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Abstract  
Based on the basic principles of the self-organized criticality theory, we proposed an identifiers 

of network criticality. The identifiers allow you to determine the subcritical and supercritical 

phases of Twitter, using only the results of the analysis of the time series of microposts. The 

most significant result is the existence of two classes of time series of microposts and tweet Ids 

corresponding to them. The first class of the time series corresponds to the subcritical phase of 

the network. On the contrary, the second class corresponds to the supercritical phase.  
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1. Introduction 

Some of the objects and phenomena studied by sociophysics are social networks and critical 

phenomena, such as phase transitions, observed in them (e.g., see the reviews [1,2] and references 

therein). In the thermodynamics theory of irreversible processes, it is stated that significant structure 

reconstructions occur when the external parameter reaches a certain critical value and has the character 

of a kinetic phase transition [3]. The critical point is reached as a result of finetuning of the system 

external parameters. In a certain sense, such critical phenomena are not robust. 

At the end of the 1980s, Bak et al. [4,5] found that there are complex systems with a large number 

of degrees of freedom that go into a critical mode as a result of the internal evolutionary trends of these 

systems. A critical state of such systems does not require fine-tuning of external control parameters and 

may occur spontaneously. 

The motivation of our investigation is the following. There is a number of studies (e.g., see the works 

[6–15]), in which it is established that the observed flows of microposts generated by microblogging 

social networks (e.g., Twitter) are characterized by avalanche-like behavior. Time series of microposts 

depicting such streams are the time series with a power-law distribution of probabilities, with 1 𝑓⁄  noise 

and long memory. Despite this, there are no studies on the critical phases identification on Twitter based 

on the time series microposts analysis. The critical phases identification is the purpose of our research. 

2. Identifiers of the critical phases on Twitter 

To determine the network phases, it is necessary to determine the size of avalanche microposts, 

which will allow the social network to be assigned to one of the critical phases. 

The key features of the complexity of the social networks at the level of the time series generated 

by them are the power law for the probability distribution function (power-law PDF) of the time series 

of microposts, the power spectral density (PSD) of the time series, which is characterized by 1 𝑓⁄  noise, 

                                                      
Modeling and Analysis of Complex Systems and Processes - MACSPro’2020, October 22–24, 2020, Venice, Italy & Moscow, Russia 

EMAIL: a.dmitriev@hse.ru (Andrey Dmitriev); vdmitriev@hse.ru (Victor Dmitriev); sn.balybin@physics.msu.ru (Stepan Balybin)  

ORCID: 0000-0002-7092-9101 (Andrey Dmitriev); 0000-0003-1544-6462 (Victor Dmitriev); 0000-0002-9845-6684 (Stepan Balybin) 

 
©️  2020 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 



and the power law for the autocorrelation function (power-law ACF), which is characterized by the 

presence of the long memory in the time series [16–18]. 

2.1. Power-law distribution 

In the general case, the power-law PDFs can be considered as a statistical value of the scale 

invariance of the time series of microposts:  

 𝑝(𝜂) ∝ 𝜂−𝛼, (1) 

where 𝛼 ∈ (1,3), 𝜂 is number of the microposts. It should be noted that usually power-law PDFs are 

characterized by 𝛼 ∈ (2,3) [19]. We considered the most common case belonging to power-law PDF. 

Power-law PDF (1) refers to distributions with heavy tails, for which, unlike compact distributions, 

the well-known 3σ rule (the possibility of neglecting the values of the number of microposts exceeding 

3σ) is not satisfied. If the distribution (1) is fulfilled, then rare large events do not occur infrequently 

enough for their probability to be neglected. The possibility of gigantic, extraordinary events appearing 

on Twitter indicates the network’s tendency for disasters. 

2.2. Flicker noise 

Another characteristic of the scale-invariant properties of the time series is 1 𝑓⁄  noise, which is 

observed in the power form of PSD at low frequencies 𝑓:  

 𝑆(𝑓) ∝ 𝑓−𝛽. (2) 

The 𝛽 value in PSD (2) determines the color of the noise. For 1 𝑓⁄  noise, 𝛽 ∈ (0.5,1.5). The case of 

𝛽 = 1 is usually referred to as pink noise. 1 𝑓⁄  noise is characteristic of all complex systems, regardless 

of their nature. If in the time series 𝜂𝑡 there is 1 𝑓⁄  noise, then for the social network there are no 

periodically repeated values of the number of microposts. This is due to the fact that, in the time series 

of microposts, it is impossible to distinguish one characteristic scale responsible for the appearance of 

large values of the number of microposts. (e scale-invariant type of PSD demonstrates a strong 

nonlinearity of social network signals when it is impossible to isolate individual components in the 

spectrum and offer its physical interpretation. (us, the dynamics of Twitter microposts, in which 1 𝑓⁄  

noise is observed, cannot be decomposed into separate components. Twitter, operating in a self-

organized state, generates oscillations of microposts with PSD of the form (2). 

2.3. Long memory 

The third universal feature of complexity associated with power laws (1) and (2) is the existence of 

the long memory in the time series of microposts. In simple systems, the time correlation function (for 

example, the autocorrelation function), which shows the extent of which the time series “remembers” 

its history, has the following form:  

 𝜌(𝜏) ∝ exp(− 𝜏 𝜏𝑠⁄ ). (3) 

Complex systems are characterized by a power-law decrease in ACF as the time lag 𝜏 increases:  

 𝜌(𝜏) ∝ 𝜏−𝛾, (4) 

where 𝛾 ∈ (0,1). 
The existence of power-law ACF for the time series of microposts means that the current number of 

microposts largely depends on the past number of microposts generated by Twitter, as well as the 

absence of characteristic times at which information about the previous appearance of microposts would 

be lost. 



It is fundamentally important that the existence of long temporal correlations states the fact of the 

emergence of Twitter. This is fact determines the possibility of the emergence of the avalanche of 

microposts (extremal events). 

2.4. Spectrum of criticality exponents 

If for the time series of microposts relevant to a certain topic, power laws (1), (2), and (4) are 

fulfilled, then the following important consequences are possible. 

Firstly, the relevant Twitter segment distributing microposts relevant to a particular topic, is in the 

SOC state. Secondly, power laws describe large-scale invariance in the structure of time series of 

microposts generated by the self-organized critical social network. 

PDF, PSD, and ACF in the form of power laws make it possible to use the range of interval indicators 

𝛼, 𝛽, 𝛾 as the indicator of the self-organized criticality of the Twitter. If the social network is in the 

SOC state or the supercritical (SupC) phases, then for such states the indicators of power laws (spectrum 

of the criticality exponents, {𝛼, 𝛽, 𝛾}) take the values from the intervals (1,3), (0.5,1.5), (0,1). 
Otherwise, Twitter is in the subcritical (SubC) phase. 

3. Identification of critical phases 
3.1. Mining Twitter time series data and methods their analysis 

The most suitable data source for mining of Twitter time series data that contain tweet ids (unique 

identifiers of tweets) regarding different events, such as political elections and natural disasters, is 

Harvard Dataverse. It contains the datasets of tweets ids on 12 different topics, and each dataset consists 

of more than 2 million unique tweet ids in the form of the 18-digit numbers (for example, 

1128408193699340294) combined into one text file (.txt). Harvard Dataverse collected data using 

Social Feed Manager, which is the open source software that harvests social media data and web 

resources from Twitter. (e reason why it is necessary to start to work with tweets ids, rather than tweets 

itself, is the fact that per Twitter’s Developer Policy, tweet ids may be publicly shared for academic 

purposes, but tweets may not. 

Nevertheless, in order to get Twitter time series, it is necessary to hydrate the obtained datasets of 

tweet ids. Hydrating is the process of loading JSON objects from tweets based on available tweet ids. 

It can be done using the API-interface of Twitter, as well as using third-party applications. We did it 

with a Hydrator version 0.0.3 software. According to the obtained data, it is possible to build the 

interaction structure of users and time series of tweets (including retweets and other mentions). 

As a result, we got twelve equidistant (a step is 1 second) time series of microposts {𝜂𝑖}, 𝑖 =
1,2,… ,𝑁  of different lengths 𝑁, each of which is relevant to some topic (tweet Ids). 

The traditional approach to the time series analysis relies on the measurement of PSD and ACF. 

However, only the implementation of Gaussian processes is exhaustively described by their second 

moments. Outside of such implementations, a complete statistical description requires an estimate of 

higher order moments. In addition, higher order moments do not always have such a clear physical 

meaning as ACF and PSD. Therefore, evaluations of a small number of values that can be given a 

certain meaning become important. (ese values include the fractal dimensions of the time series. 

The fractal dimension is closely related to the scaling index s, which can be the Hurst exponent, 

estimated by the method of normalized range or fluctuation analysis (FA) [20], or the generalized Hurst 

exponent, estimated by the method of detrended fluctuation analysis (DFA) [21]. 

The DFA method is an efficient method for analysis of the time series characterized by the presence 

of the long memory or 1 𝑓⁄  noise. The DFA method is a generalization of the FA method for analysis 

of the scale invariance of nonstationary time series. The DFA method allows both to estimate the scaling 

indicator of the time series 𝑠 and to obtain indirect estimates of 𝛽𝑠 and 𝛾𝑠 indicators, calculated from 

the generalized scaling indicator s of the time series. 

3.2. Data analysis results and their discussion 



Table 1 presents the ordinary least squares estimates of the spectrum criticality and DFA estimates 

of scaling indicators 𝑠, 𝛽𝑠, and 𝛾𝑠. The corresponding p values are shown in brackets. 

The symbol “–” denotes the absence of statistically significant DFA estimates for 𝛽𝑠 and 𝛾𝑠 

indicators. Statistically significant values of the exponents are denoted in bold. 

 

Table 1 
The spectrum criticality and DFA estimates of scaling indicators 

Tweet Ids 𝛼 𝛽 𝛾 𝛽𝑠 𝛾𝑠 𝑠 
2016 United States 

Presidential 
Election 

1.23(0.0121) 1.29(0.0182) 0.12(0.0201) 0.92(0.0036) 0.08(0.0036) 1.04(0.0036) 

Women’s March 2.11(0.0234) 1.23(0.0198) 0.42(0.0211) 0.90(0.0101) 0.10(0.0101) 1.05(0.0101) 
End of Term 2016 

US government 3.24(0.6743) 0.24(0.7235) 5.24(0.6990) – – 0.45(0.7699) 

Hurricanes Harvey 2.12(0.0312) 1.13(0.0289) 0.34(0.0320) 0.89(0.0015) 0.11(0.0015) 1.06(0.0015) 
Hurricanes Irma 2.23(0.0234) 0.98(0.0194) 0.18(0.0209) 0.96(0.0098) 0.04(0.0098) 1.02(0.0098) 
Immigration and 

Travel Ban 2.18(0.0401) 1.09(0.0320) 0.21(0.0128) 0.97(0.0094) 0.03(0.0094) 1.02(0.0094) 

Charlottesville 2.18(0.0313) 1.21(0.0287) 0.43(0.0121) 0.90(0.0101) 0.10(0.0101) 1.05(0.0101) 
Winter Olympics 

2018 3.59(0.7239) 0.22(0.6348) 5.64(0.5341) – – 0.52(0.8172) 

US Government 3.28(0.6361) 0.19(0.7298) 6.01(0.6399) – – 0.48(0.7456) 
News Outlet 3.36(0.4275) 0.23(0.3895) 5.50(0.4458) – – 0.54(0.6451) 

2018 US 
Congressional 

Election 
1.47(0.0281) 1.05(0.0398) 0.22(0.0435) 0.95(0.0099) 0.05(0.0099) 1.03(0.0099) 

115th US Congress 3.99(0.3189) 0.26(0.4197) 5.24(0.5618) – – 0.46(0.9999) 
Ireland 8th 2.18(0.0311) 1.18(0.0270) 0.35(0.0311) 0.97(0.0129) 0.03(0.0129) 1.02(0.0129) 

 

The most significant result in the context of our study is the existence of two classes of time series 

of microposts and tweet Ids corresponding to them. 

The first class consists of time series for which 𝛼 ∈ [1.23,2.23], 𝛽 ∈ [1.05,1.29], and 𝛾 ∈
[0.12,0.43]. Indicators of the power laws of such time series belong to the spectrum of indicators of 

criticality (1,3), (0.5,1.5), (0,1) and, consequently, Twitter, which generates such time series of 

microposts, is in the SOC state or the SupC phase. The social network is capable of generating extreme 

events, which are avalanches of microposts of all sizes corresponding to the following tweet ids: “2016 

United States Presidential Election,” “Women’s March,” “Hurricanes Harvey,” “Hurricanes Irma,” 

“Immigration and Travel Ban,” “Charlottesville,” “2018 US Congressional Election,” and “Ireland 

8th.” In addition, the current number of microposts largely depends on the past number of microposts 

generated by Twitter. Indeed, for all the time series of this class indicator ACF, 𝛾 ∈ (0,1). It is 

noteworthy that all tweet ids relate either to protest movements or to political elections or to the 

population activities during natural disasters. PDF of such time series have infinite 𝜂2 and infinite 𝜂 for 

events related to political elections and finite η in all other cases. DFA estimates of βs and cs give close 

values to the corresponding indicators 𝛽 and 𝛾, and the presence of statistically significant values of the 

scaling exponent 𝑠 determines the scale invariance of time series, which is one of the key features of 

the selforganized criticality of the social network. In addition, for all time series of the first class 𝑠 ≅ 1 

and 𝛽𝑠 ≅ 1, which corresponds to the presence of pink noise and, accordingly, being Twitter in the 

SOC state or the SupC phase. The existence of a dependency (4) for the time series of microposts means 

that the current numbers of microposts largely depend on the past number of microposts generated by 

Twitter, as well as the absence of characteristic times at which information about previous occurrences 

of microposts would be lost. 

The second class consists of time series for which 𝛼 ∈ [3.24,3.9], 𝛽 ∈ [0.19,0.26], and 𝛾 ∈
[5.24,6.01]; moreover, estimates of all indicators are not statistically significant: statistical hypothesis 

is accepted with previously considered 𝑝 values shown in Table 1. Consequently, for these time series 

of microposts, at least the power laws (1) and (4) are not satisfied. This result is consistent with the 

results of the detrended fluctuation analysis, according to which there is no statistically significant 

estimate of the scaling exponent 𝑠; therefore, these time series of microposts are not scale-invariant. 

Thus, Twitter, which generates these time series, is neither in the SOC state or in the SupC phase. 



Twitter users, that is, in such a state, are not coordinated. This leads to the generation of the time series, 

for which the spectrum is not performed. It may be the SubC phase, but such a conclusion requires the 

determination of the explicit form of PDF and ACF dependencies, which is beyond the scope of our 

study. The only argument in favor of the assumption of Twitter being in the SubC phase is the fact that 

indicator 𝛽 ∈ [0.19,0.26] is close to the value corresponding to white noise (𝛽 ≅ 0). 

4. Conclusion 

The presence of a spectrum of criticality indicators {(1,3); (0.5,1.5); (0,1)} for the observed time 

series of microposts is a sufficient feature that Twitter is in a supercritical phase. It is important that the 

identification of a self-organized critical state of the network does not require a detailed analysis of the 

interactions between its users at the micro level. Only an analysis of the time series of microposts for 

being in the spectrum is sufficient, which does not require significant resource costs. 

An approach to monitor the social network state based on the spectrum analysis, for example, can 

be effective for identifying the origin of protest movements for which Twitter is one of the tools. In 

addition, the approach can be used to study the activity of users on the network related to political 

elections. For example, if the social network is in the SubC phase and for the corresponding time series 

of microposts it is possible to find the interval ∆𝑡 ∈ ∆𝑡SubC, in which a slow increase in the size of 

avalanches is observed, then the existence of such ∆𝑡 is a possible precursor of the appearance of the 

SOC state and further transition to the SupC phase. Another situation is possible. If it is possible to find 

a relatively small interval (𝑡𝑐 , 𝑡) ∈ ∆𝑡SubC, then the existence of such an interval is a possible precursor 

of the unpredictability of the behavior on the social network. Starting from time 𝑡, avalanches of 

microposts of all sizes will appear.  

Note that all this is nothing more than a discussion of possible applications. To conduct such studies, 

it is necessary to develop and test algorithms for detecting such integrals, but this is beyond the scope 

of our study. 
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