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a b s t r a c t

A notion of quantum matrix (QM-) algebra generalizes and unifies two famous families of
algebras from the theory of quantum groups: the RTT-algebras and the reflection equa-
tion (RE-) algebras. These algebras being generated by the components of a ‘quantum’
matrix M possess certain properties which resemble structure theorems of the ordinary
matrix theory. It turns out that such structure results are naturally derived in a more
general framework of the QM-algebras. In this work we consider a family of Birman–
Murakami–Wenzl (BMW) type QM-algebras. These algebras are defined with the use of
R-matrix representations of the BMW algebras. Particular series of such algebras include
orthogonal and symplectic types RTT- and RE-algebras, as well as their super-partners.

For a family of BMW type QM-algebras, we investigate the structure of their
‘characteristic subalgebras’ — the subalgebras where the coefficients of characteristic
polynomials take values. We define three sets of generating elements of the character-
istic subalgebra and derive recursive Newton and Wronski relations between them. We
also define an associative ⋆-product for the matrix M of generators of the QM-algebra
which is a proper generalization of the classical matrix multiplication. We determine the
set of all matrix ‘descendants’ of the quantum matrix M , and prove the ⋆-commutativity
of this set in the BMW type.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A notion of a quantummatrix group, also called the RTT-algebra, is implicit in the quantum inverse scattering method. A
ormal definition has been given in the works of V. Drinfel’d, L. Faddeev, N. Reshetikhin and L. Takhtajan [6,47]. Since then,
arious aspects of the quantum matrix group theory have been elaborated, especially in attempts to define differential
eometric structures on non-commutative spaces (see, e.g., [48,51]). In particular, a different family of algebras generated
y matrix components, the so-called reflection equation (RE-) algebras [5,33], has been brought into consideration. Soon
t was realized that, for both the RTT- and the RE-algebras, some of the basic concepts of the classical matrix algebra,
ike the notion of the spectral invariants and the characteristic identity (the Cayley–Hamilton theorem) can be properly
eneralized (see [9,40,44,52]). So, it comes out that the matrix notation used for the definition of the RTT- and the RE-
lgebras is not only technically convenient, but it dictates certain structure properties for the algebras themselves. It is
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hen natural to search for a possibly most general algebraic setting for the matrix-type objects. Such family of algebras
as introduced in Refs. [18] and [24], and in the latter case the definition was dictated by a condition that the standard
atrix theory statements should have their appropriate generalizations. These algebras were called quantummatrix (QM-)
lgebras although one should have in mind that the QM-algebras are generated by the matrix components rather than
y the matrix itself.
The RTT- and the RE-algebras are probably the most important subfamilies in the variety of QM-algebras. They are

istinguished both from the algebraic point of view (the presence of additional non-braided bi-algebra and bi-comodule
tructures) and from the geometric point of view (their interpretation as, respectively, the algebras of quantized functions
nd of quantized invariant differential operators on a group); also, the RE-algebras naturally appear in the representation
heory, in the description of the diagonal reduction algebras [32]. However, for the generalization of the basic matrix
lgebra statements, it is not only possible but often more clarifying to use a weaker structure settings of the QM-algebras.
So far, the program of generalizing the Cayley–Hamilton theorem was fully accomplished for the ‘linear’ (or Iwahori–

ecke) type QM-algebras. For the GL(m)-type algebras, the results were described in [14,24,26] and for the GL(m|n)-type
lgebras in [15,16]. These works generalize earlier results on characteristic identities by A.J. Bracken, H.S. Green, et al. in
he Lie (super)algebra case [2,11,13,28,42] (for a review see [19]) and in the quantized universal enveloping algebra case
12], and by I. Kantor and I. Trishin in the matrix superalgebra case [30,31].

The similar investigation program for the QM-algebras of Birman–Murakami–Wenzl (BMW) type (for their definition
ee Section 4.1) was initiated in [43]. In the present and forthcoming works we continue and complement this program.
he family of BMW type QM-algebras serves as a unifying set-up for the description of the orthogonal and symplectic
M-algebras as well as for their supersymmetric partners. Some partial results about specific examples of such algebras
nd their limiting cases were already derived. In particular, the characteristic identities for the generators of the orthogonal
nd symplectic Lie algebras have been considered at the representation theoretical and at the abstract algebraic levels
n [2,13] and in [11,27,36,42]. The characteristic identities for the canonical Drinfeld–Jimbo quantizations of the orthogonal
nd symplectic universal enveloping algebras were obtained in [37] and their images in the series of highest weight
epresentations were discussed in detail in [38]. So, it is pretty clear that proper generalizations of the Cayley–Hamilton
heorems do exist for the families of orthogonal and symplectic QM-algebras. However, in a derivation of these results
ne meets serious technical complications. The reason is that the structure of the Birman–Murakami–Wenzl algebras is
ubstantially more sophisticated then that of the Iwahori–Hecke algebras (Iwahori–Hecke and Birman–Murakami–Wenzl
lgebras play similar roles in the construction of the QM-algebras of linear and BMW types). In the present work we
evelop an appropriate techniques to deal with these complications.
In Sections 2 and 3 we collect necessary results concerning the Birman–Murakami–Wenzl (BMW) algebras and

heir R-matrix representations. In the beginning of Section 2 we define the BMW algebras in terms of generators
nd relations, describe few helpful morphisms between these algebras, and introduce the baxterized elements. These
lements are used in Section 2.2 for the definition of three sets of idempotents called antisymmetrizers, symmetrizers
nd contractors. Necessary properties of these idempotents are proved in Proposition 2.2. All the material of this section,
xcept the construction and properties of the contractors is fairly well known and we present it to make the presentation
elf-contained.
In Section 3 we consider the R-matrix representations of the BMW algebras. We define standard notions of the R-trace,1

kew-invertibility, compatible pair of R-matrices and R-matrix twist (Section 3.1). In Section 3.2 we collect necessary
ormulas and statements relating the notions introduced before. To investigate the skew-invertibility of the R-matrix after
twist, in Section 3.3 we derive an expression for the twisted R-matrix, which is different from the standard one. Next
e describe the BMW type R-matrices (Section 3.4). The major part of a technical preparatory work is done in Sections
.2—3.4, and 3.5, 3.6. Here we develop the R-matrix technique, which is later used in the main Sections 4, 5.
In the beginning of Section 4 we introduce the QM-algebras of general and BMW types. We then define the

haracteristic subalgebra of the QM-algebra. In the Iwahori–Hecke case, it is the subalgebra where the coefficients of the
ayley–Hamilton identity take their values. As it was shown in [24], the characteristic subalgebra is abelian. In Section 4.2
e describe three generating sets for the characteristic subalgebra of the BMW type QM-algebra. As compared to the linear
M-algebras, all these generating sets contain a single additional element — the 2-contraction g — which at the classical
evel gives rise to bilinear invariant 2-forms for the orthogonal and symplectic groups.

Next, in Section 4.3, we construct a proper analogue of the matrix multiplication for the quantum matrices. We call it
he quantummatrix product ‘⋆’. In general, the ⋆ -product is different from the usual matrix product. It is worth noting that
or the family of RE-algebras, the ⋆ -product coincides with the matrix product. The ⋆ -product is proven to be associative
and hence the ⋆ -powers of the same quantum matrix M commute. We determine then the set of all ‘descendants’ of
the quantum matrix M in the BMW case and prove that this set is ⋆ -commutative. It turns out that, unlike the linear
M-algebra case, it is not possible to express all these descendants in terms of the ⋆ -powers of M only. The expressions
nclude also a new operation ‘⊺’, which can be treated as a ‘matrix multiplication with a transposition’.

In Section 4.5 we define an extension of the BMW type QM-algebra by the element g−1 which is the inverse to the
-contraction. Then we construct in the extended algebra the inverse ⋆ -power of the quantum matrix M .

1 This operation is also called a quantum trace or, shortly, a q-trace in the literature.
2
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The last Section 5 contains the principal result of the present work, Theorem 5.2, which establishes, for the BMW type
M-algebras, recursive relations between the elements of the three generating sets of their characteristic subalgebras.
hese formulas generalize the classical Newton and Wronsky relations for the sets of the power sums, elementary and
omplete symmetric polynomials (see [35]) to the case of quantum matrices and simultaneously, to the situation where
dditional element of the characteristic subalgebra, the 2-contraction, is present. To prove this result we first derive the
atrix relations among the descendants of the BMW type quantum matrix M (see Lemma 5.1). These relations can be
iewed as the matrix counterparts of the Newton relations, and they are expected to be important ingredients in a future
erivation of the characteristic identities for the QM-algebras of the BMW type.
Some auxiliary results, which are interesting in themselves, although not necessary for considerations in the main

ext, are collected in the Appendices. In Appendix A we prove the primitivity of the contractors from Section 2.4. In
ppendix B their further properties are discussed. Appendix C is devoted to a discussion of universal counterparts of the
atrix relations given in Sections 3.2, 3.3.
In forthcoming papers we are going to construct the Cayley–Hamilton identities, and, more generally Cayley–Hamilton–

ewton identities in the spirit of [22], for the series of orthogonal and symplectic QM-algebras and, further on, for their
uper-partners.

. Some facts about Birman–Murakami–Wenzl algebras

In this preparatory section we collect definitions and derive few results on the Birman–Murakami–Wenzl algebras. We
ive a minimal information, which is required for the main part of the paper. In particular, in Section 2.2 we describe
eries of morphisms of the braid groups and their quotient BMW algebras; in Section 2.3 we introduce baxterized elements
hich are then used in Section 2.4 to define three series of idempotents in the BMW algebras, the so called symmetrizers,
ntisymmetrizers and contractors.
The reader will find a more detailed presentation of the Birman–Murakami–Wenzl algebras in, e.g., papers [50]

nd [34].

.1. Definition

The braid group Bn, n ≥ 2, in Artin presentation, is defined by generators {σi}
n−1
i=1 and relations

σiσi+1σi = σi+1σiσi+1 ∀ i = 1, 2, . . . , n − 1, (2.1)
σiσj = σjσi ∀ i, j : |i − j| > 1 . (2.2)

e put, by definition, B1 := {1}.
The Birman–Murakami–Wenzl (BMW) algebra Wn(q, µ) [1,39] is a finite dimensional quotient algebra of the group

lgebra CBn. It depends on two complex parameters q and µ. Let

κi :=
(q1 − σi)(q−11 + σi)

µ(q − q−1)
, i = 1, 2, . . . , n − 1 . (2.3)

he quotient algebra Wn(q, µ) is specified by conditions

σiκi = κiσi = µκi , (2.4)
κiσ

ϵ
i+1κi = µ−ϵκi , (2.5)

here ϵ is the sign,2 ϵ = ±1.
Eqs. (2.3) and (2.4) imply that the characteristic polynomial for the generator σi has degree three,

(σi − q1)(σi + q−11)(σi − µ1) = 0 . (2.6)

The relations (2.4)–(2.5) imply also

σ ′

i κi+1σ
′

i = σ ′

i+1κiσ
′

i+1 , where σ ′
= σ − (q − q−1)1 , (2.7)

κiσ
ϵ
i+π = κiκi+πσ

−ϵ
i , σ ϵi+πκi = σ−ϵ

i κi+πκi , (2.8)

κiκi+πκi = κi , (2.9)

κ2
i = η κi , where η :=

(q − µ)(q−1
+ µ)

µ(q − q−1)
. (2.10)

ere ϵ and π are the signs: ϵ = ±1 and π = ±1.
The parameters q and µ of the BMW algebra are taken in domains3

q ∈ C\{0,±1}, µ ∈ C\{0, q,−q−1
}, (2.11)

so that the elements κi are well defined and non-nilpotent. Further restrictions on q and µ will be imposed in Section 2.3.

2 If µ ̸= q − q−1 then it is enough to impose only one of the relations (2.5), the relation with another sign follows (see [25]).
3 For particular values µ = ±qi , i ∈ Z, the limiting cases q → ±1 to the Brauer algebra [3] can be consistently defined.
3
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.2. Natural morphisms

• The braid groups and their quotient BMW algebras admit a chain of monomorphisms

B2 ↪→ · · · ↪→ Bn ↪→ Bn+1 ↪→ · · · ,

W2 ↪→ · · · ↪→ Wn ↪→ Wn+1 ↪→ · · ·
(2.12)

defined on the generators as

Bn (or Wn) ∋ σi ↦→ σi+1 ∈ Bn+1 (or Wn+1) ∀ i = 1, . . . , n − 1. (2.13)

We denote by α(n)↑i
∈ Bn+i (or Wn+i) an image of an element α(n)

∈ Bn (or Wn) under a composition of the mappings
(2.12)–(2.13). Conversely, if for some j < (n − 1), an element α(n) belongs to the image of Bn−j (or Wn−j) in Bn (or Wn)
then by α(n)↓j we denote the preimage of α(n) in Bn−j (or Wn−j).

This notation will be helpful in Section 2.4 where we discuss three distinguished sequences of idempotents in the
BMW algebras.

• Consider series of elements τ (n) ∈ Bn defined inductively

τ (1) := 1, τ (j+1)
:= τ (j) σjσj−1 . . . σ1 . (2.14)

τ (n) is the lift of the longest element of the symmetric group Sn. The inner Bn (and, hence, Wn) automorphism

τ : σi ↦→ τ (n) σi (τ (n))−1
= σn−i , (2.15)

will be used below in derivations in Sections 2.4 and 4 .
• One has three algebra isomorphisms:

ι : Wn(q, µ) → Wn(−q−1, µ) , ι′ : Wn(q, µ) → Wn(q−1, µ−1) and ι′′ : Wn(q, µ) → Wn(−q,−µ)

defined on generators by

ι : σi ↦→ σi , (2.16)
ι′ : σi ↦→ σ−1

i , (2.17)

ι′′ : σi ↦→ − σi . (2.18)

The map ι interchanges the two sets of baxterized elements σ±(x) and the series of symmetrizers a(n) and antisymmetriz-
ers s(n): ι(a(n)) = s(n) (see Sections 2.3 and 2.4). For the maps ι′, ι′′ one has: ι′(σ±(x)) = xσ±(x−1), ι′′(σ±(x)) = σ±(x). The
series of (anti)symmetrizers are stable under maps ι′ and ι′′. One also has ι(κi) = ι′(κi) = ι′′(κi) = κi.

•. There exists an algebra antiautomorphism ς : Wn(q, µ) → Wn(q, µ) (ς (xy) = ς (y)ς (x)), defined on generators as

ς : σi ↦→ σi . (2.19)

his morphism will be used later in the proofs of Propositions 2.2 and 4.11.

.3. Baxterized elements

A set of elements σi(x), i = 1, 2, . . . , n − 1, depending on a complex parameter x, in a quotient of the group algebra
Bn is called a set of baxterized elements if

σi(x) σi+1(xy) σi(y) = σi+1(y) σi(xy) σi+1(x) (2.20)

or i = 1, 2, . . . , n − 1 and

σi(x) σj(y) = σj(y) σi(x) (2.21)

f |i − j| > 1.

emma 2.1 ([20,29]). For the algebra Wn(q, µ), the baxterized elements exist. There are two sets of the baxterized elements
{σ εi }, ε = ±1, given by

σ εi (x) := 1 +
x − 1

q − q−1 σi +
x − 1
αεx + 1

κi , (2.22)

where αε := −εq−εµ−1.

The complex argument x, traditionally called the spectral parameter, is chosen in a domain C \ {−α−1
}.
ε

4
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.4. Symmetrizers, antisymmetrizers and contractors

In terms of the baxterized generators we construct two series of elements a(i) and s(i), i = 1, 2, . . . , n, in the algebra
Wn(q, µ). They are defined iteratively in two ways:

a(1) := 1 and s(1) := 1 , (2.23)

a(i+1)
:=

qi

(i + 1)q
a(i) σ−

i (q−2i) a(i) or a(i+1)
:=

qi

(i + 1)q
a(i)↑1 σ−

1 (q−2i) a(i)↑1 , (2.24)

s(i+1)
:=

q−i

(i + 1)q
s(i) σ+

i (q2i) s(i) or s(i+1)
:=

q−i

(i + 1)q
s(i)↑1 σ+

1 (q2i) s(i)↑1 , (2.25)

here iq are usual q-numbers, iq := (qi − q−i)/(q − q−1). Below we show that in each of Eqs. (2.24), (2.25) the two
efinitions coincide. We note that the factorized formula for the (anti)symmetrizers, in the spirit of the fusion procedure
or the BMW algebra [21], follows from Eqs. (2.24), (2.25).

To avoid singularities in the definition of a(i) (respectively, s(i)), i = 1, 2, . . . , n, we impose further restrictions on the
arameters of Wn(q, µ):

jq ̸= 0 , µ ̸= −q−2j+3 (respectively, µ ̸= q2j−3) ∀ j = 2, 3, . . . , n . (2.26)

The elements a(i) and s(i) are called an ith order antisymmetrizer and an ith order symmetrizer, respectively.
The second order antisymmetrizer and symmetrizer

a(2) =
q
2q
σ−

1 (q−2) =
(q1 − σ1)(µ1 − σ1)

2q(µ+ q−1)
, s(2) =

q−1

2q
σ+

1 (q2) =
(q−11 + σ1)(µ1 − σ1)

2q(µ− q)
(2.27)

re the idempotents participating in a resolution of unity in the algebra W2(q, µ) (c.f. with the property (2.6)),

1 = a(2) + s(2) + η−1κ1 . (2.28)

Likewise for a(2) and s(2), one can introduce higher order analogues for the third idempotent entering the resolution.
amely, define iteratively

c(2) := η−1κ1 , c(2i+2)
:= c(2i)↑1 κ1κ2i+1 c(2i)↑1 . (2.29)

he element c(2i) is called an (2i)th order contractor. Main properties of the (anti)symmetrizers and contractors are
ummarized below.

roposition 2.2. Two expressions given for the antisymmetrizers and symmetrizers in Eqs. (2.24) and (2.25) are identical.
he elements a(n) and s(n) are central primitive idempotents in the algebra Wn(q, µ). One has

a(n)σi = σia(n) = −q−1a(n), s(n)σi = σis(n) = qs(n) ∀ i = 1, 2, . . . , n − 1 (2.30)
and

a(n)a(m)↑i
= a(m)↑ia(n) = a(n), s(n)s(m)↑i

= s(m)↑is(n) = s(n) if m + i ≤ n . (2.31)

The antisymmetrizers a(n), for all n = 2, 3, . . ., are orthogonal to the symmetrizers s(m), for all m = 2, 3, . . .,

a(n)s(m)
= 0 . (2.32)

The element c(2n) is a primitive idempotent in the algebra W2n(q, µ) and in the algebra W2n+1(q, µ). One has

c(2n)c(2i)↑n−i
= c(2i)↑n−ic(2n) = c(2n) ∀ i = 1, 2, . . . , n ; (2.33)

c(2n)σi = c(2n)σ2n−i , σic(2n) = σ2n−i c(2n) ∀ i = 1, 2, . . . , n − 1 , (2.34)
and

c(2n)σn = σn c(2n) = µc(2n) . (2.35)

The contractors c(2n) are orthogonal to the antisymmetrizers a(m) and to the symmetrizers s(m) for all m > n.

Proof. The explicit formula (2.24) for idempotents, which we call antisymmetrizers here, appears in [49], although
without referring to the baxterized elements (see the proof of the lemma 7.6 in [49]).4 Our proof of the formulas (2.30)
and (2.31) relies on the relations (2.20) for the baxterized generators.

We first check that the elements a(i) defined iteratively by the first formula in (2.24) satisfy the relations (2.30) and
(2.31). The equalities (2.30) for the antisymmetrizers are equivalent to

a(n)s(2)↑i−1
= s(2)↑i−1a(n) = a(n)c(2)↑i−1

= c(2)↑i−1a(n) = 0 , ∀ i = 1, 2, . . . n − 1 ,

4 Different expressions for the antisymmetrizers and symmetrizers, which are less suitable for our applications, were derived in [17].
5
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hich, in turn, are equivalent to

a(n) σ−

i (q2) = σ−

i (q2) a(n) = 0 . (2.36)

Indeed, the spectral decomposition of σ−

i (q2) contains (with nonzero coefficients) only two idempotents, s(2)↑i−1 and
c(2)↑i−1:

σ−

i (q2) = q 2q (s(2)↑i−1
+

1 + qµ
q3 + µ

c(2)↑i−1) .

To avoid a singularity in the expression for σ−

i (q2), we have to assume additionally µ ̸= −q3 for the rest of the proof.
However, the expressions entering the relations (2.30) and (2.31) are well defined and continuous at the point µ = −q3
(unless −q3 coincides with one of the forbidden by Eq. (2.26) values of µ), so the validity of the relations (2.30) and (2.31)
at the point µ = −q3 follows by the continuity.

Notice that the equalities a(n)σi = −q−1a(n) are equivalent to the equalities σia(n) = −q−1a(n) due to the antiautomor-
phism (2.19) since ς (a(n)) = a(n) by construction.

We now prove the equalities (2.30) and (2.31) by induction on n.
For n = 2, a(2)σ1 = −q−1a(2), by (2.27) and (2.6).
Let us check the equalities for some fixed n > 2 assuming that they are valid for all smaller values of n. Notice that as

a byproduct of the definition (2.24) (the first equality) and the induction assumption, the relations (2.36) and (2.31) are
satisfied, respectively, for all i = 1, 2, . . . , n − 2 and for all m, i : m + i ≤ n − 1. It remains to check the relation (2.36)
for i = n − 1 and the relation (2.31) for m = n − i. Respectively, we calculate

a(n) σ−

n−1(q
2) ∼ a(n−1)σ−

n−1(q
−2n+2)a(n−1) σ−

n−1(q
2)

∼ (a(n−1)a(n−2)) σ−

n−1(q
−2n+2)σ−

n−2(q
−2n+4)σ−

n−1(q
2) a(n−2)

= (a(n−1)σ−

n−2(q
2)) σ−

n−1(q
−2n+4)σ−

n−2(q
−2n+2) a(n−2)

= 0 ,

(‘∼’ means ‘proportional’) and

a(n) a(n−i)↑i
=

qn−i−1

(n − i)q
(a(n)a(n−i−1)↑i) σ−

n−1(q
−2(n−i−1)) a(n−i−1)↑i

=
qn−i−1

(n − i)q
a(n) (1 + qi−n(n − i − 1)q) a(n−i−1)↑i

= a(n) .

Here in both cases, the definition of antisymmetrizers (2.24) (the first equality), induction assumption and relation (2.20)
were used. The centrality and primitivity of the idempotents a(n) ∈ Wn(q, µ) follow then from the relations (2.30).

To prove equivalence of the two expressions for the antisymmetrizers given in the formulas (2.24), notice that under
onjugation by τ (i+1) (2.14) the first expression in the formulas (2.24) gets transformed into the second one. However,
he elements a(i+1) are central in Wi+1, so they do not change under the conjugation which proves the consistency of the
qualities (2.24).
All the assertions concerning the symmetrizers follow from the relations for the antisymmetrizers by an application

f the map ι (2.16)

ι(a(n)) = s(n), ι(s(n)) = a(n), ι(c(2n)) = c(2n) .

he latter formulas are direct consequences of the definitions.
The orthogonality of the antisymmetrizers and the symmetrizers is a byproduct of the relations (2.30):

−q−1a(n)s(m)
= (a(n)σ1)s(m)

= a(n)(σ1s(m)) = qa(n)s(m) .

The equalities (2.33) can be proved by induction on n. They are obvious in the case n = 1. Let us check them for some
ixed n ≥ 2, assuming they are valid for all smaller values of n. Notice that the iterative definition (2.29) together with
he induction assumption approve the relations (2.33) for all values of index i, except i = n. Checking the case i = n splits
in two subcases: n = 2 and n > 2. In the subcase i = n = 2, we have c(4) = η−2κ2κ3κ1κ2 and(

c(4)
)2

= η−4κ2κ3κ1κ
2
2κ3κ1κ2 = η−3κ2κ3(κ1κ2κ1)κ3κ2 = η−3κ2κ3κ1κ3κ2 = η−2κ2κ3κ1κ2 = c(4) ,

while in the subcase i = n > 2, the calculation is carried out as follows(
c(2n)

)2
= c(2n−2)↑1κ1κ2n−1c(2n−2)↑1κ1κ2n−1c(2n−2)↑1

=
(
c(2n−2)↑1c(2n−4)↑2) (κ1κ2κ1)(κ2n−1κ2n−2κ2n−1)

(
c(2n−4)↑2c(2n−2)↑1)

= c(2n−2)↑1κ1κ2n−1c(2n−2)↑1
= c(2n) .

ere in both calculations we used the definition (2.29), the induction assumption and the relations (2.9) and (2.10).
6
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Taking into account the relations (2.33), one can derive an alternative expression for the contractors

c(2i) = c(2i−2)↑1κ1κ2i−1c(2i−2)↑1
= c(2i−2)↑1κ1κ2i−1c(2i−4)↑2κ2κ2i−2c(2i−4)↑2

= (c(2i−2)↑1c(2i−4)↑2)κ1κ2i−1κ2κ2i−2c(2i−4)↑2
= c(2i−2)↑1κ2i−1κ2i−2κ1κ2c(2i−4)↑2

= · · · = c(2i−2)↑1 (κ2i−1κ2i−2 . . . κi+1) (κ1κ2 . . . κi−1) c(2)↑i−1

= η−1c(2i−2)↑1 (κ2i−1κ2i−2 . . . κi+1) (κ1κ2 . . . κi) .

(2.37)

ow, using this expression and noticing that, by the relations (2.8),

κi+1κi−1κiσi−1 = κi+1κi−1σ
−1
i = κi−1κi+1σ

−1
i = κi+1κi−1κiσi+1 ,

we conclude that the equality (2.34) is satisfied for i = n − 1. In particular, the relations (2.34) hold for n = 2 and i = 1.
It is enough (by induction on n) to prove the relations (2.34) for i = 1. Then observe, again by the relation (2.8), that

κiκi±1κi±2 σi = κiκi±1σi κi±2 = κiσ
−1
i±1κi±2 = σi±2 κiκi±1κi±2 .

Now, for n > 2,

c(2n)σ1 = η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn) σ1

= η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) σ3 (κ1κ2 . . . κn)

= η−1c(2n−2)↑1σ3 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn)

= η−1c(2n−2)↑1σ2n−3 (κ2n−1κ2n−2 . . . κn+1) (κ1κ2 . . . κn)

= η−1c(2n−2)↑1 (κ2n−1κ2n−2 . . . κn+1) σ2n−1 (κ1κ2 . . . κn) = c(2n)σ2n−1 .

The relation (2.35) follows from the property (2.4) and the expression (2.37) (with i = n) for the contractor. Then,
rthogonality of the contractors c(2n) with the antisymmetrizers and the symmetrizers a(m), s(m), m > n is a corollary of
he relations (2.30) and (2.35).

A statement of the primitivity of the idempotent c(2n) ∈ Wi(q, µ), i = 2n, 2n+1, goes beyond the needs of the present
aper, we mention it for a sake of completeness and postpone a purely algebraic proof till Appendix A. ■

Since the family of higher contractors does not appear to have been previously discussed in the literature, we include
ppendix B, which contains their additional properties.

. R-matrices

Let V denote a finite dimensional C-linear space, dim V = n. Fixing some basis {vi}
n
i=1 in V we identify elements

∈ End(V⊗n) with matrices X j1j2...jn
i1 i2...in

.
In this section we investigate properties of certain elements in Aut(V⊗2) generating representations of the braid

roups Bn or, more specifically, of the Birman–Murakami–Wenzl algebras Wn(q, µ) on the spaces V⊗n. Traditionally such
perators are called R-matrices.
R-matrices and compatible pairs of R-matrices are introduced in Section 3.1. We also discuss there the notions of

he skew-invertibility and the R-trace. Some basic technique, useful in the work with the R-matrices, is presented in
ection 3.2.
A twist operation which associates a new R-matrix to a compatible pair of R-matrices, is discussed in Section 3.3. We

erive there an alternative expression for the twisted R-matrix and study its skew-invertibility.
Starting from Section 3.4, we concentrate on the R-matrices of the BMW type. In Sections 3.5, 3.6 important ingredients

ppear: a matrix G and the linear maps φ and ξ . As it will be explained in Section 4, the matrix G is responsible for the
ommutation relation of the quantum matrix with a special element, called 2-contraction, of the quantum matrix algebra.
he two maps φ and ξ , in turn, are necessary for the definition of the ⋆ -product of the BMW type quantum matrices,
hich is a proper generalization of the usual matrix multiplication to the case of matrices with noncommuting entries.

.1. Definition and notation

Let X ∈ End(V⊗2). For any n = 2, 3, . . . and 1 ≤ m ≤ n − 1, denote by Xm an operator whose action on the space V⊗n

s given by the matrix

(Xm)
j1...jn
i1...in

:= I j1...jm−1
i1...im−1

X jmjm+1
im im+1

I jm+2...jn
im+2...in

.

ere I denotes the identity operator. In some formulas below (see, for instance, Eqs. (3.1)) we will also use a notation
mr ∈ End(V⊗n), 1 ≤ m < r ≤ n − 1, referring to an operator given by a matrix

(Xmr )
j1...jn
i1...in

:= X jmjr
im ir I j1...jm−1jm+1...jr−1jr+1...jn

i1...im−1im+1...ir−1 ir+1...in
.

learly, X = X .
m mm+1

7
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We reserve the symbol P for the permutation operator: P(u⊗ v) = v⊗ u ∀ u, v ∈ V . Below we repeatedly make use
f relations

P2
= I ; P12X12 = X21P12 ∀ X ∈ End(V ⊗ V ) ; Tr (1)P12 = Tr (3)P23 = I2 ,

here the symbol Tr(i) stands for the trace over an ith component space in the tensor power of the space V .
An operator X ∈ End(V⊗2) is called skew invertible if there exists an operator ΨX ∈ End(V⊗2) such that

Tr (2)X12ΨX 23 = Tr (2)ΨX 12X23 = P13 . (3.1)

efine two elements of End(V )

CX := Tr(1)ΨX 12 , DX := Tr(2)ΨX 12 . (3.2)

y (3.1),

Tr (1)CX 1X12 = I2 , Tr (2)DX 2X12 = I1 . (3.3)

skew invertible operator X is called strict skew invertible if one of the matrices, CX or DX , is invertible (by Lemma 3.5
elow, if one of the matrices, CX or DX , is invertible then they are both invertible).
An equation

R1 R2 R1 = R2 R1 R2 .

or an element R ∈ Aut(V⊗2) is called the Yang–Baxter equation.
An element R ∈ Aut(V⊗2) that fulfills the Yang–Baxter equation is called an R-matrix.
All R-matrices in this text are assumed to be invertible.
Clearly, the permutation operator P is the R-matrix; R−1 is the R-matrix iff R is. Any R-matrix R generates representa-

ions ρR of the series of braid groups Bn, n = 2, 3, . . .

ρR : Bn → Aut(V⊗n) , σi ↦→ ρR(σi) = Ri, 1 ≤ i ≤ n − 1. (3.4)

f additionally the R-matrix R satisfies a third order minimal characteristic polynomial (c.f. with the relation (2.6))

(qI − R)(q−1I + R)(µI − R) = 0 , (3.5)

nd an element

K := µ−1(q − q−1)−1 (qI − R)(q−1I + R) (3.6)

ulfills conditions

K2 K1 = R±1
1 R±1

2 K1 (3.7)

nd

K1 K2 K1 = K1 , (3.8)

hen we call R an R-matrix of a BMW type (c.f. with Eqs. (2.3)–(2.10); we make a different but equivalent choice of defining
elations).

For an R-matrix of the BMWtype, the formulas (3.4) define representations of the algebras Wn(q, µ) → End(V⊗n),
= 2, 3, . . .. In particular, ρR(κi) = Ki.
An ordered pair {R, F} of two operators R and F from End(V⊗2) is called a compatible pair if conditions

R1 F2 F1 = F2 F1 R2 , R2 F1 F2 = F1 F2 R1 , (3.9)

re satisfied. If, in addition, R and F are R-matrices, the pair {R, F} is called a compatible pair of R-matrices. The equalities
3.9) are called twist relations (on the notion of the twist see [8,23,45]). Clearly, {R, P} and {R, R} are compatible pairs of
-matrices; pairs {R−1, F} and {R, F−1

} are compatible iff the pair {R, F} is.

efinition 3.1. Consider a space of n × n matrices Matn(W ), whose entries belong to some C-linear space W . Let R be
skew invertible R-matrix. A linear map

Tr
R

: Matn(W ) → W , Tr
R
(M) =

n∑
i,j=1

(DR)
j
iM

i
j , M ∈ Matn(W ),

is called an R-trace.

The relation (3.3) in this notation reads

Tr (2)R12 = I1 . (3.10)
R

8
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.2. R-technique

In this and the next subsections we develop a technique for dealing with the R-matrices, their compatible pairs and the
-trace. Most of results reported here, like Lemma 3.5 and, in a particular case of a compatible pair {R, R} – Lemmas 3.2
nd 3.3 and Corollary 3.4 – are rather well known (see, e.g., [20,41]). However, we often use them in a more general
etting and so, when necessary, we present sketches of proofs.
Proposition 3.6 contains new results. Here we derive an expression, different from the standard one, for the twisted

-matrix, which helps to investigate its skew-invertibility.
A universal (i.e., quasi-triangular Hopf algebraic) content of the matrix relations derived in this and the next subsections

s discussed in the Appendix C.

emma 3.2. Let {X, F} be a compatible pair, where X is skew invertible. Let Matn(W ) be as in Definition 3.1. For any
∈ Matn(W ), one has

Tr (1)
(
CX 1F ε12 M2 F−ε

12

)
= I2 Tr (CXM) , (3.11)

Tr (2)
(
DX 2F

−ε
12 M1 F ε12

)
= I1 Tr (DXM) (3.12)

or ε = ±1.

roof. We use the twist relations (3.9) in a form

F ε23 X34 F−ε
23 = F−ε

34 X23 F ε34 , ε = ±1 .

ultiplying it by (ΨX 12ΨX 45) and taking the traces in the spaces 2 and 4, we get

Tr (2)(ΨX 12 F ε23 P35 F−ε
23 ) = Tr (4)(ΨX 45 F−ε

34 P13 F ε34) . (3.13)

Here the relation (3.1), defining the operator ΨX , was applied to calculate the traces. Now taking the trace in the space
number 1 or number 5, we obtain (after relabeling)

Tr (1)(CX 1 F ε12 P23 F−ε
12 ) = CX 3 I2 , (3.14)

Tr (3)(DX 3 F−ε
23 P12 F ε23) = DX 1 I2 . (3.15)

These two relations are equivalent forms of the relations (3.11) and (3.12). For example, the formula (3.11) is obtained
by multiplying the relation (3.14) by the operator M3 and taking the trace in the space 3. ■

Lemma 3.3. Let {X, F} be a compatible pair of skew invertible operators X and F . Then the following relations

CX 1 ΨF 12 = F−1
21 CX 2 , ΨF 12 CX 1 = CX 2 F

−1
21 , (3.16)

ΨF 12 DX 2 = DX 1 F
−1
21 , DX 2 ΨF 12 = F−1

21 DX 1 (3.17)

hold.

Proof. For a skew invertible operator F , the relations (3.16) and (3.17) are equivalent to the relations (3.14) and (3.15).
Let us demonstrate how the left one of the relations (3.16) is derived from the relation (3.14) with ε = 1.

Multiply the relation (3.14) by a combination (P23ΨF 24) from the right, take the trace in the space 2 and simplify the
result using the relation (3.1) for X = F and the properties of the permutation

Tr (1)(CX 1 P14 F
−1
13 ) = CX 3 Tr (2)(P23 ΨF 24) = CX 3 ΨF 34 .

Then simplify the left hand side of the equality using the cyclic property of the trace

Tr (1)(CX 1 P14 F
−1
13 ) = Tr (1)(P14 F−1

13 CX 1) = F−1
43 CX 4 Tr (1)P14 = F−1

43 CX 4 .

This proves the left relation in (3.16). ■

Corollary 3.4. Let {X, F} and {Y , F} be compatible pairs of skew invertible operators X, Y and F . Then the following relations

F12 CX 1CY 2 = CY 1CX 2F12 , F12 DX 1DY 2 = DY 1DX 2F12 , (3.18)
F12 (CXDY )2 = (CXDY )1 F12 , F12 (DYCX )1 = (DYCX )2 F12 , (3.19)

Tr (1)(CX 1F
−1
12 ) = (CXDF )2 = (DFCX )2 , (3.20)

Tr (2)(DX 2F
−1
12 ) = (CFDX )1 = (DXCF )1 (3.21)

hold.
9
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P
roof. A calculation (F−1
12 CY 1)CX 2 = CY 2(ΨF 21CX 2) = CY 2CX 1F

−1
12 = CX 1CY 2F

−1
12 proves the left one of the relations (3.18).

Here the relations (3.16) were applied.
A calculation (F−1

12 CX 1)DY 1 = CX 2(Ψ F
21DY 1) = CX 2DY 2F

−1
12 proves the left one of the relations (3.19). Here one uses

subsequently the left equations from (3.16) and (3.17).
The relations (3.20) follow by taking Tr (2) of the equations (3.16).
The rest of the relations in (3.18)–(3.21) are derived in a similar way. ■

Lemma 3.5. Let X be a skew invertible R-matrix. Then statements
(a) the R-matrix X−1 is skew invertible;
(b) the R-matrix X is strict skew invertible,

are equivalent.
Provided these statements are satisfied, both CX and DX are invertible and one has

CX−1 = D−1
X , DX−1 = C−1

X . (3.22)

Proof. See [41], section 4.1, statements after eq. (4.1.77), or [20], proposition 2 in section 3.1. ■

Under an assumption of an existence, for an R-matrix X , of the operators X−1, ΨX and ΨX−1 , the relations (3.22) were
proved in [46].

Since, for a compatible pair {X, F}, the pair {X, F−1
} is also compatible, the formulas (3.22) together with the relations

(3.20)–(3.21) imply that CXCF = CFCX and DXDF = DFDX .

3.3. Twists

Let {R, F} be a compatible pair of R-matrices. Define a twisted operator

Rf := F−1RF . (3.23)

It is well known that Rf is an R-matrix and the pair {Rf , F} is compatible. Therefore, one can twist again; in [24] it was
shown that if F is skew invertible then

DF 1 DF 2 ((Rf )f )12 = R12 DF 1 DF 2 and CF 1 CF 2 ((Rf )f )12 = R12 CF 1 CF 2 . (3.24)

A comparison of two equalities in Eq. (3.24) shows that

[ R12 , (C−1
F DF )1 (C−1

F DF )2 ] = 0 . (3.25)

Proposition 3.6. Let {R, F} be a compatible pair of R-matrices. The following statements hold:

(a) if F is strict skew invertible then the twisted R-matrix Rf , defined by the formula (3.23), can be expressed in a form

Rf 12 = Tr (34)
(
F−1
32 CF−13R34DF 4F14

)
; (3.26)

(b) if R is skew invertible and F is strict skew invertible then Rf is skew invertible; its skew inverse is

ΨRf 12
= CF−12 Tr (34)

(
F−1
23 ΨR 34F41

)
DF 1 ; (3.27)

moreover, ΨRf can be expressed in a form

ΨRf 12
= CF−12F21DF−12ΨR 12CF 1F

−1
21 DF 1 ; (3.28)

(c) under the conditions in (b),

CRf = CF−1DR CF , DRf = DF−1CRDF (3.29)

(thus, if, in addition to the conditions in (b), R is strict skew invertible then Rf is strict skew invertible as well).

Proof. To verify the assertion (a) we calculate

Rf 12 = (F−1RF )12 = F−1
12

(
Tr (4)F−1

41 CF−14

)
(RF )12

= Tr (4)
(
(RF )41F−1

12 F−1
41 CF−14

)
=

(
Tr (3)P13

)
Tr (4)

(
(RF )41F−1

12 CF−11ΨF 14
)

= Tr (34)
(
(RF )43F−1

32 CF−13P13ΨF 14
)

= Tr (3)

(
F−1
32 CF−13P13Tr (4)ΨF 14(RF )43

)
,

(3.30)

where in the second equality we used the relation (3.3) for X = F−1; in the third equality we applied the twist relations for
the compatible pairs {R, F} and {F , F}; in the fourth equality we applied the relations (3.16) for X = F−1 and inserted the
10
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dentity operator Tr (3)P13; in the fifth equality we permuted the operator P13 rightwards and then, in the sixth equality,
sed the cyclic property of the trace to move the combination (RF )43 to the right.
To complete the transformation, we derive an alternative form for the underlined expression in the last line in

q. (3.30). Multiplying the twist relation R2F3F2 = F3F2R3 by a combination (ΨF 12DF 4) and taking the traces in the spaces
and 4, we obtain (using the formulas (3.1) and (3.3) for X = F )

Tr (2) (ΨF 12(RF )23) = Tr (4) (DF 4F34P13R34) ,

hich is equivalent (multiply by P13 from the left and use the cyclic property of the trace) to

P13Tr (2) (ΨF 12(RF )23) = Tr (4) (R34DF 4F14) . (3.31)

ow, substituting the equality (3.31) into the last line of the calculation (3.30), we finish the transformation and obtain
he formula (3.26).

Given the formula for Rf , the calculation of ΨRf becomes straightforward and one finds the formula (3.27).
Thus, the skew invertibility of Rf is established.
Now we derive the expression (3.28) for ΨRf . Multiplying the equality (3.13) with ε = 1 by a combination P35DF−15

rom the right and taking the trace in the space 5, we obtain

Tr (2)(ΨR12F23) = Tr (45)(ΨR45F
−1
34 P13F34P35DF−15)

= Tr (4)(F−1
34 P13F34DF−13ΨR43) .

ubstituting this into the expression (3.27), we find

ΨRf 12
= CF−12 Tr (34)

(
F−1
23 F−1

14 P13F14DF−11ΨR 41
)
DF 1

= CF−12 Tr (4)
(
F−1
14 Tr (3)(F−1

23 P13)F14DF−11ΨR 41
)
DF 1

= CF−12 Tr (4)
(
F−1
14 F−1

21 F14DF−11ΨR 41
)
DF 1

= CF−12 F21 Tr (4)
(
F−1
14 F−1

21 DF−11ΨR 41
)
DF 1

= CF−12 F21 DF−12Tr (4)
(
F−1
14 ΨF 12ΨR 41

)
DF 1 .

(3.32)

We used the Yang–Baxter equation for the operator F in the fourth equality and the relations (3.16) in the fifth equality.
Multiplying Eq. (3.13) with ε = −1 by ΨF 01P13 from the left and by P35ΨF 56 from the right and taking the traces in the

spaces 1 and 5, we find

F−1
14 ΨF 12ΨR 41 = ΨR 12ΨF 41F

−1
21 .

Substituting this into the last line of the calculation (3.32), we obtain the equality (3.28).
Finally, the expressions (3.29) for the operators CRf and DRf are obtained by taking the trace in the space 1 or the space

2 of the expression (3.27) for the skew inverse of the twisted R-matrix and the subsequent use of the relations (3.3) for
X = F±1 and the relations (3.2), (3.20) and (3.21) for X = R. ■

Remark 3.7. If one uses the expression (3.26) for the twisted R-matrix then the relation (3.24) becomes straightforward:

((Rf )f )12 = Tr (3456)
(
F−1
32 (D−1

F )3F−1
54 (D−1

F )5R56DF 6F36DF 4F14
)

= Tr (3456)

(
F−1
54 DF 4F14(D

−1
F )5R56DF 6F

−1
32 (D−1

F )3F36

)
= Tr (56)

(
P15DF 1(D

−1
F )5R56DF 6(D

−1
F )2P26

)
= (D−1

F )2Tr (56)
(
P15(D−1

F )5R56DF 6P26
)
DF 1

= (D−1
F )1(D−1

F )2R12DF 1DF 2 .

n the first equality we applied the formula (3.26) twice and replaced the operators CF−1 by D−1
F by the relation (3.22); in

he second equality we collected together the terms involving the space number 3 (they are underlined) and the terms
nvolving the space number 4 (they are underlined twice); in the third equality we evaluated the traces in the spaces 3
nd 4 using the relations from Lemma 3.3; in the fourth equality we moved the operator (D−1

F )2 leftwards out of the trace
nd the operator DF 1 rightwards out of the trace; in the fifth equality we transported the operator P15 rightwards and the
perator P26 leftwards under the trace and then evaluated the remaining traces in the spaces 5 and 6.

.4. BMW type R-matrices

In this subsection we discuss the R-matrices of the BMW type in more detail.
In Lemma 3.8 we collect additional relations specific to the BMW type R-matrices. Based on these formulas, we will

ntroduce later, in Sections 3.5 and 3.6, an invertible operator G ∈ Aut(V ) and linear maps φ and ξ , which will be used in
ection 4 for a definition of a product of quantum matrices and for a quantum matrix inversion.
11
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emma 3.8. Let R be a skew invertible R-matrix of the BMW type. Then

• the operator R is strict skew invertible;
• the rank of the operator K equals one, rk K = 1;
• the following relations

Tr (2)K12 = µ−1DR1 , Tr (1)K12 = µ−1CR2 , (3.33)

TrR(2)K12 = µ I1 , (3.34)

Tr RI = µη ≡
(q − µ)(q−1

+ µ)
(q − q−1)

, (3.35)

CRDR = µ2I , (3.36)

K12DR1DR2 = DR1DR2K12 = µ2K12 (3.37)

hold.

roof. The proof of all the statements in the lemma but the last one is given in [25].
The last relation (3.37) (which, in another form, figures in [25], in proposition 2) can be established in the following

ay.
The first equality in (3.37) is a consequence of a relation

R12DR1DR2 = DR1DR2R12 , (3.38)

hich is just the equality (3.18) written for the pair {R, R}. Then the conditions K 2
∼ K and rk K = 1 together imply

12DR1DR2 ∼ K12DR1DR2K12 ∼ K12 . A coefficient of proportionality in this relation is recovered by taking the trace of it in
he space 2 and the subsequent use of the relations (3.33) and (3.34). ■

In [25], a pair of mutually inverse matrices

E2 := Tr (1)(K12P12) and E−1
1 := Tr (2)(K12P12) (3.39)

as introduced (see eqs. (32) and (33) and proposition 2 in [25]).
We shall now collect several useful identities involving the operators K and E.

emma 3.9. (a) The following relations

K12K23 = E3 K12P23P12 , K23K12 = E−1
1 K23P12P23 , (3.40)

K13K23 = µ−1DR2 K13P12 , K12K13 = µ−1CR3 K12P23 , (3.41)
K23K14P12P34 = K23K14 , K23K14P13P24 = K23K14P23P14 ,

K12E−1
1 = µ−1K12P12DR1 , E1K12 = µ−1DR1P12K12

hold.
(b) We have

K12E1E2 = E1E2K12 = K12 .

(c) The operator K is skew invertible, its skew inverse is

ΨK 12 = E1K12E2 = µ−2DR1K21DR1 .

Proof. (a) All these identities follow from the rank one property of the operator K (written explicitly, with indices, they
become evident).

(b) To verify, for instance, that K12E−1
1 E−1

2 = K12, use the definition (3.39) of the matrix E−1
2 , E−1

2 = Tr (3)(K23P23), and
then the relation (3.40) to remove the trace.

(c) This follows from the identities in (a) in the lemma. ■

Remark 3.10. The relations (3.40) admit the following generalizations:

K1K2 . . . Kj = E3E4 . . . Ej+1 · (P1P2 . . . Pj)2Kj ,

Kj . . . K2K1 = E−1
1 E−1

2 . . . E−1
j−1Kj · (Pj . . . P2P1)2 .

The relations (3.41) admit the following generalizations:

K10K20 . . . Kj0 = µ1−j(DR2DR3 . . .DRj) · (P1P2 . . . Pj−1) Kj0 ,

K01K02 . . . K0j = µ1−j(CR2CR3 . . . CRj) · (P1P2 . . . Pj−1) K0j .

In all four formulas above j is an arbitrary positive integer. These relations can be proved by induction on j.
12
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3
.5. Operator G

In the following lemma, we define analogues of the matrices E and E−1 for a compatible pair {R, F} of R-matrices.
When the operator F is the permutation operator, F = P , the matrix G of the Definition-Lemma 3.11 coincides with the
matrix E.

Definition-Lemma 3.11. Let {R, F} be a compatible pair of R-matrices, where R is skew-invertible of the BMW type and F is
strict skew-invertible. Define an element G ∈ End(V ) by

G1 := Tr (23)K2F−1
1 F−1

2 . (3.42)

The operator G is invertible, the inverse operator reads

G−1
1 = Tr (23)F2F1K2 . (3.43)

The following relations

R12G1G2 = G1G2R12 , (3.44)
F ε12G1 = G2F ε12 for ε = ±1 , (3.45)

[DR,G] = 0 , (3.46)
[CF ,G] = [DF ,G] = 0 , (3.47)
[E,G] = 0 ,
[CF , E] = [DF , E] = 0

are satisfied.

Proof. A check of the invertibility of G is a direct calculation

G1 G−1
1 = (Tr (23)K2F−1

1 F−1
2 )(Tr (23)F2F1K2) = Tr (23)K2F−1

1 F−1
2 K2F2F1

= Tr (23)K2F−1
1 Kf 2F1 = Tr (23)K2F2Kf 1F

−1
2 = Tr (23)Kf 2Kf 1 = I .

(3.48)

Here in the first line we used the formulas (3.42) and (3.43) and the property rk K = 1: if Π = |ζ ⟩⟨ψ | is a rank one
projector then Tr (ΠA) = ⟨ψ |A|ζ ⟩ for any operator A and

Tr (ΠA) Tr (ΠB) = ⟨ψ |A|ζ ⟩ ⟨ψ |B|ζ ⟩ = ⟨ψ |AΠB|ζ ⟩ = Tr (ΠAΠB)

for any A and B; in the second line of the calculation (3.48) we passed from K to Kf = F−1KF and applied the twist
relations (for the operators Kf and F ) and the cyclic property of the trace. In the last equality of (3.48) we evaluated the
traces using the relations (3.33) and then the relation (3.34) for the operator Kf (we are allowed to use these relations
because the operator Rf is skew-invertible by Proposition 3.6).

Notice that, in view of the relation (3.37), we can rewrite the formula for the operator G using the R-traces instead of
the ordinary ones

G1 = µ−2 TrR(23)K2F−1
1 F−1

2 . (3.49)

Applying the formula (3.12) (written for F ε = X = R) twice to this equality, we begin our next calculation

G1I2 = µ−2 TrR(34) (R2R3)K2F−1
1 F−1

2 (R−1
3 R−1

2 ) = µ−2 TrR(34)K3K2F−1
1 F−1

2 R−1
3 R−1

2
= µ−2 TrR(34)K2F−1

1 F−1
2 K2K3 = µ−1 TrR(3)K2F−1

1 F−1
2 K2 .

(3.50)

Here we used the relation (3.7) in the last equality of the first line. In the second line we again applied the relation (3.7)
after moving the operator K3 to the right (for that we need the relation (3.37) and the cyclicity of the trace) and then we
evaluated one R-trace with the help of the relation (3.34).

Now we use the formula (3.50) for the product G1G2 in a transformation

G1G2R1 = µ−2 TrR(34) (K3F−1
2 F−1

3 K3)(K2F−1
1 F−1

2 K2)R1

= µ−2 TrR(34)F
−1
2 F−1

3 K2K3K2F−1
1 F−1

2 K2R1 = µ−2 TrR(34)F
−1
2 F−1

3 F−1
1 F−1

2 K1K2R1

= µ−2 TrR(34)F
−1
2 F−1

3 F−1
1 F−1

2 K1R−1
2 = µ−2 TrR(34)K3F−1

2 F−1
3 F−1

1 F−1
2 R−1

2

= µ−2 TrR(34)F
−1
2 F−1

1 F−1
3 F−1

2 R3K2K3 = µ−2R1 TrR(34)F
−1
2 F−1

1 F−1
3 F−1

2 K2K3

= µ−2R1 TrR(34)K3F−1
2 F−1

3 F−1
1 F−1

2 K2 = R1G1G2 ,

which demonstrates the relation (3.44). While doing the above calculation, we repeatedly used the twist relations for the
pairs {K , F−1

} and {R, F−1
}, applied the formulas (3.7) and (3.7) and exploited the cyclic property of the trace to move

the operator K to the right/left in the fourth/fifth line, respectively.
3

13
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Due to the expression (3.49) for the operator G, we can write

G1I2 = µ−2 TrR(34)
(
(F−ε

2 F−ε
3 )K2F−1

1 F−1
2 (F ε3 F

ε
2 )

)
by the formula (3.12).

The relation (3.45) is now proved as follows

G1F ε1 = µ−2 TrR(34)
(
(F−ε

2 F−ε
3 )K2F−1

1 F−1
2 (F ε3 F

ε
2 )

)
F ε1

= µ−2 TrR(34) (F
−ε
2 F−ε

3 )F ε3 F
ε
2 F

ε
1K3F−1

2 F−1
3 = F ε1µ

−2 TrR(34)K3F−1
2 F−1

3 = F ε1G2 .
(3.51)

Here we subsequently used the twist relations for the pair {K , F ε}, the Yang–Baxter equations for F and again the
expression (3.49) for the operator G.

Vanishing of the commutators [CF ,G] and [DF ,G] in Eq. (3.47) follow from the above proved equality. To find these
commutators, transform Eq. (3.51) to

G1ΨF 12 = ΨF 12G2 , G2ΨF 12 = ΨF 12G1 ,

(multiply the relation (3.51) by a combination ΨF 41ΨF 23 and take Tr (12)) and then apply the trace in the space 1 or the
space 2 to these relations and compare results.

The relation (3.46) is approved by a calculation

G1DR1 = µ−2 TrR(23)K2F−1
1 F−1

2 DR1 = µ−2 Tr (23)K2F−1
1 F−1

2 DR1DR2DR3

= µ−2 Tr (23)DR1DR2DR3K2F−1
1 F−1

2 = DR1G1 .

Here the expression (3.49) for the operator G, the relations (3.18) for X = Y = R and the relation (3.37) were used.
To prove the relation [E,G] = 0, we rewrite the expression for G:

G1 = Tr (23)(K2F−1
1 F−1

2 ) = η−1Tr (23)(K2K2F−1
1 F−1

2 ) = η−1Tr (23)(K2F−1
1 F−1

2 K1)
= η−1Tr (23)(F−1

1 F−1
2 K1K2) = η−1Tr (23)(F−1

1 F−1
2 K1P23P12) E1 .

(3.52)

In the second equality we used the relation K 2
= ηK ; in the third equality we used the twist relation; in the fourth

equality we moved the operator K2 cyclically under the trace; in the fifth equality we used the first of the relations (3.40).
Due to the relation (3.45), the combination Tr (23)(F−1

1 F−1
2 K1P23P12) commutes with the operator G1. Therefore the

operators G and E commute.
We have already shown that the operators CF and DF commute with the operator G. It follows then from the expression

(3.52) for the operator G that to prove that the operators CF and DF commute with the operator E it is enough to prove
that the operators CF and DF commute with the combination Ξ1 := Tr (23)(F−1

1 F−1
2 K1P23P12). We have

Ξ1DF−11 = Tr (23)(F−1
1 F−1

2 DF−13K1P23P12) = Tr (23)(F−1
1 F−1

2 DF−13CR3CR
−1
3 K1P23P12)

= Tr (23)(F−1
1 DF−12CR2F

−1
2 K1P23P12)CR

−1
1 = DF−11CR1Ξ1CR

−1
1 = DF−11Ξ1 .

(3.53)

In the first equality we moved the operator DF−1 leftwards through the permutation operators; in the second equality we
inserted CR3CR

−1
3 ; in the third equality we used the relations (3.19) and moved the operator CR

−1
1 rightwards out of the

trace; in the fourth equality we used again the relations (3.19). The operator CR commutes with the operators G and E by
the already proved relation (3.46) for the compatible pairs {R, F} and {R, P}; therefore, due to the expression (3.52) for
the operator G, the operator CR commutes with the operator Ξ , which is used in the fifth equality.

The calculation (3.53) establishes the relation [CF , E] = 0; the proof of the relation [DF , E] = 0 is similar, we do not
repeat details. ■

Remark 3.12. One can rewrite further the expression (3.49) for G:

G1 = µ−2 TrR(23)F
−1
1 F−1

2 K1 = µ−2TrR(2)F
−1
1 CF 2DR2K1

= TrR(2)F
−1
1 CF 2D

−1
R 1K1 = µ−2TrR(2)F

−1
1 CF 2CR1K1

= µ−2CF 1TrR(2)CR2F
−1
1 K1 = CF 1Tr (2)F−1

1 K1 .

Here we used subsequently: the twist relation, the relations (3.21), (3.37), (3.36), (3.18) and then again (3.36).
Similarly,

G−1
1 = Tr (2)(K1F1)D−1

F 1 .
14
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.6. Two linear maps

The next lemma introduces two linear maps which will be important in the study of the matrix ⋆-product.

Definition-Lemma 3.13. Let {R, F} be a compatible pair of skew invertible R-matrices, where the operator R is of the BMW
type and the operator F is strict skew invertible. Define two endomorphisms φ and ξ of the space Matn(W ):

φ(M)1 := TrR(2)
(
F12M1F−1

12 R12
)
, M ∈ Matn(W ), (3.54)

and

ξ (M)1 := TrR(2)
(
F12M1F−1

12 K12
)
, M ∈ Matn(W ) . (3.55)

The mappings φ and ξ are invertible; their inverse mappings read

φ−1(M)1 = µ−2TrR (2)
f

(
F−1
12 M1R−1

12 F12
)

(3.56)

and

ξ−1(M)1 = µ−2TrR (2)
f

(
F−1
12 M1K12F12

)
. (3.57)

The following relations for the R-traces

Tr
Rf
φ(M) = Tr

R
M , Tr

Rf
ξ (M) = µ Tr

R
M . (3.58)

are satisfied.

Proof. The expressions on the right hand sides of the formulas (3.56) and (3.57) are well defined, since, by Proposi-
tion 3.6(b), the R-matrix Rf is skew invertible.

Let us check the relation φ−1(φ(M)) = M directly.
Using the formulas (3.54) and (3.56) and applying the relation (3.12) for the pair {R, F} we begin a calculation

φ−1(φ(M))1 = µ−2 TrR (2)
f

(
F−1
12 (TrR(2′)F12′M1F−1

12′ R12′ )R−1
12 F12

)
= µ−2 TrR (2)

f
TrR(3)

(
F−1
1 F−1

2 F1M1F−1
1 R1F2R−1

1 F1
)
.

In the next step we move the element F1, underlined in the expression above, to the left and it becomes F2 due to the
ang–Baxter equation; then we transport the operator to the right using the cyclic property of the trace (when F2 moves
yclically, TrR (2)

f
TrR(3) becomes TrR(2)TrR (3)

f
due to the relations (3.18)). Applying the Yang–Baxter equation for the operator

and the relations (3.18) in the case X = R and Y = Rf , we continue the calculation

φ−1(φ(M))1 = µ−2 TrR(2)TrR (3)
f

(
F−1
1 F−1

2 M1F−1
1 R1F2R−1

1 F1F2
)

= µ−2 TrR(2)TrR (3)
f

(
F−1
1 M1F−1

2 Rf 1 F
−1
1 F2F1Rf

−1
1 F2

)
= µ−2 TrR(2)TrR (3)

f

(
F−1
1 M1F−1

2 Rf 1F2 F1 F
−1
2 Rf

−1
1 F2

)
= µ−2 TrR(2)

(
F−1
1 M1F1(TrR (3)

f
Rf 2F1Rf

−1
2 )F−1

1

)
.

(3.59)

ere we consequently transformed the underlined expressions using the definition of the twisted R-matrix Rf , the Yang–
axter equation for the operator F and the twist relations for the compatible pair {Rf , F}. To calculate the trace underlined
n the last line of Eq. (3.59), we apply the relation (3.12) for the compatible pair {Rf , Rf } and then use the relation (3.21)
ritten for the compatible pair {Rf , F−1

}. The result reads

φ−1(φ(M))1 = µ−2 TrR(2)
(
F−1
1 M1F1(DRf CF−1 )1F−1

1

)
.

Now, using the relations (3.19), written for the compatible pairs {Rf , F} and {F−1, F}, the relations (3.29) and (3.22) for
X = F , the relations (3.36) and the (3.3) for X = F−1, we complete the calculation

φ−1(φ(M))1 = µ−2 Tr (2)
(
(DRf CF−1DR)2F−1

1

)
M1

= µ−2 Tr (2)
(
(DF−1CRDFCF−1DR)2F−1

1

)
M1 = Tr (2)(DF−12F

−1
12 )M1 = M1 .

A proof of the equality ξ−1(ξ (M)) = M proceeds quite similarly until the line (3.59), where one has to use a relation

TrR(2) (K1M1K1) = (Tr RM)I1 ∀ M ∈ Matn(W )

instead of the relation (3.12). This in turn follows from the relations (3.33) and (3.34) and the property rk K = 1.
15
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The relations (3.58) can be directly checked starting from the definitions (3.54) and (3.55), applying the relation (3.18)
n the case X = R and Y = Rf and then using the formulas (3.10) and (3.34). ■

emark 3.14. For the mapping φ, the statement of Lemma 3.13 remains valid if one weakens the conditions, imposed
n the R-matrix R, replacing the BMW type condition by the strict skew invertibility. In this case, one should substitute
he term µ−2DRf by DR−1

f
in the expression (3.56) for the inverse mapping φ−1. The proof repeats the proof of the formula

3.56).

. Quantum matrix algebra

In this section we deal with the main objects of our study, the quantum matrix algebras, and construct the ⋆-product
or them. We mainly discuss the quantum matrix algebras of the type BMW.

In Section 4.2 we introduce a characteristic subalgebra of the quantum matrix algebra. In the theory of the polynomial
dentities, a ring, generated by the traces of products of generic matrices, is known as the ring of matrix invariants (see,
.g., [10]). The characteristic subalgebra can be understood as a generalization of the ring of matrix invariants (in the
implest case of a single matrix) to the setting of the quantum matrix algebras and, simultaneously, to a situation when
he invariants can be formed not only by taking a trace (on the quantum level, the invariants can be conveniently formed
y taking the R-trace of a product of a ‘string’ M1M2 . . .Mn by a matrix image of a word in the braid group Bn).
In Propositions 4.7, 4.8 we exhibit three generating sets of the characteristic subalgebra in the BMW case. Explicit

relations between the generators of these sets will be constructed in Section 5. Some preparatory work for this
constructions is performed in the rest of Section 4.

In Section 4.3 we introduce an algebra P(R, F ) for the quantum matrix algebras of the general type. The algebra P(R, F )
has the same relationship to the characteristic subalgebra as the trace ring (see, e.g., [10]) to the ring of matrix invariants.

In Section 4.4 we prove the commutativity of the algebra P(R, F ) in the case of the quantum matrix algebras of the
BMW type.

In Section 4.5 we define an extended quantum matrix algebra of the BMW type by adding an inverse of the quantum
matrix.

4.1. Definition

Consider a linear space Matn(W ), introduced in Definition 3.1. For a fixed element F ∈ Aut(V ⊗ V ), we consider series
of ‘copies’ Mi, i = 1, 2, . . . , n, of a matrix M ∈ Matn(W ). They are defined recursively by

M1 := M1, Mi := Fi−1Mi−1F
−1
i−1 . (4.1)

or F = P , these are usual copies, Mi = Mi, but, in general, Mi can be nontrivial in all the spaces 1, . . . , i.
We shall, slightly abusing notation, denote by the same symbol Mi an element in Matn(W )⊗k for any k ≥ i, which is

efined by an inclusion of the spaces

Matn(W )⊗j ↪→ Matn(W )⊗(j+1)
: Matn(W )⊗j

∋ X ↦→ X ⊗ I ∈ Matn(W )⊗(j+1) .

From now on we specify W to be the associative C-algebra freely generated by the unity and by n2 elements
Mb

a , W := C⟨1,Mb
a ⟩, 1 ≤ a, b ≤ n.

Definition 4.1. Let {R, F} be a compatible pair of strict skew invertible R-matrices (see Section 3.1). A quantum matrix
algebra M(R, F ) is a quotient algebra of the algebra W = C⟨1,Mb

a ⟩ by a two-sided ideal generated by entries of the matrix
relation

R1M1M2 = M1M2R1 , (4.2)

here M = ∥Mb
a∥

n
a,b=1 is a matrix of the generators of M(R, F ) and the matrix copies Mi are constructed with the help of

he R-matrix F as in Eq. (4.1).
If R is an R-matrix of the BMW type (see Eqs. (3.5)–(3.8)) then M(R, F ) is called a BMW type quantum matrix algebra.

emark 4.2. The quantum matrix algebras were introduced in Ref. [18] under the name ‘quantized braided groups’. In
he context of the present paper they have been first investigated in [24]. The matrix M ′ of the generators of the algebra
(R, F ) used in [24] is different from the matrix M that we use here. A relation between these two matrices is explained

n section 3 of [23]: M ′
= DRM(DF )−1.

Lemma 4.3 ([24]). The matrix copies of the matrix M = ∥Mb
a∥

n
a,b=1 of the generators of the algebra M(R, F ) satisfy relations

Fi Mj = Mj Fi for j ̸= i, i + 1, (4.3)

R M = M R for j ̸= i, i + 1, (4.4)
i j j i
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Rj Mj Mj+1 = Mj Mj+1 Rj for j = 1, 2, . . . , (4.5)

Fi Fi+1 . . . Fk · Mi Mi+1 . . .Mk = Mi+1 Mi+2 . . .Mk+1 · Fi Fi+1 . . . Fk for i ≤ k . (4.6)

.2. Characteristic subalgebra

From now on we assume that M is the matrix of generators of the quantum matrix algebra M(R, F ) and its copies Mn
are calculated by the rule (4.1).

Denote by C(R, F ) a vector subspace of the quantum matrix algebra M(R, F ) linearly spanned by the unity and elements

ch(α(n)) := TrR(1,...,n) (M1 . . .Mn ρR(α(n))) , n = 1, 2, . . . , (4.7)

here α(n) is an arbitrary element of the braid group Bn.
Notice that elements of the space C(R, F ) satisfy a cyclic property

ch(α(n)β (n)) = ch(β (n)α(n)) ∀ α(n), β (n)
∈ Bn , n = 1, 2, . . . , (4.8)

which is a direct consequence of the relations (4.4), (4.5) and (3.38) and the cyclic property of the trace.

Definition-Proposition 4.4 ([24]). The space C(R, F ) is a commutative subalgebra of the quantum matrix algebra M(R, F ):

ch(α(n)) ch(β (i)) = ch(α(n) β (i)↑n) = ch(α(n)↑i β (i)) . (4.9)

Recall that α(n)↑i denotes the image of an element α(n) under the embedding Bn ↪→ Bn+i defined in (2.13). We shall call C(R, F )
the characteristic subalgebra of M(R, F ).

A proof of the proposition given in [24] is based in particular on the following lemma:

Lemma 4.5 ([24]). Consider an arbitrary element α(n) of the braid group Bn. Let {R, F} be a compatible pair of R-matrices,
where R is skew invertible. Then relations

TrR(i+1,...,i+n) (Mi+1 . . .Mi+n ρR(α
(n)↑i)) = I1,2,...,i ch(α(n)) (4.10)

hold for any matrix M ∈ Matn(W ).5

We will make use of Lemma 4.5 several times below.
Let us introduce a shorthand notation for certain elements of C(R, F )

p0 := Tr R I (= µη in the BMW case) , p1 := Tr R M , (4.11)
pi := ch(σi−1 . . . σ2σ1) = ch(σ1σ2 . . . σi−1) , i = 2, 3, . . . . (4.12)

The last equality in Eq. (4.12) is due to the inner automorphism (2.15) and the cyclic property (4.8) .
The elements pi are called traces of powers of M or, shortly, power sums.
From now on in this subsection we assume the R-matrix R and, hence, the algebra M(R, F ) to be of the BMW type.

Denote

g := ch(c(2)) ≡ η−1ch(κ1) ≡ η−1 TrR(1,2)
(
M1M2 K1

)
. (4.13)

The notation used here was introduced in the formulas (2.3), (2.10), (2.29) and (3.6). We call the element g a contraction
of two matrices M or, simply, a 2-contraction.

Lemma 4.6. Let M be the matrix of generators of the BMW type quantum matrix algebra M(R, F ). Then its copies, defined
n Eq. (4.1), fulfill relations

Kn MnMn+1 = MnMn+1 Kn = µ−2Kn g ∀ n ≥ 1 . (4.14)

Proof. We employ induction on n. Due to the property rk K = 1, one has

K1 M1M2 = M1M2 K1 = K1 t ,

where t ∈ M(R, F ) is a scalar. Evaluating the R-trace of this equality in the spaces 1 and 2 and using the relations (3.34)
and (3.35), one finds t = µ−2g , which proves the relation (4.14) in the case i = 1. It remains to check the induction step
n → (n + 1):

Kn+1Mn+1Mn+2 = Kn+1(FnMnF−1
n )Mn+2 = Kn+1FnMn(Fn+1Mn+1F

−1
n+1)F

−1
n

= (Kn+1FnFn+1)MnMn+1F
−1
n+1F

−1
n = FnFn+1(KnMnMn+1)F

−1
n+1F

−1
n

= µ−2FnFn+1KnF−1
n+1F

−1
n g = µ−2Kn+1 g .

5 Here there is no need to specify M to be the matrix of the generators of the algebra M(R, F ).
17
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H
ere Eqs. (4.1) and (4.3), the twist relation (3.9) for the pair {K , F} and the induction assumption were used for the
transformation. ■

Proposition 4.7. Let M(R, F ) be the quantum matrix algebra of the BMW type. Its characteristic subalgebra C(R, F ) is
generated by the set {g, pi}i≥0.

Proof. Consider the chain of the BMW algebras monomorphisms (2.12)–(2.13). We adapt, for n ≥ 3, the following
presentation for an element α(n)

∈ Wn

α(n)
= βσ1β

′
+ γ κ1γ

′
+ δ , (4.15)

where β, β ′, γ , γ ′, δ ∈ Im(Wn−1) ⊂ Wn. For n = 3, the formula (4.15) follows from the relations (2.1)–(2.7). For n > 3,
it can be proved by induction on n (one has to prove that the expressions of the form (4.15) form an algebra, for which
it is enough to show that the products σ1βσ1, σ1βκ1, κ1βσ1 and κ1βκ1 with β ∈ Im(Wn−1) ⊂ Wn can be rewritten in
the form (4.15); this is done by further decomposing β , using the induction assumption, β = β̃σ2β̃

′
+ γ̃ κ2γ̃

′
+ δ̃, where

β̃, β̃ ′, γ̃ , γ̃ ′, δ̃ ∈ Im(Wn−2) ⊂ Wn).
Using the expression (4.15) for α(n) and the cyclic property (4.8), we conclude that, in the BMW case, any element (4.7)

of the characteristic subalgebra can be expressed as a linear combination of terms

ch(α1α2 . . . αn−1) , where αi ∈ {1, σi, κi} . (4.16)

Let us analyze the expressions (4.16) for different choices of αi.
(i) If αi = 1 for some value of i, then, applying the relation (4.10), we get

ch(α1 . . . αi−1αi+1 . . . αn−1) = ch(α1 . . . αi−1) ch((αi+1 . . . αn−1)↓i) , (4.17)

where (αi+1 . . . αn−1)↓i ∈ Wn−i is the preimage of (αi+1 . . . αn−1) ∈ Wn.
(ii) In the case when αn−1 = κn−1, we apply the relation (4.14) and then the relations (3.10), (3.34) or (3.35) to reduce
the expression (4.16) to

ch(α1 . . . αn−2κn−1) = f (αn−2) ch(α1 . . . αn−3) g , (4.18)

where f (σn−2) = µ−1, f (κn−2) = 1 and f (1) = η.
(iii) In the case when αi = κi for some i, and αj = σj for all j = i+1, . . . , n−1, we perform the following transformations

ch(α1 . . . αi−1κiσi+1σi+2 . . . σn−1) = ch(α1 . . . αi−2 σ
−1
i αi−1κiκi+1σi+2 . . . σn−1)

= · · · = ch(α1 . . . αi−2(σ−1
n−2 . . . σ

−1
i )αi−1κiκi+1 . . . κn−1).

(4.19)

Here the relations (2.8) and the cyclic property (4.8) are repeatedly used; expressions suffering a transformation are
underlined.

Now, depending on a value of αi−1, we proceed in different ways.
If αi−1 = κi−1 then by Eqs. (2.8) and (4.18) we have

(4.19) = ch(α1 . . . αi−2 σi−1σi . . . σn−3κn−2κn−1)
= ch(α1 . . . αi−2 σi−1σi . . . σn−3) g .

If αi−1 = σi−1 = σ−1
i−1 + (q − q−1)(1 − κi−1) then, using the relations σ−1

i σ−1
i−1κi = κi−1κi and applying the previous

results (4.18) and (4.17), we obtain
(4.19) = ch(α1 . . . αi−2 κi−1σi . . . σn−3) g

+ (q − q−1)µ−1 ch(α1 . . . αi−2) pn−i−1 g
− (q − q−1) ch(α1 . . . αi−2 σi−1σi . . . σn−3) g .

Iterating transformations (i)–(iii) finitely many times, we eventually prove the assertion of the proposition. ■

We keep considering the BMW type quantum matrix algebra M(R, F ) with the R-matrix R generating representations
of the algebras Wn(q, µ), n = 1, 2, . . .. Assume that the antisymmetrizers a(i) and symmetrizers s(i) in these latter algebras
are consistently defined (see Eqs. (2.24), (2.25) and (2.26)). In this case, we can introduce two following sets of elements
in the characteristic subalgebra C(R, F )

a0 := 1 and s0 := 1 ; (4.20)
ai := ch(a(i)) and si := ch(s(i)) , i = 1, 2, . . . . (4.21)

Proposition 4.8. Let M(R, F ) be the quantum matrix algebra of the BMW type. Assume that jq ̸= 0, µ ̸= −q−2j+3

(respectively, jq ̸= 0, µ ̸= q2j−3) for all j = 2, 3, . . . . Then the characteristic subalgebra C(R, F ) is generated by the set
{g, ai}i≥0 (respectively, {g, si}i≥0).

Proof. These statements are byproducts of the previous proposition and the Newton relations, which are proved in
Section 5, Theorem 5.2. ■
18
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4

),
.3. Matrix ⋆ -product, general case

Consider the quantum matrix algebra M(R, F ) of the general type (no additional conditions on an R-matrix R).
Denote by P(R, F ) a linear subspace of Matn(M(R, F )) spanned by C(R, F )-multiples of the identity matrix, I ch ∀ ch ∈

C(R, F ), and by elements

M1
:= M, (Mα(n) )1 := TrR(2,...,n) (M1 . . .Mn ρR(α(n))) , n = 2, 3, . . . , (4.22)

where α(n) belongs to the braid group Bn. The space P(R, F ) inherits a structure of a right C(R, F )–module

Mα(n)ch(β (i)) = M (α(n)β(i)↑n)
∀α(n)

∈ Bn, β
(i)

∈ Bi , n, i = 1, 2, . . . , (4.23)

which is just a component-wise multiplication of the matrix Mα(n) by the element ch(β (i)) (use the relation (4.10) to check
this). The C(R, F )–module structure agrees with an R-trace map Tr R (which means that Tr R(Xa) = Tr R(X)a ∀ X ∈ P(R, F )
and ∀ a ∈ C(R, F ))

P(R, F )
Tr R
−→ C(R, F ) :

{
Mα(n)

↦→ ch(α(n)) ,
I ch(α(n)) ↦→ (Tr RI) ch(α(n)) ,

(4.24)

where α(n)
∈ Bn , n = 1, 2, . . .

Besides, elements of the space P(R, F ) satisfy a reduced cyclic property

M (α(n)β(n−1)↑1)
= M (β(n−1)↑1α(n))

∀α(n)
∈ Bn, β

(n−1)
∈ Bn−1, n = 2, 3, . . . . (4.25)

Definition-Proposition 4.9. Formulas

Mα(n) ⋆Mβ(i)
:= M (α(n)⋆β(i)) , (4.26)

where

α(n) ⋆ β (i)
:= α(n)β (i)↑n(σn . . . σ2σ1σ−1

2 . . . σ−1
n ) , (4.27)

(I ch(β (i))) ⋆Mα(n)
:= Mα(n) ⋆ (I ch(β (i))) := Mα(n)ch(β (i)) , (4.28)

(I ch(α(i))) ⋆ (I ch(β (n))) := I (ch(α(i)) ch(β (n))) , (4.29)

define an associative multiplication on the space P(R, F ), which agrees with the C(R, F )–module structure (4.23).6

Proof. To prove the associativity of the multiplication (4.26), it is enough to check

(α(n) ⋆ β (i)) ⋆ γ (m)
= α(n) ⋆ (β (i) ⋆ γ (m)) ,

which is a straightforward exercise in an application of the relations (2.1) and (2.2).
It is less trivial to prove a compatibility condition for the formulas (4.26) and (4.28){

Mα(n) ⋆ (I ch(β (i)))
}
⋆Mγ (m)

= Mα(n) ⋆

{
(I ch(β (i))) ⋆Mγ (m)

}
,

which, in terms of the matrix ‘exponents’, amounts to

α(n)β (i)↑nγ (m)↑(i+n)(σi+n . . . σ2σ1σ
−1
2 . . . σ−1

i+n)
mod (4.25)

= α(n)γ (m)↑nβ (i)↑(m+n)(σn . . . σ2σ1σ−1
2 . . . σ−1

n ) .
(4.30)

Here the symbol
mod (4.25)

= means the equality modulo the reduced cyclic property (4.25).
To check Eq. (4.30), we apply a technique, which was used in [24] to prove the commutativity of the characteristic

subalgebra. Consider an element

u(i+m)
i,m := (σi . . . σ2σ1)(σi+1 . . . σ3σ2) . . . (σi+m−1 . . . σm+1σm)

= (σiσi+1 . . . σi+m−1)(σi−1σi . . . σi+m−2) . . . (σ1σ2 . . . σm) ,
(4.31)

which intertwines certain elements of the braid group B(i+m):

β (i) u(i+m)
i,m = u(i+m)

i,m β (i)↑m , γ (m)↑i u(i+m)
i,m = u(i+m)

i,m γ (m) . (4.32)

Substitute an expression (u(i+m)↑n
i,m γ (m)↑nβ (i)↑(n+m)(u(i+m)↑n

i,m )−1) for the factor (β (i)↑nγ (m)↑(i+n)) on the left hand side of Eq. (4.30
move the element u(i+m)↑n

i,m cyclically to the right and then use an equality

(σ−1
1 σ−1

2 . . . σ−1
i )u(i+m)

i,m = u(i+m−1)↑1
i,m−1 (4.33)

to cancel it on the right hand side. Such transformation results in the right hand side of Eq. (4.30).

6 In other words, a map ch(α(n)) ↦→ I ch(α(n)) is an algebra monomorphism C(R, F ) ↪→ P(R, F ).
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Consistency of the multiplication and the C(R, F )–module structures on P(R, F ) follows obviously from the last equality
n (4.28). ■

To illustrate the relation between the ⋆ -product and the usual matrix multiplication, we present formulas (4.26) and
(4.27) in the case n = 1 (α(1)

≡ 1) in a form

M ⋆ N = M · φ(N) ∀N ∈ P(R, F ) , (4.34)

where · denotes the usual matrix multiplication and the map φ is defined by the formula (3.54) in Section 3.6.
The noncommutative analogue of the matrix power is given by a repeated ⋆ -multiplication by the matrix M

M0
:= I , Mn

:= M ⋆M ⋆ . . . ⋆M  
n times

= M (σ1σ2...σn−1) = M (σn−1...σ2σ1) . (4.35)

ere we introduce symbol Mn for the nth power of the matrix M . The standard matrix powers multiplication formula
follows immediately from the definition

Mn ⋆M i
= Mn+i . (4.36)

roposition 4.10. A C(R, F )–module, generated by the matrix powers Mn, n = 0, 1, . . ., belongs to the center of the algebra
P(R, F ).

Proof. It is sufficient to check a relation M ⋆Mα(i)
= Mα(i) ⋆M , which, in turn, follows from a calculation

α(i)σi . . . σ2σ1σ
−1
2 . . . σ−1

i = σi . . . σ2σ1α
(i)↑1σ−1

2 . . . σ−1
i

mod (4.25)
= α(i)↑1σ1 . ■

4.4. Matrix ⋆ -product, BMW case

It is natural to expect that the algebra P(R, F ) is commutative as all of its elements are generated by the matrix M
alone. We can prove the commutativity in the BMW case. Notice that (in contrast to the Iwahori–Hecke case), in the BMW
case, the algebra P(R, F ) cannot be generated by the ⋆ -powers of M only.

By an analogy with formula (4.34), we define a C(R, F )–module map M⊺ : P(R, F ) → P(R, F )

M⊺(N) := M · ξ (N), N ∈ P(R, F ) , (4.37)

where the endomorphism ξ is defined by formula (3.55) in Section 3.6. Equivalently, we can write

M⊺(Mα(n) ) = M (α(n)↑1κ1) ∀ α(n)
∈ Wn, n = 1, 2, . . . . (4.38)

Proposition 4.11. Let the quantum matrix algebra M(R, F ) be of the BMW type. Then the algebra P(R, F ) is commutative.
As a C(R, F )–module, it is spanned by matrices

Mn and M⊺(Mn+2) , n = 0, 1, . . . . (4.39)

roof. A proof of the last statement of the proposition goes essentially along the same lines as the proof of Proposition 4.7
nd we will not repeat it. The only modification is a reduction of the cyclic property (c.f., Eqs. (4.8) and (4.25)), which
inally leads to an appearance of the additional elements {M⊺(Mn)}n≥2 in the generating set.

To prove the commutativity of P(R, F ), we derive an alternative expression for the exponent in the matrix product
ormula (4.26)

α(n) ⋆ β (i)
= (σ−1

i . . . σ−1
2 σ1σ2 . . . σi)α(n)↑iβ (i) . (4.40)

The calculation proceeds as follows

α(n) ⋆ β (i)
= α(n)β (i)↑n(σn . . . σ1σ−1

2 . . . σ−1
n ) = u(n+i)

n,i α(n)↑iβ (i)(u(n+i)
n,i )−1(σn . . . σ1σ−1

2 . . . σ−1
n )

mod (4.25)
= (u(n+i−1)↑1

n,i−1 )−1(σ−1
2 . . . σ−1

n )u(n+i)
n,i α(n)↑iβ (i)

= (u(n+i−1)↑1
n,i−1 )−1σ1u

(n+i−1)↑1
n,i−1 α(n)↑iβ (i)

= (σ−1
i . . . σ−1

2 )(u(n+i−2)↑2
n−1,i−1 )−1σ1u

(n+i−2)↑2
n−1,i−1 (σ2 . . . σi)α(n)↑iβ (i)right hand side of Eq. (4.40).

Here we applied again the intertwining operators (4.31) and used their properties (4.32) and (4.33) and the reduced
cyclicity. One more property

u(n+i)
n,i = u(n+i−1)↑1

n−1,i (σ1σ2 . . . σi)

is used in the last line of the calculation.
Due to Proposition 4.10, to prove the commutativity of the algebra P(R, F ), it remains to check the commutativity of

the set {M⊺(Mn)} .
n≥2
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Notice that the factors of the exponents of the matrices M⊺(Mn) can be taken in an opposite order, M⊺(Mn) =
(κ1σ2σ3...σn) = M (σn...σ3σ2κ1) . This observation, together with formula (4.40), allow us to choose the exponents of two

matrices M⊺(Mn) ⋆ M⊺(M i) and M⊺(M i) ⋆ M⊺(Mn) to be mirror (left–right) images of each other. Finally, Mα(n)
=

Mς (α(n)), ∀α(n)
∈ Wn(q, µ), where ς is the antiautomorpism (2.19), since both sides of this equality can be expanded into

linear combinations of the generators (4.39), which are invariant with respect to the mirror reflection of their exponents,
and since the expansion rules (i.e. the defining relations for the BMW algebras) are mirror symmetric. ■

emma 4.12. For the BMW type quantum matrix algebra M(R, F ), one has

M⊺(I) = µM , M⊺(M) = µ−1I g , (4.41)
M⊺(M⊺(N)) = N g ∀ N ∈ P(R, F ) . (4.42)

Proof. The relations (4.41) follow immediately from the relations (4.14) and (3.34) and the definitions (4.37) and (3.55).
As for the equality (4.42), it is enough to check it in the case when the matrix N is a power of the matrix M .
To evaluate the expression M⊺(M⊺(Mn)) = M (κ1κ2σ3...σn+1), we transform its exponent, using the relations (2.8) in the

BMW algebra and the reduced cyclic property, to

κ1κ2σ3 . . . σn+1 = κ1(κ2κ3σ−1
2 )σ4 . . . σn+1

mod (4.25)
= (σ−1

2 κ1κ2)κ3σ4 . . . σn+1

= σ1κ2κ3σ4 . . . σn+1 = . . .
mod (4.25)

= σ1σ2 . . . σn−1κnκn+1 .
(4.43)

For the exponent (4.43), the matrix power is easily calculated, again with the help of the relations (4.14) and (3.34), and
gives the expression Mng . ■

The last relation in (4.41) shows that to introduce the inverse matrix to the matrix M it is sufficient to add the inverse
−1 of the 2-contraction g to the algebra M(R, F ). This is realized in the next subsection.

4.5. Matrix inversion

In this subsection we define an extended quantum matrix algebra, to which the inverse of the quantum matrix belongs.

Lemma 4.13. Let M(R, F ) be the BMW type quantum matrix algebra. Its 2-contraction g fulfills a relation

M g = g (G−1MG) , (4.44)

where G is defined by formula (3.42).

Proof. The proof consists of a calculation

M1 (gK2) = µ2M1M2M3K2 = µ2M1M2M3K2K1K2 = µ2K2
(
M1M2K1

)
M3K2

= gK2K1M3K2 = (gK2) Tr (2,3)
(
K2K1M3

)
= (gK2) Tr (2,3)

(
K2F2F1K2M1F−1

1 F−1
2

)
= (gK2) Tr (2,3)(F2F1K2)M1Tr (2,3)(K2F−1

1 F−1
2 ) = (gK2) (G−1MG)1.

(4.45)

Here the relations (4.14) and (2.9) were used in the first two lines; the property rk K = 1 was used in the last/first equality
of the second/fourth line; the definition of M3 was substituted and the twist relation for the pair {K , F} was used in the
hird line; the formulas (3.42) and (3.43) for G and G−1 were substituted in the last equality. ■

efinition-Proposition 4.14. Let M(R, F ) be the BMW type quantum matrix algebra. Consider an extension of the algebra
(R, F ) by a generator g−1 subject to relations

g−1 g = g g−1
= 1 , g−1 M = (G−1MG) g−1 . (4.46)

he extended algebra, which we shall further denote by M
•

(R, F ), contains an inverse matrix to the matrix M

M−1
:= µ ξ (M) g−1

: M · M−1
= M−1

· M = I . (4.47)

Proof. Lemma 4.13 ensures the consistency of the relations (4.46). The equality M ·M−1
= I for the inverse matrix (4.47)

follows immediately from the formulas (4.41) and (4.37).
To prove the equality M−1

· M = I , consider a mirror partner of the map ξ :

θ (M) := µ−2 TrR(2)K1M2 . (4.48)

y the (left–right) symmetry arguments in the assumptions of Lemma 3.13, the map θ is invertible and the inverse map
eads

θ−1(M) = Tr (2)
(
F−1K1M1F1

)
. (4.49)
Rf 1
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pplying in a standard way the transformation formula (3.12), we calculate a composition of the maps ξ and θ ,

ξ (θ (M))1 = θ (ξ (M))1 = µ−2 TrR(2,3)K2K1M3 = Tr (2,3)K2K1M3 = (G−1MG)1 . (4.50)

Here the relation (3.37) was used to substitute the R-traces by the usual traces; the last equality follows from a comparison
of the second and the last lines in the calculation (4.45).

Now we observe that, in view of the relations (4.14) and (3.34), a matrix (−1M) := µ g−1 θ−1(M) fulfills the relation
(−1M) · M = I . The identity (−1M) = M−1 follows then from the relations (4.50) and (4.44). ■

Remark 4.15. One can generalize the definitions of the characteristic subalgebra and of the matrix powers to the case of
the extended quantum matrix algebra M

•

(R, F ). Not going into details, we just mention that the extended characteristic
subalgebra C

•

(R, F ) is generated by the set {g, g−1, pi}i≥0 and the extended algebra P
•

(R, F ), as a C
•

(R, F )–module, is spanned
by matrices

Mn and M⊺(Mn) ∀ n ∈ Z .

Here inverse powers of M are defined through the repeated ⋆ -multiplication by M−1, which is given by

M−1 ⋆ N := N ⋆M−1
:= φ−1(M−1

· N) ∀ N ∈ P
•

(R, F ) . (4.51)

Explicitly, one has

M−n
:= M−1 ⋆ . . . ⋆M−1⋆  

n times

I = Tr R−1
f (2,...,n+1)

(
M−1

2 M−1
3 . . .M−1

n+1 ρR−1
f
(σn . . . σ2σ1)

)
;

where the copies M−1
i of the matrix M−1 are defined as (c.f. with Eq. (4.1))

M1 := M1, Mi+1 := F−1
i Mi Fi, i = 2, 3, . . . . (4.52)

otice that in general M−1
= φ−1(M−1) ̸= M−1. Here are some particular examples of the multiplication by M−1

M−n ⋆M i
= M i−n , M−1 ⋆Mα(n)↑1

= ch(α(n)) I .

. Relations for generating sets of the characteristic subalgebra: BMW case

In this last section we use the basic identities from Section 5.1 to establish relations between the three sets of
lements in the characteristic subalgebra — {g, ai}i≥0, {g, si}i≥0 and the power sums {g, pi}i≥0. As a byproduct, we
rove Proposition 4.8.
Before we proceed, let us recall the initial data of the construction.

• Given a compatible pair of R-matrices {R, F}, in which the operator F is strict skew invertible and the operator R is
skew invertible of the BMW type (and, hence, strict skew invertible), we introduce the BMW type quantum matrix
algebra M(R, F ) (see Definition 4.1);

• Assuming additionally that the eigenvalues q and µ of the R-matrix R (i.e., the parameters of the BMW algebras,
whose representations are generated by the matrix R) satisfy conditions iq ̸= 0, µ ̸= −q3−2i

∀ i = 2, 3, . . . , n (see
(2.26)) we can consistently define the antisymmetrizers a(i) and introduce skew powers of the quantum matrix M:
Ma(i) , 0 ≤ i ≤ n.

5.1. Basic identities

In this subsection we establish relations between ‘descendants’ of the matrices Ma(i) in the algebra P(R, F ). These
elations are used later in a derivation of the Newton relations.

For 1 ≤ i ≤ n and m ≥ 0, we consider two series of descendants of Ma(i) :

A(m,i)
:= iq Mm ⋆Ma(i) , B(m+1,i)

:= iq Mm ⋆M⊺(Ma(i) ) . (5.1)

It is suitable to define A(m,i) and B(m,i) for boundary values of their indices

A(−1,i)
:= iq φ−1 (

TrR(2,3,...i)M2M3 . . .Mi ρR(a
(i))

)
, B(0,i)

:= iq φ−1(ξ(Ma(i))) (5.2)

and

A(m,0)
:= 0 and B(m,0)

:= 0 ∀ m ≥ 0 . (5.3)

Notice that although the elements A(−1,i) and B(0,i) do not, in general, belong to the algebra P(R, F ), their descendants
A(−1,i)g and B(0,i)g do (see Eqs. (5.4) and (5.5) in the case m = 0).

In the case when the contraction g (and, hence, the matrix M) is invertible, the formulas (5.1), with m now an arbitrary
integer, can be used to define descendants of Ma(i) in the extended algebra P

•

(R, F ) (see Remark 4.15). In this case, the
matrices A(−1,i) and B(0,i) are expressed uniformly: A(−1,i)

= iqM−1 ⋆Ma(i) , B(0,i)
= iqM−1 ⋆M⊺(Ma(i) ).
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emma 5.1. For 0 ≤ i ≤ n − 1 and m ≥ 0, the matrices A(m−1,i+1) and B(m+1,i+1) satisfy recurrent relations

A(m−1,i+1)
= qiMm ai − A(m,i)

−
µq2i−1(q − q−1)

1 + µq2i−1 B(m,i) , (5.4)

B(m+1,i+1)
=

(
µ−1q−iMm ai +

q − q−1

1 + µq2i−1 A(m,i)
− B(m,i)

)
g . (5.5)

roof. For i = 0 relations (5.4) and (5.5) by (5.3) simplify to

A(m−1,1)
= Mm , B(m+1,1)

= µ−1Mmg .

They follow from Eqs. (4.36), (4.41).
Let us check (5.4) for i > 0. For m ≥ 0, we calculate

A(m,i+1)
= (i + 1)qM (a(i+1)↑m σm...σ2σ1) = qiM (a(i)↑(m+1) σ−

m+1(q
−2i) σm...σ2σ1)

= qiMm+1 ai − A(m+1,i)
−
µq2i−1(q − q−1)

1 + µq2i−1 B(m+1,i) .

Here in the first line we used the second formula from (2.24) for a(i+1)↑m and applied the reduced cyclic property (4.25)
and the relations (2.31) to cancel one of two terms a(i)↑(m+1). In the second line we substituted the formula (2.22) for the
baxterized elements σ−

m+1(q
−2k) and applied the relation (4.10) to simplify the first term in the sum.

For A(−1,i+1), the relations (5.4) are verified similarly

A(−1,i+1)
= qi φ−1

(
TrR(2,3,...i+1)M2M3 . . .Mi+1ρR(a

(i)↑1σ−

1 (q−2i))
)

= qi φ−1(I) ai − iq φ−1(φ(Ma(i))) −
µq2i−1(q − q−1)

1 + µq2i−1 iq φ−1(ξ (Ma(i) ))

= qi I ai − A(0,i)
−
µq2i−1(q − q−1)

1 + µq2i−1 B(0,i) .

Here the definitions (3.54) and (3.55) of the endomorphisms φ and ξ were additionally taken into account.
To prove (5.5) for i > 0 we proceed in the same way

B(m+1,i+1)
= (i + 1)qM (a(i+1)↑m+1 κm+1σm...σ2σ1) = qiM (a(i)↑m+2 σ−

m+2(q
−2i) κm+1σm...σ2σ1)

= q−iMm ⋆M⊺(M)ai − iqM (a(i)↑m+2 σ−1
m+2κm+1σm...σ1) +

qi − q−i

1 + µq2i−1 Mm ⋆M⊺(M⊺(Ma(i) )).
(5.6)

Here in the second line we used another expression for the baxterized generators

σ εi (x) = x1 +
x − 1

q − q−1 σ
−1
i −

αεx(x − 1)
αεx + 1

κi ,

which follows by a substitution σi = σ−1
i + (q − q−1)(1 − κi) into the original expression (2.22).

Now, notice that

σ−1
3 κ2σ1 = σ−1

3 κ2κ1σ
−1
2

mod (4.25)
= σ−1

2 σ−1
3 κ2κ1 = κ3κ2κ1 , (5.7)

and, hence, in the case m ≥ 1, the second term in the last line of the equality (5.6) can be expressed as

− iqM (a(i)↑m+2 σ−1
m+2κm+1σm...σ1) = −iqMm−1 ⋆M⊺(M⊺(M⊺(Ma(i) ))) . (5.8)

pplying then the formulas (4.41) and (4.42) to the expressions (5.6) and (5.8), we complete verification of (5.5) for m ≥ 1.
For the case m = 0, the transformation of the second term in (5.6) should be slightly modified. Notice that by Eq. (5.7),

φ(Ma(i)↑2σ−1
2 κ1 ) = ξ (M⊺(M⊺(Ma(i) ))) .

Inverting the endomorphism φ in this formula and using the relation (4.42) and the definition of B(0,i) (5.2), we complete
he transformation of the second term in (5.6) and, again, get the equality (5.5). ■

.2. Newton and Wronski relations

heorem 5.2. Let M(R, F ) be a BMW type quantum matrix algebra. Assume that its two parameters q and µ satisfy the
onditions (2.26), which allow to introduce either the set {ai}ni=0 or, respectively, the set {si}ni=0 in the characteristic subalgebra
(R, F ) (see the definitions (4.20) and (4.21)). Then the following Newton recurrent formulas relating, respectively, the sets
ai, g}

n
i=0, or {si, g}

n
i=0 to the set of the power sums (see the definitions (4.11) and (4.12))

n−1∑
(−q)iai pn−i = (−1)n−1nq an + (−1)n

⌊n/2⌋∑(
µqn−2i

− q1−n+2i
)
an−2i g i (5.9)
i=0 i=1
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nd
n−1∑
i=0

q−isi pn−i = nq sn +

⌊n/2⌋∑
i=1

(
µq2i−n

+ qn−2i−1
)
sn−2i g i (5.10)

re fulfilled.
In the case, when both sets {ai, g}

n
i=0 and {si, g}

n
i=0 are consistently defined, they satisfy the Wronski relations

n∑
i=0

(−1)iai sn−i = δn,0 − δn,2 g , (5.11)

here δi,j is a Kronecker symbol.

emark 5.3. One can use the formulas (5.9) and (5.10) for an iterative definition of the elements ai and si for i ≥ 1, with
nitial conditions a0 = s0 = 1. In this case, the elements an and sn are well defined, assuming that iq ̸= 0 ∀ i = 2, 3, . . . n.
he additional restrictions on the parameter µ, which appeared in their initial definition (4.21), are artifacts of the use of
he antisymmetrizers and symmetrizers a(n), s(n) ∈ Wn(q).

Proof. We prove the relation (5.9). Denote

J (0) := 0, J (i) :=

i−1∑
j=0

(−q)jM i−jaj, i = 1, 2, . . . , n .

We are going to find an expression for the matrix J (n) in terms of the matrices A(0,i) and B(0,i), 1 ≤ i ≤ n.
As we shall see, there exist matrices H (i), which fulfill equations

(1 − q2)H (i) g =

(
J (i) + (−1)iA(0,i)

)
, i = 0, 1, . . . , n. (5.12)

o calculate the matrices H (i), we substitute repeatedly the relations (5.4) for the elements A(0,i), A(1,i−1), . . . , A(i−1,1) on
the right hand side of Eq. (5.12). It then transforms to

H (i) g = −µq−1
i−1∑
j=1

(−1)j
q2j−1

1 + µq2j−1 B
(i−j,j) , i = 0, 1, . . . , n. (5.13)

ow, using the expressions (5.5) for the elements B(i−j,j), one can check that matrices

H (0)
:= H (1)

:= 0, (5.14)

H (i)
:=

i−2∑
j=0

(−q)j

1 + µq2j+1

(
M i−j−2aj +

µqj(q − q−1)
1 + µq2j−1 A(i−j−2,j)

− µqjB(i−j−2,j)
)
, i = 2, . . . , n.

satisfy Eq. (5.13).
Next, consider a combination (H (i+2)

−H (i)g). Using Eq. (5.14) for the first term and Eq. (5.13) for the second term, we
calculate

H (i+2)
− H (i)g =

i−1∑
j=0

(−q)j

1 + µq2j+1

(
M i−jaj +

µqj(q − q−1)
1 + µq2j−1 (A(i−j,j)

− q−1B(i−j,j))
)

+
(−q)i

1 + µq2i+1

(
Iai +

µqi(q − q−1)
1 + µq2i−1 A(0,i)

− µqiB(0,i)
)
, ∀ i = 0, . . . , n.

To continue, we need the following auxiliary result:

Lemma 5.4. For 1 ≤ i ≤ n, one has

(−1)i−1A(0,i)

1 + µq2i−1 =

i−1∑
j=0

(−q)j

1 + µq2j+1

(
M i−jaj +

µqj(q − q−1)
1 + µq2j−1 (A(i−j,j)

− q−1B(i−j,j))
)
. (5.15)

Proof. Use the recursion (5.4) for A(i−j−1,j+1) to calculate

A(i−j−1,j+1)

1 + µq2j+1 +
A(i−j,j)

1 + µq2j−1 =
qj

1 + µq2j+1

(
M i−jaj +

µqj(q − q−1)
1 + µq2j−1 (A(i−j,j)

− q−1B(i−j,j))
)
.

Compose an alternating sum of the above relations for 0 ≤ j ≤ i − 1 and take into account the condition A(i,0)
= 0. ■
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Using the relation (5.15), we finish the calculation

H (i+2)
− H (i)g = (1 + µq2i+1)−1

(
(−q)iIai + (−1)i+1(A(0,i)

+ µq2iB(0,i))
)

∀ i = 0, . . . , n − 2. (5.16)

Now it is straightforward to get

H (i)
=

[i/2]∑
j=1

(−1)i−1

1 + µq2(i−2j)+1

(
A(0,i−2j)

+ µq2(i−2j)B(0,i−2j)
− qi−2jIai−2j

)
g j−1 , ∀ i = 0, . . . , n, (5.17)

where [k] denotes the integer part of the number k. Finally, substituting the expression (5.17) back into Eq. (5.12), we
obtain a formula

J (i) = (−1)i−1A(0,i)
+

[i/2]∑
j=1

(−1)i−1(1 − q2)
1 + µq2(i−2j)+1

(
A(0,i−2j)

+ µq2(i−2j)B(0,i−2j)
− qi−2jIai−2j

)
g j, (5.18)

which is valid for 0 ≤ i ≤ n.
Taking the R-trace of Eq. (5.18), we obtain the Newton relations (5.9). Here, in the calculation of the R-trace of B(0,i−2j),

we took into account the formulas (3.58).
The formulas (5.10) can be deduced from the relations (5.9) by a substitution q → −q−1, aj → sj. This is justified by

the existence of the BMW algebras homomorphism (2.16)ι : Wn(q, µ) → Wn(−q−1, µ) and a fact that one and the same
R-matrix R generates representations of both algebras Wn(q, µ) and Wn(−q−1, µ).

The relation (5.11) is proved by induction on n. The cases n = 0, 1, 2 are easily checked with the use of Eqs. (5.9) and
5.10). Then, making an induction assumption, we derive the Wronski relations for arbitrary n > 2. To this end, we take
difference of Eqs. (5.10) and (5.9)

n−1∑
i=0

(
q−isi pn−i − (−q)iai pn−i

)
= nq(sn + (−1)nan) + terms proportional to g

nd substitute for pn−i in the first/second term of the left hand side its expression from the Newton relation (5.9)/(5.10)
with n replaced by n− i). As a result, all terms, containing the power sums, cancel and, after rearranging the summations,
e get

nq

n∑
i=0

(−1)iaisn−i = −

[n/2]∑
i=1

(q1−n+2i
+ qn−1−2i)g i

n−2i∑
j=0

(−1)jajsn−2i−j .

y the induction assumption, the double sum on the right hand side of this relation vanishes identically: when n is odd,
he second sum vanishes for all values of the index i; when n is even, the second sum is different from zero only for two
alues of the index i, i = n/2 and i = n/2 − 1, and these two summands cancel. ■
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ppendix A. Primitivity of contractors

In this appendix we return to the consideration of the contractors in the BMW algebra. We shall establish useful
roperties of the contractors in Lemmas A.1, A.2 and then use it to demonstrate their primitivity (announced in
roposition 2.2 in Section 2.4) in Proposition A.3.
In this appendix we shall denote by W(σi, σi+1, . . . , σj), where i ≤ j, the BMW algebra with the generators

i, σi+1, . . . , σj (the values of the parameters q and µ are fixed).

emma A.1. Let α ∈ W(σ1, σ2, . . . , σj), where j ≥ n. Then there exists an element α̃ ∈ W(σn+1, σn+2, . . . , σj) such that

c(2n)α = c(2n)α̃ .

roof. Assume that α ∈ W(σ , σ , . . . , σ ) and α /∈ W(σ , . . . , σ ). If i > n then there is nothing to prove.
i i+1 j i+1 j
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For i ≤ n, we shall prove that there exists an element α′
∈ W(σi+1, . . . , σj) such that

c(2n)α = c(2n)α′ .

iven this statement, the proof follows by induction on i.
Due to the formula (4.15), we can express the element α as a linear combination of elements of the form xuix̄, where

, x̄ ∈ W(σi+1, . . . , σj) and ui is equal to 1, σi or κi. The terms with ui = 1 belong already to W(σi+1, . . . , σj) so we may
ssume that the element ui is non-trivial (that is, equals σi or κi).
We express now the element x as a linear combination of the elements of the form yui+1ȳ, where y, ȳ ∈ W(σi+2, . . . , σj)

nd ui+1 is equal to 1, σi+1 or κi+1. Each element ȳ commutes with the element ui thus the element α becomes a linear
ombination of elements of the form yui+1ui ¯̄xwith y ∈ W(σi+2, . . . , σj) and ¯̄x ∈ W(σi+1, . . . , σj). In the terms with ui+1 = 1
e move the element y rightwards through the element ui and continue the process for the terms with ui+1 equal to σi+1
r κi+1. After a finite number of steps the process terminates and we will have an expression for the element α as a linear
ombination of terms

ui+k . . . ui+1uiz , (A.1)

here the element z belongs to W(σi+1, . . . , σj) and each of the elements ui+s, s = 0, 1, . . . k, is equal to σi+s or κi+s.
Let us first analyze expressions (A.1) with i + k > n. The contractor c(2n) is divisible by the element κn from the right

ue to the relation (2.33). The element κn can move rightwards in the product c(2n)ui+k . . . ui+1uiz until it reaches the
lement un+1 and we arrive at the expression . . . κnun+1un . . .. For all four possibilities (σn+1σn, σn+1κn, κn+1σn or κn+1κn)
or the product un+1un, the expression κnun+1un can be rewritten, with the help of the relations (2.5)–(2.9), in a form
nvn+1, where vn+1 is a polynomial in σn+1. Moving the element κn back to the contractor c(2n), we obtain

c(2n)ui+k . . . ui+1uiz = c(2n)ui+k . . . un+2vn+1 · un−1 . . . uiz = c(2n)un−1 . . . uiz̄

ith some other z̄ ∈ W(σi+1, . . . , σj).
Thus we can rewrite the product of the contractor c(2n) by an expression (A.1) with i+ k > n as a product of c(2n) with

n expression of the same form (A.1) but with i + k < n.
Now using the relations (2.34) we remove the elements ui+k one by one to the right:

c(2n)ui+k . . . ui+1ui = c(2n)un−i−kui+k−1 . . . ui+1ui = c(2n)ui+k−1 . . . ui+1uiun−i−k .

t the end we will obtain for the product c(2n)α an expression of the form c(2n)α′, where the element α′ belongs to
(σi+1, . . . , σj), as stated. ■

emma A.2. Relations (2.5) and (2.9) involving the elements κi have the following analogues for the higher contractors:

c(2i) σ2i c(2i) = η−1µ−1c(2i) , (A.2)
c(2i) κ2i c(2i) = η−1c(2i) . (A.3)

roof. We prove the identity (A.3) by induction on i (the base of induction, i = 1, is the relation (2.9) itself):

c(2i+2)κ2i+2c(2i+2)
= c(2i)↑1κ2i+1κ1c(2i)↑1κ2i+2c(2i+2)

= c(2i)↑1κ2i+1κ1κ2i+2c(2i+2)

= c(2i)↑1κ2i+1κ2i+2κ2i+1c(2i+2)
= c(2i)↑1κ2i+1c(2i+2)

= η−1c(2i+2) .

n the first equality we used the definition (2.29); in the second equality we used the property (2.33); in the third equality
e moved the element κ1 rightwards to the contractor c(2i+2) and used the property (2.34); in the fourth equality we used
he relation (2.9); the fifth equality is the induction assumption.

The identity (A.2) is proved again by induction on i (the base of induction, i = 1, is now the relation (2.5)):

c(2i+2)σ2j+2c(2i+2)
= c(2i)↑1κ2i+1κ1c(2i)↑1σ2i+2c(2i+2)

= c(2i)↑1κ2i+1κ1σ2i+2c(2i+2)

= c(2i)↑1κ2i+1σ2i+2κ2i+1c(2i+2)
= µ−1c(2i)↑1κ2i+1c(2i+2)

= µ−1η−1c(2i+2) .

In the first equality we used the definition (2.29); in the second equality we used the property (2.33); in the third equality
we moved the element κ1 rightwards to the contractor c(2i+2) and used the property (2.34); in the fourth equality we used
the relation (2.5); the fifth equality is the identity (A.3).

The proof is finished. ■

Proposition A.3. The contractor c(2n) is a primitive idempotent in the algebra W2n(q, µ) and in the algebra W2n+1(q, µ).

Proof. To prove both statements about the primitivity, one has to check that a combination c(2n)α(2n+1)c(2n) is proportional
to the contractor c(2n) for an arbitrary element α(2n+1) from the algebra W2n+1(q, µ).

Let α be an arbitrary element from the algebra W(σ1, . . . , σj), where j ≥ 2n + 1. Due to Lemma A.1, we have
(2n) (2n)
c α = c β with β ∈ W(σn+1, . . . , σj).
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Let i (i > 0) be such that β ∈ W(σn+i, σn+i+1, . . . , σj) and β /∈ W(σn+i+1, . . . , σj). We shall demonstrate that there
xists an element β̄ ∈ W(σn+i+1, . . . , σj) for which

c(2n)βc(2n) = c(2n)β̄c(2n) .

iven this statement, the proof follows by induction on i.
The element β is a linear combination of elements of the form xun+iy, where the elements x and y belong to
(σn+i+1, . . . , σj) and ui is equal to σn+i or κn+i. We have

c(2n)xun+iyc(2n) = c(2n)xc(2i)↑n−iun+ic(2i)↑n−iyc(2n) ∼ c(2n)xc(2i)↑n−iyc(2n) = c(2n)xyc(2n) .

n the first equality we used the relations (2.33); the proportionality follows from the relations (A.3) and (A.2). Then we
sed again the relations (2.33) to absorb the contractor c(2i)↑n−i into c(2n).
The proof is finished. ■

ppendix B. Further properties of contractors

The relations, involving the elements κi, for the generators of the BMW algebras have analogues for the higher
ontractors. Two examples of such relations are proved in Lemma A.2. In Proposition B.1 we prove further analogues.
The identities in the lemma below have several versions obtained by an application of the automorphisms (2.16) and

2.15) and the antiautomorphism (2.19). For an identity of each type we present one version.

roposition B.1. Another analogue of the identity (2.9):

κ2jc(2j)κ2j = η−1κ2jc(2j−2)↑1 . (B.1)

More general than (A.2) analogues of the identity (2.5):

c(2j)σj+kσj+k+1 . . . σ2jc(2j) = (η−1µ−1)j+1−kc(2j) for 0 < k ≤ j (B.2)

nd

c(2j)σj−kσj−k+1 . . . σ2jc(2j) = η−j(µ−1)j−1−kc(2j) for 0 ≤ k < j . (B.3)

An analogue of the identities (2.8):

c(2j)c(2j)↑1 = η−jc(2j)σ−1
2j σ

−1
2j−1 . . . σ

−1
1 . (B.4)

An analogue of the identity (2.7):

σ ′

j σ
′

j−1 . . . σ
′

1c
(2j)↑1σ ′

1 . . . σ
′

j−1σ
′

j = σ ′

j+1σ
′

j+2 . . . σ
′

2jc
(2j)σ ′

2j . . . σ
′

j+2σ
′

j+1 . (B.5)

Another analogue of the identity (2.9):

c(2j)↑1c(2j)c(2j)↑1 = η−2jc(2j)↑1 . (B.6)

An analogue of the identity (2.35):

c(2j)τ (2k)↑j−k
= µkc(2j) for k ≤ j . (B.7)

where the elements τ (i) are defined in Eq. (2.14).

Proof. The identity (B.1) is proved by induction on j (the base of induction, j = 1, is the relation (2.9)):

κ2j+2c(2j+2)κ2j+2 = κ2j+2c(2j)↑1κ2j+1κ1c(2j)↑1κ2j+2 = c(2j)↑1κ2j+2κ2j+1κ2j+2κ1c(2j)↑1

= c(2j)↑1κ2j+2κ1c(2j)↑1 = η−1κ2j+2c(2j)↑1 .

n the first equality we used the definition (2.29); in the second equality we formed the combination κ2j+2κ2j+1κ2j+2; in
he third equality we used the relation (2.9); the fourth equality is the induction assumption.

The identity (B.2) is proved by induction on k down; the base of induction, when k = j, is the identity (A.2).

c(2j)σj+kσj+k+1 . . . σ2jc(2j) = c(2j)c(2k)↑j−kσj+kσj+k+1 . . . σ2jc(2k)↑j−kc(2j)

= c(2j)c(2k)↑j−kσj+kc(2k)↑j−kσj+k+1 . . . σ2jc(2j)

= η−1µ−1c(2j)c(2k)↑j−kσj+k+1 . . . σ2jc(2j)

−1 −1 (2j) (2j) −1 −1 j+1−k (2j)

= η µ c σj+k+1 . . . σ2jc = (η µ ) c .
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n the first equality we used the property (2.33); in the second equality we formed the combination c(2k)↑j−kσj+kc(2k)↑j−k;
in the third equality we used the identity (A.2); in the fourth equality we used again the property (2.33); the fifth equality
is the induction assumption.

The identity (B.3) is proved by induction on k. We have c(2j)σj = µc(2j) by the relation (2.35), so the identity (B.3) with
k = 0 follows from the identity (B.2) with k = 1.

Next, we have, for i < j:

c(2j)σ iσi+1 . . . σ2jc(2j) = c(2j)σ 2j−i(σi+1 . . . σ2j)c(2j)

= c(2j)(σi+1 . . . σ2j)σ 2j−i−1c
(2j)

= c(2j)(σi+1 . . . σ2j)σ i+1c
(2j) .

(B.8)

Here we used the property (2.34) and the defining relation (2.1).
The last expression in Eq. (B.8) can be rewritten in a form

c(2j)σ i+2(σi+1 . . . σ2j)c(2j) ,

again by the braid relation (2.1).
If i + 2 is still smaller than j, we continue in the same manner:

c(2j)σ i+2(σi+1 . . . σ2j)c(2j) = c(2j)σ 2j−i−2(σi+1 . . . σ2j)c(2j)

= c(2j)(σi+1 . . . σ2j)σ 2j−i−3c
(2j)

= c(2j)(σi+1 . . . σ2j)σ i+3c
(2j) (B.9)

and the last expression in Eq. (B.9) can again be rewritten in a form

c(2j)σ i+4(σi+1 . . . σ2j)c(2j) .

We repeat this process till the moment when the index of the underlined σ becomes equal to j. Then we use the property
2.35) and conclude

c(2j)σiσi+1 . . . σ2jc(2j) = µc(2j)σi+1 . . . σ2jc(2j) ,

hich, due to the induction assumption, finishes the proof of the identity (B.3).
The proof of the identity (B.4) consists of a calculation

c(2j)c(2j)↑1 = c(2j)σ1σ2 . . . σ2jc(2j)σ−1
2j . . . σ

−1
2 σ−1

1 = η−jc(2j)c(2j)σ−1
2j . . . σ

−1
2 σ−1

1 .

The first equality here is valid due to the defining relations (2.1); in the second equality we used the identity (B.3) with
k = j − 1.

Using a combination of the isomorphisms (2.15) and (2.17), we can rewrite the identity (B.4) in forms

c(2j)↑1c(2j) = η−jc(2j)↑1σ1σ2 . . . σ2j , (B.10)

c(2j)c(2j)↑1 = η−jc(2j)σ2j . . . σ2σ1 (B.11)

and

c(2j)↑1c(2j) = η−jc(2j)↑1σ−1
1 σ−1

2 . . . σ−1
2j . (B.12)

We now turn to the proof of the identity (B.5). First, we prove by induction on i the following identity:

σ ′

1(κ2κ3 . . . κj+1)σ ′

1σ
′

2 . . . σ
′

j = σ ′

2σ
′

3 . . . σ
′

j+1(κ1κ2 . . . κj)σ
′

j+1 . (B.13)

The base of induction (j = 1) is the identity (2.7). The induction step is

σ ′

1(κ2κ3 . . . κj+2)σ ′

1σ
′

2 . . . σ
′

j+1 = σ ′

1(κ2κ3 . . . κj+1)(σ ′

1σ
′

2 . . . σ
′

j )κj+2σ
′

j+1
= σ ′

2σ
′

3 . . . σ
′

j+1(κ1κ2 . . . κj)σ
′

j+1κj+2σ
′

j+1 = σ ′

2σ
′

3 . . . σ
′

j+1(κ1κ2 . . . κj)σ
′

j+2κj+1σ
′

j+2
= σ ′

2σ
′

3 . . . σ
′

j+2(κ1κ2 . . . κj+1)σ ′

j+2 ,

where we used the identity (2.7) in the third equality.
The image of the identity (B.13) under the antiautomorphism (2.19) reads

σ ′σ ′ . . . σ ′(κ κ . . . κ )σ ′
= σ ′ (κ κ . . . κ )σ ′ σ ′ . . . σ ′ . (B.14)
j j−1 1 j+1 j 2 1 j+1 j j−1 1 j+1 j 2
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The proof of the identity (B.5) is again by induction on j (the base of induction is the identity (2.7)):

(σ ′

j+1σ
′

j . . . σ
′

1)c
(2j+2)↑1(σ ′

1 . . . σ
′

j σ
′

j+1)

= η−1(σ ′

j+1 . . . σ
′

1)c
(2j)↑2(κ2j+2 . . . κj+3)(κ2 . . . κj+2)(σ ′

1 . . . σ
′

j+1)

= η−1(σ ′

j+1 . . . σ
′

2)c
(2j)↑2(κ2j+2 . . . κj+3)σ ′

1(κ2 . . . κj+2)(σ ′

1 . . . σ
′

j+1)

= η−1(σ ′

j+1 . . . σ
′

2)c
(2j)↑2(κ2j+2 . . . κj+3)(σ ′

2 . . . σ
′

j+2)(κ1 . . . κj+1)σ ′

j+2

= η−1(σ ′

j+1 . . . σ
′

2)c
(2j)↑2(σ ′

2 . . . σ
′

j+1)(κ2j+2 . . . κj+3)σ ′

j+2(κ1 . . . κj+1)σ ′

j+2

= η−1(σ ′

j+2 . . . σ
′

2j+1)c
(2j)↑1(σ ′

2j+1 . . . σ
′

j+2)(κ2j+2 . . . κj+3)σ ′

j+2(κ1 . . . κj+1)σ ′

j+2

= η−1(σ ′

j+2 . . . σ
′

2j+1)c
(2j)↑1σ ′

2j+2(κ2j+1 . . . κj+2)(σ ′

2j+2 . . . σ
′

j+3)(κ1 . . . κj+1)σ ′

j+2

= η−1(σ ′

j+2 . . . σ
′

2j+2)c
(2j)↑1(κ2j+1 . . . κj+2)(κ1 . . . κj+1)(σ ′

2j+2 . . . σ
′

j+2)

= (σ ′

j+2 . . . σ
′

2j+2)c
(2j+2)σ ′

2j+2 . . . σ
′

j+2 .

Here in the first equality we used the expression (2.37) for the contractor; in the second equality we moved the element σ ′

1
rightwards to the string (κ2 . . . κj+2); in the third equality we transformed the underlined expression using the identity
(B.13); in the fourth equality we moved the string (σ ′

2 . . . σ
′

j+1) leftwards to the contractor c(2j)↑2; in the fifth equality
we used the induction assumption to transform the underlined expression; in the sixth equality we transformed the
underlined expression using the shift ↑j+1 of the identity (B.14); in the seventh equality we rearranged terms and then
used again the expression (2.37) for the contractor in the eighth equality.

The following calculation establishes the identity (B.6):

c(2j)↑1c(2j)c(2j)↑1 = η−jc(2j)↑1c(2j)σ2j . . . σ2σ1 = η−2jc(2j)↑1 .

Here in the first equality we used the relation (B.11) while in the second one we used the relation (B.12).
To prove the identity (B.7), it is enough to prove its particular case

c(2j)τ (2j) = µjc(2j) (B.15)

since the element c(2j) is divisible by the element c(2j−2k)↑k due to the relations (2.33).
We shall need two identities. The first one is

c(2j+2)σ1σ2 . . . σ2j = c(2j+2)c(2j)↑1σ1σ2 . . . σ2j = ηjc(2j+2)c(2j) . (B.16)

In the first equality we used the relations (2.33); in the second equality we used the relations (B.10) and again (2.33).
Here is the second identity:

c(2j+2)c(2j)σ2j+1 = c(2j+2)σ1c(2j) = c(2j+2)σ2j−1c(2j) = c(2j+2)σ3c(2j)

= · · · = µc(2j+2)c(2j) . (B.17)

In the first equality we moved the element σ2j+1 leftwards through the contractor c(2j) and then we replaced the
combination c(2j+2)σ2j+1 by c(2j+2)σ1 due to the relation (2.34); repeatedly using the relation (2.34), we replaced the
combination σ1c(2j) by σ2j−1c(2j), then c(2j+2)σ2j−1 by c(2j+2)σ3 etc. The index of the element σ jumps by 2; at one moment
it becomes equal to either j or j + 1 and we use then the relation (2.35).

We now prove the relation (B.15) by induction on j (the base of induction, j = 1, is the relation (2.4)):

c(2j+2)τ (2j+2)
= c(2j+2)(σ1 . . . σ2j+1)τ (2j+1)

= ηjc(2j+2)c(2j)σ2j+1τ
(2j+1)

= µηjc(2j+2)c(2j)τ (2j+1)
= µηjc(2j+2)c(2j)τ (2j)(σ2j . . . σ1)

= µj+1ηjc(2j+2)c(2j)(σ2j . . . σ1) = µj+1η2jc(2j+2)c(2j)c(2j)↑1

= µj+1η2jc(2j+2)c(2j)↑1c(2j)c(2j)↑1 = µj+1c(2j+2) .

n the first equality we used the iterative definition of the elements τ (i) (it is different but equivalent to the one given in
q. (2.15)); in the second equality we used the relation (B.16); in the third equality we used the relation (B.17); in the
ourth equality we used again the iterative definition of the elements τ (i); the fifth equality is the induction assumption;
n the sixth equality we used the relation (B.11); in the seventh equality we used the relations (2.33); finally, in the eighth
quality we used the relation (B.6).
The proof is finished. ■

emark B.2. We have also

c(2j+2)τ (2j+1)
= c(2j+2)(σ . . . σ )τ (2j) = ηjc(2j+2)c(2j)τ (2j) = (ηµ)jc(2j+2)c(2j) .
1 2j
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n the first equality we used the iterative definition of the elements τ (i); in the second equality we used the relation (B.16);
n the third equality we used the identity (B.7).

ppendix C. On twists in quasitriangular Hopf algebras

Here we shall discuss universal (i.e., quasi-triangular Hopf algebraic) counterparts of relations from Sections 3.2, 3.3,
specially from Proposition 3.6: we shall see, in item 8 of the appendix, that these relations have a quite transparent
eaning, they reflect the properties of the twisted universal R-matrix.
We do not give an introduction to the theory of quasitriangular Hopf algebras assuming that the reader has some basic

nowledge on the subject (see, e.g., [4], the chapter 4).

.1. Generalities

. Let A be a Hopf algebra; m,∆, ϵ and S denote the multiplication, comultiplication, counit and antipode, respectively.
Assume that A is quasitriangular with a universal R-matrix R = a⊗b (this is a symbolic notation, instead of

∑
i ai⊗bi).

ne has (S ⊗ S)R = R. The universal R-matrix R is invertible, its inverse is related to R by formulas R−1
= S(a) ⊗ b

r (id ⊗ S)(R−1) = R.
For elements in A⊗A, the ‘skew’ product ⊙ is defined as the product in Aop

⊗A, where Aop denotes the algebra with
he opposite multiplication. In other words, the skew product of two elements, x⊗y and x̃⊗ ỹ is (x⊗y)⊙(x̃⊗ ỹ) = x̃x⊗yỹ.
or a skew invertible element X ∈ A ⊗ A, we shall denote its skew inverse by ψX . The universal R-matrix R has a skew
nverse, ψR = a ⊗ S(b). The element ψR is invertible, (ψR)−1

= a ⊗ S2(b). The element R−1 is skew invertible as well,
ts skew inverse is ψ(R−1) = S2(a) ⊗ b. All these formulas are present in [7]. We shall see below that there are similar
ormulas for the twisting element F . However, the properties of the twisting element F and of the universal R-matrix R
re different, for instance, the square of the antipode is given by S2(x) = uR x (uR )−1, where uR = S(b)a, but there is no
nalogue of such formula for F . Because of this difference, we felt obliged to give some proofs of the relations for F .
Let ρ be a representation of the algebra A in a vector space V . For an element X ∈ A⊗A, denote by ρ̂(X ) ∈ End(V⊗2)

n operator ρ̂(X ) = P · (ρ ⊗ ρ)(X ) (recall that P is the permutation operator). The skew product ⊙ translates into the
ollowing product ⊙̂ for elements of End(V⊗2):

(X⊙̂Y )13 := Tr (2)(X12Y23) . (C.1)

n other words, if X ⊙Y = Z then ρ̂(X ) ⊙̂ ρ̂(Y) = ρ̂(Z). For an operator X ∈ End(V⊗2), its skew inverse ΨX , in the sense
xplained in Section 3.1, is precisely the inverse with respect to the product ⊙̂.

. The following lemma is well known (see, e.g., [4], the chapter 4, and references therein).

emma C.1. Consider an invertible element F = α ⊗ β ∈ A ⊗ A (we use the symbolic notation, α ⊗ β =
∑

i αi ⊗ βi, like
or the universal R-matrix) and let F−1

= γ ⊗ δ. Assume that the element F satisfies

F12 (∆⊗ id)(F) = F23 (id ⊗∆)(F) . (C.2)

ssume also that

ϵ(α)β = α ϵ(β) = 1 . (C.3)

hen an element vF = α S(β) is invertible, its inverse is

(vF )−1
= S(γ ) δ . (C.4)

ne also has

S(α) (vF )−1 β = 1 and γ vF S(δ) = 1 . (C.5)

wisting the coproduct by the element F ,

∆F (a) = F ∆(a) F−1 , (C.6)

ne obtains another quasitriangular structure on A with

RF = F21 R F−1 (C.7)

nd

SF (a) = vF S(a) (vF )−1 (C.8)

the counit does not change).

An element F , satisfying conditions (C.2) and (C.3) is called twisting element. We shall denote by AF the resulting
twisted’ quasitriangular Hopf algebra.
30
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emark C.2. On the representation level, the formula (C.7) transforms (compare with Eq. (3.23)) into ρ̂(RF ) =

ˆ (F)21ρ̂(R)21ρ̂(F)−1
21 . Below, when we talk about matrix counterparts of universal formulas, one should keep in mind

his difference in conventions.

. Assume, in addition to Eq. (C.2), that

(∆⊗ id) (F) = F13 F23 (C.9)

nd

(id ⊗∆) (F) = F13 F12 . (C.10)

Now the conditions (C.3) follow from the relations (C.9) and (C.10) and the invertibility of the twisting element F:
pplying ϵ ⊗ id ⊗ id to the relation (C.9), we find (ϵ ⊗ id)(F) = 1; applying id ⊗ id ⊗ ϵ to the relation (C.10), we find
id ⊗ ϵ)(F) = 1.

Since ∆op(x)R = R∆(x) for any element x ∈ A (where ∆op is the opposite comultiplication), it follows from the
elation (C.9) that

R12 F13 F23 = F23 F13 R12 . (C.11)

Similarly, the relation (C.10) implies

R23 F13 F12 = F12 F13 R23 . (C.12)

When both relations (C.9) and (C.10) are satisfied, the relation (C.2) is equivalent to the Yang–Baxter equation for the
wisting element F:

F12 F13 F23 = F23 F13 F12 . (C.13)

emark C.3. One also has

(∆F ⊗ id)(F21) = F31 F32 and (id ⊗∆F )(F21) = F31 F21 .

herefore, one can twist ∆F again, now by the element F21.
On the matrix level, this corresponds to the second conjugation of ρ̂(R) by ρ̂(F),

ρ̂
(
(RF )F21

)
= ρ̂(F)2 ρ̂(R) ρ̂(F)−2 .

emark C.4. The element F−1
21 satisfies the conditions (C.2), (C.9) and (C.10) if the element F does. Thus, one can twist

he coproduct ∆ by the element F−1
21 as well.

. The conditions (C.3), (C.9), (C.10) imply the invertibility and skew-invertibility of the element F . The formulas for
ts inverse and skew inverse are similar to the corresponding formulas for the universal R-matrix R (in particular, we
eproduce the standard formulas for R since we can take F = R).

emma C.5. Assume that the conditions (C.3) and (C.9) are satisfied. Then the element F is invertible, its inverse is

F−1
= S(α) ⊗ β . (C.14)

ssume that the conditions (C.3) and (C.10) are satisfied. Then the element F is skew invertible, with the skew inverse

ψF = α ⊗ S(β) . (C.15)

ssume that the conditions (C.3), (C.9) and (C.10) are satisfied. Then

(S ⊗ S)(F) = F . (C.16)

oreover, the element ψF is invertible, its inverse is

(ψF )−1
= α ⊗ S2(β) (C.17)

nd the element F−1 is skew-invertible, its skew inverse reads

ψ(F−1) = S2(α) ⊗ β . (C.18)

roof. The calculations are similar to those, from textbooks, for the universal R-matrix. We include this proof for a
ompleteness only.
Applications of m12 ◦ S1 and m12 ◦ S2 to the relation (C.9) imply the formula (C.14) (here m12 is the multiplication of

he first and the second tensor arguments; S1 is an operation of taking the antipode of the first tensor argument, etc.).
Applications of m23 ◦ S2 and m23 ◦ S3 to the relation (C.10) establish the formula (C.15).
Given the formula (C.15), the statement, that the element ψF is a left skew inverse of the element F , reads in

components:
′ ′
αα ⊗ S(β )β = 1 , (C.19)
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here primes are used to distinguish different summations terms, the expression αα′
⊗S(β ′)β stands for

∑
i,j αiαj⊗S(βj)βi.

pplying S1 to this equation, we find (S(α′) ⊗ S(β ′)) · (S(α) ⊗ β) = 1 which means that the element S(α′) ⊗ S(β ′) is the
eft inverse of the element S(α) ⊗ β . However, the latter element is, by the formula (C.14), the inverse of F . Therefore,
he relation (C.16) follows.

Applying S2 to the equality (C.19), we find that the element α ⊗ S2(β) is the right inverse of the element ψF .
Applying S21 to the equality (C.19) and using the relation (C.16), we find that S2(α) ⊗ β is a right skew inverse of the

lement F−1.
We shall not repeat details for the left inverse of the element ψF and the left skew inverse of the element F−1,

alculations are analogous. ■

emark C.6. There is a further generalization of the formulas from Lemma C.5. Start with the element F and alternate
perations ‘take an inverse’ and ‘take a skew inverse’. Then the next operation is always possible, the result is always
nvertible and skew invertible. One arrives, after n steps, at Sn(α) ⊗ β if the first operation was ‘take an inverse’; if the
irst operation was ‘take a skew inverse’ then one arrives at α ⊗ Sn(β) (see [7], section 8).

From now on, we shall assume that the twisting element F is invertible and satisfies the conditions (C.2), (C.9) and (C.10).

.2. Counterparts of matrix relations

. We turn now to the Hopf algebraic meaning of relations from Sections 3.2, 3.3.
The square of the antipode in an almost cocommutative Hopf algebra, with a universal R-matrix R = a ⊗ b, satisfies

he property S2(x) = uRx(uR )−1, where uR = S(b)a, for any element x ∈ A. In a matrix representation of an algebra
, the element uR maps to the matrix Dρ̂(R) (and the element S(uR ) maps to the matrix Cρ̂(R)), so an identity (which
ollows from the relation (C.16))

(1 ⊗ uR ) F−1 (1 ⊗ (uR )−1) ≡ (1 ⊗ uR )(S(α) ⊗ β)(1 ⊗ uR )−1
= S(α) ⊗ S2(β)

= α ⊗ S(β) ≡ ψF

ecomes one of the relations from Lemma 3.3. In a similar manner, one can interpret other relations from Lemma 3.3.
Such an interpretation is not, however, unique. For instance, applying m12 ◦ S2 to the relation (C.13) and using the

ormula (C.14), one finds

vF ⊗ 1 = α′vF S(α) ⊗ ββ ′ ,

hich, after an application of S2, becomes, due to the formulas (C.15) and (C.16),

vF ⊗ 1 = ψF (vF ⊗ 1) F . (C.20)

imilarly, applying (id ⊗ S) ◦ m23 ◦ τ23 ◦ S3 (where τ is the flip, τ (x ⊗ y) = y ⊗ x) to Eq. (C.13) and using Eqs. (C.16) and
C.17), one finds

1 ⊗ vF = αα′
⊗ S(β ′)vF S2(β) ,

hich, after an application of S1, becomes, with the help of Eq. (C.16),

1 ⊗ vF = F (1 ⊗ vF ) ψF . (C.21)

n the matrix picture, the relations (C.20) and (C.21) are also equivalent to particular cases of the relations from Lemma 3.3
but this time we did not use the fact that the square of the antipode is given by the conjugation by the element uR .
Below we shall make use of another version of the formulas (C.20) and (C.21).
Writing the formulas (C.20) and (C.21) as (vF ⊗ 1)F−1

= ψF (vF ⊗ 1) and F−1(1 ⊗ vF ) = (1 ⊗ vF )ψF , respectively,
nd using the expressions for ψF , (ψF )−1 and F−1 from Lemma C.5, we find, in components:

vF S(α) ⊗ β = αvF ⊗ S(β) (C.22)

nd, respectively,

S(α) ⊗ βvF = α ⊗ vF S(β) . (C.23)

Applying S1 or S2 to Eqs. (C.22) and (C.23), we obtain corresponding formulas with vF replaced by S(vF ). These
ormulas, together with Eqs. (C.22) and (C.23), imply

F · (vF S(vF ) ⊗ 1) = (vF S(vF ) ⊗ 1) · F ,

F · (1 ⊗ vF S(vF )) = (1 ⊗ vF S(vF )) · F .
(C.24)

It follows, from a compatibility of the relations (C.20) and (C.21) (express the element ψF in terms of F and vF in
wo ways), that

F12 · (vF ⊗ vF ) = (vF ⊗ vF ) · F12 . (C.25)

The relations (C.24) and (C.25) are universal analogues of the matrix equalities (3.19) and (3.18) (for certain choices of
he compatible pairs of the R-matrices) from Corollary 3.4.
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. We need some more information about the element vF . The inverse to the element vF is given by the formula (C.4);
t follows from Lemma C.5 that (vF )−1

= S2(α)β .
By Eq. (C.16), one has S(vF ) = S(β)α and, then, S2(vF ) = vF . Since S2(x) = uRx(uR )−1 for any element x ∈ A, we

onclude that the element uR commutes with the element vF and, similarly, with the element S(vF ).
Making the flip in the relations (C.22) and (C.23), multiplying them out and comparing, we find that the elements vF

nd S(vF ) commute.

emark C.7. In fact, more is true. Applying id ⊗ S j to the relation (C.22), we obtain vFα ⊗ S j−1(β) = αvF ⊗ S j+1(β) (we
sed the relation (C.16) to rearrange the powers of the antipode). In a similar way, applying S−j

⊗ id to the relation (C.23),
e obtain α⊗ S j−1(β)vF = α⊗ vF S j+1(β). Multiplying out and comparing the right hand sides, we find that the element

F commutes with the elements Sk(α)β ∀ k ∈ Z.
The same procedure, applied to the flipped versions of the relations (C.22) and (C.23) shows that the element vF

ommutes with the elements Sk(β)α ∀ k ∈ Z.
Applying the antipode to these commutativity relations, we find that the element S(vF ) commutes with the elements

k(α)β and Sk(β)α ∀ k ∈ Z as well.

. We shall now establish a Hopf algebraic counterpart of the relation (3.24).
There is a closed formula for the coproduct of the element vF , again similar to the standard formula for the coproduct

f the element uR .

emma C.8. One has

∆(vF ) = F−1
12 F−1

21 · (vF ⊗ vF ) . (C.26)

roof. Together, Eqs. (C.9) and (C.10) imply

(∆⊗∆)(F) = F14F13F24F23 .

herefore, the coproduct of vF can be written in a form

∆(vF ) = α(1)S(β(2)) ⊗ α(2)S(β(1)) = αα′S(ββ ′′) ⊗ α′′vF S(β ′) (C.27)

we use the Sweedler notation for the coproduct, ∆(x) = x(1) ⊗ x(2) for an element x ∈ A).
Using the relation (C.23), we continue to rewrite the expression (C.27):

∆(vF ) = αS(α′)S(ββ ′′) ⊗ α′′β ′vF . (C.28)

he relation (C.13), in a form F13F23F−1
12 = F−1

12 F23F13, reads, in components,

αS(α′) ⊗ α′′β ′
⊗ ββ ′′

= S(α)α′′
⊗ βα′

⊗ β ′β ′′ . (C.29)

sing Eq. (C.29), we transform the right hand side of Eq. (C.28) to a form

∆(vF ) = S(α)α′′S(β ′′)S(β ′) ⊗ βα′vF = S(α)vF S(β ′) ⊗ βα′vF .

sing again Eq. (C.23), we obtain

∆(vF ) = S(α)β ′vF ⊗ βS(α′)vF ,

hich, by the formula (C.14), is a component form of the relation (C.26). ■

Applying the flip to the relation (C.26), we find ∆op(vF ) = F−1
21 F−1

12 · (vF ⊗ vF ). Since ∆op(vF ) R = R ∆(vF ), we
onclude

(RF )F21 (vF ⊗ vF ) = (vF ⊗ vF ) R . (C.30)

he translation of the equality (C.30) into the matrix language is equivalent to the relation (3.24) (see the Remarks C.2
nd C.3).

emark C.9. It follows from the relation (C.26) that

∆(S(vF )) = (S(vF ) ⊗ S(vF )) · F−1
12 F−1

21 . (C.31)

he relation (C.25), together with the relations (C.26) and (C.31), implies that an element

ϕ := vF S(vF )−1 (C.32)

s group-like, ∆(ϕ) = ϕ ⊗ ϕ. Therefore, S(ϕ) = ϕ−1
= S(vF )(vF )−1 but S(ϕ) = S(vF S(vF )−1) = (vF )−1S(vF ), which

hows again that vF commutes with S(vF ).
33
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. The twisted Hopf algebra AF is quasitriangular, so we can write the usual identities for its universal R-matrix
F = F21RF−1. The relations from Proposition 3.6 are the matrix counterparts of some of these identities.
For the twisted Hopf algebra AF , one finds, with the help of the first relation in Eq. (C.5), that u(RF ) = ϕ uR , where

he element ϕ is defined by the formula (C.32) (on the matrix level, this becomes one of the relations (3.29)). In particular,

(SF )2 (x) = ϕ S2(x) ϕ−1 . (C.33)

(i) The relation (3.26) is a consequence of, for example, the identity

(id ⊗ SF )((RF )−1) = RF . (C.34)

e have

RF = (id ⊗ SF )((RF )−1) = (id ⊗ SF )(FR−1F−1
21 ) = (id ⊗ SF )(αS(a)β ′

⊗ βbS(α′))

= αS(a)β ′
⊗ vF S2(α′)S(b)S(β)(vF )−1

= αaβ ′
⊗ vF S2(α′)bS(β)(vF )−1 .

(C.35)

Here we used Eq. (C.8) and the identities from Lemma C.5 for F and R. Applying S2 ⊗ S to Eq. (C.22), we find

vF S2(α) ⊗ β = αvF ⊗ β , (C.36)

since S2(vF ) = vF . Using the relation (C.36) and the relation (C.23) in a form S(α) ⊗ (vF )−1β = α ⊗ S(β)(vF )−1, we
ewrite the last expression in Eq. (C.35):

RF = S(α)aβ ′
⊗ α′vF b(vF )−1β

or

RF = F21 ⊙

(
(1 ⊗ vF )R(1 ⊗ vF )−1

)
⊙ F−1 , (C.37)

hich, on the matrix level, is equivalent to the relation (3.26).
(ii) Next,

ψ(RF ) = (id ⊗ SF )(RF ) = (id ⊗ SF )(F21RF−1) = (id ⊗ SF )(βaS(α′) ⊗ αbβ ′)
= βaS(α′) ⊗ vF S(β ′)S(b)S(α)(vF )−1

= βaα′
⊗ vFβ

′S(b)S(α)(vF )−1

or

(1 ⊗ vF )−1 ψ(RF ) (1 ⊗ vF ) = F ⊙ ψR ⊙ F−1
21 , (C.38)

which, on the matrix level, is equivalent to the relation (3.27).
(iii) To obtain another formula for ψ(RF ), we start with the identity ψ(RF ) = (id ⊗ (SF )2)((RF )−1), which is a direct

consequence of the identities from Lemma C.5:

ψ(RF ) = (id ⊗ (SF )2)(FR−1F−1
21 ) = (id ⊗ (SF )2)

(
αS(a)β ′

⊗ βbS(α′)
)

= αS(a)β ′
⊗ ϕS2(β)S2(b)S3(α′)ϕ−1

= αaβ ′
⊗ ϕS2(β)S(b)S3(α′)ϕ−1

= αaβ ′
⊗ S(vF )−1βvF S(b)(vF )−1S(α′)S(vF ) .

(C.39)

Here we used the identities from Lemma C.5, relations α ⊗ vF S2(β) = α ⊗ βvF and S3(α)(vF )−1
⊗ β = (vF )−1S(α) ⊗ β ,

which follow from Eqs. (C.22) and (C.23), and the formula (C.33) for the square of the twisted antipode.
Eq. (C.39) can be rewritten as(

1 ⊗ S(vF )
)
ψ(RF )

(
1 ⊗ S(vF )−1)

= F (1 ⊗ vF ) ψR (1 ⊗ (vF )−1) F−1
21 , (C.40)

which, in the matrix picture, is equivalent to Eq. (3.28).
(iv) The property (SF ⊗ SF )(RF ) = RF leads to

(vF ⊗ vF ) F−1 R F21 = F21 R F−1 (vF ⊗ vF ) . (C.41)

Since the twisting element F commutes with vF ⊗ vF , the formula (C.41) is another manifestation of the relation (3.24).

Remark C.10. We conclude this appendix with several more properties of the group-like element ϕ defined in Eq. (C.32).
We have

R · (ϕ ⊗ ϕ) = (ϕ ⊗ ϕ) · R . (C.42)

To see this, apply S ⊗ S to the relation (C.30) and then compare with the same relation (C.30).
The matrix equivalent of the relation (C.42) is the relation (3.25).
Recall that a quasitriangular Hopf algebra A is called a ribbon Hopf algebra if it contains a ribbon element r , that is, a

central element such that r2 = uRS(uR ) and ∆(r) = R−1
12 R

−1
21 · (r ⊗ r) (see [46], or [4], the chapter 4). The twisted algebra

AF is a ribbon Hopf algebra if the algebra A is; for the ribbon element of the algebra AF , one can choose rF = ϕr .
34
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