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Abstract: In the framework of an exactly soluble model, one considers a typical problem of the
interaction between radiation and matter: the dynamics of population in a multilevel quantum
system subject to a time dependent perturbation. The algebraic structure of the model is taken
richly enough, such that there exists a strong argument in favor of the fact that the behavior of
the system in the asymptotic of long time has a universal character, which is system-independent
and governed by the functional property of the time dependence exclusively. Functional properties
of the excitation time dependence, resulting in the regimes of resonant excitation, random walks,
and dynamic localization, are identified. Moreover, an intermediate regime between the random
walks and the localization is identified for the polyharmonic excitation at frequencies given by the
Liouville numbers.

Keywords: multilevel quantum system; resonant excitation; random walk; dynamic localization

1. Time Dependent Perturbation of a Quantum System

Action of a time dependent perturbation V̂(t) on a quantum system defined by a
Hamiltonian Ĥ0 with a sufficiently rich spectrum can be considered to be a typical problem
in the domain of the coherent interaction of radiation with matter. Every expert in the
field can immediately give many particular examples of such a problem that have exact
analytical solutions, including the most studied case of the weak perturbation regime
where one calculates composite matrix elements of the multiphoton transitions and Fourier
transforms of powers of the corresponding time dependencies. One also knows that for
the strong perturbation regime, the general solution cannot be explicitly given as an exact
analytical expression other than the well-known symbolic form

Û(t) = T exp
{
−i
∫ (

Ĥ0 + V̂(t)
)

dt
}

(1)

of the time-ordered exponent of the integral of Hamiltonian Ĥ0 + V̂(t) for the evolution
operator Û(t). Here one addresses the question: is it still possible to analytically find the
asymptotic behavior of a rather complex quantum system under a strong time-dependent
perturbation and qualitatively identify different regimes characterized by certain functional
properties of this time dependence? By the strong perturbation one means here the case
where a typical matrix element of the perturbation V̂(t) exceeds considerably a typical
spacing among the successive eigen energies of the unperturbed Hamiltonian Ĥ0.

The problem has already been tackled [1,2] by the methods of the Random Matrix
Theory for the case V̂(t) = f (t) V̂, where both matrices V̂ and Ĥ0 were assumed to belong
to one of Gaussian Statistical Ensembles. One of the regimes identified is so-called Dynamic
Localization [3], where despite the presence of all-order resonances, the quantum system
does not get excited beyond a certain limit due to the complicated interference phenomena.
Still, general relations among the functional properties of f (t) and the asymptotic behavior
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of the population distribution over the energy scale have not yet been revealed. In contrast
to the statistical approach developed in these publications, the purpose of the present
paper is to establish a certain type of such relations between the Fourier composition of
f (t) and the asymptotic width of the population distribution over the energy scale for
one particular choice of the operators V̂ and Ĥ0. One can conjecture that this choice offers
description of a rather generic situation, which is typical of the asymptotic behavior of
almost all particular realizations of these operators. Discussion about the applicability of
the different particular cases revealed to the generic situation is given at the last section
of the present text. The result shows that in some regimes, the number theory related to
the best rational approximation problem may play an important role, as it was already
encountered earlier for two other models Refs. [4,5]. Note that more technical details can
be found in Ref. [6]

2. What May Affect the Asymptotic Behavior in the Strong Perturbation Regime?

Speaking about dynamics of a quantum system with the Hamiltonian

Ĥ(t) = Ĥ0 + f (t)V̂, (2)

one can identify two ingredients of the problem potentially capable of influencing the
asymptotic behavior: (i) The algebraic properties of the pair of operators Ĥ0 an d V̂, and
(ii) The functional properties of the time dependence f (t). An amalgam of these two
distinct types of properties can be observed in a natural way when one employs the
Magnus expression

iŜ(t) ≡ log
[
T exp

{
i
∫

Ĥ(t)dt
}]

=
t∫

0
dt1

Ĥ(t1)
−i + 1

2

t∫
0

dt1

t1∫
0

dt2
[Ĥ(t1),Ĥ(t2)]

(−i)2

+ 1
6

t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3
[Ĥ(t1),[Ĥ(t2),Ĥ(t3)]]+[Ĥ(t3),[Ĥ(t2),Ĥ(t1)]]

(−i)3 + . . .
(3)

for the action matrix Ŝ(t) of the evolution operator Equation (1) corresponding to the
Hamiltonian Equation (2), which yields

Û(t) = exp
{
−iĤ0t− iV̂

∫
f (t)dt +

1
2

[
Ĥ0, V̂

](∫ ∫ t
f (τ)dτdt +

∫
f (t)

∫ t
dτdt

)
+ . . . (4)

+
il p
q

[[
. . .
[

Ĥ0, V̂
]
, . . .

]
, Ĥ0

](∫
f (t)

∫
. . .
∫ ∫ t

f (τ)dτ . . . dt + . . .
)
+ . . .

}
. (5)

General term Equation (5) of the Magnus series for the action matrix in the expo-
nent for Û(t) = eiŜ(t) Equation (4) is a product of three factors: (i) an operator part[[

. . .
[

Ĥ0, V̂
]
, . . .

]
, Ĥ0

]
, which is given by one of the all-order commutators of the oper-

ators Ĥ0 and V̂ , and this part is representing the algebraic properties, (ii) a functional
part

(∫
f (t)

∫
. . .
∫ ∫ t f (τ)dτ . . . dt + . . .

)
, which is given by a relevant combination of

integrals constructed from the function f (t) representing the functional properties of the

perturbation time dependence, and (iii) a numerical coefficient il p
q , which cannot be given

as a general algebraic expression, but can be recursively calculated up to any given order.
For a system with a finite dimension N of the Hilbert space, successive all-order

commutation of a pair of operators produces a complete set of N2 − 1 linearly independent
operators forming a closed algebra AN of a finite number N2 − 1 of generators, such that
no new linearly independent operators can be produced starting from a certain order
of commutation. In contrast, the functional part gets more and more involved with the
increasing order of commutation. The longer the elapsed time is, the higher are the orders
of nonlinearity of the functional parts that give the leading contribution to the action series,
and these orders grow more or less linearly with the time. In such a situation, after a certain
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interval of time, a linear combinations of all N2 − 1 generators of the algebra AN will
appear in the exponent Equation (4) with the coefficients given by complicated functionals
of the time dependence f (t).

There exists another way to preliminary describe the same situation. Consider the
problem in the interaction representation, where the perturbation matrix elements(

V̂int(t)
)

n,m
= Vn,me−i(En−Em)t

acquire the phase factors suggested by the eigen energies Ek of the unperturbed Hamil-
tonian Ĥ0. The operator f (t)V̂int(t) can be directly substituted to the Magnus series
Equation (3) for the evolution operator, where each element of the action matrix

Sn,m(t) = sn,mF{ f (t), En, Em}

can be seen as a factor sn,m, which accounts for a sort of selection rules for the composite
matrix elements dictated by the algebraic properties of the operators, and the functional
part F{ f (t), En, Em}, which accounts to the capability of the function f (t) to produce all-
order combinational resonances between the states with the energies En and Em. It is,
therefore, natural to conjecture that no matter what the pair of the operators Ĥ0 and V̂
was originally, for strong coupling, only the type of the algebra AN and the functional
properties of f (t) are the relevant characteristics that governs the dynamics of the system
in the asymptotic regime, whereas the selection rules play no crucial role since all-order
resonances are capable of coupling each pair of the state at appropriate time domains.

3. Choice of the Model

In order to analyze the asymptotic dynamics of a quantum system under the action
of a time-dependent interaction within the framework of the aforesaid conjecture, one
can make a particular choice of the operators Ĥ0 and V̂ that allows one to find an exact
analytical solution of the problem, but in the same time generates complete algebra AN
of a given large number N of the elements. To gain an idea about universality of such
dynamics, one has to simply consider the time intervals long enough, such that the main
contribution to the Magnus series comes from the high-order commutations and therefore
manifests universality of the asymptotic behavior since in this regime the particular choice
no longer has important effect on the population dynamics of the system.

One can make the following choice of the operators specified by the matrix elements:(
Ĥ0

)
n,m

= nδn,m (6)(
V̂
)

n,m
= 1,

which corresponds to the equidistant spectrum of the unperturbed system, and a rank 1
perturbation with all identical matrix elements equal to unity. Direct inspection shows that
for a given size of the Hilbert space N all the rest of the set of N2 − 1 linearly independent
N × N matrices different from unity can indeed be obtained by high-order commutations
of the pair of these operators.

The corresponding Schrödinger equation

i
.
ψn = nψn + f (t)

N

∑
j

ψj (7)

with the initial condition ψn=0(t = 0) = 1 can be re-written in the form

ψn(t) = δn,0 − i
t∫

0

dτe−in(t−τ) f (τ)
N

∑
j

ψj(τ), (8)
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which for the combination Q(t) = ∑N
j ψj(t) results in an integral equation

Q(t) = 1− i
t∫

0

dτG(t− τ) f (τ)Q(τ). (9)

In the limit of large N, the kernel

G(z) =
N

∑
n

e−inz (10)

of this equation acquires the form

G(z) = 2π ∑
n

δ(z− 2πn) (11)

of an infinite sequence of 2π-periodic δ-shaped spikes, while for a finite N these spikes have
a finite width. One may say that this kernel accounts for the 2π-periodic returns of the pop-
ulation amplitudes back to the interacting state given by the linear combination ∑N

j ψj(τ)
as the result of action of the unperturbed Hamiltonian Equation (6). The combination

R(t) = f (t)Q(t) (12)

governs the probability amplitude distribution at a given time via the Fourier transform of
Θ(t− τ)R(τ), as it follows from Equation (8).

4. The Solution and the Required Functional Characteristics of the Time Dependence

Equation (9) with the kernel Equation (11) is actually an algebraic relation among the
values of the function Q(t) with the times arguments shifted each with respect to another
by multiples of the period 2π, which is

Q(t) = 1− iπ f (t)Q(t)− 2πi
ip{t/2π}

∑
k=1

f (t− 2πk)Q(t− 2πk), (13)

where ip{t/2π} stands for the integer part of the ratio t/2π. Let us denote by Qn(θ ∈
{0, 2π}), Rn(θ ∈ {0, 2π}) and fn(θ ∈ {0, 2π}) the value of the function Q(t), R(t) and f (t)
at t = 2πn + θ, respectively, and arrive at the algebraic equation

Qn(θ) = 1− iπ fn(θ)Qn(θ)− 2πi
n−1

∑
k=1

fk(θ)Qk(θ), (14)

which has an explicit solution

Qn(θ) =
1

1− iπ fn(θ)

n

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)
. (15)

This expression and Equation (8) yields explicit expression for the probability ampli-
tudes at the time points t = 2πr
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ψm(2πr) = −i
2π∫
0

dθe−imθ
r

∑
n=0

fn(θ)Qn(θ) = i
2π∫
0

dθe−imθ
r−1

∑
n=0

− fn(θ)

1− iπ fn(θ)

n

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)
(16)

= −
2π∫
0

dθ

2π
e−imθ

r−1

∑
n=0

(
n

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)
−

n−1

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)

)
=

2π∫
0

dθ

2π
e−imθ

(
1−

r−1

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)

)
. (17)

When speaking about population of the states that have energies far enough from the
energy of the initially populated state, the index m is assumed to be large. That is why the
last term 1 in the integrand of Equation (17) is going to be ignored hereafter. For a function
f (t) with a restricted spectral width, the principle contribution in the integrand of (17) is
than given by the product

r−1

∏
k=0

1− iπ fk(θ)

1 + iπ fk(θ)
(18)

with a large r. In fact, in order to ensure a substantial population of such states, the
expression in parenthesis as a function of θ should change rapidly and therefore contain
rapidly oscillating harmonics in their Fourier decomposition, which can only be the case
when the product Equation (18) of the phase factors

1− iπ fk(θ)

1 + iπ fk(θ)
(19)

is long enough.
Please note that in the strong coupling regime, the main contribution of each of

factors Equation (19) to the overall phase change of Equation (18) comes from the domains
where the corresponding function fk(θ) = f (θ + 2πk) crosses zero, and where generally
speaking, the phase change is the most rapid, while outside of these domains, namely
where fk(θ) � 1/π, the phase remains close π. When in a vicinity of a point θ two
functions, say fk(θ) and fk′(θ), turn to zero having same signs of the derivatives, such a
coincidence yields two factors in the product of Equation (18) that rapidly change their
phases in the same direction, which, evidently, increases the overall rate of the phase
change in this very moment of time θ. If the signs of the derivatives are opposite, the
phase change decelerates. One has thus identified a qualitative functional characteristic of
f (t), which is responsible for broadening of the population distribution over the energy
scale—this is the coincidence statistics of zeros of the function f (t) folded with the period 2π
of the kernel G(t), which should be taken with the allowance for the derivatives f ′(t) in these
points.

The formal reason for this conclusion relies on the saddle-point approximation of the
main contribution to the integral Equation (17)

ψm(2πr) = −
2π∫
0

dθ

2π
e
−imθ+

r−1
∑

k=0
log

1−iπ fk(θ)
1+iπ fk(θ) , (20)

for which the saddle-point equation

−m−
r−1

∑
k=0

2π f ′k(θ)

1 + [π fk(θ)]
2 = 0

allows one to conclude that the points where fk(θ) = 0 indeed give maximum contributions
weighted by the derivatives f ′k(θ) at these points. Strictly speaking, there exists a regime
where the function f (t) always remains much smaller than unity and the main role therefore
play the points with the maximum derivative f (t). However, this is the regime of weak
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coupling, not considered here, which is adequately tractable by the regular time dependent
perturbation theory.

5. Four Particular Regimes of the Excitation

Four particular cases can immediately be suggested for the analysis: the case (A) of a
periodic f (t), with a period 2π

p
q which is a rational fraction of the period of G(t), the case

(B) of a function f (t) randomly changing for every next return period, the case (C) of an
irrational ratio of the periods of f (t) and G(t), and the case (D) of several incommensurable
irrational harmonics of f (t).

5.1. Integer and Rational Frequency Spectrum of f (t)

The simplest case corresponds to the situation where the spectrum of f (t) has integer
frequencies. Each product Equation (18) is therefore simply the r-th power of the factor
Equation (19) with k = 0, and for the long time asymptotic r → ∞ one can separately
consider contribution of each root f (θn) = 0, by performing Taylor expansion f (θn) '
fn(θ − θn), thus obtaining Equation (20) in the form

ψm(2πr) ' ∑
roots n

e−imθn

2π

∞∫
−∞

dxe−imx+r log 1−iπfn x
1+iπfn x ,

where x = (θ − θn). Evaluation by the stationary phase method yields

ψm(2πr) ' ∑
roots n

exp(irΦn)

i
√

2πrz3/4(2πfn + z)1/4 , (21)

where z = m
r and Φn is a phase factor, which for positive fn implies negative z and reads

Φn =

√
z
√

2πfn + z
iπfn

− zθn + arg
√

z−
√

2πfn + z√
z +
√

2πfn + z
.

For the negative fn and positive z the phase factor is similar.
From the structure of the amplitude Equation (21), where the time dependence enters

via the parameter z exclusively, it becomes clear that in the long time limit, the population
distribution along the energy scale gets broader and the distribution width scales linearly
with the increasing number r of periods given by the integer part of the dimensional time
t/2π. Zeros of f (t) with the positive derivatives account for the distribution propagation
towards negative energies with the velocities of fn, while the negative ones account for the
energy increase. One can interpret the result as an excitation of the equidistant spectrum of
the band by a resonant field and its harmonics that are just parametrized by the positions
of zeros of f (t) and by the slopes of the function in these points. The resulting population
distribution over the energy scale linearly broadens with time, and the velocity of this
broadening are given by the typical slope |fn|.

When the field frequency spectrum is given not by integers, but by multiples of a
rational number p

q , there exists a common period 2πq of G(t) and f (t), such that one still
can explicitly perform summation and write an expression for the amplitudes

ψm(2πr)|r=vq+1 =

2π∫
0

dθ

2π
e−imθ

(
q−1

∏
k=0

1− iπ f (θ + 2πk)
1 + iπ f (θ + 2πk)

)pv

(22)

equivalent to Equation (20). Again, for the long time limit and the large m, the main contri-
bution comes from the most rapidly oscillating first term in the parentheses representing
now the net contributions during the common period 2πq, while the summation over q
periods of the kernel G(t) results in the phase ∑

q−1
k=0 pv log 1−iπ f (θ+2πk)

1+iπ f (θ+2πk) . The latter linearly
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increases with the number r ∼ pv
q of the perturbation periods. One finds a situation similar

to the case of integer frequencies given by Equation (21), the energy distribution width
increases linearly in time. This case corresponds to a parametric resonance between the
equidistant spectrum frequency and the frequency of the field.

5.2. A Random Function f (t)

The situation is quite different if f (θ) 6= f (θ + 2πk) for all k. This is the case if the
function f (t) is not a periodic but a random one, which means that in the time interval
(0, 2π) it varies in a way different from that in the interval (2π, 4π), and in a yet different
way in each next time interval (2πk, 2π(k + 1)). In other words, time dependences of the
perturbation during different revival periods are completely de-correlated and their actions
may compensate each other on average. Equation (17) written in the form

ψm(2πn) = −
2π∫
0

dθ

2π
e−imθ+iΦn(θ) (23)

shows that the phase factors

iΦn(θ) =
n−1

∑
k=0

log
1− iπ f (θ + 2πk)
1 + iπ f (θ + 2πk)

(24)

are no longer linearly increasing functions of the number of the periods, since the sum of n
random functions is not n times but just

√
n times larger that a typical term of this sum.

In other words, for a given θ, not averages but only statistical fluctuations of the phases
log 1−iπ f (θ+2πk)

1+iπ f (θ+2πk) allow for the nonvanishing result, and hence the width of the population
distribution over the energy scale grows according the diffusion law—as a square root
of time.

To show this, one can invoke a model of the random function

f (θ) =
1

iπ

N
∏

r=1
(1 + iπfk,r(θ − θk,r))−

N
∏

r=1
(1− iπfk,r(θ − θk,r))

N
∏

r=1
(1 + iπfk,r(θ − θk,r)) +

N
∏

r=1
(1− iπfk,r(θ − θk,r))

, (25)

determined by the random θk,r and fk,r. In other words, within each period (2πk, 2π(k + 1))
of G(t), the model function Equation (25) is characterized by 2N parameters—the positions
θk,r of the roots f (θk,r) = 0 and the derivatives fk,r = f ′(θk,r) in these points, with r =
1, . . . , N. For the phase factors entering the sum in Equation (24) this yields

log
1− iπ f (θ + 2πk)
1 + iπ f (θ + 2πk)

=
N

∑
r=1

log
1− iπfk,r(θ − θk,r)

1 + iπfk,r(θ − θk,r)
. (26)

and allows one to express the probability amplitudes Equation (23) in the form

ψm =

2π∫
0

dθ
e−imθ

2π

N,n−1

∏
r=1,k=0

1− iπfk,r(θ − θk,r)

1 + iπfk,r(θ − θk,r)
(27)

convenient for the analysis.
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Randomness of f (θ) implies averaging over an ensemble of θk,r and fk,r of the population

ρm(2πn) =
2π∫
0

e

N,n−1
∑

r=1,k=0
log

1−iπfk,r(θ−θk,r)
1+iπfk,r(θ−θk,r)

1+iπfk,r(ϑ−θk,r)
1−iπfk,r(ϑ−θk,r) (28)

eimϑ−imθ dϑdθ

4π2

of the level m after n periods of G(t) given by |ψm|2 of Equation (27). One can chose an
independent uniform distribution of the roots positions θk,r within the interval (0, 2π) and
the uniform distribution of the derivatives fk,r within a band (−F, F), while the width 2F
of this band serves as the parameter of the model characterizing typical front duration of
the phase changes. Each term of the sum in the exponent is a statistically independent
averaged factor for the population

F∫
−F

dy
2F

2π∫
0

dx
2π

1− iπy(θ − x)
1 + iπy(θ − x)

1 + iπy(ϑ− x)
1− iπy(ϑ− x)

.

It can be calculated separately and in the limit of large 2F where the integration limits for x
can be extended to ±∞ and give

F∫
−F

dy
2F

(
1− 4π(ϑ− θ)

πy(ϑ− θ) + 2i
sign(y)

)
,

while the second integration results in

1− 2
F

log

[
1 +

(
Fπζ

2

)2
]

, (29)

where ζ = ϑ− θ.
After substitution Equation (29) to Equation (28) and integration over d ϑ+θ

2 the last
expression gives the population

ρm(2πn) =
2π∫
0

dζ

4π2 e
imζ+Nn log

(
1− 2

F log
[

1+
(

Fπζ
2

)2
])

,

which after evaluation of the integral by the saddle-point method yields the diffusion profile

ρm(2πn) =
1

2π
√

2πNnF
exp

{
− m2

8π2F Nn

}
, (30)

in complete agreement with one’s intuitive expectations.

5.3. Irrational Frequency and Liouville Numbers

We thus identified two regimes, the linear increase of the distribution width, resulting
from the constructive interference in the case of a resonance, and the diffusive regime
under the action of random force where the interference is suppressed by the randomness.
Is it possible to identify a regime where interference of the revivals is destructive? The
answer to this question is affirmative, and the simplest example of such a case is a harmonic
excitation f sin[ωt] with a period 2π/ω incommensurate with that of G(t). This implies
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that not even a high order composite resonance occurs in the system under the action of
perturbation. Equation (20) for this case reads

ψm(2πr) = −
2π∫
0

dθ

2π
e
−imθ+

r−1
∑

k=0
log 1−iπf sin[ω(θ+2πk)]

1+iπf sin[ω(θ+2πk)] , (31)

where ω is an irrational number. During each period of G(t), i.e., for each k, the phase
factor may turn to zero several times at the points θp,k = πp/ω− 2πk, and the derivatives
in these points may take just two values ±2iπωf.

Though for long times, due to incommensurably of the periods of f (t) and G(t), the
roots θp,k form a rather dense set of points in the interval (0, 2π); however, this neither
implies that the root density is uniform nor that the signs of derivatives are randomly
distributed. The existence of correlations in the positions of the roots and in the signs of
derivatives dictated by the Number Theory may and do result in the strong interference
phenomena. In order to reveal this interference we cast the sum of logarithms entering
Equation (31) to power series

2iIm
r−1,∞,∞

∑
k=0,m=0,n=0

(−1)n+1
(

πf
2

)m+n
(m + n− 1)!

n!m!ei(n−m)ω(θ+2πk)
,

perform summation over r− 1 periods k of the kernel G(t)

2iIm
∞

∑
m,n=0

(−1)n+1
(

πf
2

)m+n
(m + n− 1)!

n!m!ei(n−m)ω(θ+π(r−1))
sin[(n−m)πrω]

sin[(n−m)πω]
,

make the replacements n→ m + s for n > m, or m→ n + s otherwise, getting

2iIm
∞

∑
n,s=0

(−1)n+1
(

πf
2

)s+2n
(s + 2n− 1)!

n!(n + s)!e−isω(θ+π(r−1))
sin[sπrω]

sin[sπω]
+

2iIm
∞

∑
m,s=0

(−1)m+1
(

πf
2

)s+2m
(s + 2m− 1)!

n!(n + s)!
(
−eiω(θ+π(r−1))

)−s
sin[sπrω]

sin[sπω]
,

perform summation over n (or m) noting that

∑
xm(2m + s− 1)!

m!(m + s)!
=

2s

(1 +
√

1− 4x)ss
,

and finally obtain the expression

2 ∑
s=2n+1

[
πf

1 +
√

1 + π2f2

]s

(−1)n sin[sω(θ + π(r− 1))]
sin[sπrω]

s sin[sπω]
(32)

for the sum of logarithms in Equation (31). Here summation is performed over odd natural
numbers s = 2n + 1. In the summand, one recognizes the combination sin[sπrω]

sin[sπω]
typical of

the r-beam interference, which amounts to r for the resonant frequencies corresponding to
zero denominators, and which is rapidly drops due to the destructive interference, when
the frequency is detuned from the resonance.

The summand of Equation (32) contains three factors, the first one
(

πf/
(

1 +
√

1 + π2f2
))s

exponentially decreasing with the increasing summation index and vanishing at typical
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sizes s ∼ πf, the second factor cos[sω(θ + π(r− 1))] corresponding to oscillations with a
constant amplitude, and the third, interference induced factor sin[sπrω]

s sin[sπω]
, which is the most

important for our analysis. For an irrational ω, the argument of the sine in the denom-
inator never coincides with a multiple of π, and hence the denominator never assumes
zero value, such that a finite difference depending on the parameter ε defined via the
relation sπω = kπ + sπε always exists. Given an integer s, the minimum difference sπεs is
determined by the best rational approximation ω = k

s + εs of the irrational frequency by a
rational number with the denominator s.

From the explicit expression for the derivative of the phase

Φ′r(θ) = 2ω ∑
s=2n+1

[
πf

1 +
√

1 + π2f2

]s
sin[sω(θ + π(r− 1))]

sin[sπrω]

sin[sπω]

by the substitution ω → k
s + εs one finds

Φ′r(θ) =
2ω

(−1)r+1 ∑
s=2n+1

[
πf

1 +
√

1 + π2f2

]s
sin[sω(θ + π(r− 1))]

sin[rsπεs]

sin[sπεs]
. (33)

Equation (33) has a transparent physical meaning: each term of the sum corresponds to
an s-photon resonance, which has an exponentially small first factor corresponding to a
composite transition matrix element decreasing as exp[−s/πf], the second factor oscillating
at the frequency of the s-th harmonics of the driving field, and the third factor accounting
for the mismatch sεs of the resonance. The exponential decrease of the composite matrix
element suggests to consider at most s ∼ 2πf first terms of the infinite sum. The third factor
has a numerator less than unity in the absolute value while the denominator is not less than
the minimum distance εs<2πf between the irrational number and its best rational approxi-
mation with a denominator s inferior to 2πf. Apart from a zero measure set of so-called
Liouville numbers, i.e., for a generic real ω, in virtue of so-called Dirichlet’s theorem, the
number theory suggests an estimate for this mismatch distance εs<q ∼ 1/q2 while, accord-
ing to Hurwitz’s theorem, the number

√
5 can be taken for the proportionality coefficient.

One therefore can estimate the upper bound of the phase derivative Equation (33) as

∣∣Φ′r→∞
∣∣ . ∑

s
4
√

5ωe−
s

πf
s
π
' 4
√

5ω

π
(πf)2. (34)

The stationary phase method of evaluation of the integral Equation (31) suggests to con-
sider this quantity as an estimate of the maximum possible width W of the population
distribution over the energy scale, and this distribution attains after r ∼ 1/sεs<2πf ∼ πf of
the kernel periods.

One can interpret this result as a linear increase of the population distribution till the
moment of time t ∼ r ∼ πf , while after this time the destructive interference of the kernel
return spikes becomes important and destroys the process of the population distribution
broadening. This result is known as Dynamic Localization—a universal regime for the
case of monochromatic excitation, which occurs because in the general case couplings
between the system and the field harmonics at the frequencies of high-order parametric
resonances are no longer able to overcome the mismatches of these resonances given by
the best rational approximations of the irrational frequency. Exceptions from this general
case are two sets of frequencies of zero measure: a countable set of the rational frequencies
considered above, for which the distribution width linearly increases in time, and a more
sophisticated set that is equivalent to continuum from the point of view of the set theory,
which corresponds to so-called Liouville numbers [7] presented now. The second set may
result in time dependencies of the distribution width that are intermediate between the
linearly growing and the bounded ones.
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Concept of the Liouville numbers relates to the Number Theory, which attracting more
and more the attention of physisists [8]. One defines these numbers via their representation

ω = ∑
n

ωnb−n (35)

over an integer base b with the integer coefficients ωn ∈ {0, 1, . . . , b− 1}. The string of
ordered coefficients {ωn} contains infinite number of long and gradually getting longer
sequences of zeros ωn∈Sj = 0. By Sj =

{
k2j−1, k2j−1 + 1, . . . , k2j − 1

}
one denotes here j-th

set of sequential integers numerating the orders n in the sum Equation (35) for which
all the coefficients ωn must vanish. Each set Sj has a length L2j−1 = k2j − k2j−1 that not
only monotonously increase with increasing j but does this not slower than the lengths
L2j = k2j+1 − k2j of the complimentary intervals Sj =

{
k2j, . . . , k2j+1 − 1

}
where ωn∈Sj

not
required to be zero. A string

ω = 1. 101︸︷︷︸
S1

0000︸︷︷︸
S1

11011︸ ︷︷ ︸
S2

000000︸ ︷︷ ︸
S2

110101︸ ︷︷ ︸
S3

00000000︸ ︷︷ ︸
S3

. . . (36)

where the sequences Sj are shown explicitly gives an example of Liouville number in the
binary representation b = 2. Given a base b, each Liouville number can be defined by a set
of the register positions {km}

ω = ω({km}) (37)

where the integers k2j−1 and k2j denote the beginnings of the sets Sj and Sj, respectively,
while Lm can be considered as an increasing function Lm = F(km) of km. The character of
F(x) increase at large arguments specifies a class of the Liouville numbers one deals with.
The Liouville numbers in general have very good rational approximations—just in virtue
of the assumption that F(x) monotonously increases, for a denominator sj = bk2j−1 , the
accuracy εsj = b−k2j of the Liouville number rational approximation remains better than any

power g approximation εsj < s−g
j . But when F(k) grows fast enough, the approximation

may approach the exponential accuracy.
For the latter case, smallness of the denominator sin

[
sjπω

]
' sjπεsj in Equation (32)

for j-th best approximation can compensate for the exponential smallness of the numerator
exp

[
−sj/πf

]
, and than the high sj-order parametric resonances do occur in the system

since the composite transition matrix element ∼ e−sj/πf exceeds the resonance mismatch
sjπεsj . Moreover, the high order resonances turns to be as important as the low order
resonances although they manifest themselves at much longer time scales. The leading
contribution to the population distribution width

W

(
t ∼ 1

2nεsj

)
∼

j

∑
q=1

e−
sj
πf

1

sin
[
sjπεsj

] (38)

suggested by the derivative Equation (33) where the summation goes now over the best
rational approximation denominators sj exclusively, and the relations sj = bk2j−1 , εsj = b−k2j ,

sin
[
sjπεsj

]
∼ sjεsj , yield

W ∼
j

∑
q=1

bk2j−k2j−1 e−bk2j−1 /πf. (39)

for the time moment
t ∼ 1

sjεsj

= bk2j−k2j−1 ,

which defines the length L2j−1 = k2j − k2j−1 of the longest interval Sj and thereby the corre-
sponding denominator sj of the largest j-th rational approximation to be taken into account.
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One can alternatively parametrized the integers k2j−1 that define a Liouville number
by the time parameters

tm = bkm−km−1 ,

such that Lm = ln tm
ln b , and sj =

2j−1
∏
m

tm, which allows one to explicitly represent the augmen-

tation ∆W2j of the width Equation (39) that occurs at time t ∼ 1
sjεsj

= t2j by the expression

∆W2j = t2j exp

[
− 1

πf

2j−1

∏
m=1

tm

]
, (40)

independent on the base b. One can see that provided each next time parameter is of the
order of the exponent of the product of all former time parameters, i.e., when

ln tn ∼
1

πf

n

∏
m=1

tm,

the width of the distribution may increase by an amount of the order of unity and hence
it tends to infinity with the time, although, this increase is not graduate but goes in steps.
Each of the steps occurs when the time t ' t2j becomes long enough, such that the ratio

sin[sπrω]

sin[sπω]
=

sin[rsπεs]

sin[sπεs]

in Equation (32) approaches an exponentially large maximum value 1/sπεs correspond-
ing to the next best rational approximation εs of the irrational frequency given by the
Liouville number.

One can look at this situation from another point of view. Imagine that at a given
strength of the harmonic perturbation, one has identified a multi-quantum resonance of a
high order sj, which as a consequence is very narrow having a width δω2j−1 given by the ex-
ponentially small ∼ exp

(
−sj/πf

)
composite matrix element of the multiphoton transition.

Still within this narrow width δω2j−1, one can find another resonance of even higher order,
and hence even much narrower, δω2j+1 � δω2j−1. By tuning the frequency to this second
resonance, one will simultaneously have two resonances that correspond to two distinct
Rabi periods. The process can be continued by identifying a third resonance in the vicinity
of the second one, than a forth one etc., thus gradually approaching an irrational frequency
corresponding to a Liouville number and generating a string of the corresponding Rabi
half-periods

{
t2j−1

}
. Since the width δω2j−1 drops exponentially with the order sj of the

resonance, each next sj exponentially increases with the resonance number j , while the
Rabi half-periods t2j−1 increase as double exponents as the consequence. and the width
∆W2j−1 of the population distribution given by Equation (40).

Now one can address the question: how to choose the sequence {tm} in order to
obtain any desired asymptotic dependence W(t)? This situation corresponds to a general
intermediate case placed in between the limiting case of parametric resonance with a linear
growth of the width and the limiting case of a generic boarded dynamically localized
distribution. Assuming a power-law dependence ∆W = tα with α < 1, from Equation (40)
one finds the recurrent relation

ln tn =
1

(1− α)πf

n−1

∏
m=1

tm
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for the time parameters solving this problem. Due to the rapid growing of ∆W2j−1 with the
index j, the width W2j−1of the population distribution is mainly given by the last increment
∆W2j−1, and hence the recurrent relation

ln
tn

W(tn)
=

1
πf

n−1

∏
m=1

tm

solves the problem for the general case. The fact that the left hand side of the last equa-
tion must be positive, implies that in the asymptotic regime W grows with time slower
than linearly.

5.4. Several Incommensurable Irrational Frequencies

In the case of excitation by a multi-harmonic external field f(t) = f(sin ωt + sin νt +
. . .+ sin µt) with a number M of irrational incommensurable frequencies ω, ν . . . and µ,
Equation (23) written for the probability amplitudes at the time moment corresponding to
k-th period has the phase term

Φ(θ, r) = −i
r−1

∑
k=0

log
1− iπf[sin ω(θ + 2πk) + . . . + sin µ(θ + 2πk)]
1 + iπf[sin ω(θ + 2πk) + . . . + sin µ(θ + 2πk)]

,

which now governs the excitation dynamics to be analyzed in the asymptotic of large r. We
cast each of r terms of the sum to multiple Fourier series by noting that

−i log
1− iπf[sin x + sin y + . . . + sin z]

1 + iπf[sin x + sin y . . . + sin z]
= ∑

n,l...,m
cn,l...,meinx+ily+...+imz,

where the coefficients

cn,l...,m =
∫ dx

(2π)1−M
e−|x|

2x
Jn(πfx)Jl(πfx) . . . Jm(πfx) (41)

are be found with the help of the Fourier representation

−i log
1− iX
1 + iX

= 2 arctan X =
1

2π

∫ ie−|x|

2x
eiXxdx

and the definition of the Bessel function

2π Jn(Y) =
2π∫
0

eiY sin y−inydy,

we then change the order of summations

Φ(θ, r) = ∑
n,l...,m

cn,l...,m

r−1

∑
k=0

ei(nω+lν+...+mµ)(θ+2πk),

and arrive at

Φ(θ, r) = ∑
n,l...,m

cn,l...,mei(θ+π(r−1))(nω+lν+...+mµ) sin[πr(lν + nω + . . . + mµ)]

sin[π(lν + nω + . . . + mµ)]
. (42)

The Fourier coefficients cn,l...,m for the case M � 1 can estimated as follows. The
Bessel functions in Equation (41) reach their maximum absolute values for the arguments
of the order of the indices. For smaller arguments they rapidly drop to zero, and for larger
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arguments they oscillate with the amplitude decreasing like a square root of the argument.
Therefore, the main contribution to the integral Equation (41) comes from the domain

x ∼ max(n, l, . . . , m)

πf
,

of a length of the order of the oscillation period 1/πf, where the integrand is of the order of

e−|x|

2x
(2π)M

(πfx)(M−1)/2
,

thus resulting in

cn,l...,m ∼
e−max(n,l,...,m)/|πf|

4π

(
2π√

max(n, l, . . . , m)

)M+1

,

Now analyzing the sum (42), one sees that on one hand side, the Fourier coefficients
cn,l...,m are exponentially decreasing with the size of the maximum index, but on the other
hand side, the interference factors

sin[πr(lν + nω + . . . + mµ)]

sin[π(lν + nω + . . . + mµ)]

may become rather large when these indices tend to infinity, such that the best rational
approximation of irrational numbers may become very small. In contrast to (32), the
approximation concerns not just one but a sum of M rational numbers multiplied by integer
coefficients. Indeed, given l, n, . . . and m, the fractional part εn,l...,m of the irrational number

lν + nω + . . . + mµ = k + εn,l...,m

determines the maximum size of the interference factor∣∣∣∣ sin[πr(lν + nω + . . . + mµ)]

sin[π(lν + nω + . . . + mµ)]

∣∣∣∣ . 1
π
∣∣εn,l...,m

∣∣ , (43)

which takes the maximum value at r '
∣∣εn,l...,m

∣∣−1/2.
Now one has to analyze the behavior of the inverse of the fractional part εn,l...,m

of an irrational number lν + nω + . . . + mµ as a function of the maximum value of the
indices. This quantity is a very irregular function of the indices l, n, . . . and m: it takes
very large values for some specific points {ls, ns, . . . ms} that sparsely distributed over the
M-dimensional manifold of integers, while for other points on this “hyperplane” lν + nω +
. . . + mµ the inverse of εn,l...,m remains of the order of unity . Therefore, the summation
in (42) can be taken only over these specific indices, because only their contribution may
result in the energy distribution of the width√

|m2| ∼ Φ′θ(θ, r) ∼ ∑
n,l∈∪{ls ,ns ,...ms}

cn,l...,mei(θ+π(r−1))(nω+lν+...+mµ)(lν + nω + . . . + mµ)
sin[πr(lν + nω + . . . + mµ)]

sin[π(lν + nω + . . . + mµ)]
(44)

growing in the course of time t ∼ r. Again, as it was in the case of the excitation at a single
frequency given by a Liouville number, this broadening augments not gradually but by
steps, whereas each next step s manifests itself at a time moment t ∼ r '

∣∣ε ls ,ns ,...ms

∣∣−1/2
resulting from the contribution of a specific point {ls, ns, . . . ms} that corresponds to the best
integer approximation of lν+ nω + . . .+mµ, yet improves with the rising s and thus result-
ing in decrease of the denominator sin[π(lν + nω + . . . + mµ)]. These very points bring
the factor (πεn,l...,m)

−1 large enough to compensate for the exponentially small cns ,ls ...,ms .
In other words, each specific point {ls, ns, . . . ms} of the hyperplane gives contribution at a
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specific time scale r '
∣∣ε ls ,ns ,...ms

∣∣−1/2, while the delay among the sequential broadening
events increases exponentially in time.

Now the question is whether in course of time the width of the population distribution
increases unlimitedly, as it was in the case of a random f (t), or it remains localized, as in the
case of a generic harmonic excitation? In order to answer this question one could formulate
the best rational approximation problem in physical terms by figuring out what is the
smallest detuning of the combinational frequency lν + nω + . . . + mµ for a maximum order
K . M max(n, l, . . . , m) of the resonance. The discrepancy εK = min εn,l...,m<K/M of the
best integer approximation of lν + nω + . . . + mµ given l, n, . . .,m < K/M corresponds to
the minimum detuning of the resonance of the order inferior to K. An unlimited increasing
width of the population distribution given by the condition

∑
n,l...m∈∪{ls ,ns ,...ms}

cns ,ls ...,ms

lsν + nsω + . . . + msµ

πε ls ,ns ,...ms

→ ∞ (45)

implies εK decreasing with K faster than cn,l...,m<K/K ∼ e−K/M|πf|(K/M)−M/2. This should
never be the case for generic real frequencies ν, ω . . . , µ, since the Number Theory states
that εK = min εn,l...,m<K/M scales as a power (K/M)−M of the maximum integer size
max(n, l, . . . , m) ∼ K/M, and hence

√
|m2| ∼∑

K

M
π

e−
K

M|πf|

(
K
M

)M−1
2

(46)

∼ (πf)
M+1

2
M2

π
Γ
(

M + 3
2

)
< ∞,

where Γ(x) is the Euler gamma-function. This expression means that though the asymptotic

distribution width
√
|m2| remains finite, it scales exponentially with the number M of

distinct frequencies in the Fourier decomposition of the driving field.

6. Conclusions

In the framework of an exactly soluble model, we identified four distinct asymptotic
cases of the dynamics under the action of a time dependent perturbation: (i) the resonant
case, including the parametric resonance, which is specific of the equidistant spectrum
yielding the population distribution linearly broadening in time, (ii) diffusive broadening,
typical of the excitation by a random perturbation, and two regimes of localization, (iii) the
strong localization, where the population distribution remains of a finite width, despite the
harmonic excitation, and (iv) the weak localization, where the width of the distribution
grow very slowly, at most logarithmically, although some other regimes may be realized
by a proper choice of frequencies. The regime (i) is specific for the chosen model of the
equidistant levels, while three other regimes are likely universal since they correspond to
the length of the Magnus series exceeding the number of the populated levels, where all
higher order commutators are presented with equal importance.
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