therefore, at least one of the sets V_{i+1}^{\prime} and V_{i+2}^{\prime} is not empty. By our assumption, at least one (say, V_{i+2}^{\prime}) of these sets is empty. Hence, $V_{i+1}^{\prime} \neq \emptyset$. Then, $V_{i+3}^{\prime}=\emptyset$, by Lemma 9. By Lemma $8, V_{i}$ is complete to V_{i+1}^{\prime}. By this fact and as G is $K_{2,3}$-free, we have that $V_{i}=\{a\}$ and V_{i+1}^{\prime} is a clique.

Let $x \in W_{C}$. Then, $x a \notin E$. By Lemma $8, V_{i+1}^{\prime}$ is complete to V_{i}^{\prime}. The set $\{x\}$ is complete to V_{i+1}^{\prime}, to avoid a P_{5}, induced by v_{i+3}, x, v_{i+1}, an element of V_{i+1}^{\prime}, and a. The set $\{x\}$ is complete to V_{i}^{\prime}, to avoid a $K_{2,3}$, induced by a, x, v_{i}, any element of V_{i+1}^{\prime}, and an element of V_{i}^{\prime}. Therefore, W_{C} is complete to $V_{i}^{\prime} \cup V_{i}^{\prime \prime}$

As G is irreducible, the set $\overline{N\left(v_{i+1}\right)}$ is not independent. Therefore, $V_{i+2}^{\prime \prime} \neq \emptyset$. Let $v \in V_{i+2}^{\prime \prime}$. Then, $\{v\}$ is anti-complete to $\{a\} \cup V_{i+1}^{\prime}$ or complete to $\{a\} \cup V_{i+1}^{\prime}$. Indeed, if $v a \in E$, then v_{i+3}, v, a, any element of V_{i+1}^{\prime}, non-adjacent to v, v_{i+1} induce a P_{5}. If $v a \notin E$ and v is adjacent to an element in V_{i+1}^{\prime}, then this element, a, v_{i}, v_{i+1}, x induce a $K_{2,3}$.

Let us show that $\{v\}$ is complete to $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$. By Lemma 8, $\{a\}$ is anti-complete to $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$. Let $u \in V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$, such that $v u \notin E$. Notice that $\{u\}$ is complete to V_{i+1}^{\prime}, otherwise, v_{i+3}, u, v_{i+1}, an element of V_{i+1}^{\prime}, a induce a P_{5}. Then, $\{v\}$ is complete to $\{a\} \cup V_{i+1}^{\prime}$, otherwise, u, v_{i+2}, v, v_{i}, a or v, v_{i+3}, u, v_{i+1}, and an element of V_{i+1}^{\prime} induce a P_{5}. Then, $v_{i+1}, u, v_{i+3}, v, a$ induce a P_{5}. The set $\{v\}$ is complete to W_{C}, otherwise, v, v_{i+3}, an element of W_{C}, v_{i+1}, a induce a P_{5}. Therefore, $V_{i+2}^{\prime \prime}$ is complete to $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}$.

Let us show that $\{v\}$ is complete to $\{a\} \cup V_{i+1}^{\prime}$. Suppose the opposite. If there is a vertex $u \in V_{i}^{\prime}$, adjacent to v, then $u a \notin E$ and v_{i+3}, v, u, v_{i+1}, any element of V_{i+1}^{\prime} induce a P_{5}. Hence, $\{v\}$ is anti-complete to V_{i}^{\prime}. If there is a vertex $u \in V_{i}^{\prime \prime}$, adjacent to v, then $\{u\}$ is complete to V_{i+1}^{\prime}, otherwise, v_{i+3}, v, u, v_{i+1}, an element of V_{i+1}^{\prime} induce a P_{5}. Similarly, $a u \in E$, otherwise, v_{i+3}, v, u, any element of V_{i+1}^{\prime}, and a induce a P_{5}. Then, a, v, u, v_{i}, v_{i+1} induce a $K_{2,3}^{+}$. Hence, $\{v\}$ is anti-complete to $V_{i}^{\prime \prime}$. Therefore, $V_{i+2}^{\prime \prime}$ is complete to $V_{i+1}^{\prime} \cup W_{C}$ and anti-complete to V_{i}^{\prime}. By Lemma 8, $V_{i+2}^{\prime \prime}$ is a clique. Therefore, $\left\{v, v_{i+3}\right\}$ is a module in G. Thus, $\{v\}$ is really complete to $\{a\} \cup V_{i+1}^{\prime}$.

The set $V_{i+3}^{\prime \prime}$ is empty, otherwise, if $y \in V_{i+3}^{\prime \prime}$, then $\{y\}$ is complete to V_{i+1}^{\prime}, to avoid a P_{5}, induced by y, v_{i+3}, v_{i+2}, any element of V_{i+1}^{\prime}, and a. Hence, a, y, v, v_{i+2}, and any element of V_{i+1}^{\prime} induce a $K_{2,3}^{+}$. The set V_{i}^{\prime} is empty, otherwise, if $y \in V_{i}^{\prime}$, then $y a \notin E$ and either $a, v, v_{i+2}, v_{i+1}, y$ induce a P_{5} or a, v, y, v_{i}, v_{i+3} induce a $K_{2,3}^{+}$. If there is a vertex $y \in V_{i}^{\prime \prime}$, such that $v y \in E$, then $a y \in E$, to avoid the $K_{2,3}^{+}$, induced by a, v, y, v_{i}, v_{i+3}. Hence, any vertex in $V_{i+2}^{\prime \prime}$, having a neighbour in $V_{i}^{\prime \prime}$, is adjacent to a. If $z \in V_{i+2}^{\prime \prime}, z \neq v$, then $z y \in E$, to avoid a P_{5}, induced by $v_{i+1}, y, a, z, v_{i+3}$. Thus, all vertices of $V_{i+2}^{\prime \prime}$ have the same neighbourhoods in $V_{i}^{\prime \prime}$.

Let $\hat{V}_{i}^{\prime \prime}$ be the set of all vertices of $V_{i}^{\prime \prime}$, each of which does not have a neighbour in $V_{i+2}^{\prime \prime}$. Let us show that $\hat{V_{i}^{\prime \prime}}=\emptyset$. Suppose the opposite. Recall that $V_{i}^{\prime}=\emptyset, V_{i+3}^{\prime \prime}=\emptyset$, $V_{i+1}^{\prime} \neq \emptyset, V_{i+2}^{\prime \prime} \neq \emptyset$, and $V_{i+2}^{\prime \prime}$ is complete to $V_{i+1}^{\prime \prime} \cup W_{C}$. The set $\hat{V}_{i}^{\prime \prime}$ is complete to V_{i+1}^{\prime}, otherwise, an element of $\hat{V}_{i}^{\prime \prime}, v_{i+1}$, any element of V_{i+1}^{\prime}, any element of $V_{i+2}^{\prime \prime}$, v_{i+3} induce a P_{5}. The set $\hat{V_{i}^{\prime \prime}}$ is anti-complete to $\{a\}$, otherwise, v_{i+1}, an element of $\hat{V_{i}^{\prime \prime}}, a$, any element of $V_{i+2}^{\prime \prime}, v_{i+3}$ induce a P_{5}. The $\hat{V}_{i}^{\prime \prime}$ is complete to W_{C}, otherwise, an element of $\hat{V}_{i}^{\prime \prime}, v_{i+1}$, an element of W_{C}, any element of $V_{i+2}^{\prime \prime}, a$ induce a P_{5}. If $x \in V_{i+1}^{\prime \prime}$, then $a x \notin E$ and $\{x\}$ is complete to $V_{i+2}^{\prime \prime}$. Then, $\{x\}$ is complete to $\hat{V_{i}^{\prime \prime}}$, otherwise, a, v_{i}, an element of $\hat{V}_{i}^{\prime \prime}, v_{i+2}, x$ induce a P_{5}. By Lemma $8, V_{i}^{\prime \prime}$ is a clique. Therefore, $\hat{V_{i}^{\prime \prime}}$ is complete to $\left(V_{i}^{\prime \prime} \backslash \hat{V_{i}^{\prime \prime}}\right) \cup V_{i+1}^{\prime} \cup V_{i+1}^{\prime \prime} \cup W_{C}$ and anti-complete to $\{a\} \cup V_{i+2}^{\prime \prime}$. Thus, $\left\{v_{i+1}\right\} \cup \hat{V_{i}^{\prime \prime}}$ is a non-trivial module in G. Hence, $\hat{V_{i}^{\prime \prime}}=\emptyset$, as G is irreducible.

Thus, $V_{i}^{\prime}=\emptyset, V_{i+3}^{\prime \prime}=\emptyset, V_{i+2}^{\prime \prime}$ is complete to $\{a\} \cup V_{i}^{\prime} \cup V_{i}^{\prime \prime} \cup V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime} \cup W_{C}$, and $V_{i+2}^{\prime \prime}$ is a clique. Hence, for any $v \in V_{i+2}^{\prime \prime}$, its anti-neighbourhood consists of v and v_{i+1}. So, G is not irreducible. Our initial assumption was false.

Lemma 15 If V_{i} and V_{i+2} are simultaneously not empty, then either $|V| \leq 12$ or $G \in\left(\operatorname{Free}\left(\left\{O_{3}\right\}\right)\right)^{*}$.

Proof By Lemma 9, we have $V_{i+1}=V_{i+3}=\emptyset$. By Lemma 8, V_{i} is complete to $V_{i+2} \cup V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$ and anti-complete to $V_{i}^{\prime} \cup V_{i+3}^{\prime}$. Similarly, V_{i+2} is complete to $V_{i}^{\prime} \cup V_{i+3}^{\prime}$ and anti-complete to $V_{i+1}^{\prime} \cup V_{i+2}^{\prime}$. By Lemma 8, $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$ is anti-complete to $V_{i} \cup V_{i+2}$. Hence, $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}=\emptyset$, otherwise, any element of V_{i}, any element of V_{i+2}, any element of $V_{i+1}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$, and v_{i}, v_{i+2} induce a P_{5}. By Lemma 10, V_{i} and V_{i+2} are both independent. Hence, to avoid an induced $K_{2,3},\left|V_{i}\right|+\left|V_{i+2}\right| \leq 3$. By Lemma $8, W_{C}$ is anti-complete to $V_{i} \cup V_{i+2}$. By Lemma 8, $V_{i}^{\prime \prime}$ and $V_{i+2}^{\prime \prime}$ are cliques. If $V_{i}^{\prime} \neq \emptyset, V_{i+3}^{\prime} \neq \emptyset$ or $V_{i+1}^{\prime} \neq \emptyset, V_{i+2}^{\prime} \neq \emptyset$, then $|V| \leq 12$, by Lemma 13 . Suppose that $V_{i}^{\prime} \neq \emptyset$ and $V_{i+1}^{\prime} \neq \emptyset$. Then, by Lemma 8, V_{i}^{\prime} is complete to V_{i+2} and anti-complete to V_{i}, V_{i+1}^{\prime} is complete to V_{i} and anti-complete to V_{i+2}. Then, any vertex of V_{i}, any vertex of V_{i+2}, any vertex of V_{i}^{\prime}, any vertex of V_{i+1}^{\prime}, and v_{i+2} induce a $K_{2,3}$. Therefore, by Lemma 9, at most one of the sets $V_{i}^{\prime}, V_{i+1}^{\prime}, V_{i+2}^{\prime}, V_{i+3}^{\prime}$ is not empty. Hence, if $\bigcup_{i=1}^{4} V_{i}^{\prime} \neq \emptyset$, then, by symmetry, $V_{i}^{\prime} \neq \emptyset$. Recall that

$$
V_{i+1}=V_{i+3}=V_{i+1}^{\prime}=V_{i+2}^{\prime}=V_{i+3}^{\prime}=V_{i+1}^{\prime \prime}=V_{i+3}^{\prime \prime}=\emptyset .
$$

Suppose that $V_{i}^{\prime} \neq \emptyset$. Then, $\left|V_{i}\right|=\left|V_{i+2}\right|=1$, otherwise, by Lemmas 8 and 10, G contains an induced $K_{2,3}$. Similarly, V_{i}^{\prime} is a clique. The set V_{i}^{\prime} is complete to W_{C}, otherwise, v_{i+3}, an element of W_{C}, v_{i+1}, an element of V_{i}^{\prime}, and the element of V_{i+2} induce a P_{5}. Therefore, $W_{C}=\emptyset$, otherwise, the element of V_{i}, the element of V_{i+2}, any element of V_{i}^{\prime}, any element of W_{C}, and v_{i+3} induce a P_{5}. If there is a vertex $c \in V_{i}^{\prime \prime}$, adjacent to $a \in V_{i}^{\prime}$ and non-adjacent to $b \in V_{i}^{\prime}$, then $b, a, c, v_{i+2}, v_{i+3}$ induce a P_{5}. Suppose that there is a vertex $c \in V_{i+2}^{\prime \prime}$, adjacent to $a \in V_{i}^{\prime}$ and non-adjacent to $b \in V_{i}^{\prime}$. Then, c and the element of V_{i} are not adjacent, otherwise, a, c, v_{i}, v_{i+3},
and the element of V_{i} induce a $K_{2,3}^{+}$. Hence, c and the element of V_{i+2} are adjacent, otherwise, v_{i+3}, c, a, the element of V_{i+2}, and the element of V_{i} induce a P_{5}. Then, v_{i}, b, c, the element of V_{i}, the element of V_{i+2} induce a $K_{2,3}$. Hence, V_{i}^{\prime} contains exactly one element.

Let us show that if $V_{i} \cup V_{i+2}$ is not anti-complete to $V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$, then $|V| \leq 9$. Suppose that some vertex $v \in V_{i} \cup V_{i+2}$ has a neighbour in $V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$. Without loss of generality, let $v \in V_{i}$ and $\tilde{V}_{i}=\left\{u \in V_{i}^{\prime \prime} \mid u v \in E\right\} \neq \emptyset$. Denote by \tilde{V}_{i+2} the set of all vertices in $V_{i+2}^{\prime \prime}$, adjacent to v.

Let us show that $\tilde{V}_{i+2}=V_{i+2}^{\prime \prime}$. Suppose the opposite. The set \tilde{V}_{i} is complete to \tilde{V}_{i+2}, otherwise, v, v_{i+1}, v_{i+3}, an element of \tilde{V}_{i}, and an element of \tilde{V}_{i+2} induce a P_{5}. The set \tilde{V}_{i} is anti-complete to $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$, to avoid a $K_{2,3}^{+}$, induced by v, v_{i}, v_{i+1}, and adjacent elements of \tilde{V}_{i} and $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$. Similarly, \tilde{V}_{i+2} is anti-complete to $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$. The set $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$ is anti-complete to $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$, otherwise, v, any element of \tilde{V}_{i}, an element of $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$, an element of $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$, and v_{i+3} induce a P_{5}.

To avoid an induced $K_{2,3}^{+}, \tilde{V}_{i}$ is anti-complete to $V_{i} \backslash\{v\}$. If V_{i} has 2 elements, then \tilde{V}_{i} is complete to V_{i+2}, otherwise, v, the element of V_{i+2}, the element of $V_{i} \backslash\{v\}$, any element of \tilde{V}_{i}, and v_{i+1} induce a P_{5}. If V_{i+2} has 2 elements, then any element of \tilde{V}_{i} has a neighbour in V_{i+2}, otherwise, $V_{i} \cup V_{i+2} \cup\left\{v_{i+1}\right\}$ and an element of \tilde{V}_{i} induce a $K_{2,3}$. Hence, the set $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$ is anti-complete to $V_{i} \cup V_{i+2}$. Indeed, otherwise, either $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$ and \tilde{V}_{i} have a common neighbour in $V_{i} \cup V_{i+2}$ or one of the sets V_{i} and V_{i+2} contains vertices u_{1} and u_{2}, such that u_{1} has a neighbour in $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$ and u_{2} has a neighbour in \tilde{V}_{i}. Therefore, G will contain an induced P_{5}.

To avoid a P_{5}, induced by v, v_{i+1}, v_{i+3}, an element of W_{C}, and an element of $\tilde{V}_{i} \cup \tilde{V}_{i+2}$, the set $\tilde{V}_{i} \cup \tilde{V}_{i+2}$ is complete to W_{C}. To avoid a P_{5}, induced by v, any element of \tilde{V}_{i}, an element of W_{C}, v_{i+3}, an element of $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$, the set $V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}$ is complete to W_{C}. To avoid a $K_{2,3}^{+}$, induced by v, v_{i}, any element of \tilde{V}_{i}, an element of $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$, an element of W_{C}, the set $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$ is complete to W_{C}. Therefore, $\left(V_{i+2}^{\prime \prime} \backslash \tilde{V}_{i+2}\right) \cup\left\{v_{i+3}\right\}$ is a module in G. As G is irreducible, then $\tilde{V}_{i+2}=V_{i+2}^{\prime \prime}$.

So, $\tilde{V}_{i+2}=V_{i+2}^{\prime \prime}$. Thus, if $\bigcup_{i=1}^{4} V_{i}^{\prime}=\emptyset$, then $\overline{N(w)} \subseteq\left\{w, v_{i+3}\right\} \cup V_{i+2}$ is independent, for any $w \in \tilde{V}_{i}$. Suppose that $V_{i}^{\prime}=\{u\}$. Then, $\left|V_{i}\right|=\left|V_{i+2}\right|=\left|V_{i}^{\prime}\right|=1$ and $W_{C}=\emptyset$. Then, $\{u\}$ is anti-complete to \tilde{V}_{i}, to avoid a $K_{2,3}$ or a $K_{2,3}^{+}$, induced by v, u, v_{i+2}, an element of \tilde{V}_{i}, and any element of V_{i+2}. If $V_{i+2}^{\prime \prime} \neq \emptyset$, then either u, v_{i+1}, v_{i+3}, a vertex in \tilde{V}_{i}, a vertex in $\tilde{V}_{i+2}=V_{i+2}^{\prime \prime}$ induce a P_{5} or v, u, v_{i+1}, v_{i+3}, a vertex in \tilde{V}_{i+2} induce a $K_{2,3}^{+}$. If there is a vertex $w \in V_{i}^{\prime \prime}$, adjacent to the vertex in V_{i+2}, then $\overline{N(w)}$ is independent. If V_{i+2} is anti-complete to $V_{i}^{\prime \prime}$, then \tilde{V}_{i} and $V_{i}^{\prime \prime} \backslash \tilde{V}_{i}$ are modules in G. Hence, $\left|V_{i}^{\prime \prime}\right| \leq 2$ and $|V| \leq 9$. So, we will assume that $V_{i} \cup V_{i+2}$ is anti-complete to $V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$.

Suppose that $V_{i}^{\prime}=\{v\}$. Let us show that $|V|=7$. Recall that

$$
V_{i+1}=V_{i+3}=V_{i+1}^{\prime}=V_{i+2}^{\prime}=V_{i+3}^{\prime}=V_{i+1}^{\prime \prime}=V_{i+3}^{\prime \prime}=W_{C}=\emptyset,
$$

and $\left|V_{i}\right|=\left|V_{i+2}\right|=1$. Let $u \in V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$. If $u \in V_{i}^{\prime \prime}$, then $v u \in E$, otherwise, u, v_{i+1}, v, the vertex in V_{i+2}, and the vertex in V_{i} induce a P_{5}. If $u \in V_{i+2}^{\prime \prime}$, then $v u \notin E$, otherwise, v_{i+3}, u, v, the vertex in V_{i+2}, and the vertex in V_{i} induce a P_{5}. Hence, if there are adjacent vertices $u \in V_{i}^{\prime \prime}$ and $u^{\prime} \in V_{i+2}^{\prime \prime}$, then $u v \in E$ and $u^{\prime} v \notin E$. Then, $v_{i+3}, u^{\prime}, u, v$, and the vertex in V_{i+2} induce a P_{5}. Hence, $V_{i}^{\prime \prime} \cup\left\{v_{i+1}\right\}$ and $V_{i+2}^{\prime \prime} \cup\left\{v_{i+3}\right\}$ are modules in G. Then, $V_{i}^{\prime \prime}=V_{i+2}^{\prime \prime}=\emptyset$, as G is irreducible, and $|V|=7$.

Suppose that $\bigcup_{i=1}^{4} V_{i}^{\prime}=\emptyset$. Recall that $V_{i+1}=V_{i+3}=V_{i+1}^{\prime \prime}=V_{i+3}^{\prime \prime}=\emptyset$. The sets V_{i} and V_{i+2} are modules in G, and, hence, $\left|V_{i}\right|=\left|V_{i+2}\right|=1$. The graph $G \backslash\left(V_{i} \cup V_{i+2} \cup\left\{v_{i}, v_{i+2}\right\}\right)$ is the prefiguration graph for G. Let us check that the graph $H=G \backslash\left(V_{i} \cup V_{i+2}\right)$ is O_{3}-free. Indeed,

$$
V(H)=V_{i}^{\prime \prime} \cup V_{i+2}^{\prime \prime} \cup W_{C} \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} .
$$

Let x, y, z be pairwise non-adjacent vertices of H. As $V_{i}^{\prime \prime}$ and $V_{i+2}^{\prime \prime}$ are cliques, by Lemma 8, then $\{x, y, z\} \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset,\left|V_{i}^{\prime \prime} \cap\{x, y, z\}\right| \leq 1$, and $\mid V_{i+2}^{\prime \prime} \cap$ $\{x, y, z\} \mid \leq 1$. If each of the sets $V_{i}^{\prime \prime}, V_{i+2}^{\prime \prime}, W_{C}$ contains exactly one element of $\{x, y, z\}$, then H has an induced P_{5}. Otherwise, H contains an induced $K_{2,3}^{+}$. Thus, $G \in\left(\operatorname{Free}\left(\left\{O_{3}\right\}\right)\right)^{*}$.

Lemma 16 If $\bigcup_{i=1}^{4} V_{i}=\emptyset$, then G is O_{3}-free.
Proof Firstly, we will prove the following observations: 1) for any i, V_{i}^{\prime} is complete to $\left.V_{i}^{\prime \prime} \cup V_{i+3}^{\prime \prime}, 2\right)$ for any i, V_{i}^{\prime} is a clique.

Let us prove the first observation. Suppose that vertices $a \in V_{i}^{\prime}$ and $b \in V_{i}^{\prime \prime}$ are not adjacent. If there is a vertex $x \in V_{i+3}^{\prime}$, then $a x \in E$, by Lemma 8 , and $x b \in E$, to avoid a P_{5}, induced by $v_{i+3}, x, a, v_{i+1}, b$. Then, a, b, v_{i}, x, v_{i+3} induce a $K_{2,3}^{+}$. Thus, $V_{i+3}^{\prime}=\emptyset$. If there is a vertex $x \in V_{i+2}^{\prime}$, then either $x a \notin E$ or $x a \in E$. In the first case, $b x \in E$, to avoid a P_{5}, induced by a, v_{i}, b, v_{i+2}, x. Then, $a, v_{i+1}, b, x, v_{i+3}$ induce a P_{5}. In the second case, $b x \in E$, to avoid a P_{5}, induced by $v_{i+3}, x, a, v_{i+1}, b$. Then, a, b, x, v_{i+3}, v_{i} induce a $K_{2,3}$. Therefore, $V_{i+2}^{\prime}=\emptyset$. The set $\overline{N\left(v_{i+1}\right)}$ is not independent, as G is irreducible. Hence, there is a vertex $c \in V_{i+2}^{\prime \prime}$. We will show that $\left\{c, v_{i+3}\right\}$ is a non-trivial module in G.

The vertex c is simultaneously non-adjacent to a and b. Indeed, if $a c \in E, b c \in E$, then a, b, c, v_{i}, v_{i+3} induce a $K_{2,3}^{+}$. If $a c \in E, b c \notin E$, then $v_{i+3}, c, a, v_{i+1}, b$ induce a P_{5}. If $b c \in E, a c \notin E$, then $v_{i+3}, c, b, v_{i+1}, a$ induce a P_{5}. By Lemma $8,\left\{c, v_{i+3}\right\}$ is complete to $V_{i+2}^{\prime \prime} \backslash\{c\}$. Let v be a vertex in $V_{i+1}^{\prime \prime}$, non-adjacent to c. To avoid a P_{5}, induced by $c, v_{i+3}, v, v_{i+1}, a$ or b, we have $v a \in E$ and $v b \in E$. Then, a, b, v, v_{i}, v_{i+3} induce a $K_{2,3}$. Hence, $\left\{c, v_{i+3}\right\}$ is complete to $V_{i+1}^{\prime \prime}$. Similarly, $\left\{c, v_{i+3}\right\}$ is complete to $V_{i+3}^{\prime \prime}$. Let $v \neq b$ be a vertex in $V_{i}^{\prime \prime}$, adjacent to c. Then, $v b \in E$, by Lemma 8. To avoid a P_{5}, induced by $v_{i+3}, c, v, v_{i+1}, a$, we have $v a \in E$. Then, a, b, c, v, v_{i} induce a $K_{2,3}^{+}$. Therefore, $\left\{c, v_{i+3}\right\}$ is anti-complete to $V_{i}^{\prime \prime}$.

Let $u \neq a$ be a vertex in V_{i}^{\prime}, adjacent to c. To avoid a P_{5}, induced by v_{i+3}, c, u, v_{i+1}, a or b, we have $u a \in E$ and $u b \in E$. Then, a, b, c, u, v_{i} induce a $K_{2,3}^{+}$. Therefore, $\left\{c, v_{i+3}\right\}$ is anti-complete to V_{i}^{\prime}. Let u be a vertex in V_{i+1}^{\prime}, adjacent to c. Then, $u a \in E$, by Lemma 8 . To avoid a P_{5}, induced by $v_{i+3}, c, u, v_{i+1}, b$, we have $u b \in E$. Then,
a, b, c, u, v_{i} induce a $K_{2,3}$. Therefore, $\left\{c, v_{i+3}\right\}$ is anti-complete to V_{i+1}^{\prime}. If there is a vertex $u \in W_{C}$, non-adjacent to c, then $u a \in E, u b \in E$, to avoid a P_{5}, induced by $c, v_{i+3}, u, v_{i+1}, a$ or b. Then, v_{i}, u, v_{i+3}, a, b induce a $K_{2,3}^{+}$. Therefore, $\left\{c, v_{i+3}\right\}$ is complete to W_{C}. So, $\left\{c, v_{i+3}\right\}$ is a non-trivial module in G. Hence, for any i, V_{i}^{\prime} is complete to $V_{i}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$.

Let us prove the second statement. Suppose that V_{i}^{\prime} is not a clique. Then, $V_{i}^{\prime \prime} \cup V_{i+3}^{\prime \prime}$ is empty. Indeed, if an element belongs to this set, then it must be adjacent to all elements of V_{i}^{\prime}, by the first observation, and G contains an induced $K_{2,3}^{+}$. Similarly, $V_{i+1}^{\prime} \cup V_{i+3}^{\prime}=\emptyset$. Let $M \subseteq V_{i}^{\prime}$ be a minimal module among modules in $G\left[V_{i}^{\prime}\right]$, containing non-adjacent vertices. Hence, for any vertex $x \in M,\{x\}$ is not complete to $M \backslash\{x\}$.

If there is a vertex $v \in V_{i+1}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$, adjacent to a vertex $x \in M$, then there is a vertex $y \in M$, such that $x y \notin E$. To avoid a P_{5}, induced by $x, y, v, v_{i+1}, v_{i+3}$ or x, y, v, v_{i}, v_{i+2}, we have $y v \in E$. Then, x, y, v, v_{i+3}, v_{i} or $x, y, v, v_{i+1}, v_{i+2}$ induce a $K_{2,3}^{+}$. Therefore, M is anti-complete to $V_{i+1}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$. If there is a vertex $v^{\prime} \in V_{i+2}^{\prime}$, adjacent to $x^{\prime} \in M$, then there is a vertex $y^{\prime} \in M$, such that $x^{\prime} y^{\prime} \notin E$. To avoid a P_{5}, induced by $v_{i+3}, v^{\prime}, x^{\prime}, v_{i+1}, y^{\prime}$, we have $v^{\prime} y^{\prime} \in E$. Then, $x^{\prime}, y^{\prime}, v^{\prime}, v_{i}, v_{i+3}$ induce a $K_{2,3}$. Therefore, M is anti-complete to V_{i+2}^{\prime}.

Suppose that $W_{C} \neq \emptyset$. As G is $K_{2,3}^{+}$-free, any vertex of W_{C} has a neighbour in M, as M is not a clique. Let $v^{\prime \prime} \in W_{C}, x$ and y be any non-adjacent vertices of M. As G is $K_{2,3}^{+}$-free, $V_{i}^{\prime} \cap N\left(v^{\prime \prime}\right)$ and $V_{i}^{\prime} \backslash N\left(v^{\prime \prime}\right)$ are cliques. Hence, $x v^{\prime \prime} \in E, y v^{\prime \prime} \notin E$ or vice versa. The vertex $v^{\prime \prime}$ is adjacent to all vertices of $V_{i}^{\prime} \backslash M$, otherwise, x, y, v_{i+2}, an element of $V_{i}^{\prime} \backslash M$, and an element of W_{C} induce a P_{5}. Additionally, $V_{i}^{\prime} \backslash M$ is a clique. As G is $K_{2,3}^{+}$-free, if there are non-adjacent vertices $v_{1}^{\prime}, v_{2}^{\prime} \in W_{C}$, then any vertex of V_{i}^{\prime} has a neighbour in $\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$. Hence, one may assume that $x v_{1}^{\prime} \in E, y v_{1}^{\prime} \notin E$ or $y v_{2}^{\prime} \in E, x v_{2}^{\prime} \notin E$. Then, $x, v_{1}^{\prime}, v_{i+2}, v_{2}^{\prime}, y$ induce a P_{5}. Therefore, W_{C} is a clique. Moreover, $W_{C} \cup\left\{v_{i}, v_{i+1}\right\} \cup\left(V_{i}^{\prime} \backslash M\right)$ is a clique, which is separating. Thus, $W_{C}=\emptyset$. So, M is a non-trivial module in G. Hence, V_{i}^{\prime} is a clique, for any i.

Now, let us prove that G is O_{3}-free. Suppose the opposite. Let x, y, z be pairwise non-adjacent vertices of G. Clearly, $\{x, y, z\} \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ has at most one vertex. If this set contains one vertex (say, x), then, by Lemma 8, either $y \in V_{i}^{\prime} \cup V_{i+1}^{\prime}, z \in V_{i}^{\prime \prime}$ (or vice versa) or $y, z \in V_{i}^{\prime}$, for some i. It contradicts to the observations. Suppose that $\{x, y, z\} \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\emptyset$. By the second observation and Lemma 8, the set $\bigcup_{i=1}^{4} V_{i}^{\prime} \cap\{x, y, z\}$ contains at most two elements.

Suppose that $\left|\bigcup_{i=1}^{4} V_{i}^{\prime} \cap\{x, y, z\}\right|=2$. We may consider that $x \in V_{i}^{\prime}$ and $y \in V_{i+2}^{\prime}$, by the second observation and Lemma 8. By the first observation, $z \in W_{C}$. Hence, G contains a P_{5}, induced by $x, v_{i+1}, z, v_{i+3}, y$.

Suppose that $\bigcup_{i=1}^{4} V_{i}^{\prime} \cap\{x, y, z\}=\{x\}$, where $x \in V_{i}^{\prime}$. Then, by the first observation, we may assume that $y, z \in W_{C} \cup V_{i+1}^{\prime \prime} \cup V_{i+2}^{\prime \prime}$. If $W_{C} \cap\{y, z\}=\emptyset$, then, by Lemma 8 and the first observation, $y \in V_{i+1}^{\prime \prime}, z \in V_{i+2}^{\prime \prime}$ or vice versa. Then, $x, v_{i+1}, y, v_{i+3}, z$ induce a P_{5}. If $y, z \in W_{C}$, then x, y, z, v_{i}, v_{i+1} induce a $K_{2,3}^{+}$. If only one of y, z belongs to W_{C}, then, by the first observation, we have that $y \in W_{C}, z \in V_{i+1}^{\prime \prime}$ up to symmetry. Then, z, v_{i+2}, y, v_{i}, x induce a P_{5}.

Suppose that $\bigcup_{i=1}^{4} V_{i}^{\prime} \cap\{x, y, z\}=\emptyset$. If at least two of the vertices x, y, z belong to W_{C}, then G contains an induced $K_{2,3}^{+}$. In all other cases, G contains an induced P_{5}.

So, our assumption about the existence of three pairwise non-adjacent vertices of G was false.

6 Main result

Theorem 1 The WCOL problem can be solved in polynomial on the sum of vertex weights time for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs.

Proof By Lemma 3 and the reasonings from the previous section, the WCOL problem for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs can be reduced in polynomial on the number of vertices time to the same problem for graphs in

$$
\left(\operatorname{Free}\left(\left\{O_{3}\right\}\right)\right)^{*} \cup \operatorname{Free}\left(\left\{P_{5}, K_{2,2}\right\}\right)
$$

and graphs on at most 12 vertices. The WCOL problem can be solved in polynomial on the length of input data time for $\left\{P_{5}, K_{2,2}\right\}$-free graphs [14]. Hence, by the mentioned facts and Lemmas $4-6$, this theorem is true.

As a corollary, Theorem 1 implies that the COL problem can be solved in polynomial on the number of vertices time for $\left\{P_{5}, K_{2,3}, K_{2,3}^{+}\right\}$-free graphs.

7 Conclusions and future work

In the present paper, we considered the weighted coloring problem for hereditary graph classes that are defined by a pair of forbidden induced connected subgraphs, each on 5 vertices. The computational status of the unweighted version of this problem has been resolved for all such pairs, except for 5 of them. We proved here that the weighted coloring problem is polynomial-time solvable for the class of graphs, which is defined by a triple of forbidden such subgraphs. This class is the intersection of some of the unresolved cases, mentioned above. We hope that our result will be helpful in resolving the computational complexity of the (un)weighted coloring problem for the open cases. Clarifying its complexity status for them is a challenging research problem for future work.

Acknowledgements Research is supported under financial support of Russian Science Foundation, project No 19-71-00005.

References

1. Cameron, K., Huang, S., Penev, I., Sivaraman, V.: The class of (P_{7}, C_{4}, C_{5})- free graphs: decomposition, algorithms, and χ-boundedness. J. Graph Theory (2019). https://doi.org/10.1002/jgt. 22499
2. Cameron, K., da Silva, M., Huang, S., Vuskovic, K.: Structure and algorithms for (cap, even hole)-free graphs. Discrete Math. 341, 463-473 (2018)
3. Dabrowski, K., Dross, F., Paulusma, D.: Colouring diamond-free graphs. J. Comput. Syst. Sci. 89, 410-431 (2017)
4. Dabrowski, K., Golovach, P., Paulusma, D.: Colouring of graphs with Ramsey-type forbidden subgraphs. Theor. Comput. Sci. 522, 34-43 (2014)
5. Dabrowski, K., Lozin, V., Raman, R., Ries, B.: Colouring vertices of triangle-free graphs without forests. Discrete Math. 312, 1372-1385 (2012)
6. Dabrowski, K., Paulusma, D.: On colouring $\left(2 P_{2}, H\right)$-free and $\left(P_{5}, H\right)$-free graphs. Inf. Process. Lett. 134, 35-41 (2018)
7. Dai, Y., Foley, A., Hoàng, C.: On coloring a class of claw-free graphs: to the memory of Frédéric Maffray. Electron. Notes Theor. Comput. Sci. 346, 369-377 (2019)
8. Foley, A., Fraser, D., Hoàng, C., Holmes, K., LaMantia, T.: The intersection of two vertex coloring problems. arXiv:1904.08180
9. Fraser, D., Hamela, A., Hoàng, C., Holmes, K., LaMantia, T.: Characterizations of ($4 K_{1}, C_{4}, C_{5}$)-free graphs. Discrete Appl. Math. 231, 166-174 (2017)
10. Gaspers, S., Huang, S., Paulusma, D.: Colouring square-free graphs without long induced paths. J. Comput. Syst. Sci. 106, 60-79 (2019)
11. Golovach, P., Johnson, M., Paulusma, D., Song, J.: A survey on the computational complexity of coloring graphs with forbidden subgraphs. J. Graph Theory 84, 331-363 (2017)
12. Golovach, P., Paulusma, D., Ries, B.: Coloring graphs characterized by a forbidden subgraph. Discrete Appl. Math. 180, 101-110 (2015)
13. Hell, P., Huang, S.: Complexity of coloring graphs without paths and cycles. Discrete Appl. Math. 216, 211-232 (2017)
14. Hoàng, C., Lazzarato, D.: Polynomial-time algorithms for minimum weighted colorings of ($P_{5}, \overline{P_{5}}$)free graphs and similar graph classes. Discrete Appl. Math. 186, 106-111 (2015)
15. Karthick, T., Maffray, F., Pastor, L.: Polynomial cases for the vertex coloring problem. Algorithmica 81, 1053-1074 (2017)
16. Král', D., Kratochvíl, J., Tuza, Z., Woeginger, G.: Complexity of coloring graphs without forbidden induced subgraphs. Lect. Notes Comput. Sci. 2204, 254-262 (2001)
17. Kim, D., Du, D.-Z., Pardalos, P.M.: A coloring problem on the n-cube. Discrete Appl. Math. 103, 307-311 (2000)
18. Lozin, V., Malyshev, D.: Vertex coloring of graphs with few obstructions. Discrete Appl. Math. 216, 273-280 (2017)
19. Malyshev, D.: The coloring problem for classes with two small obstructions. Optim. Lett. 8, 2261-2270 (2014)
20. Malyshev, D.: Two cases of polynomial-time solvability for the coloring problem. J. Comb. Optim. 31, 833-845 (2016)
21. Malyshev, D.: Polynomial-time approximation algorithms for the coloring problem in some cases. J. Comb. Optim. 33, 809-813 (2017)
22. Malyshev, D.: The weighted coloring problem for two graph classes characterized by small forbidden induced structures. Discrete Appl. Math. 247, 423-432 (2018)
23. Malyshev, D., Lobanova, O.: Two complexity results for the vertex coloring problem. Discrete Appl. Math. 219, 158-166 (2017)
24. Pardalos, P.M., Mavridou, T., Xue, J.: The graph coloring problem: a bibliographic survey. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1077-1141. Springer, Boston (1998)
25. Wang, H., Pardalos, P.M., Liu, B.: Optimal channel assignment with list-edge coloring. J. Combin. Optim. 38, 197-207 (2019)
26. Wang, H., Wu, L., Wu, W., Pardalos, P.M., Wu, J.: Minimum total coloring of planar graph. J. Glob. Optim. 60, 777-791 (2014)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: \boxtimes D. S. Malyshev
 dsmalyshev@rambler.ru; dmalishev@hse.ru
 O. O. Razvenskaya
 olga-olegov@yandex.ru
 P. M. Pardalos
 pardalos@ufl.edu
 1 National Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa, Nizhny Novgorod, Russia 603155
 2 University of Florida, 401 Weil Hall, P.O. Box 116595, Gainesville, FL 326116595, USA

