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A notion of quantum matrix (QM-) algebra generalizes and unifies two famous families of
algebras from the theory of quantum groups: the RTT-algebras and the reflection equa-
tion (RE-) algebras. These algebras being generated by the components of a ‘quantum’
matrix M possess certain properties which resemble structure theorems of the ordinary
matrix theory. It turns out that such structure results are naturally derived in a more
general framework of the QM-algebras. In this work we consider a family of Birman-
Murakami-Wenzl (BMW) type QM-algebras. These algebras are defined with the use of
R-matrix representations of the BMW algebras. Particular series of such algebras include
orthogonal and symplectic types RTT- and RE-algebras, as well as their super-partners.
For a family of BMW type QM-algebras, we investigate the structure of their
‘characteristic subalgebras’ — the subalgebras where the coefficients of characteristic
polynomials take values. We define three sets of generating elements of the character-
istic subalgebra and derive recursive Newton and Wronski relations between them. We
also define an associative x-product for the matrix M of generators of the QM-algebra
which is a proper generalization of the classical matrix multiplication. We determine the
set of all matrix ‘descendants’ of the quantum matrix M, and prove the x-commutativity

of this set in the BMW type.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A notion of a quantum matrix group, also called the RTT-algebra, is implicit in the quantum inverse scattering method. A
formal definition has been given in the works of V. Drinfel’d, L. Faddeev, N. Reshetikhin and L. Takhtajan [6,47]. Since then,
various aspects of the quantum matrix group theory have been elaborated, especially in attempts to define differential
geometric structures on non-commutative spaces (see, e.g., [48,51]). In particular, a different family of algebras generated
by matrix components, the so-called reflection equation (RE-) algebras [5,33], has been brought into consideration. Soon
it was realized that, for both the RTT- and the RE-algebras, some of the basic concepts of the classical matrix algebra,
like the notion of the spectral invariants and the characteristic identity (the Cayley-Hamilton theorem) can be properly
generalized (see [9,40,44,52]). So, it comes out that the matrix notation used for the definition of the RTT- and the RE-
algebras is not only technically convenient, but it dictates certain structure properties for the algebras themselves. It is
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then natural to search for a possibly most general algebraic setting for the matrix-type objects. Such family of algebras
was introduced in Refs. [18] and [24], and in the latter case the definition was dictated by a condition that the standard
matrix theory statements should have their appropriate generalizations. These algebras were called quantum matrix (QM-)
algebras although one should have in mind that the QM-algebras are generated by the matrix components rather than
by the matrix itself.

The RTT- and the RE-algebras are probably the most important subfamilies in the variety of QM-algebras. They are
distinguished both from the algebraic point of view (the presence of additional non-braided bi-algebra and bi-comodule
structures) and from the geometric point of view (their interpretation as, respectively, the algebras of quantized functions
and of quantized invariant differential operators on a group); also, the RE-algebras naturally appear in the representation
theory, in the description of the diagonal reduction algebras [32]. However, for the generalization of the basic matrix
algebra statements, it is not only possible but often more clarifying to use a weaker structure settings of the QM-algebras.

So far, the program of generalizing the Cayley-Hamilton theorem was fully accomplished for the ‘linear’ (or Iwahori-
Hecke) type QM-algebras. For the GL(m)-type algebras, the results were described in [14,24,26] and for the GL(m|n)-type
algebras in [15,16]. These works generalize earlier results on characteristic identities by A.J. Bracken, H.S. Green, et al. in
the Lie (super)algebra case [2,11,13,28,42] (for a review see [19]) and in the quantized universal enveloping algebra case
[12], and by I. Kantor and I. Trishin in the matrix superalgebra case [30,31].

The similar investigation program for the QM-algebras of Birman-Murakami-Wenzl (BMW) type (for their definition
see Section 4.1) was initiated in [43]. In the present and forthcoming works we continue and complement this program.
The family of BMW type QM-algebras serves as a unifying set-up for the description of the orthogonal and symplectic
QM-algebras as well as for their supersymmetric partners. Some partial results about specific examples of such algebras
and their limiting cases were already derived. In particular, the characteristic identities for the generators of the orthogonal
and symplectic Lie algebras have been considered at the representation theoretical and at the abstract algebraic levels
in[2,13] and in [11,27,36,42]. The characteristic identities for the canonical Drinfeld-Jimbo quantizations of the orthogonal
and symplectic universal enveloping algebras were obtained in [37] and their images in the series of highest weight
representations were discussed in detail in [38]. So, it is pretty clear that proper generalizations of the Cayley-Hamilton
theorems do exist for the families of orthogonal and symplectic QM-algebras. However, in a derivation of these results
one meets serious technical complications. The reason is that the structure of the Birman-Murakami-Wenzl algebras is
substantially more sophisticated then that of the Iwahori-Hecke algebras (Iwahori-Hecke and Birman-Murakami-WenzI
algebras play similar roles in the construction of the QM-algebras of linear and BMW types). In the present work we
develop an appropriate techniques to deal with these complications.

In Sections 2 and 3 we collect necessary results concerning the Birman-Murakami-Wenzl (BMW) algebras and
their R-matrix representations. In the beginning of Section 2 we define the BMW algebras in terms of generators
and relations, describe few helpful morphisms between these algebras, and introduce the baxterized elements. These
elements are used in Section 2.2 for the definition of three sets of idempotents called antisymmetrizers, symmetrizers
and contractors. Necessary properties of these idempotents are proved in Proposition 2.2. All the material of this section,
except the construction and properties of the contractors is fairly well known and we present it to make the presentation
self-contained.

In Section 3 we consider the R-matrix representations of the BMW algebras. We define standard notions of the R-trace,
skew-invertibility, compatible pair of R-matrices and R-matrix twist (Section 3.1). In Section 3.2 we collect necessary
formulas and statements relating the notions introduced before. To investigate the skew-invertibility of the R-matrix after
a twist, in Section 3.3 we derive an expression for the twisted R-matrix, which is different from the standard one. Next
we describe the BMW type R-matrices (Section 3.4). The major part of a technical preparatory work is done in Sections
3.2—3.4, and 3.5, 3.6. Here we develop the R-matrix technique, which is later used in the main Sections 4, 5.

In the beginning of Section 4 we introduce the QM-algebras of general and BMW types. We then define the
characteristic subalgebra of the QM-algebra. In the Iwahori-Hecke case, it is the subalgebra where the coefficients of the
Cayley-Hamilton identity take their values. As it was shown in [24], the characteristic subalgebra is abelian. In Section 4.2
we describe three generating sets for the characteristic subalgebra of the BMW type QM-algebra. As compared to the linear
QM-algebras, all these generating sets contain a single additional element — the 2-contraction g — which at the classical
level gives rise to bilinear invariant 2-forms for the orthogonal and symplectic groups.

Next, in Section 4.3, we construct a proper analogue of the matrix multiplication for the quantum matrices. We call it
the quantum matrix product ‘«’. In general, the x -product is different from the usual matrix product. It is worth noting that
for the family of RE-algebras, the x-product coincides with the matrix product. The x-product is proven to be associative
and hence the x-powers of the same quantum matrix M commute. We determine then the set of all ‘descendants’ of
the quantum matrix M in the BMW case and prove that this set is x-commutative. It turns out that, unlike the linear
QMa-algebra case, it is not possible to express all these descendants in terms of the = -powers of M only. The expressions
include also a new operation ‘T’, which can be treated as a ‘matrix multiplication with a transposition’.

In Section 4.5 we define an extension of the BMW type QM-algebra by the element g~' which is the inverse to the
2-contraction. Then we construct in the extended algebra the inverse x-power of the quantum matrix M.

1 This operation is also called a quantum trace or, shortly, a g-trace in the literature.
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The last Section 5 contains the principal result of the present work, Theorem 5.2, which establishes, for the BMW type
QM-algebras, recursive relations between the elements of the three generating sets of their characteristic subalgebras.
These formulas generalize the classical Newton and Wronsky relations for the sets of the power sums, elementary and
complete symmetric polynomials (see [35]) to the case of quantum matrices and simultaneously, to the situation where
additional element of the characteristic subalgebra, the 2-contraction, is present. To prove this result we first derive the
matrix relations among the descendants of the BMW type quantum matrix M (see Lemma 5.1). These relations can be
viewed as the matrix counterparts of the Newton relations, and they are expected to be important ingredients in a future
derivation of the characteristic identities for the QM-algebras of the BMW type.

Some auxiliary results, which are interesting in themselves, although not necessary for considerations in the main
text, are collected in the Appendices. In Appendix A we prove the primitivity of the contractors from Section 2.4. In
Appendix B their further properties are discussed. Appendix C is devoted to a discussion of universal counterparts of the
matrix relations given in Sections 3.2, 3.3.

In forthcoming papers we are going to construct the Cayley-Hamilton identities, and, more generally Cayley-Hamilton-
Newton identities in the spirit of [22], for the series of orthogonal and symplectic QM-algebras and, further on, for their
super-partners.

2. Some facts about Birman-Murakami-Wenzl algebras

In this preparatory section we collect definitions and derive few results on the Birman-Murakami-Wenzl algebras. We
give a minimal information, which is required for the main part of the paper. In particular, in Section 2.2 we describe
series of morphisms of the braid groups and their quotient BMW algebras; in Section 2.3 we introduce baxterized elements
which are then used in Section 2.4 to define three series of idempotents in the BMW algebras, the so called symmetrizers,
antisymmetrizers and contractors.

The reader will find a more detailed presentation of the Birman-Murakami-Wenzl algebras in, e.g., papers [50]
and [34].

2.1. Definition

The braid group B,, n > 2, in Artin presentation, is defined by generators {o; f':’]l and relations
0i0i410; = 0410041 Yi=1,2,...,n—1, (2.1)
0i0j = 0j0; Vi,j: li—jl>1.
We put, by definition, By := {1}.

The Birman-Murakami-Wenzl (BMW) algebra Wy(q, 1) [1,39] is a finite dimensional quotient algebra of the group
algebra CB,. It depends on two complex parameters q and . Let

(@1 —o)(a "1+ o))

Ki = ., i=1,2,...,n—1. (2.3)
' wa—q")
The quotient algebra W, (q, u) is specified by conditions
Oiki = Kio; = JKi, (2.4)
Kiof ki = LK (2.5)

where € is the sign,? € = +1.
Eqgs. (2.3) and (2.4) imply that the characteristic polynomial for the generator o; has degree three,

(0i —q1)(o; +q "1)oi —n1)=0. (2.6)
The relations (2.4)-(2.5) imply also
oikit10{ = o{ 4ki0{,;, where o =0 —(q— a ", (2.7)
KiOfy = KiKign O <, Of ki = 0] “Kiyzki,
KiKitnKi = Ki,

2 _la= wXg "+ )

K& = nkj, where 7: - (2.10)
maq—q7t)

1

Here € and 7 are the signs: ¢ = £1 and 7 = +1.
The parameters q and u of the BMW algebra are taken in domains

qeC\{0,+1}, weC\{0,q,—q "}, (2.11)
so that the elements «; are well defined and non-nilpotent. Further restrictions on q and p will be imposed in Section 2.3.

3

2 w #q—q ! then it is enough to impose only one of the relations (2.5), the relation with another sign follows (see [25]).
3 For particular values p = +q', i € Z, the limiting cases ¢ — +1 to the Brauer algebra [3] can be consistently defined.
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2.2. Natural morphisms

e The braid groups and their quotient BMW algebras admit a chain of monomorphisms

Bzr_)...r_)Bn;)anq;)... s

Wy <> o> Wy > Wy <> - (2.12)
defined on the generators as
Byp (or Wy) 3 0j > 0i41 € Bpyq (OF Wyyq) Vi=1,...,n— 1. (2.13)

We denote by a'™" € B,,; (or W,4;) an image of an element o™ € B, (or W,) under a composition of the mappings
(2.12)-(2.13). Conversely, if for some j < (n — 1), an element «™ belongs to the image of By—j (or Wy,_j) in B, (or W)
then by «(™¥ we denote the preimage of o™ in B,_j (or Wy_;).

This notation will be helpful in Section 2.4 where we discuss three distinguished sequences of idempotents in the
BMW algebras.

e Consider series of elements t e B, defined inductively

tWi=1, =100, ,...01. (2.14)
7 is the lift of the longest element of the symmetric group S,. The inner B, (and, hence, W,) automorphism
t:0~ Moz =0, , (2.15)

will be used below in derivations in Sections 2.4 and 4 .
e One has three algebra isomorphisms:

4

CioW(go ) = Wal(—a 7 ), s Walg, 1) = Wa(gT 1! and s Wa(g, ) = Wal(—q, —u)

defined on generators by

L:o0i—~> 0j, (2.16)
Vo o, (2.17)
o —oi. (2.18)

The map : interchanges the two sets of baxterized elements o *(x) and the series of symmetrizers a™ and antisymmetriz-
ers st: ((a™) = s(M (see Sections 2.3 and 2.4). For the maps ¢/, ¢ one has: /(6 *(x)) = xoT(x~1), /(6% (x)) = o *(x). The
series of (anti)symmetrizers are stable under maps ¢' and ¢”. One also has ((k;) = (/(k;) = ((x;) = ;.

e. There exists an algebra antiautomorphism ¢ : Wy(q, u) = Wa(q, 1) (c(xy) = ¢(¥)c(x)), defined on generators as

G: o 0. (2.19)

This morphism will be used later in the proofs of Propositions 2.2 and 4.11.

2.3. Baxterized elements

A set of elements oj(x),i = 1,2, ...,n — 1, depending on a complex parameter x, in a quotient of the group algebra
CB, is called a set of baxterized elements if

0i(X) oi1(xy) 0i(y) = 0ip1(y) 0i(xy) oiy1(X) (2.20)
fori=1,2,...,n—1and

0i(X) o;(y) = o3(y) oi(x) (2.21)
if i —j| > 1.

Lemma 2.1 ([20,29]). For the algebra Wy(q, i), the baxterized elements exist. There are two sets of the baxterized elements
{0}, € = %1, given by
x—1 x—1
o + K
q—q! aex + 1

of(x) =1+ - (2.22)

where o, = —eq

The complex argument x, traditionally called the spectral parameter, is chosen in a domain C \ {—a!}.

4
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2.4. Symmetrizers, antisymmetrizers and contractors

In terms of the baxterized generators we construct two series of elements a” and s, i = 1,2, ..., n, in the algebra
Wi(q, ). They are defined iteratively in two ways:
aV:=1 and sV =1, (2.23)
i i
i+ . 4 () = —2iy (i) i+ . 4 (M1 = =2y ()11
a = ——a"0; a or a = —ua o a R 2.24
i+ 1), (@) i+ 1) 1@ (2.24)
- -
Gy . 4 () o+ ( 20y D) . _4 M g2y (1
S = —5"0; S or s = —35 o S R 2.25
i+ 1), (g7 G+ 1), 1 (q) (2.25)

where i, are usual g-numbers, i; := (¢’ — g7')/(q — ¢~ '). Below we show that in each of Egs. (2.24), (2.25) the two
definitions coincide. We note that the factorized formula for the (anti)symmetrizers, in the spirit of the fusion procedure
for the BMW algebra [21], follows from Egs. (2.24), (2.25).

To avoid singularities in the definition of al”) (respectively, s?), i = 1,2, ..., n, we impose further restrictions on the
parameters of Wy(q, 1):
jg #0, w#—q ¥ (respectively, u #¢%>) Vj=2,3,...,n. (2.26)

The elements a”) and s are called an ith order antisymmetrizer and an ith order symmetrizer, respectively.
The second order antisymmetrizer and symmetrizer

q __, o5 (ql—o1)ul—oy) q' ("1 +01) (1l —o01)
a® =207 (g% = —, P =0 = ! (2.27)
24 Zq(l/L +q 1) 24 24(p —q)
are the idempotents participating in a resolution of unity in the algebra W5(q, 1) (c.f. with the property (2.6)),
1= a4+ 457, (2.28)

Likewise for a® and s, one can introduce higher order analogues for the third idempotent entering the resolution.
Namely, define iteratively

c® = 7, c?H2) = 11 K1K2i4+1 cert, (2.29)

The element c¢?) is called an (2i)th order contractor. Main properties of the (anti)symmetrizers and contractors are
summarized below.

Proposition 2.2. Two expressions given for the antisymmetrizers and symmetrizers in Eqs. (2.24) and (2.25) are identical.
The elements a™ and s™ are central primitive idempotents in the algebra Wy(q, j). One has

aMo; = 0;:a™ = —g~1a™, sWg; = gys™ = gs™ Vi=1,2,...,n—1 (2.30)

and
aMglmti — gmtign) — a(")’ sMgmti _ m)tig(n) _ o) if m+i<n. (2.31)

The antisymmetrizers a™, for all n = 2, 3, . .., are orthogonal to the symmetrizers s™, forallm = 2,3, ...,
amsm =0 . (2.32)
The element c¢\>™ is a primitive idempotent in the algebra Wua(q, ) and in the algebra Wony1(q, it). One has

@@= _ c@dtn—icen) _ (@n) yi_ 12 p. (2.33)
o = c@oy i, 0ic® =090 Vi=1,2,...,n—1, (2.34)

and
g = g W = pycl2m) (2.35)

The contractors c® are orthogonal to the antisymmetrizers a™ and to the symmetrizers s™ for all m > n.

Proof. The explicit formula (2.24) for idempotents, which we call antisymmetrizers here, appears in [49], although
without referring to the baxterized elements (see the proof of the lemma 7.6 in [49]).* Our proof of the formulas (2.30)
and (2.31) relies on the relations (2.20) for the baxterized generators.

We first check that the elements a¥ defined iteratively by the first formula in (2.24) satisfy the relations (2.30) and
(2.31). The equalities (2.30) for the antisymmetrizers are equivalent to

aMs@i=1 _ (2)ri=1,n) _ o) (2)1i-1 _ 2)ti=150) _ ., Vi=1,2,...n—1,

4 Different expressions for the antisymmetrizers and symmetrizers, which are less suitable for our applications, were derived in [17].
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which, in turn, are equivalent to
aV o (q%) = Uii(qz)a(") =0. (2.36)

Indeed, the spectral decomposition of cr,.’(qz) contains (with nonzero coefficients) only two idempotents, s"-1 and
@)ti-1.
c :

_ i 1+qu i
2y _ @ti-1 . LT AR (o)1
U[(Q)—qzq(s +q3+ll~c ).
To avoid a singularity in the expression for ai’(qz), we have to assume additionally ;. # —q for the rest of the proof.
However, the expressions entering the relations (2.30) and (2.31) are well defined and continuous at the point ;& = —¢>

(unless —q coincides with one of the forbidden by Eq. (2.26) values of 1), so the validity of the relations (2.30) and (2.31)
at the point u = —q> follows by the continuity.

Notice that the equalities a®™o; = —q~'a™ are equivalent to the equalities o;a™ = —q~'a™ due to the antiautomor-
phism (2.19) since ¢(a™) = a™ by construction.

We now prove the equalities (2.30) and (2.31) by induction on n.

Forn =2, a%¢; = —q~'a®, by (2.27) and (2.6).

Let us check the equalities for some fixed n > 2 assuming that they are valid for all smaller values of n. Notice that as
a byproduct of the definition (2.24) (the first equality) and the induction assumption, the relations (2.36) and (2.31) are
satisfied, respectively, foralli =1,2,...,n—2 and for all m,i: m+i < n — 1. It remains to check the relation (2.36)

for i = n — 1 and the relation (2.31) for m = n — i. Respectively, we calculate
. —2n+2 )a(n—l) O):_l(qZ)
~ (G(n_l)a(n_z))Gn:](q_2n+2)0;2(q_2n+4)0; ](qZ)a(n—Z)

— (a(n_l)ar:,z(qz))0,;1(q_2n+4)0',;2(q_2n+2)a(n_z) -0 ,

a™ Gr;l(qz) ~ a(n_l)gil(q

(‘~" means ‘proportional’) and

n—i—1
a(n) a(n—i)Ti — q (a(n)a(n—i—l)ﬁ)af l(q—z(n—i—l))a(n—i—l)ﬁ

(n—1i)g -
qnﬂ?] . . .
= aTh, d”(14¢"(n—i—1)y)a" D =g"
— '

Here in both cases, the definition of antisymmetrizers (2.24) (the first equality), induction assumption and relation (2.20)
were used. The centrality and primitivity of the idempotents a™ e W,(q, u) follow then from the relations (2.30).

To prove equivalence of the two expressions for the antisymmetrizers given in the formulas (2.24), notice that under
conjugation by t(*+1 (2.14) the first expression in the formulas (2.24) gets transformed into the second one. However,
the elements al are central in Wi, 1, so they do not change under the conjugation which proves the consistency of the
equalities (2.24).

All the assertions concerning the symmetrizers follow from the relations for the antisymmetrizers by an application
of the map ¢ (2.16)

L(a(")) — s(”), L(s(”)) — a(”), L(C(2ﬂ)) — c@m

the latter formulas are direct consequences of the definitions.
The orthogonality of the antisymmetrizers and the symmetrizers is a byproduct of the relations (2.30):

_q—la(n)s(m) — (a(")(ﬁ )S(m) — a(")(als("’)) — qa(n)s(m) .

The equalities (2.33) can be proved by induction on n. They are obvious in the case n = 1. Let us check them for some
fixed n > 2, assuming they are valid for all smaller values of n. Notice that the iterative definition (2.29) together with
the induction assumption approve the relations (2.33) for all values of index i, except i = n. Checking the case i = n splits
in two subcases: n = 2 and n > 2. In the subcase i = n = 2, we have c® = ~%kK3K142 and

4)\2 —4 2 -3 -3 -2 4
()" = n " kakskikkskiia = 0 Kaks(kikaki sk = 1 kaksKiksky = 0 2kakskiky = ¢

while in the subcase i = n > 2, the calculation is carried out as follows

2
(C(Zn)) = @M M 2n-21
= (C(ansz(an‘lm) (k1k2k1)(K2n—1K2n—2K2n—1) (C<2n74)¢2€(2n72m)
= (DM c@r  (2n)

Here in both calculations we used the definition (2.29), the induction assumption and the relations (2.9) and (2.10).

6
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Taking into account the relations (2.33), one can derive an alternative expression for the contractors

€)= DNy (BT o (DN BNy 2012
= (cBNCR2) e 0 iepien 5@ 12 = (DT iy picqiey 12 2.37)
= 0 = BN (e ykgig ki) (Kik . Ko) €T

—1c2i-

= 7 DM (kgio1kaicg - - Kig1) (K1K2 .« . . Ki) -

Now, using this expression and noticing that, by the relations (2.8),
Kiy1Ki—1KiOj_1 = Ki+1Ki710','_] = Ki—lKiJrlUi_] = Kit1Ki—1KiOit1 ,
we conclude that the equality (2.34) is satisfied for i = n — 1. In particular, the relations (2.34) hold forn =2 and i = 1.
It is enough (by induction on n) to prove the relations (2.34) for i = 1. Then observe, again by the relation (2.8), that
KiKi+1Ki+2 Oi = KiKi+10i Ki+2 = Kia,;ilfiiz = Oi+2 KiKi+1Ki+2 -
Now, for n > 2,

Mg = nflc(Zn—Z)M

=1
=7
=1
=17

(Kon—1K2n—2 - - - Knt1) (K1K2 . . . Kn) O
1 @2n=2)11
M (oo _1kan—3 - . . Kkns1) 03 (K1K2 - . . Kn)
—1_(2n=2)t1
c 03 (Kon—1K2n—2 - - - Knt1) (K1K2 . . . Kn)
1 @n=2)11
c 02n—3 (Kan—1K2n—2 - - - knt1) (K12 . . . Kn)

—1.2n-2)11 2n
@M (kg 1kan—2 « - - Kns1) Oon—1 (K1Ka -« Kn) = P Doy _y .

The relation (2.35) follows from the property (2.4) and the expression (2.37) (with i = n) for the contractor. Then,
orthogonality of the contractors ¢®*™ with the antisymmetrizers and the symmetrizers a™), s'™, m > n is a corollary of
the relations (2.30) and (2.35).

A statement of the primitivity of the idempotent c®™ e Wi(q, u), i = 2n, 2n+ 1, goes beyond the needs of the present
paper, we mention it for a sake of completeness and postpone a purely algebraic proof till Appendix A. ®

Since the family of higher contractors does not appear to have been previously discussed in the literature, we include
Appendix B, which contains their additional properties.

3. R-matrices

Let V denote a finite dimensional C-linear space, dimV = N. Fixing some basis {v;};_; in V we identify elements
X € End(V®") with matrices X]*>"}".

In this section we investigate properties of certain elements in Aut(V®?) generating representations of the braid
groups B, or, more specifically, of the Birman-Murakami-Wenzl algebras W,(q, u) on the spaces V®", Traditionally such
operators are called R-matrices.

R-matrices and compatible pairs of R-matrices are introduced in Section 3.1. We also discuss there the notions of
the skew-invertibility and the R-trace. Some basic technique, useful in the work with the R-matrices, is presented in
Section 3.2.

A twist operation which associates a new R-matrix to a compatible pair of R-matrices, is discussed in Section 3.3. We
derive there an alternative expression for the twisted R-matrix and study its skew-invertibility.

Starting from Section 3.4, we concentrate on the R-matrices of the BMW type. In Sections 3.5, 3.6 important ingredients
appear: a matrix G and the linear maps ¢ and &. As it will be explained in Section 4, the matrix G is responsible for the
commutation relation of the quantum matrix with a special element, called 2-contraction, of the quantum matrix algebra.
The two maps ¢ and &, in turn, are necessary for the definition of the x-product of the BMW type quantum matrices,
which is a proper generalization of the usual matrix multiplication to the case of matrices with noncommuting entries.

3.1. Definition and notation

Let X € End(V®?). Forany n =2, 3,...and 1 <m < n — 1, denote by X, an operator whose action on the space V®"
is given by the matrix

(X j...jn — Ij1---jm—1 jmjm+1 jm+2---jﬂ
M in = lijeime1 Nimime1 Cimeaein
Here I denotes the identity operator. In some formulas below (see, for instance, Egs. (3.1)) we will also use a notation
Xmr € End(V®"), 1 <m < r < n — 1, referring to an operator given by a matrix
j1-+dn — Jmir jl~Jm—1jm+1mjr—1jr+1-~jn
(er i1..in " Ximir Il’].4.im,1l'm+]...ir,1ir+1...i;1 :

Clearly, X = Xmma1-
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We reserve the symbol P for the permutation operator: P(u®@ v) = v®u VY u,v € V. Below we repeatedly make use
of relations
P2 = I; P]2X]2 = X21P12 V X e EI]CI(V ® V); Tl'(])PlZ = TI'(3)P23 = 12 ,

where the symbol Tr(;) stands for the trace over an ith component space in the tensor power of the space V.
An operator X € End(V®?) is called skew invertible if there exists an operator ¥y € End(V®?) such that

Tr )X12¥x23 = Tr(2)¥x 12X23 = P13 (3.1)
Define two elements of End(V)

Cx = TrayW1z,  Dx = Try¥1, - (32)
By (3.1),

Tr)Ci Xz =1, Tr)Dx2X12 =11 . (3.3)

A skew invertible operator X is called strict skew invertible if one of the matrices, Cx or Dy, is invertible (by Lemma 3.5
below, if one of the matrices, Cx or Dy, is invertible then they are both invertible).
An equation

RiRaRi = RoRiR; .

for an element R € Aut(V®?) is called the Yang-Baxter equation.

An element R € Aut(V®?) that fulfills the Yang-Baxter equation is called an R-matrix.

All R-matrices in this text are assumed to be invertible.

Clearly, the permutation operator P is the R-matrix; R~ is the R-matrix iff R is. Any R-matrix R generates representa-
tions pg of the series of braid groups B,, n =2, 3, ...

PR . By — Aut(V®"), o+ prloi) =R, 1<i<n-—1. (3.4)
If additionally the R-matrix R satisfies a third order minimal characteristic polynomial (c.f. with the relation (2.6))

(al —RXq "I +R)Y(ul —=R) =0, (35)
and an element

K=un""(q—q") (g —Rq'T+R) (3.6)
fulfills conditions

KK = RY'RyYKq (37)
and

KKK =K, (3.8)

then we call R an R-matrix of a BMW type (c.f. with Egs. (2.3)-(2.10); we make a different but equivalent choice of defining
relations).

For an R-matrix of the BMWtype, the formulas (3.4) define representations of the algebras W,(q, u) — End(V®"),
n=2,3,....In particular, pg(x;) = K;.

An ordered pair {R, F} of two operators R and F from End(V®?) is called a compatible pair if conditions

RiFBFr = KHFiRy, Ry FiF, = FiFK Ry, (3.9)

are satisfied. If, in addition, R and F are R-matrices, the pair {R, F} is called a compatible pair of R-matrices. The equalities
(3.9) are called twist relations (on the notion of the twist see [8,23,45]). Clearly, {R, P} and {R, R} are compatible pairs of
R-matrices; pairs {R™!, F} and {R, F~'} are compatible iff the pair {R, F} is.

Definition 3.1. Consider a space of N x N matrices Maty(W), whose entries belong to some C-linear space W. Let R be
a skew invertible R-matrix. A linear map

N
Try: Maty (W) — W, Tr(M)= Y (DM}, M € Maty(W),
ij=1

is called an R-trace.
The relation (3.3) in this notation reads

Tl'R(z)R12 =1. (310)
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3.2, R-technique

In this and the next subsections we develop a technique for dealing with the R-matrices, their compatible pairs and the
R-trace. Most of results reported here, like Lemma 3.5 and, in a particular case of a compatible pair {R, R} - Lemmas 3.2
and 3.3 and Corollary 3.4 - are rather well known (see, e.g., [20,41]). However, we often use them in a more general
setting and so, when necessary, we present sketches of proofs.

Proposition 3.6 contains new results. Here we derive an expression, different from the standard one, for the twisted
R-matrix, which helps to investigate its skew-invertibility.

A universal (i.e., quasi-triangular Hopf algebraic) content of the matrix relations derived in this and the next subsections
is discussed in the Appendix C.

Lemma 3.2. Let {X,F} be a compatible pair, where X is skew invertible. Let Maty(W) be as in Definition 3.1. For any
M € Maty(W), one has

Tr (1) (CxiFfy Mo FY) = L Tr(GeM), (3.11)
Tr(3) (Dx2F 5 M1 Ffy) = I Tr(DxM) (3.12)
for e = £1.

Proof. We use the twist relations (3.9) in a form
F5y X34 Fyy = F3f X3 Ffy, e=+1.
Multiplying it by (¥x1,W¥x4s) and taking the traces in the spaces 2 and 4, we get
Tr2)(Wx12 Fy3 P3s F35°) = Tra)(Wxas F35 P13 F3,) . (3.13)

Here the relation (3.1), defining the operator Wy, was applied to calculate the traces. Now taking the trace in the space
number 1 or number 5, we obtain (after relabeling)

Tr (1)(Cx1 Fiy Pa3 Fi)) = Cxs Iz, (3.14)
Tl'(3)(Dx3 F{; PlZ F283) = Dx1 12 . (315)
These two relations are equivalent forms of the relations (3.11) and (3.12). For example, the formula (3.11) is obtained
by multiplying the relation (3.14) by the operator M3 and taking the trace in the space 3. ®
Lemma 3.3. Let {X, F} be a compatible pair of skew invertible operators X and F. Then the following relations
G % = By ' Cxay WG = G By (3.16)
Weia Dxa = Dxi By, Dxy W12 = Fyy' Dx (3.17)
hold.

Proof. For a skew invertible operator F, the relations (3.16) and (3.17) are equivalent to the relations (3.14) and (3.15).
Let us demonstrate how the left one of the relations (3.16) is derived from the relation (3.14) with ¢ = 1.

Multiply the relation (3.14) by a combination (P,3%¥F,4) from the right, take the trace in the space 2 and simplify the
result using the relation (3.1) for X = F and the properties of the permutation

Tr(1)(Cx1 PraFi3') = Cxa Tr 2)(Pas Wraa) = Cx3 Wrag.

Then simplify the left hand side of the equality using the cyclic property of the trace
Tr (1)(Cx1 Pra Fyg') = Try(PaaFys' Cx1) = Fog' CraTrnyPra = Fig' Cxa-

This proves the left relation in (3.16). W

Corollary 3.4. Let {X, F} and {Y, F} be compatible pairs of skew invertible operators X, Y and F. Then the following relations

Fi3 Cx1Cyy = Cy1CxoFra Fi2 Dx1Dy, = Dy Dx,F12 , (3.18)
Fi5 (CxDy); = (CxDy)1 Frz Fi2 (DyCx)1 = (DyCx )2 Frz2, (3.19)
Tr (1)(Cx1Fp,') = (CxDe )2 = (DrCx )z (3.20)
Tr 2)(Dx2Fy,') = (CDx)1 = (DxCeh (3.21)

hold.
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Proof. A calculation (F;,'Cy1)Cxy = Cya(Wr1Cxa) = CyaCxiFy,' = Cx1CyoFy,' proves the left one of the relations (3.18).
Here the relations (3.16) were applied.

A calculation (FfZ‘CX])DH = CXZ(IIIZﬂDH) = szDyzF{z] proves the left one of the relations (3.19). Here one uses
subsequently the left equations from (3.16) and (3.17).

The relations (3.20) follow by taking Tr () of the equations (3.16).

The rest of the relations in (3.18)-(3.21) are derived in a similar way. ®

Lemma 3.5. Let X be a skew invertible R-matrix. Then statements
(a) the R-matrix X~ is skew invertible;
(b) the R-matrix X is strict skew invertible,
are equivalent.
Provided these statements are satisfied, both Cx and Dy are invertible and one has

Cy-1=Dy',  Dya=Cl. (3.22)

Proof. See [41], section 4.1, statements after eq. (4.1.77), or [20], proposition 2 in section 3.1. ®

Under an assumption of an existence, for an R-matrix X, of the operators X~!, ¥x and ¥,—1, the relations (3.22) were
proved in [46].

Since, for a compatible pair {X, F}, the pair {X, F~!} is also compatible, the formulas (3.22) together with the relations
(320)—(321) lmply that CxCF = CFCX and DxDg = DgDy.

3.3. Twists
Let {R, F} be a compatible pair of R-matrices. Define a twisted operator

Ry :=F'RF. (3.23)

It is well known that R is an R-matrix and the pair {Ry, F} is compatible. Therefore, one can twist again; in [24] it was
shown that if F is skew invertible then

Dr1Dra ((Rr)f)12 = RiaDpy1De; and Crq Cra ((Rp)r )12 = Ri2 Gry G - (3.24)
A comparison of two equalities in Eq. (3.24) shows that
[Riz, (Gi ' De)i (Gr ' D)2 1=0. (3.25)

Proposition 3.6. Let {R, F} be a compatible pair of R-matrices. The following statements hold:

(a) if F is strict skew invertible then the twisted R-matrix Ry, defined by the formula (3.23), can be expressed in a form

Rry, = Trs4) (F3,' Co-15R3aDFaF1a) ; (3.26)
(b) if R is skew invertible and F is strict skew invertible then Ry is skew invertible; its skew inverse is

Wre, = Cp15 Tr 34 (Fps' WrsaFar) Dr1 s (3.27)

moreover, W, can be expressed in a form

Ve 1, = Cp-1.F1Dp-1, %k 12Cr1F51 Df1 (3.28)
(c) under the conditions in (b),

C, = Cp-1DgCr.  Dg, = Dp-1GeDr (3.29)

(thus, if, in addition to the conditions in (b), R is strict skew invertible then Ry is strict skew invertible as well).

Proof. To verify the assertion (a) we calculate
Ry, = (F'RF)p =Fp' (TraFy'Ge-14) (RF)12
= Tr ((RF)atFp, Fiy' G154 ) = (Tr(3)P13) Tr 4y ((RF)a1Fyy' Ce-11Wr14) (3.30)
= Try ((RF)43F3_21CF—13P13‘1’F14) =Tr) (Fg_zlcp—lgprr (4)‘1’F14(RF)43) ,

where in the second equality we used the relation (3.3) for X = F~!; in the third equality we applied the twist relations for
the compatible pairs {R, F} and {F, F}; in the fourth equality we applied the relations (3.16) for X = F~! and inserted the

10
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identity operator Tr (3)P13; in the fifth equality we permuted the operator Py3 rightwards and then, in the sixth equality,
used the cyclic property of the trace to move the combination (RF )3 to the right.

To complete the transformation, we derive an alternative form for the underlined expression in the last line in
Eq. (3.30). Multiplying the twist relation R,FsF, = F3F,R3 by a combination (¥F,Dr,4) and taking the traces in the spaces
2 and 4, we obtain (using the formulas (3.1) and (3.3) for X = F)

Tr 2) (Wr12(RF)23) = Tr(4) (Dp4F34P13R34) ,
which is equivalent (multiply by P;3 from the left and use the cyclic property of the trace) to
Py3Tr (2) (Wr12(RF )23) = Tr(4) (R34Dp4F14) . (3.31)

Now, substituting the equality (3.31) into the last line of the calculation (3.30), we finish the transformation and obtain

the formula (3.26).
Given the formula for Ry, the calculation of L7e becomes straightforward and one finds the formula (3.27).

Thus, the skew invertibility of Ry is established.
Now we derive the expression (3.28) for W, . Multiplying the equality (3.13) with & = 1 by a combination P3sDp-15

from the right and taking the trace in the space 5, we obtain
Tro)(Yk12F23) = Tr(as)(WrasFs; P13F34P3sDp15)

Tr (4)(F374]P13F34DF*13WR43) .

Substituting this into the expression (3.27), we find

lpr 12 = CF712Tr(34) (F273]F]74]P13F14DF*1]WR41)DF]
= G-1,Tr(g (FﬂllTr(3)(F2_31P13)F14DF—1 1¥R 41) D4
Cr-15 Tr 4y (Fi3' Fy1'F14Dp—1, %W a1) Df1 (3.32)
Cp15 Fa1 Tr (4 (F13'F3y' Dp-11WR 41) Dr
= Cp-15 F21 Dp-1,Tr 4y (F3' Wr12WRa1) Dr1 -
We used the Yang-Baxter equation for the operator F in the fourth equality and the relations (3.16) in the fifth equality.
Multiplying Eq. (3.13) with ¢ = —1 by W P13 from the left and by P35Wrsg from the right and taking the traces in the
spaces 1 and 5, we find
Fi'WroWha = Yo% aiFsy'

Substituting this into the last line of the calculation (3.32), we obtain the equality (3.28).

Finally, the expressions (3.29) for the operators Cr and Dy, are obtained by taking the trace in the space 1 or the space
2 of the expression (3.27) for the skew inverse of the twisted R-matrix and the subsequent use of the relations (3.3) for
X = F*! and the relations (3.2), (3.20) and (3.21)for X =R. ®

Remark 3.7. If one uses the expression (3.26) for the twisted R-matrix then the relation (3.24) becomes straightforward:

((Re )2 = Tr 3as) (F35'(Df ")3Fsy (Df ' )sRs6DreF3sDr aF1a)
= Tr (3456) <F5_41DF4F14(DF_] )SRSGDF6F3_21(D;1)3F36)

= Tr(s6) (P1sDF1(Dy ')sRs6Drs(Dy ')2P2s)
= (D ")2Tr (s6) (P15(D5 ')sRs6DrgP26) Dr 1
= (Df ")1(Dy " )2R12Df1Df; -

In the first equality we applied the formula (3.26) twice and replaced the operators Cz-1 by D;l by the relation (3.22); in
the second equality we collected together the terms involving the space number 3 (they are underlined) and the terms
involving the space number 4 (they are underlined twice); in the third equality we evaluated the traces in the spaces 3
and 4 using the relations from Lemma 3.3; in the fourth equality we moved the operator (D;l)z leftwards out of the trace
and the operator Dg; rightwards out of the trace; in the fifth equality we transported the operator P;5 rightwards and the
operator P, leftwards under the trace and then evaluated the remaining traces in the spaces 5 and 6.

3.4. BMW type R-matrices

In this subsection we discuss the R-matrices of the BMW type in more detail.

In Lemma 3.8 we collect additional relations specific to the BMW type R-matrices. Based on these formulas, we will
introduce later, in Sections 3.5 and 3.6, an invertible operator G € Aut(V) and linear maps ¢ and &, which will be used in
Section 4 for a definition of a product of quantum matrices and for a quantum matrix inversion.

11



0. Ogievetsky and P. Pyatov Journal of Geometry and Physics 162 (2021) 104086

Lemma 3.8. Let R be a skew invertible R-matrix of the BMW type. Then

o the operator R is strict skew invertible;
e the rank of the operator K equals one, tkK = 1;
o the following relations

TrpKiz = 'Dri » TrpKip = ' Cra (3.33)
TreKi =pnl, (3.34)
_ -1
Trel =pn = w (3.35)
(@—q7")
CrDg = 11, (3.36)
K12Dg1Dgo = DgiDpoKiz = Ky (3.37)

hold.

Proof. The proof of all the statements in the lemma but the last one is given in [25].

The last relation (3.37) (which, in another form, figures in [25], in proposition 2) can be established in the following
way.

The first equality in (3.37) is a consequence of a relation

R12Dg1Dgry = Dgr1DgaR12, (3.38)

which is just the equality (3.18) written for the pair {R, R}. Then the conditions K ~ K and rkK = 1 together imply
K12Dgr1Dgy ~ K12Dg1Dg2K12 ~ K1z . A coefficient of proportionality in this relation is recovered by taking the trace of it in
the space 2 and the subsequent use of the relations (3.33) and (3.34). =

In [25], a pair of mutually inverse matrices
E2 = TI‘(])(KQPQ) and El_] = Tr(z)(1<12P]2) (339)
was introduced (see eqs. (32) and (33) and proposition 2 in [25]).
We shall now collect several useful identities involving the operators K and E.
Lemma 3.9. (a) The following relations
K12Ko3 = E3 Ki2Py3Pra , KosKip = E; ' Ko3PiaPas (3.40)
K13Ka3 = "Dy Ki3P12 , Ki2Kiz = i 'Crs Ki2Pas (341)
K23K14P12P34 = K33K14 , K33K14P13P2g = K33K14P33P14
Ki2Ey' = 1 'Ki2P12Dgy , E1Kiz = 17 'DrePiaKia

hold.
(b) We have

Ki2E1E; = E1E3Kqy3 = K3
(c) The operator K is skew invertible, its skew inverse is
Wic1p = E1K12E> = 1~ *DriKo1Dg; -
Proof. (a) All these identities follow from the rank one property of the operator K (written explicitly, with indices, they
become evident).
(b) To verify, for instance, that Ki2E; 'E; ' = Kz, use the definition (3.39) of the matrix E; ', E; ' = Tr (3)(K23P23), and
then the relation (3.40) to remove the trace.
(c) This follows from the identities in (a) in the lemma. W
Remark 3.10. The relations (3.40) admit the following generalizations:
KiKy...Kj = E3E4...Ejyq1 - (P1P;. ..Pj)ZKj ,
Ki... KoKy = E;'Ey ' ECNKG - (P PaPy )
The relations (3.41) admit the following generalizations:
Ki0K2 ... Kjo = pw'7(DroDgs3...Dg;) - (P1Py ... Pi_1) Ko .
Ko1Koz .. . Koj = ul’j(CRzCRg...CRj)~(P1P2...Pj,l)Koj.
In all four formulas above j is an arbitrary positive integer. These relations can be proved by induction on j.

12
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3.5. Operator G

In the following lemma, we define analogues of the matrices E and E~! for a compatible pair {R, F} of R-matrices.
When the operator F is the permutation operator, F = P, the matrix G of the Definition-Lemma 3.11 coincides with the

matrix E.

Definition-Lemma 3.11. Let {R, F} be a compatible pair of R-matrices, where R is skew-invertible of the BMW type and F is
strict skew-invertible. Define an element G € End(V') by

Gi = Tres)keFy 'yt (3.42)
The operator G is invertible, the inverse operator reads
G = TrpyFFiks . (3.43)
The following relations
R12G1Gy = G1GyRy2, (3.44)
F5,Gi = GoFs, for & = +1, (3.45)
[Dk, Gl = 0, (3.46)
[C;,G] = [Dr,G] = O, (3.47)
[E.G] =0,
[(Cr,E] = [Dr,E1 =0
are satisfied.
Proof. A check of the invertibility of G is a direct calculation
GG = (TraykeFy 'Fy ' (TronFoFiKy) = Tros)KeF, 'F, Ko FaFy (3.48)

= TroskeF, 'KyFi = TrosloFaKe Fy ' = TrpgKp,K, = 1.
Here in the first line we used the formulas (3.42) and (3.43) and the property rkK = 1: if IT = |¢{)(¥| is a rank one
projector then Tr(/TA) = (y]|A|¢) for any operator A and
Tr(ITA)Tr (ITB) = (Y |Al¢) (W [B|¢) = (Y |AIIB|¢) = Tr (ITAIIB)

for any A and B; in the second line of the calculation (3.48) we passed from K to K; = F~!KF and applied the twist
relations (for the operators K; and F) and the cyclic property of the trace. In the last equality of (3.48) we evaluated the
traces using the relations (3.33) and then the relation (3.34) for the operator Ky (we are allowed to use these relations
because the operator Ry is skew-invertible by Proposition 3.6).
Notice that, in view of the relation (3.37), we can rewrite the formula for the operator G using the R-traces instead of
the ordinary ones
Gi = u TranKoF; 'Fy . (3.49)
Applying the formula (3.12) (written for F¥* = X = R) twice to this equality, we begin our next calculation
- —1p—1/p-1p-1 - —1p—1p-1p-1
GL = “,2 TrR(34)(R2R_3])KEI;'] Fy '(Ry If% Y= 1 _ZlTrE(?4)K3K2F1 Fy'Ry'R; (3.50)
= u  TreaKoF 'F KK = u™ Tpe)GF] F K, .

Here we used the relation (3.7) in the last equality of the first line. In the second line we again applied the relation (3.7)
after moving the operator K5 to the right (for that we need the relation (3.37) and the cyclicity of the trace) and then we
evaluated one R-trace with the help of the relation (3.34).

Now we use the formula (3.50) for the product GG, in a transformation

GiGRy = w2 Trgen (KsF; 'Fy K3 JKF; 'y Ko )Ry
= w2 T Fy 'Fy Ko K3KoF; 'Fy KRy = w2 Tipea Fy 'Fy 'Fy 'Fy 'K KGRy

w2 TraaFy 'Fy 'FU R KGR, = 0 Tigea KsFy 'Fy 'FTE TR,
w2 Tigen Fy Fy 'y 'Fy 'RsKoKs = 2Ry TryswFy 'Fy 'Fy 'y KoK
= u 2R T K3Fy 'Fy 'FU'Ey 'Ky = RiG1iGy,

which demonstrates the relation (3.44). While doing the above calculation, we repeatedly used the twist relations for the
pairs {K, F~'} and {R, F~'}, applied the formulas (3.7) and (3.7) and exploited the cyclic property of the trace to move
the operator K3 to the right/left in the fourth/fifth line, respectively.

13
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Due to the expression (3.49) for the operator G, we can write
Gil, = p > Trae ((Fy °F; O KoF; 'Fy ' (FSFS))

by the formula (3.12).
The relation (3.45) is now proved as follows

GiF{ = pn™2Trae ((F, °F;©)KF; 'Fy ' (F5F5)) Fi

351
= 12 Trgea(Fy °F; ©FEFSFEKaFy 'Fy ' = Fipu2 Tireo K3Fy 'Fy ' = FiG, . (351)

Here we subsequently used the twist relations for the pair {K, F?}, the Yang-Baxter equations for F and again the
expression (3.49) for the operator G.

Vanishing of the commutators [Cr, G] and [D, G] in Eq. (3.47) follow from the above proved equality. To find these
commutators, transform Eq. (3.51) to

Gi¥r12 = Yr12Ga, GY¥r12 = Yr12Gr,

(multiply the relation (3.51) by a combination ¥r4; W3 and take Tr (1)) and then apply the trace in the space 1 or the
space 2 to these relations and compare results.
The relation (3.46) is approved by a calculation

GiDry = 1> Trges KoF; 'Fy 'Dry = 7% Tr (23)KoF; 'F, ' Dg1DgoDrs
= W > Tr (23)Dp1DroDr3KaFy 'Fy ' = DiiGy .

Here the expression (3.49) for the operator G, the relations (3.18) for X = Y = R and the relation (3.37) were used.
To prove the relation [E, G] = 0, we rewrite the expression for G:

G1 = Tr 23)(KoFy 'Fy 1) = 7' Tr 03y (Ko Ko F; ' E; 1) = 7 T 03y (Ko F; 'F, 1K)

2 ) 2 3.52
= 07 "Tr23)(F; 'Fy 'KiKy) = 07 'Tr (23y(Fy 'F; 'K PasPia) Eq (3.52)

In the second equality we used the relation K? = 5K; in the third equality we used the twist relation; in the fourth
equality we moved the operator K, cyclically under the trace; in the fifth equality we used the first of the relations (3.40).
Due to the relation (3.45), the combination Tr (3)(F; IFZ’ ]I(1P23P12) commutes with the operator G;. Therefore the
operators G and E commute.
We have already shown that the operators Cr and D commute with the operator G. It follows then from the expression
(3.52) for the operator G that to prove that the operators Cr and D commute with the operator E it is enough to prove
that the operators Cr and D commute with the combination &7 := Tr(z3)(F{1F2’]K1P23P12). We have

E1Dp-1, = Tr(23)(F; 'F; 'Dp-13K1P23P12) = Tr (23)(F; 'F; 'Dp-13Cr3Cr3 ' KiPa3P12)

_ ! - RSl e 3.53
= Tr 23)(F; 'Dp-1,CroF; 'KiP23P12)Cry ' = Dp-1,Cr1 E1Cry ' = Dp-1, 87 . (353)

In the first equality we moved the operator Dg-1 leftwards through the permutation operators; in the second equality we
inserted CR3CR3‘1; in the third equality we used the relations (3.19) and moved the operator CRl‘l rightwards out of the
trace; in the fourth equality we used again the relations (3.19). The operator Cg commutes with the operators G and E by
the already proved relation (3.46) for the compatible pairs {R, F} and {R, P}; therefore, due to the expression (3.52) for
the operator G, the operator Cx commutes with the operator &, which is used in the fifth equality.

The calculation (3.53) establishes the relation [Cg, E] = 0; the proof of the relation [Dr, E] = 0 is similar, we do not
repeat details. H

Remark 3.12. One can rewrite further the expression (3.49) for G:

Gi = pn 2 Ties Fy 'Fy 'Ky = Ty Fy ' Gy Do Ky
= T Fy ' CraDg ' K1 = > Tipe) Fy ' CraCriKy
= 1 2Cr Tige) CroFy 'Ky = Gy Tr F; 'Ky

Here we used subsequently: the twist relation, the relations (3.21), (3.37), (3.36), (3.18) and then again (3.36).
Similarly,

Gy' = Tro(KiF)D; ', .
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3.6. Two linear maps
The next lemma introduces two linear maps which will be important in the study of the matrix x-product.

Definition-Lemma 3.13. Let {R, F} be a compatible pair of skew invertible R-matrices, where the operator R is of the BUW
type and the operator F is strict skew invertible. Define two endomorphisms ¢ and & of the space Maty(W):

d(M)1 := Ty (F2MiF,'Ri2), M € Maty(W), (3.54)
and

E(M); = Ty (FoMiF3'K12), M € Maty(W). (3.55)
The mappings ¢ and & are invertible; their inverse mappings read

- - -1 -1

¢~ (M) = u T (Fiy'MiRy, Frz) (3.56)
and

£Y(M), = ;,L_ZTer(z) (F;'MiKiaFr2) (3.57)

The following relations for the R-traces

Tr (M) =Tr M, Tr £M) = uTr M. (3.58)
R, R R, R
are satisfied.

Proof. The expressions on the right hand sides of the formulas (3.56) and (3.57) are well defined, since, by Proposi-
tion 3.6(b), the R-matrix Ry is skew invertible.

Let us check the relation ¢~ '(¢(M)) = M directly.

Using the formulas (3.54) and (3.56) and applying the relation (3.12) for the pair {R, F} we begin a calculation

¢ (@M)), = u? Tera) (F;5!(Tra Fi My Fy) Ry )Rl_leu)
= p? Try(2 The (Fy'Fy "FiMiFy ' RiBaRTTFy)

In the next step we move the element F;, underlined in the expression above, to the left and it becomes F, due to the

Yang-Baxter equation; then we transport the operator to the right using the cyclic property of the trace (when F, moves

cyclically, Tr. e becomes Ty T3 due to the relations (3.18)). Applying the Yang-Baxter equation for the operator
f f

F and the relations (3.18) in the case X = R and Y = Ry, we continue the calculation
PO = uT ThaThe (Fr'F 'MiFL ' RiPoR; 'FiF2)
= M_z TrR(z)TI‘Rf(3) (F;1M1F2*1Rf] F1*1F2F1Rf1*1 Fz)

_ _ _ 1p — (3.59)
= u 2 TrR(z)Ter(s) (Fl 1M1F2 1Rf]F2 Fi F, 1Rf1 1 Fz)

w2 Try2) (F;1M1F1(Ter(3)Rf2F1Rf;1 )F;‘) )

Here we consequently transformed the underlined expressions using the definition of the twisted R-matrix Ry, the Yang-
Baxter equation for the operator F and the twist relations for the compatible pair {Ry, F}. To calculate the trace underlined
in the last line of Eq. (3.59), we apply the relation (3.12) for the compatible pair {Rf, Rf} and then use the relation (3.21)
written for the compatible pair {Rf, F ~1}. The result reads

7 (M), = u 7 Try) (Fl_]M1F1(DRfCF—1)1F1_1) .

Now, using the relations (3.19), written for the compatible pairs {Rr, F} and {F~1, F}, the relations (3.29) and (3.22) for
X = F, the relations (3.36) and the (3.3) for X = F~!, we complete the calculation

¢~ (M), = > Trz) ((Dr; Ce-1Dr)2F; ") My
= W > Tr) ((Dp-1CrDFCr-1DR12F ') My = Tr 2)(Dp-1,F ;' My = My .
A proof of the equality £~1(£(M)) = M proceeds quite similarly until the line (3.59), where one has to use a relation
T (KiMiKy) = (TrgM)l; VM € Maty(W)
instead of the relation (3.12). This in turn follows from the relations (3.33) and (3.34) and the property rkK = 1.
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The relations (3.58) can be directly checked starting from the definitions (3.54) and (3.55), applying the relation (3.18)
in the case X = R and Y = Ry and then using the formulas (3.10) and (3.34). =

Remark 3.14. For the mapping ¢, the statement of Lemma 3.13 remains valid if one weakens the conditions, imposed
on the R-matrix R, replacing the BMW type condition by the strict skew invertibility. In this case, one should substitute
the term /fZDRf by DRf_1 in the expression (3.56) for the inverse mapping ¢ . The proof repeats the proof of the formula

(3.56).
4. Quantum matrix algebra

In this section we deal with the main objects of our study, the quantum matrix algebras, and construct the x-product
for them. We mainly discuss the quantum matrix algebras of the type BMW.

In Section 4.2 we introduce a characteristic subalgebra of the quantum matrix algebra. In the theory of the polynomial
identities, a ring, generated by the traces of products of generic matrices, is known as the ring of matrix invariants (see,
e.g., [10]). The characteristic subalgebra can be understood as a generalization of the ring of matrix invariants (in the
simplest case of a single matrix) to the setting of the quantum matrix algebras and, simultaneously, to a situation when
the invariants can be formed not only by taking a trace (on the quantum level, the invariants can be conveniently formed
by taking the R-trace of a product of a ‘string’ M;M5 . . . Mz by a matrix image of a word in the braid group B,).

In Propositions 4.7, 4.8 we exhibit three generating sets of the characteristic subalgebra in the BMW case. Explicit
relations between the generators of these sets will be constructed in Section 5. Some preparatory work for this
constructions is performed in the rest of Section 4.

In Section 4.3 we introduce an algebra P(R, F) for the quantum matrix algebras of the general type. The algebra P(R, F)
has the same relationship to the characteristic subalgebra as the trace ring (see, e.g., [10]) to the ring of matrix invariants.

In Section 4.4 we prove the commutativity of the algebra P(R, F) in the case of the quantum matrix algebras of the
BMW type.

In Section 4.5 we define an extended quantum matrix algebra of the BMW type by adding an inverse of the quantum
matrix.

4.1. Definition
Consider a linear space Maty(W), introduced in Definition 3.1. For a fixed element F € Aut(V ® V), we consider series
of ‘copies’ M;, i = 1,2, ...,n, of a matrix M € Maty(W). They are defined recursively by
M;:=M;, M;:==F_,M—F_} . (4.1)

For F = P, these are usual copies, M; = M;, but, in general, M; can be nontrivial in all the spaces 1,..., 1.
We shall, slightly abusing notation, denote by the same symbol M; an element in Maty(W)®* for any k > i, which is
defined by an inclusion of the spaces

Maty(W)® < Maty(W)20HD . Maty(W)¥ 5 X > X ® I € Maty(W)20+D
From now on we specify W to be the associative C-algebra freely generated by the unity and by N elements
M, W:=C(1,Mb),1<ab<nN.

Definition 4.1. Let {R, F} be a compatible pair of strict skew invertible R-matrices (see Section 3.1). A quantum matrix
algebra M(R, F) is a quotient algebra of the algebra W = C(1, Mf;) by a two-sided ideal generated by entries of the matrix
relation

RiMiM5 = M7M5R, , (4.2)
where M = ||M"j||2’, b1 is @ matrix of the generators of M(R, F) and the matrix copies M; are constructed with the help of

the R-matrix F as in Eq. (4.1).
If R is an R-matrix of the BMW type (see Egs. (3.5)-(3.8)) then M(R, F) is called a BMW type quantum matrix algebra.

Remark 4.2. The quantum matrix algebras were introduced in Ref. [18] under the name ‘quantized braided groups’. In
the context of the present paper they have been first investigated in [24]. The matrix M’ of the generators of the algebra
M(R, F) used in [24] is different from the matrix M that we use here. A relation between these two matrices is explained
in section 3 of [23]: M’ = DgM(Dg)~ 1.

Lemma 4.3 ([24]). The matrix copies of the matrix M = ||Mc’f||g’,b=1 of the generators of the algebra M(R, F) satisfy relations
FiM; = M;Fi for j£ii+1, (4.3)
RiM; = M;R; for j#£i,i+1, (4.4)
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RiM;Mes = MiMg Ry for j=1,2,..., (4.5)
FiF,'+1...F,<~MlTMm...ME = MH»IM .Mm~F,'F,‘+1...Fk fOT lSk (46)

4.2, Characteristic subalgebra

From now on we assume that M is the matrix of generators of the quantum matrix algebra M(R, F) and its copies My
are calculated by the rule (4.1).

Denote by C(R, F) a vector subspace of the quantum matrix algebra M(R, F) linearly spanned by the unity and elements
ch(a™) = T, (Mg ... Mg pr(@™)), n=1,2,..., (4.7)

where o™ is an arbitrary element of the braid group 3.
Notice that elements of the space C(R, F) satisfy a cyclic property

Ch(ot(“)ﬂ(")) — Ch(,B(")ot(")) v (x(”), ,3(") €B,, n=1,2,..., (4.8)
which is a direct consequence of the relations (4.4), (4.5) and (3.38) and the cyclic property of the trace.

Definition-Proposition 4.4 ([24]). The space C(R, F) is a commutative subalgebra of the quantum matrix algebra M(R, F):
ch(e™) ch(BD) = ch(a™ ™) = ch(a ™1 g0, (4.9)

Recall that o™ denotes the image of an element o™ under the embedding B, — By defined in (2.13). We shall call C(R, F)
the characteristic subalgebra of M(R, F).

A proof of the proposition given in [24] is based in particular on the following lemma:
Lemma 4.5 ([24]). Consider an arbitrary element o™ of the braid group B,. Let {R, F} be a compatible pair of R-matrices,
where R is skew invertible. Then relations
Trgist,...itm (Mg - . . Mg pr(@™1)) = L5 i ch(a™) (4.10)
hold for any matrix M € Maty(W).°

We will make use of Lemma 4.5 several times below.
Let us introduce a shorthand notation for certain elements of C(R, F)

po := Trgl (= un in the BMW case),  p; =Ty M, (4.11)
Di = Ch(O'i_1...0201):Ch(0'10'2...0','_]), 122,3, (412)

The last equality in Eq. (4.12) is due to the inner automorphism (2.15) and the cyclic property (4.8).

The elements p; are called traces of powers of M or, shortly, power sums.

From now on in this subsection we assume the R-matrix R and, hence, the algebra M(R, F) to be of the BMW type.
Denote

g = ch(c®) = n'ch(ky) = n7 ' T (MsM5K7) . (4.13)
The notation used here was introduced in the formulas (2.3), (2.10), (2.29) and (3.6). We call the element g a contraction
of two matrices M or, simply, a 2-contraction.
Lemma 4.6. Let M be the matrix of generators of the BMW type quantum matrix algebra M(R, F). Then its copies, defined
in Eq. (4.1), fulfill relations

Ko MiMiri = MeMo Ky = 7 2Kag V> 1. (4.14)

n+1

Proof. We employ induction on n. Due to the property rkK = 1, one has
Ki MMz = MfM5K; = Kt

where t € M(R, F) is a scalar. Evaluating the R-trace of this equality in the spaces 1 and 2 and using the relations (3.34)
and (3.35), one finds t = p~2g, which proves the relation (4.14) in the case i = 1. It remains to check the induction step
— (n+ 1):

Kt iMimiMis = Kpi(FaMiFy Wiz = Koot FaMi(Fa i Mo Foy F; !
= (Knp1FaFpp1)Ms Mn+]Fn+an‘ = FaFu1(KaMaMop)Fr Fy !

M_anFn+lK F;H_] n g = MK 2Kn+1g

5 Here there is no need to specify M to be the matrix of the generators of the algebra M(R, F).
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Here Egs. (4.1) and (4.3), the twist relation (3.9) for the pair {K, F} and the induction assumption were used for the
transformation. W

Proposition 4.7. Let M(R, F) be the quantum matrix algebra of the BMW type. Its characteristic subalgebra C(R, F) is
generated by the set {g, pi}i>o-

Proof. Consider the chain of the BMW algebras monomorphisms (2.12)-(2.13). We adapt, for n > 3, the following
presentation for an element o™ € W,

o™ = ﬁalﬁ, + )/Kl)/, +3, (4.15)

where 8, 8, y,y’,8 € Im(W,_1) C W,. For n = 3, the formula (4.15) follows from the relations (2.1)-(2.7). For n > 3,
it can be proved by induction on n (one has to prove that the expressions of the form (4.15) form an algebra, for which
it is enough to show that the products o180, 0181, k1fo1 and 1Bk with 8 € Im(W,_1) C W, can be rewritten in
the form (4.15); this is done by further decomposing g, using the induction assumption, 8 = f028’ + y«2p’ + 6, where
B, B v,y .8 € Im(Wy_3) C Wy).

Using the expression (4.15) for ™ and the cyclic property (4.8), we conclude that, in the BMW case, any element (4.7)
of the characteristic subalgebra can be expressed as a linear combination of terms

ch(aiay...0n_1), where «; € {1,o0y«i}. (4.16)
Let us analyze the expressions (4.16) for different choices of «;.

(i) If @; = 1 for some value of i, then, applying the relation (4.10), we get
ch(ery . .. @i1@is1 - .. 0n_1) = ch(ay . .. aicq) ch((ig1 - . . otn_1)¥)), (4.17)
where (i1 . ..an—1)" € W,_j is the preimage of (i1 ...an_1) € W,.

(ii) In the case when «o,_1 = k,_1, we apply the relation (4.14) and then the relations (3.10), (3.34) or (3.35) to reduce
the expression (4.16) to

ch(ay ... anakn—1) = flon—2)ch(oy ... 0n-3) g, (4.18)
where f(on2) = n', f(kn2) = 1 and f(1) = .
(iii) In the case when «; = «; for some i, and ¢; = oj for allj =i+ 1, ..., n—1, we perform the following transformations

-1
Ch(Ol] .. 0i_1Ki0it10i42 . . . Un,1) = Ch(Ol] c 0207 i 1KiKi410i42 . .. O’n,1)

N B (4.19)
=...=ch(a;.. .ot,'_z(anjz ... ])Oé,'_lKjKH_] e Kn_1).

Here the relations (2.8) and the cyclic property (4.8) are repeatedly used; expressions suffering a transformation are
underlined.
Now, depending on a value of «;_1, we proceed in different ways.
If oj_1 = xj_1 then by Eqgs. (2.8) and (4.18) we have
(419) = ch(a1...0_20{_10i...04_3Kn_2Kn_1)
= Ch(Ol1 o7 ) 0’171Uj...0n,3)g.
Ifo_1 =01 = 61-:11 + (g — g7 ")(1 — ki_1) then, using the relations ai_laij/c,- = kj_1k; and applying the previous
results (4.18) and (4.17), we obtain
(419) = ch(ay...oi_2ki_10i...0n_3)8
+(@—q ") chlar...ai2)pn-i1g
—(q—q ")ch(ay...ai20i-10i...00-3)8 .

Iterating transformations (i)-(iii) finitely many times, we eventually prove the assertion of the proposition. ®

We keep considering the BMW type quantum matrix algebra M(R, F) with the R-matrix R generating representations
of the algebras W;(q, 1), n = 1, 2, .. .. Assume that the antisymmetrizers a and symmetrizers s in these latter algebras
are consistently defined (see Egs. (2.24), (2.25) and (2.26)). In this case, we can introduce two following sets of elements
in the characteristic subalgebra C(R, F)

ap ;=1 and sg := 1; (4.20)
a; .= ch(@®) and s = ch(s"), i=1,2,.... (4.21)

Proposition 4.8. Let M(R, F) be the quantum matrix algebra of the BMW type. Assume that j; # 0, p # —q %3
(respectively, j; # 0, u # q¥73) for all j = 2,3,... . Then the characteristic subalgebra C(R, F) is generated by the set
{8, ai}i=o (respectively, {g, si}i>o).

Proof. These statements are byproducts of the previous proposition and the Newton relations, which are proved in
Section 5, Theorem 5.2. W
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4.3. Matrix x-product, general case

Consider the quantum matrix algebra M(R, F) of the general type (no additional conditions on an R-matrix R).
Denote by P(R, F) a linear subspace of Maty(M(R, F)) spanned by C(R, F)-multiples of the identity matrix, I ch Vch €
C(R, F), and by elements

M' =M, (M) = Tre..n(Ms. .. My pr(@™)), n=2,3,..., (4.22)
where a™ belongs to the braid group B,. The space P(R, F) inherits a structure of a right C(R, F)-module
M ch(gD) = M@BY v e g gD e ni=1,2,..., (4.23)
n 1

which is just a component-wise multiplication of the matrix M by the element ch(8") (use the relation (4.10) to check
this). The C(R, F)-module structure agrees with an R-trace map Tr g (which means that Trz(Xa) = Trg(X)a VX € P(R, F)
and V a € C(R, F))

Trg

o™ (n)
PR F) =% (R, F) : [IchM > ch(e™), (4.24)

(@) > (Trgl)ch(a™),

where o™ € B,, n=1,2,...
Besides, elements of the space P(R, F) satisfy a reduced cyclic property

Y I ¥ L B B O (Lot = M T . S (4.25)

Definition-Proposition 4.9. Formulas

Mo o MFY = @) (4.26)
where
o™ % B = M gWtn(g 020102_1 o), (4.27)
(L ch(BD)) % M?™ = M?™ « (1 ch(BD)) == M*™ ch(8D), (4.28)
(I ch(a™)) * (I ch(B™)) == I (ch(«?) ch(B™)) , (4.29)
6

define an associative multiplication on the space P(R, F), which agrees with the C(R, F)-module structure (4.23).

Proof. To prove the associativity of the multiplication (4.26), it is enough to check
(@™ % BD) 4 M) — M) 4 (B 4 (M)

which is a straightforward exercise in an application of the relations (2.1) and (2.2).
It is less trivial to prove a compatibility condition for the formulas (4.26) and (4.28)

[M““” (I ch(ﬂ“)))} M = me” s {(1 ch(ﬂ(i)))*MV<m)} ,
which, in terms of the matrix ‘exponents’, amounts to

i i -1 -1
aMpWtny, M (o oy0v0, ..o ))

© o Yi4n
modﬁl.zs)

i (4.30)
oMy mtn gOtmtn) 5 0’20162_] o).

Here the symbol ML) means the equality modulo the reduced cyclic property (4.25).

To check Eq. (4.30), we apply a technique, which was used in [24] to prove the commutativity of the characteristic
subalgebra. Consider an element

ugf;m) = (0i...0201)(0it1...0302)...(Cixm—1---Om+10m) (431)

= (0i0i41...0igm-1)N0i-10i ... Oiym—2)...(0102 ... On),
which intertwines certain elements of the braid group B(iym):
BOuG™ = il BT M = Ty (432)

Substitute an expression (u?i;m)T"y(m)T”,B“)T(”*m)(ug;m”")*1) for the factor (Bt (M1(+m)y on the left hand side of Eq. (4.30),

move the element ugf;m”" cyclically to the right and then use an equality
(AR al-_1)ug;m) = ug:’:;]m (4.33)

to cancel it on the right hand side. Such transformation results in the right hand side of Eq. (4.30).

6 In other words, a map ch(a™) — Ich(a™) is an algebra monomorphism ¢(R, F) = P(R, F).
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Consistency of the multiplication and the C(R, F)-module structures on P(R, F) follows obviously from the last equality
in(428). =m

To illustrate the relation between the x-product and the usual matrix multiplication, we present formulas (4.26) and
(4.27)in the case n = 1 (¢! = 1) in a form

MxN=M-¢(N) VN e P(R,F), (4.34)

where - denotes the usual matrix multiplication and the map ¢ is defined by the formula (3.54) in Section 3.6.
The noncommutative analogue of the matrix power is given by a repeated x» -multiplication by the matrix M

MY =1, M":=MxMx...«M = M192-on-1) = plon-1--0201) (4.35)
—— ———
n times

Here we introduce symbol M" for the nth power of the matrix M. The standard matrix powers multiplication formula
follows immediately from the definition

MT«M = M™ . (4.36)

Proposition 4.10. A C(R, F)-module, generated by the matrix powers M", n = 0, 1, ... ., belongs to the center of the algebra
P(R, F).

(1)

Proof. It is sufficient to check a relation M x M*"~ = Mt * M, which, in turn, follows from a calculation

i _ _ ; _ _1 mod(4.25) i
(g, . .. 02010, Vo' = 0. ..UzO']()l(l)NO’z 1 ... 0 TN Mg m

a i

4.4, Matrix »-product, BMW case

It is natural to expect that the algebra P(R, F) is commutative as all of its elements are generated by the matrix M
alone. We can prove the commutativity in the BMW case. Notice that (in contrast to the Iwahori-Hecke case), in the BMW
case, the algebra P(R, F) cannot be generated by the x-powers of M only.

By an analogy with formula (4.34), we define a C(R, F)-module map MT : P(R, F) — P(R, F)

MT(N):=M-&(N), N e€P(R,F), (4.37)
where the endomorphism £ is defined by formula (3.55) in Section 3.6. Equivalently, we can write

MT(M"y = MEPTD v ™ ew n=1,2,... . (4.38)

Proposition 4.11. Let the quantum matrix algebra M(R, F) be of the BUW type. Then the algebra P(R, F) is commutative.
As a C(R, F)-module, it is spanned by matrices

M" and MT(M"%), n=0,1,.... (4.39)

Proof. A proof of the last statement of the proposition goes essentially along the same lines as the proof of Proposition 4.7
and we will not repeat it. The only modification is a reduction of the cyclic property (c.f., Egs. (4.8) and (4.25)), which
finally leads to an appearance of the additional elements {MT(M")},= in the generating set.

To prove the commutativity of P(R, F), we derive an alternative expression for the exponent in the matrix product
formula (4.26)

a™x g = (o7 oy o0y . . 0y)a MR (4.40)
The calculation proceeds as follows

W x B0 = oMM G ooyt o) = u(nrf;r")a(”)“ﬂ(")(u(rf;“i))71(crn ooy o h)

m0d§¥~25) (uglrfﬂ;l)T1)—l(02—1 o 1)u517?i+i)a(n)ﬁﬂ(i) — (ll:?:i;])ﬂ)_101u51rf;ii;l)ﬂa(nwﬂ(i)

-1
= (Ui

n
o W 2 ol 2 (6, L 07)e ™1 Bright hand side of Eq. (4.40).

n—1,i—1
Here we applied again the intertwining operators (4.31) and used their properties (4.32) and (4.33) and the reduced
cyclicity. One more property

) =

ni =Up1;  (0102...01)

is used in the last line of the calculation.
Due to Proposition 4.10, to prove the commutativity of the algebra P(R, F), it remains to check the commutativity of
the set {(MT(M")}>2.
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Notice that the factors of the exponents of the matrices MT(M") can be taken in an opposite order, MT(M") =
M10203--0n) — Dj(on--039261) This observation, together with formula (4.40), allow us to choose the exponents of two
matrices MT(M") + MT(M') and MT(M!) » MT(M™) to be mirror (left-right) images of each other. Finally, M
Ms@™) v oM e W, (q, 1), where ¢ is the antiautomorpism (2.19), since both sides of this equality can be expanded into
linear combinations of the generators (4.39), which are invariant with respect to the mirror reflection of their exponents,
and since the expansion rules (i.e. the defining relations for the BMW algebras) are mirror symmetric. =~ B

Lemma 4.12. For the BMW type quantum matrix algebra M(R, F), one has
MT(I) = uM,  MTM) = p g, (4.41)
MT(MT(N)) = Ng VN € P(R,F). (4.42)

Proof. The relations (4.41) follow immediately from the relations (4.14) and (3.34) and the definitions (4.37) and (3.55).
As for the equality (4.42), it is enough to check it in the case when the matrix N is a power of the matrix M.
To evaluate the expression MT(MT(M™)) = M®*1¥203--%n+1), we transform its exponent, using the relations (2.8) in the
BMW algebra and the reduced cyclic property, to

mod (4.25) ( 1 )
= 0, K1K2)K304...0n41
2
mod (4.25) (4.43)
= O01Kk2K304...0p41 = ... = 0102 ...0pn—1KnKn+1 -

-1
K1k203 ...0n41 = Ki(k2k30, )04...0n41

For the exponent (4.43), the matrix power is easily calculated, again with the help of the relations (4.14) and (3.34), and

gives the expression M"g. ®

The last relation in (4.41) shows that to introduce the inverse matrix to the matrix M it is sufficient to add the inverse
g~ ! of the 2-contraction g to the algebra M(R, F). This is realized in the next subsection.
4.5. Matrix inversion

In this subsection we define an extended quantum matrix algebra, to which the inverse of the quantum matrix belongs.

Lemma 4.13. Let M(R, F) be the BMW type quantum matrix algebra. Its 2-contraction g fulfills a relation
Mg = g(G'MG), (4.44)
where G is defined by formula (3.42).

Proof. The proof consists of a calculation
M (gKy) = p*MiM;MsK, = p*MiMzMskoK Ky = p?Ks (MiM5Ky) MsKa
= gloKiMsK, = (8Kp) Tr2.3) (K2KiMs)
(8K2) Tr (2,3) (KaF2F1 KoMy Fy 'F; )
(€K2) T (2, 3)(FFi Ko )M Tr 2,3 (Ko Fy 'Fy 1) = (8Ko) (G'MG)1.
Here the relations (4.14) and (2.9) were used in the first two lines; the property rk K = 1 was used in the last/first equality

of the second/fourth line; the definition of M5 was substituted and the twist relation for the pair {K, F} was used in the
third line; the formulas (3.42) and (3.43) for G and G~! were substituted in the last equality.

(4.45)

Definition-Proposition 4.14. Let M(R, F) be the BMW type quantum matrix algebra. Consider an extension of the algebra
M(R, F) by a generator g~ subject to relations

glg=gg'=1 g'M=(G'MGg". (4.46)
The extended algebra, which we shall further denote by M'(R, F), contains an inverse matrix to the matrix M

M™! = peM)g ! M-M'=M'1'"M=1. (4.47)
Proof. Lemma 4.13 ensures the consistency of the relations (4.46). The equality M - M~ = I for the inverse matrix (4.47)

follows immediately from the formulas (4.41) and (4.37).
To prove the equality M~—! .- M = I, consider a mirror partner of the map &:

(M) == u? Ty K1 M . (4.48)

By the (left-right) symmetry arguments in the assumptions of Lemma 3.13, the map 6 is invertible and the inverse map
reads

07 (M) = Tre (F; 'KiMyFy) (4.49)
f
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Applying in a standard way the transformation formula (3.12), we calculate a composition of the maps & and 6,
E(@(M))] = O(S(M))l = /L_z TrR(2,3)K2K1M§ = Tl'(zj)KzK]Mg = (G_lMG)] . (450)

Here the relation (3.37) was used to substitute the R-traces by the usual traces; the last equality follows from a comparison
of the second and the last lines in the calculation (4.45).

Now we observe that, in view of the relations (4.14) and (3.34), a matrix ("'M) := pug~'8~'(M) fulfills the relation
("'M) - M = I. The identity ("'"M) = M~! follows then from the relations (4.50) and (4.44). ®

Remark 4.15. One can generalize the def.initions of the characteristic subalgebra and of the matrix powers to the case of
the extendecl quantum matrix algebra M (R, F). Not going into details, we just m.ention that t.he extended characteristic
subalgebra C'(R, F) is generated by the set {g, g7, pi}i=0 and the extended algebra P’(R, F), as a C'(R, F)-module, is spanned
by matrices

M"™ and MT(M") VneZ.
Here inverse powers of M are defined through the repeated x-multiplication by M~1, which is given by

M T%«N:=N+M' = ¢ (M '-N) VNePRF). (451)
Explicitly, one has

M = M w.. «M %l = Tr (1\/1”1\/1”...1\/1*1 (oy...000 );
—_— R o e\ 2 3 n1 Pr; (on 201)
n times

where the copies M[l of the matrix M~! are defined as (c.f. with Eq. (4.1))

M; == My, My = F'M;F;, i=23,.... (452)

Notice that in general M= ¢~ 1(M~1) £ M~1, Here are some particular examples of the multiplication by M1
M «M =M™, MTxM"M = ch(a™)I.
5. Relations for generating sets of the characteristic subalgebra: BMW case

In this last section we use the basic identities from Section 5.1 to establish relations between the three sets of
elements in the characteristic subalgebra — {g, ai}i>0, {g, Si}i>0 and the power sums {g, pi}i>o. As a byproduct, we
prove Proposition 4.8.

Before we proceed, let us recall the initial data of the construction.

e Given a compatible pair of R-matrices {R, F}, in which the operator F is strict skew invertible and the operator R is
skew invertible of the BMW type (and, hence, strict skew invertible), we introduce the BMW type quantum matrix
algebra M(R, F) (see Definition 4.1);

e Assuming additionally that the eigenvalues q and u of the R-matrix R (i.e., the parameters of the BMW algebras,
whose representations are generated by the matrix R) satisfy conditions iy # 0, u # —¢> % Vi=2,3,...,n (see
(2.(2)6)) we can consistently define the antisymmetrizers a®) and introduce skew powers of the quantum matrix M:
M, 0<i<n

5.1. Basic identities
In this subsection we establish relations between ‘descendants’ of the matrices M®" in the algebra P(R, F). These

relations are used later in a derivation of the Newton relations. )
. . . a(l).
For 1 <i<n and m > 0, we consider two series of descendants of M ":

AmD i MM BN = M e MT(M). (5.1)
It is suitable to define A’™? and B for boundary values of their indices
1 o i i o 0
AT =g o7 (Tiges..aMsMy ... My pp(a®)) . BOD = iz~ (£(M™")) (5.2)
and
A™0) =0 and B™Y :=0 Vm=>0. (5.3)

Notice that although the elements A—") and B®) do not, in general, belong to the algebra P(R, F), their descendants
A=1)g and B®)g do (see Eqgs. (5.4) and (5.5) in the case m = 0).

In the case when the contraction g (and, hence, the matrix M) is invertible, the formulas (5.1), with m now an arbitrary
integer, can be used to define descendants of M in the extended algebra P°(R, F) (see Remark 4.15). In this case, the
matrices A=) and B®) are expressed uniformly: A1) = j,M~T % M@, B = j M1« MT(M™"),
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Lemma5.1. For 0 <i<n—1 and m > 0, the matrices A""~1*1 and BM+1.i+1) satisfy recurrent relations

2i—1 1
Am=LHD iy g A a4 —a") pm, D (5.4)
1+Mq2' 1
i 1 —in g q—q' i i
gim+Li+1) _ (H« lq M™ a; + e Almi) B(’””))g. (5.5)

Proof. For i = O relations (5.4) and (5.5) by (5.3) simplify to
A(mfl.l) — Mﬁ B(m+],]) — Mf‘lMﬁg .

They follow from Egs. (4.36), (4.41).
Let us check (5.4) for i > 0. For m > 0, we calculate

A(m J+1) (l + 1) M(a(Hrl)Tm om...0201) __ q,M(a(l)T m+1) +1(q_2i)amm<7201)

2i—1
— qiMmai _ Am+Li) 1g"(a—q- )B(m+1 i)

]_I_MqZI 1

Here in the first line we used the second formula from (2.24) for a®+"'™ and applied the reduced cyclic property (4.25)
and the relations (2.31) to cancel one of two terms a®1(™+1)_In the second line we substituted the formula (2.22) for the
baxterized elements o, +1(q*2") and applied the relation (4.10) to simplify the first term in the sum.

For A1+ the relations (5.4) are verified similarly

ACLHD = gigp—t (Tl‘R(z,3,.,.f+1)M5M§...M,HpR(a( Mo (q7%)) )
; . q*- 1( -q ") oD
= qdo'Na — ig ¢—1(¢(Ma(t ) — W igp~ Ig(Me™))
2i—1
O B W C MR YT
1 + Mqu 1

Here the definitions (3.54) and (3.55) of the endomorphisms ¢ and & were additionally taken into account.
To prove (5.5) for i > 0 we proceed in the same way

pm+1i+1) _ (i + ‘l)qM(a(i+1)Tm+lKm+10m...0201 q M(a tm+2 & +2(q72i)Km+]O'm...O’2(71)

- tme2 - - — i 5.6

M MT(M)a; — iqM(”( N2 6L i omet) Mmm « MTMT(M)). (5.6)
]+Mq2171

Here in the second line we used another expression for the baxterized generators

x—1 aXx(x — 1)

- ki

£(x) = x1 ;
o * g—q X+ 1

which follows by a substitution o; = al-_l +(q — g~ ")(1 — k;) into the original expression (2.22).
Now, notice that
d(4.
0‘37116201 = U;1K2K10;1 mod(#25) 02710371@/(1 = K3K3K1, (5.7)
and, hence, in the case m > 1, the second term in the last line of the equality (5.6) can be expressed as

I)Tm+2

—i,M mizfmeom-01) — i M1 MT(MT(MT(M))) . (5.8)

Applying then the formulas (4.41) and (4.42) to the expressions (5.6) and (5.8), we complete verification of (5.5) for m > 1.
For the case m = 0, the transformation of the second term in (5.6) should be slightly modified. Notice that by Eq. (5.7),
gy = gmTmT(mey)).

Inverting the endomorphism ¢ in this formula and using the relation (4.42) and the definition of B%? (5.2), we complete
the transformation of the second term in (5.6) and, again, get the equality (5.5). ®

5.2. Newton and Wronski relations

Theorem 5.2. Let M(R, F) be a BMW type quantum matrix algebra. Assume that its two parameters q and p satisfy the
conditions (2.26), which allow to introduce either the set {a;}_, or, respectively, the set {s;}I_ in the characteristic subalgebra
C(R, F) (see the definitions (4.20) and (4.21)). Then the following Newton recurrent formulas relating, respectively, the sets
{ai, g}y or {si, g}, to the set of the power sums (see the definitions (4.11) and (4.12))

n—1 [n/2]
D afps = (<1 + (17 ) (na"* = q"") 4y g (59)
i=0
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and
n—1 [n/2]
> a s = nasn+ Y (g g ) sy (5.10)
i=0 i=1

are fulfilled.

In the case, when both sets {a;, g}, and {s;, g}l are consistently defined, they satisfy the Wronski relations
n

Y (—Vaisni = dno—n28, (5.11)
i=0

where §; j is a Kronecker symbol.

Remark 5.3. One can use the formulas (5.9) and (5.10) for an iterative definition of the elements g; and s; for i > 1, with
initial conditions ap = sp = 1. In this case, the elements a, and s, are well defined, assuming thati; #0 Vi=2,3,...n.
The additional restrictions on the parameter u, which appeared in their initial definition (4.21), are artifacts of the use of
the antisymmetrizers and symmetrizers a™, s™ e W,(q).

Proof. We prove the relation (5.9). Denote
i1 o
JO =0, JP:=) (-g)MTq, i=12,....n.
=0
We are going to find an expression for the matrix J in terms of the matrices A" and B®9, 1 <i <n.
As we shall see, there exist matrices H”), which fulfill equations

(1—g)H g = (j(") +(—1)1A(°*i)), i=01,....n (5.12)
To calculate the matrices H®, we substitute repeatedly the relations (5.4) for the elements A®D, ALi=1  A(=11) gp
the right hand side of Eq. (5.12). It then transforms to
(i ISy P
1 — - _ 1=].] H—
HYg = —uq Z;( 1y +uq2f‘1B , i=0,1,...,n. (5.13)
j=

Now, using the expressions (5.5) for the elements B“7), one can check that matrices

H® .= Y = o, (5.14)
W (—qY ( ez, K@= a) iy (ifjfz.n) _
H '_¥1+quf“ M7 2q; + H_quj_]A u@B ,i=2,...,n
j:

satisfy Eq. (5.13). _ _
Next, consider a combination (H+%) — H()g). Using Eq. (5.14) for the first term and Eq. (5.13) for the second term, we
calculate
i_l _— j s j _— 7] . P . .
H+?) _ gig — Z (—qy (Mtﬂaj + e ACh )(A(HJ) _ q’1B(”“)))

pars 1+Hq2j+l 1+Mq2j—1

(—q) ( AT IRY
1+ pgd+t U 1+ pg?-1
To continue, we need the following auxiliary result:

) Mqu(O*i)), Vi=0,....n

Lemma 5.4. For 1 <i <n, one has
_1)i-1400.0) i1 _gy _ (g — g1
(—1)i— 1A _ (—qy <Mi_jaj 4 ud(q—q )(A(i_j,j) _q-]B(i—j_j))) (5.15)
2i—1 : : 2j+1 2i—1 . .
1+ pnq j:01+uqf 1+ pq9

Proof. Use the recursion (5.4) for A‘==1+1 to calculate

(i=i=10+1) (i=4) ' _ (g — g1
Ali=i J‘ N Al JJ. _ q _ ( i_jaj I und(q q )(A(i_j,j) _ q-]B(i—jij))) )
1+ ,uqu“ 14+ MqZ}—l 14+ Mq2]+1 14+ MqZ]—l

Compose an alternating sum of the above relations for 0 < j < i — 1 and take into account the condition A®® =0. m
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Using the relation (5.15), we finish the calculation

HO) — HOg = (14 u®™ ) ((—)la; + (— 1A + ug?B®))) Vi=0,....n—2. (5.16)
Now it is straightforward to get
N (_1)"*1 . e :
HY = Z 1+ pg2i-2+ (A(O*’*ZJ) + ng? PO q”zflai—zj) gl Vi=0.....n, (5.17)

where [k] denotes the integer part of the number k. Finally, substituting the expression (5.17) back into Eq. (5.12), we
obtain a formula

[1/2]

. 1 —q ) Lo o Lo oo .
0 — 1 1 4(0,1) (0,172]) 2(i—2j) p(0,i—2j) i—2ir \gi
] = (= A + Z 14+ MqZ(l 2)+1 ( +uq B —q 1(1172]>g s (5.18)

which is valid for 0 <i <n.

Taking the R-trace of Eq. (5.18), we obtain the Newton relations (5.9). Here, in the calculation of the R-trace of B(%i=%),
we took into account the formulas (3.58).

The formulas (5.10) can be deduced from the relations (5.9) by a substitution ¢ — —q~!, @; — s;. This is justified by
the existence of the BMW algebras homomorphism (2.16)t : Wy(q, #) — Wa(—q~!, 1) and a fact that one and the same
R-matrix R generates representations of both algebras W, (q, 1) and W,(—q~ 1, ).

The relation (5.11) is proved by induction on n. The cases n = 0, 1, 2 are easily checked with the use of Egs. (5.9) and
(5.10). Then, making an induction assumption, we derive the Wronski relations for arbitrary n > 2. To this end, we take
a difference of Egs. (5.10) and (5.9)

n—1
Z(q’isipn,i - (—9)a pn,,-) = ng(sn + (—1)"ay) + terms proportional to g
i=0
and substitute for p,_; in the first/second term of the left hand side its expression from the Newton relation (5.9)/(5.10)

(with n replaced by n—i). As a result, all terms, containing the power sums, cancel and, after rearranging the summations,
we get

n [n/2] n—2i
ng Y (—Daspi = — Y (¢ +¢""g" Y (—1Vajsn o
i=0 i=1 j=0

By the induction assumption, the double sum on the right hand side of this relation vanishes identically: when n is odd,
the second sum vanishes for all values of the index i; when n is even, the second sum is different from zero only for two
values of the index i, i = n/2 and i = n/2 — 1, and these two summands cancel. ®
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Appendix A. Primitivity of contractors

In this appendix we return to the consideration of the contractors in the BMW algebra. We shall establish useful
properties of the contractors in Lemmas A.1, A.2 and then use it to demonstrate their primitivity (announced in
Proposition 2.2 in Section 2.4) in Proposition A.3.

In this appendix we shall denote by W(oi, 0it1,...,0;), where i < j, the BMW algebra with the generators
0i, Oit+1, - . ., 0j (the values of the parameters q and p are fixed).

Lemma A.1. Let @ € W(0oq, 02, ..., 0j), where j > n. Then there exists an element & € W(0n41, Ont2, - . ., 0j) such that

c2m @ng

oa==cC

Proof. Assume that o € W(03j, 041, ..., 0;) and « ¢ W(0iy1, ..., 0j). If i > n then there is nothing to prove.
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For i < n, we shall prove that there exists an element o’ € W(0i41, ..., 0j) such that

Py = @y
Given this statement, the proof follows by induction on i.

Due to the formula (4.15), we can express the element « as a linear combination of elements of the form xu;x, where
X,X € W(0it1, ..., 07) and u; is equal to 1, o; or k;. The terms with u; = 1 belong already to W(oi,1, ..., 0;) SO we may
assume that the element u; is non-trivial (that is, equals o; or «;).

We express now the element x as a linear combination of the elements of the form yu; 1y, wherey,y € W(oi12, ..., 0j)
and u;;q is equal to 1, i1 or ki4q. Each element y commutes with the element u; thus the element o becomes a linear
combination of elements of the form yu;ju;x withy € W(oi42, ..., 0;) and X € W(0oiy1, . .., 0j). In the terms with u; 1 = 1
we move the element y rightwards through the element u; and continue the process for the terms with u;1 equal to ;41
or k1. After a finite number of steps the process terminates and we will have an expression for the element « as a linear
combination of terms

Uiyl - - - Ui UiZ (A1)

where the element z belongs to W(oiy1, . .., 0j) and each of the elements u;ys, s =0, 1, ...k, is equal to ojs 0T kjis.

Let us first analyze expressions (A.1) with i + k > n. The contractor ¢®" is divisible by the element «, from the right
due to the relation (2.33). The element «, can move rightwards in the product c®Vu; ;... u;. u;z until it reaches the
element u,,; and we arrive at the expression ... kplUp41Uy . . .. For all four possibilities (67,4107, Optr1kn, Knt10n OF Kni1kn)
for the product upiuy,, the expression «nu,1u, can be rewritten, with the help of the relations (2.5)-(2.9), in a form
KnUns1, Where v,,q is a polynomial in o, 1. Moving the element «,, back to the contractor ¢®”, we obtain

PMuipe Uitz = cCPPUi . U Vpgt - Uneq .. U2 = CPPUu_q L uiZ
with some other Z € W(0i41, ..., 0j).
Thus we can rewrite the product of the contractor c¢/®” by an expression (A.1) with i+ k > n as a product of ¢®” with
an expression of the same form (A.1) but with i + k < n.
Now using the relations (2.34) we remove the elements u;,; one by one to the right:

2 2 2
P = PP gttt - Uit = CPVlo g U Uil

At the end we will obtain for the product ¢« an expression of the form c¢?"a’, where the element «’ belongs to
W(0it1, ..., 0j), as stated. ®

Lemma A.2. Relations (2.5) and (2.9) involving the elements «; have the following analogues for the higher contractors:
@) gy ¢ — =1y, =120 (A2)

€D i (2D = =160 (A.3)

Proof. We prove the identity (A.3) by induction on i (the base of induction, i = 1, is the relation (2.9) itself):

2i+2 2i42 2011 2i)}1 2i+2 2i)11 2i42
cl2i+ )K2i+2C( i+2) = 2t K2i+1K1C( in K2i+2C( i+2) = ¢l K2i+1K1K2i+2C( i+2)

2011 2it+2 20011 2i+2 “1,.2i12
= M kg 1k ki 1 €22 = DMy 1T = = Tcl2iH2)

In the first equality we used the definition (2.29); in the second equality we used the property (2.33); in the third equality
we moved the element «; rightwards to the contractor ¢®*+2) and used the property (2.34); in the fourth equality we used
the relation (2.9); the fifth equality is the induction assumption.

The identity (A.2) is proved again by induction on i (the base of induction, i = 1, is now the relation (2.5)):

C(2i+2)02j+zc(2i+2) _ C(zi)T1K2i+]K1F(2m1 i) = @M e i c2042)

: 02i+20 ) )
= Mg 109i42i41€PH = TPy ¢BHD) = =Ty =1 BH2)
In the first equality we used the definition (2.29); in the second equality we used the property (2.33); in the third equality
we moved the element «; rightwards to the contractor c?*+2) and used the property (2.34); in the fourth equality we used
the relation (2.5); the fifth equality is the identity (A.3).
The proof is finished. M

Proposition A.3. The contractor c®™ is a primitive idempotent in the algebra W,y,(q, i) and in the algebra Wan41(q, 1t).

Proof. To prove both statements about the primitivity, one has to check that a combination ¢®"a("+1¢(2" js proportional
to the contractor c® for an arbitrary element o(®"+) from the algebra Wy,,1(q, ).

Let o be an arbitrary element from the algebra W(o1, ..., 0;), where j > 2n + 1. Due to Lemma A.1, we have
@My = Mg with B € W(ons1, .. ., 0j).
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Let i (i > 0) be such that 8 € W(onyi, Ontitts ..., 05) and B ¢ W(0onyit1, ..., 0j). We shall demonstrate that there
exists an element 8 € W(ou4it1, - - ., 0;) for which

C(Z")ﬂc(z”) — C(ZH)BC(ZH) .

Given this statement, the proof follows by induction on i.
The element B is a linear combination of elements of the form xu,,;y, where the elements x and y belong to
W(Ontit1, - - -, 05) and u; is equal to oy OF kyyi. We have

M yc®D = @My @Dy D=ty 2n) | (@) Gty @) _ (2n)yyc@n)

In the first equality we used the relations (2.33); the proportionality follows from the relations (A.3) and (A.2). Then we
used again the relations (2.33) to absorb the contractor ¢~ jnto c(2",
The proof is finished. m

Appendix B. Further properties of contractors

The relations, involving the elements «;, for the generators of the BMW algebras have analogues for the higher
contractors. Two examples of such relations are proved in Lemma A.2. In Proposition B.1 we prove further analogues.

The identities in the lemma below have several versions obtained by an application of the automorphisms (2.16) and
(2.15) and the antiautomorphism (2.19). For an identity of each type we present one version.

Proposition B.1. Another analogue of the identity (2.9):
12 Picy; = 7 ey @=AM (B.1)
More general than (A.2) analogues of the identity (2.5):
C(Zj)GcherH .. .crzjc(Zj) = (nflufl)"“*kc(zn for 0 <k<j (B.2)
and
o yoigpr ... 09ic®@ =TT HRH for 0<k <. (B.3)
An analogue of the identities (2.8):
@) @11 (2)

- -1 _-1 —1
=n'cYoy 0y o (B.4)

An analogue of the identity (2.7):

oo/ y...00cMal o] 0] =0]0/,...05cPoy . o] 0], . (B.5)
Another analogue of the identity (2.9):

@M @ntt — ,7*21'6-(2}”1 . (B.6)
An analogue of the identity (2.35):

@@tk — k@) for k<. (B.7)

where the elements T\ are defined in Eq. (2.14).
Proof. The identity (B.1) is proved by induction on j (the base of induction, j = 1, is the relation (2.9)):

2j+2 _ 211 211 _ A2 2i)11
K2j+2C( J )K2j+2 = K2j+2C( 20 K2j+1K1C( 2 K2j+2 = cl@n K2j+2sz+1K2j+2K1C( i

— @M1, CAM = ey @

2j+2K1

In the first equality we used the definition (2.29); in the second equality we formed the combination «yj 2K2j4+1k2j42; in
the third equality we used the relation (2.9); the fourth equality is the induction assumption.
The identity (B.2) is proved by induction on k down; the base of induction, when k = j, is the identity (A.2).

(2 @) — 2)cCRIN—k .. oy —k (@)

Oj+kOj+k+1 - - - 02 O0j+kOj+k+1 -

= D CRNIg RNk @)

Ojtk+1 - - - 02

5
Ojpk+1 - - - szC( J)

— n*1uf1c(2j)c(2’<W*k
= 1@y o ® = (g k)
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In the first equality we used the property (2.33); in the second equality we formed the combination c2K% =g c(2R)1i=k;

in the third equality we used the identity (A.2); in the fourth equality we used again the property (2.33); the fifth equality
is the induction assumption.

The identity (B.3) is proved by induction on k. We have c¥o; = 1.c?) by the relation (2.35), so the identity (B.3) with
k = 0 follows from the identity (B.2) with k = 1.

Next, we have, for i < j:

2j 2j 2j 2j
C( ])gi0’1'+1 . Osz( i) = C( ])gzj_,-(criﬂ . O'zj)C( )

. ! , , (B.8)
= @011 ... 09)0,5 i 1P = cHojyq ... 09)0; ).

Here we used the property (2.34) and the defining relation (2.1).
The last expression in Eq. (B.8) can be rewritten in a form
Pa; (0111 .. o9)cP)
again by the braid relation (2.1).
If i + 2 is still smaller than j, we continue in the same manner:

C(Zf)g”z(a,'“ R O'zj)C(zj) = C(zj)g2j7i72(0i+1 P O'Qj)C(Zj)

- ; . B.9
= (0ig1... 0905 3¢@ =P oiy1 ... 09)0, 5P (B.9)

and the last expression in Eq. (B.9) can again be rewritten in a form

@ @)

0:,4(0it1...09)
We repeat this process till the moment when the index of the underlined o becomes equal to j. Then we use the property
(2.35) and conclude

2j 2j 2j 2j
C( J)O'io’i+1 A O'sz( J) — ,LLC( J)O’H_] A O'sz( J) s

which, due to the induction assumption, finishes the proof of the identity (B.3).
The proof of the identity (B.4) consists of a calculation

1

@@ = g o, azjc(zf)az;l oy lor = r;’fc(zf)c(zl)az;1 oy to] !

The first equality here is valid due to the defining relations (2.1); in the second equality we used the identity (B.3) with
k=j—1.
Using a combination of the isomorphisms (2.15) and (2.17), we can rewrite the identity (B.4) in forms

@M@ = i@ 5, oy, (B.10)
@ — n_jC(Zj)azj ...0207 (B.11)
and
M@ = e ot ot (B.12)

We now turn to the proof of the identity (B.5). First, we prove by induction on i the following identity:

01(K2K3 . . Kj11)0105 .. 0] = 0505 ... 0], (K1Ky . . . K)oy - (B.13)

The base of induction (j = 1) is the identity (2.7). The induction step is

/ /o / 7 . I APS /
01(K2K3 . . . Kj12)0105 . . 0f = o(KkaK3 .. . Kjp1)o705 . .. o; )K]+20'j+1
) / N/ i [ ’ N/ i /
= 0,03 .. .O‘j_H(K]Kz .. lcj)aj,ﬂlcﬁz(f].Jrl = 0,03 .. .<7j+1(/<1i<2 . Kj)c7j+2/<]+1c7j+2
I ’ i ’
=0,03.. .0j+2(/<1/<2 .. /<1+1)0j+2 ,

where we used the identity (2.7) in the third equality.
The image of the identity (B.13) under the antiautomorphism (2.19) reads

ojo]_1...o1(Kkjy1kj . .. k2)oq = 0] 4 (KjKj—1 . . . K1)0[, 0] .. .05 . (B.14)
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The proof of the identity (B.5) is again by induction on j (the base of induction is the identity (2.7)):
(0/40] ... o] )cF M (g1 . 0/0f\q)

= r]_l(crjﬁrl . ol’)c(zf)Tz(szJrz R STEY COTIN TEY) (< S Gj’+1)

= n—l(aj/“ e 0g)C M2 ey k3)o (K2 L Ky O] - /1)

/

= r]_l(aj/+l ... oz’)C(ZJ)TZ(KZHZ RN ST (< aj’+2)(/<1 .. .Kj+1)0']+2

= n—l(ajﬁr] coooy)c @2 (o) -0l kit - Kj13)0] (K1 - Kj1)0] o

= r;—l(aj:r2 .. Uz’jﬂ)c(z])“(az/j“ 07 K22 - Kjg3)0] (K - K1)O]

_ -1 211 ) , )
= (0/4--- UZ’H_])C( 2 02K - Kj12)(0g14 -+ Of 3 )k - - Kj11)0]

_1(GJQr2 ... UZ/HZ)C(ZJ)T](KZJ-H cKjp )k . .Kj+1)((72/j+2 e 071)
— 4 4 2j+2) -/ ’
—((7j+2-~~021+2)c(] )UZHZ...(IHZ.

Here in the first equality we used the expression (2.37) for the contractor; in the second equality we moved the element o}
rightwards to the string (k3 . ..«kj;2); in the third equality we transformed the underlined expression using the identity
(B.13); in the fourth equality we moved the string (o3 . .. ‘7j/+1) leftwards to the contractor ¢®12; in the fifth equality
we used the induction assumption to transform the underlined expression; in the sixth equality we transformed the
underlined expression using the shift ¥+ of the identity (B.14); in the seventh equality we rearranged terms and then
used again the expression (2.37) for the contractor in the eighth equality.

The following calculation establishes the identity (B.6):

NN = i BNy gyory = g Tc@N

Here in the first equality we used the relation (B.11) while in the second one we used the relation (B.12).
To prove the identity (B.7), it is enough to prove its particular case
@) = e (B.15)
since the element c¥) is divisible by the element c(%=2K due to the relations (2.33).
We shall need two identities. The first one is
G510y . oy = DM 0y oy =PI (B.16)
In the first equality we used the relations (2.33); in the second equality we used the relations (B.10) and again (2.33).
Here is the second identity:
D@ gy = (2D () = (&g, () = (2H2) gy 2)

— .= pcDCD) (B.17)

In the first equality we moved the element oy, leftwards through the contractor ¢ and then we replaced the

combination ¢#*Yoy;, 1 by ¢¥*+2g; due to the relation (2.34); repeatedly using the relation (2.34), we replaced the
combination o1¢® by oy;_1¢¥, then ¢@*2gy;_; by c@2 g5 etc. The index of the element o jumps by 2; at one moment
it becomes equal to either j or j + 1 and we use then the relation (2.35).

We now prove the relation (B.15) by induction on j (the base of induction, j = 1, is the relation (2.4)):

CRHDLCHD) = (Do | gy )T @) = D)y, )

= upc @@+ = B D) gy | oy)

= W@ @) oy . oy) = pit i@+ @)

— W P @D @@ = +102i42)
In the first equality we used the iterative definition of the elements t( (it is different but equivalent to the one given in
Eq. (2.15)); in the second equality we used the relation (B.16); in the third equality we used the relation (B.17); in the
fourth equality we used again the iterative definition of the elements t(); the fifth equality is the induction assumption;
in the sixth equality we used the relation (B.11); in the seventh equality we used the relations (2.33); finally, in the eighth
equality we used the relation (B.6).

The proof is finished. &

Remark B.2. We have also

CBHDLEHD _ (B ) 4e @) = @ @) — (5 BHDD
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In the first equality we used the iterative definition of the elements 7(; in the second equality we used the relation (B.16);
in the third equality we used the identity (B.7).

Appendix C. On twists in quasitriangular Hopf algebras

Here we shall discuss universal (i.e., quasi-triangular Hopf algebraic) counterparts of relations from Sections 3.2, 3.3,
especially from Proposition 3.6: we shall see, in item 8 of the appendix, that these relations have a quite transparent
meaning, they reflect the properties of the twisted universal R-matrix.

We do not give an introduction to the theory of quasitriangular Hopf algebras assuming that the reader has some basic
knowledge on the subject (see, e.g., [4], the chapter 4).

C.1. Generalities

1. Let A be a Hopf algebra; m, A, € and S denote the multiplication, comultiplication, counit and antipode, respectively.

Assume that A is quasitriangular with a universal R-matrix R = a®b (this is a symbolic notation, instead of ), a;®bj).
One has (S ® S)R = R. The universal R-matrix R is invertible, its inverse is related to R by formulas R~ = S(a) ® b
or (Id®SY R H=r.

For elements in A ® A, the ‘skew’ product © is defined as the product in A°? ® A, where A°P denotes the algebra with
the opposite multiplication. In other words, the skew product of two elements, xQy and x®y is (xQ@y)O (X QY) = XxQyy.
For a skew invertible element X € A ® A, we shall denote its skew inverse by 1 ». The universal R-matrix R has a skew
inverse, ¥ = a ® S(b). The element V% is invertible, (Yz)~' = a ® S?(b). The element R~! is skew invertible as well,
its skew inverse is Y z-1) = S%(a) ® b. All these formulas are present in [7]. We shall see below that there are similar
formulas for the twisting element 7. However, the properties of the twisting element F and of the universal R-matrix R
are different, for instance, the square of the antipode is given by S?(x) = u,, x(u,)~!, where u,, = S(b)a, but there is no
analogue of such formula for F. Because of this difference, we felt obliged to give some proofs of the relations for F.

Let p be a representation of the algebra A in a vector space V. For an element X € A® 4, denote by p(X) € End(V®?)
an operator p(X) = P - (p ® p)(X) (recall that P is the permutation operator). The skew product ® translates into the
following product & for elements of End(V®?):

(XOY )13 = Tr )(X12Y23) - (C.1)

In other words, if ¥ © Y = 2Z then p(x) & p(¥) = p(Z). For an operator X € ]A-an(V®2), its skew inverse Wy, in the sense
explained in Section 3.1, is precisely the inverse with respect to the product ©.

2. The following lemma is well known (see, e.g., [4], the chapter 4, and references therein).

Lemma C.1. Consider an invertible element ¥ = « @ B € A ® A (we use the symbolic notation, « @ f = ;o @ B, like
for the universal R-matrix) and let 7! = y ® 8. Assume that the element F satisfies

F2 (A®id)(F) = F3 (Id ® A)F) . (C2)
Assume also that

e)B=aeB)=1. (C.3)
Then an element v, = «a S(B) is invertible, its inverse is

(v,) =S(r)s . (C4)
One also has

S(e)(v;)"'B=1 and yv,.S©6)=1. (C5)
Twisting the coproduct by the element F,

Ax(a)=F Ala) 7', (C.6)
one obtains another quasitriangular structure on A with

Rr=JFy RF ! (C.7)
and

Sr(a)= v, S(@) (v,)"! (C8)

(the counit does not change).

An element F, satisfying conditions (C.2) and (C.3) is called twisting element. We shall denote by .4~ the resulting
‘twisted’ quasitriangular Hopf algebra.
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Remark C.2. On the representation level, the formula (C.7) transforms (compare with Eq. (3.23)) into p(Rz) =
P(F1p(R)21 i)(]-‘)z‘ll. Below, when we talk about matrix counterparts of universal formulas, one should keep in mind
this difference in conventions.

3. Assume, in addition to Eq. (C.2), that

(A®id) (F) = Fi3 Fa3 (C9)
and

(id ® A) (F) = Fi3 Fiz (C.10)

Now the conditions (C.3) follow from the relations (C.9) and (C.10) and the invertibility of the twisting element F:
applying € ® id ® id to the relation (C.9), we find (¢ ® id)(F) = 1; applying id ® id ® € to the relation (C.10), we find
(i[d®e)(F) =1

Since A’(x)R = RA(x) for any element x € A (where A is the opposite comultiplication), it follows from the
relation (C.9) that

Riz2 Fi3 F23 = Fa3 F13 Rz - (C.11)
Similarly, the relation (C.10) implies
Raz F13 F12 = F12 F13 Ras - (C.12)

When both relations (C.9) and (C.10) are satisfied, the relation (C.2) is equivalent to the Yang-Baxter equation for the
twisting element F:

F12 Fi3 Faz3 = Fa3 F13 Fiz - (C.13)

Remark C.3. One also has
(Ar ®id)(Fp1) = F31 F32 and (id @ Ax)(Fa1) = F31 For1 -

Therefore, one can twist A again, now by the element F»;.
On the matrix level, this corresponds to the second conjugation of p(R) by p(F),

P((RF)ry ) = DFY BD(R) DF)2.
Remark C.4. The element ]—‘2‘11 satisfies the conditions (C.2), (C.9) and (C.10) if the element F does. Thus, one can twist
the coproduct A by the element ]—‘2’11 as well.

4. The conditions (C.3), (C.9), (C.10) imply the invertibility and skew-invertibility of the element . The formulas for
its inverse and skew inverse are similar to the corresponding formulas for the universal R-matrix R (in particular, we
reproduce the standard formulas for R since we can take 7 = R).

Lemma C.5. Assume that the conditions (C.3) and (C.9) are satisfied. Then the element F is invertible, its inverse is

Fl=S@)®8. (C.14)
Assume that the conditions (C.3) and (C.10) are satisfied. Then the element F is skew invertible, with the skew inverse

Yr=a®S(B). (C.15)
Assume that the conditions (C.3), (C.9) and (C.10) are satisfied. Then

S®SNF)=F. (C.16)
Moreover, the element \ » is invertible, its inverse is

(W= =a®S%B) (C.17)
and the element F~1 is skew-invertible, its skew inverse reads

Vi1, =S a)®B . (C.18)

Proof. The calculations are similar to those, from textbooks, for the universal R-matrix. We include this proof for a
completeness only.

Applications of my; o S; and my; o S, to the relation (C.9) imply the formula (C.14) (here my, is the multiplication of
the first and the second tensor arguments; S; is an operation of taking the antipode of the first tensor argument, etc.).

Applications of my3 o S, and my3 o S3 to the relation (C.10) establish the formula (C.15).

Given the formula (C.15), the statement, that the element ¥ = is a left skew inverse of the element F, reads in
components:

ad' @S(B)B =1, (C.19)
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where primes are used to distinguish different summations terms, the expression aa’®S(8’)8 stands for th a;o;®S(B;)Bi.
Applying S; to this equation, we find (S(a’) ® S(8')) - (S(e) ® B) = 1 which means that the element S(’) ® S(8’) is the
left inverse of the element S(«) ® B. However, the latter element is, by the formula (C.14), the inverse of F. Therefore,
the relation (C.16) follows.

Applying S, to the equality (C.19), we find that the element o ® S?(8) is the right inverse of the element /.

Applyinglsf to the equality (C.19) and using the relation (C.16), we find that S’(a) ® B is a right skew inverse of the
element F~'.

We shall not repeat details for the left inverse of the element v and the left skew inverse of the element F~,
calculations are analogous. ®

Remark C.6. There is a further generalization of the formulas from Lemma C.5. Start with the element F and alternate
operations ‘take an inverse’ and ‘take a skew inverse’. Then the next operation is always possible, the result is always
invertible and skew invertible. One arrives, after n steps, at S"(«) ® B if the first operation was ‘take an inverse’; if the
first operation was ‘take a skew inverse’ then one arrives at o ® S"(8) (see [7], section 8).

From now on, we shall assume that the twisting element F is invertible and satisfies the conditions (C.2), (C.9) and (C.10).
C.2. Counterparts of matrix relations

5. We turn now to the Hopf algebraic meaning of relations from Sections 3.2, 3.3.

The square of the antipode in an almost cocommutative Hopf algebra, with a universal R-matrix R = a ® b, satisfies
the property S%(x) = qu(uR)‘l, where u, = S(b)a, for any element x € A. In a matrix representation of an algebra
A, the element u, maps to the matrix D;(z) (and the element S(u, ) maps to the matrix Cjz)), so an identity (which
follows from the relation (C.16))

1®uy) F1(1®(ug)™) (1@ u)S(e)® BN1®@uy) ! =S(a) ® S%(B)
a®S(B)=vr

becomes one of the relations from Lemma 3.3. In a similar manner, one can interpret other relations from Lemma 3.3.
Such an interpretation is not, however, unique. For instance, applying mi, o S, to the relation (C.13) and using the
formula (C.14), one finds

v, ®1=0av,.S()®BL ,
which, after an application of S,, becomes, due to the formulas (C.15) and (C.16),

1, ®1=Yr (v, ®1)F. (C.20)
Similarly, applying (id ® S) o ma3 o 123 0 S3 (where t is the flip, 1(x ® y) = y ® x) to Eq. (C.13) and using Eqs. (C.16) and
(C.17), one finds

1®v, =ad ®S(BW,.S*B),
which, after an application of S;, becomes, with the help of Eq. (C.16),

1Qv, =F(1Qv:)¥r. (C.21)

In the matrix picture, the relations (C.20) and (C.21) are also equivalent to particular cases of the relations from Lemma 3.3
- but this time we did not use the fact that the square of the antipode is given by the conjugation by the element u_,.
Below we shall make use of another version of the formulas (C.20) and (C.21).
Writing the formulas (C.20) and (C.21) as (v, ® 1)F ! = ¥x(v, ® 1) and F (1 ® v,) = (1 ® v, )7, respectively,
and using the expressions for ¥, (¥=)~! and F~! from Lemma C.5, we find, in components:

V.5(a)® B =av, ®S(B) (C22)
and, respectively,
S()® Bvr = @ v,:S(B) . (C.23)

Applying S; or S, to Egs. (C.22) and (C.23), we obtain corresponding formulas with v, replaced by S(v.). These
formulas, together with Egs. (C.22) and (C.23), imply

F-(v:80:)®1) = (v:5(v:)®1)-F,
F-(1®v:5v;) = (1@v:Svz)-F.

It follows, from a compatibility of the relations (C.20) and (C.21) (express the element v in terms of F and v, in
two ways), that

Fr2 (V@) =W, Qv.)- Fi2 . (C.25)

The relations (C.24) and (C.25) are universal analogues of the matrix equalities (3.19) and (3.18) (for certain choices of
the compatible pairs of the R-matrices) from Corollary 3.4.

(C.24)
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6. We need some more information about the element v .. The inverse to the element v . is given by the formula (C.4);
it follows from Lemma C.5 that (v, )~! = S?(@)B.

By Eq. (C.16), one has S(v.) = S(8)x and, then, Sz(vf) = v,. Since S%(x) = u,x(u, )"! for any element x € A, we
conclude that the element u,, commutes with the element v and, similarly, with the element S(v ).

Making the flip in the relations (C.22) and (C.23), multiplying them out and comparing, we find that the elements v .
and S(v,) commute.

Remark C.7. In fact, more is true. Applying id ® S’ to the relation (C.22), we obtain v,.a ® S~ 1(8) = av, ® ST1(B) (we
used the relation (C.16) to rearrange the powers of the antipode). In a similar way, applying S~ ®id to the relation (C.23),
we obtain o ®Sf‘1(ﬁ)vf =a® vaf“(ﬂ). Multiplying out and comparing the right hand sides, we find that the element
v, commutes with the elements SKa)B Y ke Z.

The same procedure, applied to the flipped versions of the relations (C.22) and (C.23) shows that the element v,
commutes with the elements S¥(8)a V k € Z.

Applying the antipode to these commutativity relations, we find that the element S(v
S*¥(a)B and S¥(B)a ¥ k € Z as well.

»~) commutes with the elements

7. We shall now establish a Hopf algebraic counterpart of the relation (3.24).
There is a closed formula for the coproduct of the element v ., again similar to the standard formula for the coproduct
of the element u,,.

Lemma C.8. One has
Aw,)=F5' 7' (v ®v,) . (C.26)

Proof. Together, Egs. (C.9) and (C.10) imply
(A ® A)F) = FiaF13F2aF23 -
Therefore, the coproduct of v, can be written in a form
A(v,) = ayS(B)) ® a@)S(Bay) = aa'S(BB") ® a"v.S(B") (C27)

(we use the Sweedler notation for the coproduct, A(x) = (1) ® X(2) for an element x € A).
Using the relation (C.23), we continue to rewrite the expression (C.27):

Alv,) = aS(@)S(BB ) ®@a"Bv- . (C.28)
The relation (C.13), in a form Fi3F53F;,! = F;,' FasFis, reads, in components,
aS(d®ao"B @ BB =S(a)” @ pa' @ B'B” . (C.29)

Using Eq. (C.29), we transform the right hand side of Eq. (C.28) to a form
Avy) = S(e)a"S(B")S(B) ® a'v, = S(a)v,S(B") ® Bo'v,. .

Using again Eq. (C.23), we obtain
Alvy) =S(@)B'v; ® BS(a )y, |

which, by the formula (C.14), is a component form of the relation (C.26). ®

Applying the flip to the relation (C.26), we find A°®(v,.) = ]—‘2’11 }‘1’21 (v @v,). Since AP(v,) R =R A(v,), we

conclude

(RA)ry W ®v)=(v:Qv:)R. (C.30)
The translation of the equality (C.30) into the matrix language is equivalent to the relation (3.24) (see the Remarks C.2
and C.3).

Remark C.9. It follows from the relation (C.26) that

AS(v,)) = (S(v;) ® S(v,)) - Fiy' Fyy' - (C31)
The relation (C.25), together with the relations (C.26) and (C.31), implies that an element
Q= vFS(vF)_l (C.32)

is group-like, A(p) = ¢ ® ¢. Therefore, S(p) = ¢~ = S(v,)(v,)"" but S(¢) = S(v-S(v,-)"") = (v,)"'S(v,), which
shows again that v, commutes with S(v ).
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8. The twisted Hopf algebra Az is quasitriangular, so we can write the usual identities for its universal R-matrix
Rr = FoyRF L. The relations from Proposition 3.6 are the matrix counterparts of some of these identities.

For the twisted Hopf algebra Az, one finds, with the help of the first relation in Eq. (C.5), that g ) = ¢ u,, where
the element ¢ is defined by the formula (C.32) (on the matrix level, this becomes one of the relations (3.29)). In particular,

SV () =9 S*(x) ¢ (C.33)
(i) The relation (3 26) is a consequence of, for example, the identity
([d@SFN(RF)) =Rz . (C.34)
We have
Rr = ([d®SF)(RF)™")=(id®SF)FR™'F;') = (id ® S)(aS(a)8’ ® BbS(a"))

(C.35)

aS(@)p’ ® v,S* (@ )S(LS(B)v,)~" = wap’ @ v, S*(a")bS(B) (v, )"
Here we used Eq. (C.8) and the identities from Lemma C.5 for F and R. Applying S* ® S to Eq. (C.22), we find
VS (@)®B=av, ®B, (C.36)

since S?(v,) = v,.. Using the relation (C.36) and the relation (C.23) in a form S(a) ® (v-)"'8 = a ® S(B)(v,)"', we
rewrite the last expression in Eq. (C.35):

Ry = S(a)ap’ ® o'v, b(v,)"'B

or

Ry = Fp O ((1 ®v,)R(1® ufﬁ) oF !, (€.37)
which, on the matrix level, is equivalent to the relation (3.26).

(ii) Next,
Yirys = (d®SF)Rr)=(id®SF)FaRF ') =(id ® Sr)(BaS(a') ® abp’)
= pas(e’) ® v S(B")S(b)S(a)(v,)"" = Bac’ ® v B'S(b)S(a)(v,)~"

or

(10v,) " Yirs (1® V) =FOYr O Fy' (€.38)

which, on the matrix level, is equivalent to the relation (3.27).

(iii) To obtain another formula for v ), we start with the identity ¥ ) = (id ® (SE)P?)N(Rx)"1), which is a direct
consequence of the identities from Lemma C.5:
(id @ (S P)FR ' F5) = (id @ (52 ) (aS(@)p' @ pbS(a)
aS(a)p’ ® pSA(B)SA(b)S* (o )p~! = aap’ ® ¢S P)S(b)S* (') (C39)
= aaf ®S(v,) 1BuS(b)(v,)"1S(a")S(v,) .

Here we used the identities from Lemma C.5, relations & ® v,.S*(8) = ¢ ® Bv, and S3(a)(v,)" ' ® B = (v,)7'S(¢) ® B,
which follow from Egs. (C.22) and (C.23), and the formula (C.33) for the square of the twisted antipode.
Eq. (C.39) can be rewritten as

(1®5(v,) Yirs (180S0 ) =F(1®v,) Yr 1@ (v,) ") Fy' (C.40)

which, in the matrix picture, is equivalent to Eq. (3.28).
(iv) The property (S ® Sz)(Rx) = Rr leads to

V(R )

(Ve ®V)F 'R =Fn RF (v Qv,). (C41)
Since the twisting element 7 commutes with v, ® v, the formula (C.41) is another manifestation of the relation (3.24).

Remark C.10. We conclude this appendix with several more properties of the group-like element ¢ defined in Eq. (C.32).
We have

R-(p®@9)=(p®9¢)-R. (C.42)

To see this, apply S ® S to the relation (C.30) and then compare with the same relation (C.30).

The matrix equivalent of the relation (C.42) is the relation (3.25).

Recall that a quasitriangular Hopf algebra A is called a ribbon Hopf algebra if it contains a ribbon element r, that is, a
central element such that r2 = u_S(u, ) and A(r) = ’Rlz Ry L.(r ®r) (see [46], or [4], the chapter 4). The twisted algebra
Az is a ribbon Hopf algebra if the algebra A is; for the ribbon element of the algebra Az, one can choose r,. = ¢r.

34



0. Ogievetsky and P. Pyatov Journal of Geometry and Physics 162 (2021) 104086

References

[1]
[2]
3]
[4]
[5]
[6]

[7]
[8]
[9]
[10]
[11]
[12]

[13]
[14]

[15]
[16]

[17]
[18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]

[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]

J.S. Birman, H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1) (1989) 249-273.

AJ. Bracken, H.S. Green, Vector operators and a polynomial identity for SO(n), J. Math. Phys. 12 (1971) 2099-2106.

R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937) 854-872.

V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.

LV. Cherednik, Theoret. Math. Phys. 61 (1) (1984) 977-983.

V.G. Drinfel’d, Quantum groups, in: Proceedings of the International Congress of Mathematicians, Vol. 1, (Berkeley, California, USA, 1986), Amer.
Math. Soc., Providence, RI, 1987, pp. 798-820.

V.G. Drinfel’d, On almost cocommutative hopf algebras, Leningr. Math. J. 1 (6) (1990) 321-342.

V.G. Drinfel’d, Quasi-hopf algebras, Leningr. Math. J. 1 (6) (1990) 1419-1457.

H. Ewen, O. Ogievetsky, ]. Wess, Quantum matrices in two dimensions, Lett. Math. Phys. 22 (4) (1991) 297-305.

E. Formanek, The ring of generic matrices, J. Algebra 258 (1) (2002) 310-320.

M.D. Gould, Characteristic identities for semi-simple Lie algebras, J. Austral. Math. Soc. B 26 (3) (1985) 257-283.

M.D. Gould, RB. Zhang, AJ. Bracken, Generalized Gelfand invariants and characteristic identities for quantum groups, J. Math. Phys. 32 (9)
(1991) 2298-2303.

H.S. Green, Characteristic identities for generators of GL(n) O(n) and SP(n), ]J. Math. Phys. 12 (1971) 2106-2113.

D. Gurevich, P. Pyatov, P. Saponov, Hecke symmetries and characteristic relations on reflection equation algebras, Lett. Math. Phys. 41 (1997)
255-264.

D. Gurevich, P. Pyatov, P. Saponov, Cayley-Hamilton theorem for quantum matrix algebras of GL(m|n) type, St. Petersburg Math. J. 17 (1) (2006)
119-135.

D. Gurevich, P. Pyatov, P. Saponov, Quantum matrix algebras of the GL(m|n) type: The structure and spectral parameterization of the
characteristic subalgebra, Theoret. Math. Phys. 147 (1) (2006) 460-485.

I. Heckenberger, A. Schiiler, Symmetrizer and antisymmetrizer of the Birman-Wenzl-Murakami algebras, Lett. Math. Phys. 50 (1999) 45-51.
L. Hlavaty, Quantized braided groups, ]. Math. Phys. 35 (1994) 2560-2569.

P.S. Isaac, J.L. Werry, M.D. Gould, Characteristic identities for Lie (super)algebras, J. Phys. Conf. Ser. 597 (2015) 012045.

A.P. Isaev, Quantum groups and Yang-Baxter equations, Phys. Part. Nucl. 26 (5) (1995) 501-526.

AP. Isaev, AL Molev, 0.V. Ogievetsky, Idempotents for /?birman-murakami-wenzl algebras and reflection equation, Adv. Theoretical Math.
Phys. 18 (1) (2014) 1-25.

A. Isaev, O. Ogievetsky, P. Pyatov, Generalized Cayley-Hamilton-Newton identities, Czech. J. Phys. 48 (1998) 1369-1374, ArXivimath.QA/9809047.
AP. Isaev, O.V. Ogievetsky, P.N. Pyatov, Cayley-Hamilton-Newton identities and quasitriangular Hopf algebras, in: E. Ivanov, S. Krivonos,
A. Pashnev (Eds.), Proc. of International Workshop ‘Supersymmetries and Quantum Symmetries’, JINR, Dubna E2-2000-82, 1999, pp. 27-31,
ArXiv:math.QA/9912197.

AP. Isaev, O.V. Ogievetsky, P.N. Pyatov, On quantum matrix algebras satisfying the Cayley-Hamilton-Newton identities, ]J. Phys. A: Math. Gen.
32 (1999) L115-L121.

A.P. Isaev, O.V. Ogievetsky, P.N. Pyatov, On R-matrix representations of Birman-Murakami-Wenzl algebras, Proc. Steklov Math. Inst. 246 (2004)
134-141.

A.P. Isaev, 0.V. Ogievetsky, P.N. Pyatov, P.A. Saponov, Characteristic polynomials for quantum matrices, in: J. Wess, E. Ivanov (Eds.), Proc. of
International Conference in Memory of V.I. Ogievetsky ‘Supersymmetries and Quantum Symmetries’, (Dubna, Russia, 1997), in: Lecture Notes
in Physics, vol. 524, Springer Verlag, 1998, pp. 322-330.

M. Itoh, Capelli elements for the orthogonal Lie algebras, J. Lie Theory 10 (2000) 463-489.

P.D. Jarvis, H.S. Green, Casimir invariants and characteristic identities for generators of the general linear, special linear and orthosymplectic
graded Lie algebras, ]. Math. Phys. 20 (10) (1979) 2115-2122.

V.FR. Jones, On a certain value of the Kauffman polynomial, Comm. Math. Phys. 125 (1989) 459-467.

I. Kantor, 1. Trishin, On a concept of determinant in the supercase, Comm. Algebra 22 (1994) 3679-3739.

I. Kantor, L. Trishin, On the Cayley-Hamilton equation in the supercase, Comm. Algebra 27 (1999) 233-259.

S. Khoroshkin, O. Ogievetsky, Diagonal reduction algebra and the reflection equation, Israel J. Math. 221 (2) (2017) 705-729.

.P.P. Kulish, E.K. Sklyanin, Algebraic structures related to reflection equations, J. Phys. A 25 (22) (1992) 5963-5975.

R. Leduc, A. Ram, A ribbon Hopf algebra approach to the irreducible representations of centralizer algebras: the Brauer, Birman-Wenzl, and
type A Iwahori-Hecke algebras, Adv. Math. 125 (1) (1997) 1-94.

1.G. Macdonald, Symmetric Functions and Hall Polynomials, in: Oxford Mathematical Monographs, Oxford University Press, 1998.

A. Molev, Laplace operators and characteristic identities for classical Lie algebras, J. Math. Phys. 36 (2) (1995) 923-943.

AL Molev, E. Ragoucy, P. Sorba, Coideal subalgebras in quantum affine algebras, Rev. Math. Phys. 15 (8) (2003) 789-822.

Al Mudrov, Quantum conjugacy classes of simple matrix groups, Comm. Math. Phys. 272 (3) (2007) 635—660.

J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987) 745-758.

M. Nazarov, V. Tarasov, Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math. Sci. 30 (3) (1994) 459-478.

Ogievetsky O., Uses of quantum spaces, in: Proc. of School ‘Quantum symmetries in Theoretical Physics and Mathematics’ (Bariloche, 2000),
in: Contemp. Math., vol. 294, 2002, pp. 161-232.

D.M. O'Brien, A. Cant, A.L. Carey, On characteristic identities for Lie algebras, Ann. Inst. Henri Poincare A 26 (1977) 405-429.

0. Ogievetsky, P. Pyatov, Orthogonal and Symplectic Quantum Matrix Algebras and Cayley-Hamilton Theorem for them. arXiv:math/0511618.
P. Pyatov, P. Saponov, Characteristic relations for quantum matrices, J. Phys. A: Math. Gen. 28 (1995) 4415-4421.

N.Yu. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras, Lett. Math. Phys. 20 (4) (1990) 331-335.

N.Yu. Reshetikhin, Quasitriangular Hopf algebras and invariants of tangles, Leningr. Math. J. 1 (2) (1990) 491-513.

N.Yu. Reshetikhin, L.A. Takhtajan, L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningr. Math. J. 1 (1) (1990) 193-225.

P. Schupp, P. Watts, B. Zumino, Bicovariant quantum algebras and quantum Lie algebras, Comm. Math. Phys. 157 (2) (1993) 305-329.

I. Tuba, H. Wenzl, On braided tensor categories of type BCD, J. Reine Angew. Math. 581 (2005) 31-69.

H. Wenzl, Quantum groups and subfactors of type B, C, and D, Comm. Math. Phys. 133 (2) (1990) 383-432.

Manin Yu.l, Notes on quantum groups and quantum de Rham complexes, Theoret. Math. Phys. 92 (3) (1992) 997-1023.

JJ. Zhang, The quantum cayley-hamilton theorem, ]. Pure Appl. Algebra 129 (1) (1998) 101-109.

35


http://refhub.elsevier.com/S0393-0440(20)30308-9/sb1
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb2
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb3
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb4
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb5
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb6
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb6
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb6
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb7
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb8
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb9
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb10
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb11
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb12
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb12
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb12
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb13
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb14
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb14
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb14
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb15
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb15
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb15
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb16
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb16
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb16
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb17
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb18
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb19
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb20
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb21
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb21
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb21
http://arxiv.org/abs/math.QA/9809047
http://arxiv.org/abs/math.QA/9912197
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb24
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb24
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb24
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb25
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb25
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb25
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb26
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb26
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb26
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb26
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb26
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb27
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb28
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb28
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb28
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb29
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb30
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb31
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb32
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb33
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb34
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb34
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb34
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb35
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb36
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb37
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb38
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb39
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb40
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb41
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb41
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb41
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb42
http://arxiv.org/abs/math/0511618
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb44
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb45
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb46
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb47
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb48
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb49
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb50
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb51
http://refhub.elsevier.com/S0393-0440(20)30308-9/sb52

	Quantum matrix algebras of BMW type: Structure of the characteristic subalgebra
	Introduction
	Some facts about Birman–Murakami–Wenzl algebras
	Definition
	Natural morphisms
	Baxterized elements
	Symmetrizers, antisymmetrizers and contractors

	R-matrices
	Definition and notation
	R-technique
	Twists
	BMW type R-matrices
	Operator G
	Two linear maps

	Quantum matrix algebra
	Definition
	Characteristic subalgebra
	Matrix ⋆-product, general case
	Matrix ⋆-product, BMW case
	Matrix inversion

	Relations for generating sets of the characteristic subalgebra: BMW case
	Basic identities
	Newton and Wronski relations

	Acknowledgments
	Appendix A. Primitivity of contractors
	Appendix B. Further properties of contractors
	Appendix C. On twists in quasitriangular Hopf algebras
	Generalities
	Counterparts of matrix relations

	References


