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1. Introduction
Nonlinear nonlocal Whitham equation

8V 3V_ a r / / /
W_i_va_&/de(x—x)V(x,t) (1)

represents a wide class of equations which are of great interest for
nonlinear wave theory. It combines the typical hydrodynamic non-
linearity and an integral term descriptive of dispersion of the linear
theory. The dispersion relation for linearized Eq. (1) is defined by
the Fourier transform of the kernel R(x)

w =kR(k), R(k)= /ﬁ dxR(x)e*x. (2)

A number of special cases of Eq. (1) were examined in de-
tail. Among them are the Benjamin-Ono [1] and Joseph [2] equa-
tions describing internal waves in stratified fluids of infinite and
finite depth. These equations appeared to be integrable by inverse
scattering technique and the behavior of their solutions has been
studied well. The Benjamin-Ono and Joseph equations are how-
ever the only representatives of the Whitham equations possessing
this property [3]. Another widely known equations of that class are
studied not so exhaustively although the literature on the subject
is quite extensive [4]. A list of well-studied equations involves, in
particular, the Leibovitz one for the waves in rotating fluid 5], the
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Klimontovich equation for magnetohydrodynamic waves in non-
isothermal collision-less plasma [6] and equations for shallow wa-
ter waves [7].

More or less comprehensive review of recent works cannot be
presented within the limits of a short communication. It should
be however noted that the interest in the Whitham equations is
still great since the use of relatively simple equations of the form
Eq. (1) turns out to be very fruitful for various physical applica-
tions. New representatives of that equation have recently been pro-
posed for capillary [8] and hydroelastic [9] waves, shallow water
waves with vorticity [10], acoustic waves in a medium with strong
spatial dispersion [11]. A great number of works is devoted to the
longstanding problem of formation and stability of traveling waves
due the interplay between nonlinear and dispersive effects (see, for
example, [12] and references herein)

The characteristic feature of Whitham equations is the existence
of solitons. The velocity spectra of solitons can be bounded or not
but for all known cases the spectra are continuous. This raises the
question of whether or not the continuous spectra are the com-
mon property of solitons of Whitham equations? Here we examine
the particular case of Whitham equation with resonance dispersion
with special emphasis on the spectra of solitons.

We consider solitary wave solutions of Whitham equation with

1
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That equation has been proposed for the waves in compressible
fluid in thin elastic tube with slip boundary condition on the tube
wall. Such model is justified in the case of liophobic surface of the
wall for liquids or extremely small accommodation coefficient for

R(k) =
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gases. Dimensionless parameter in Eq. (3) is equal

- E,h?
©12(1 - v2)p2accd’

where Ey, ps, v are Young modulus, density and Poisson ratio of the
tube material, h and a are thickness and radius of the tube, cy is
sound speed of the fluid [13]. In addition, with small D? including
D2 = 0 that equation is applicable to the specific case of waves in
a medium with internal oscillators, that is with an oscillatory re-
sponse of internal degrees of freedom to the disturbance of pres-
sure [14].

It should be noted that the form of the integral term in
Eq. (1) depends on the poles location of Fourier transform of the
kernel. While D? < 1/4 the poles are located in the real axis so
that the causative-type dispersion takes place, R(x < 0) = 0. Other-
wise, the poles are located symmetrically with respect to Im(k) =
0,R(—x) = R(x), and dispersion therefore takes a spatial form. The
spatial dispersion occurs when the sound velocity of a fluid is
greater than the minimum phase velocity of bending oscillations
of the shell. This is caused by the origination of radiation physi-
cally similar to Cherenkov one.

The consideration below is restricted to the specific properties
of solitary wave solutions of Eqs. (1)-(3). It is shown that the equa-
tion possesses exponentially localized smooth and singularity in-
volving solutions, and solutions with oscillating asymptotics. The
spectrum of velocities of exponentially localized solutions appears
therewith to be a discrete one. Asymptotic “quantization rules”
suitable for D? « 1 are obtained.

DZ

2. Localized traveling waves

Hereafter we consider traveling wave solutions V (y) depending
on the single variable y = x + At. For such solutions the left hand
side of Eq. (1) is the derivative in y of the function S= AV + %Vz.
The inversion of integral operator in Eq. (1), with the account of
the form Eq. (3) for R, then gives

S—AV 4 Ly (4)

Real solutions V(S) exist for A2+ 25> 0, and there function
V(S) is two-valued, V = —A £+/A2 +2S. Eq. (4) with boundary
conditions of vanishing of function V(y) and all its derivatives as
y — 4oo presents a nonlinear eigenvalue problem for parameter A.
The first integral of Eq. (4) has the form

ds s [d2S\° s\’ 2
2 et - bttt 2 _ 2 < _
D |:2dy a7 (dyZ) j|+(dy> +5° -V (A+3V>_E.

(5)
Eq. (4) can be transformed to a 2 degrees of freedom re-
versible Hamiltonian system with equilibria whose homoclinic or-
bits just correspond to solitons of the equation. To show this
we introduce new variables Q; =S, P; = —dS/dy — Dd3S/dy3,Q; =
dS/dy, P, = Dd2S/dy?. Then Eq. (4) is reduced to the Hamiltonian
system

9§=@ﬁ%=@—ng

dy
dQ dp,
DW_Pz, D@_—QZ—PL (6)

with the Hamiltonian H = QoP; — Q7/2 + (QF + P3)/2 + [V (Q1)dQ;
and symplectic form Q = dP; A dQ; + DdP; A dQ,. For D? small the
related Hamiltonian system is slow-fast with one slow and one fast
degrees of freedom [15]. A detailed study of this system will be
performed elsewhere.
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Fig. 1. Slow dynamics: D? = 0.

Consider singular limit D? = 0. This corresponds to the slow
subsystem of the above Hamiltonian system. The set of integral
curves of Eq. (5) for 0 <A <1, where localized solutions exist,
has the form shown by Fig. 1 and as is easily seen, there exist
two types of localized solutions. The first one is presented by the
smooth loop in the region V > 0 whereas the second corresponds
to the discontinuous loop in the region V < 0. For brevity sake
we will call them as solitons and cavitons, respectively. The sin-
gularity in the caviton profile is described by the relations V + A ~
VIVLS+22/2 ~ yl.

The amplitudes of solitons and cavitons are defined by the re-
lation

Ay = %(2—3,\&%\/4—% (7)

As would be expected, in the limit A — 1 the solitons are turned
to the well known KdV-ones

B 3(1-1) 8)
cosh? (VI=%y/2) ’
In the opposite limit A — 0 soliton acquires simple finite form
V:%cos2 % ly| < 2. (9)

We now turn to the general case of Eq. (4) with D? > 0. Quali-
tative inspection shows that the localized solutions can exist in the
following cases:

1. D?>>0,1€(0,1)

2
2. O<D2<%,ke(—%,0)

2
3.D0%2> 1 ke (~00,0)U (%#’O)

In the former case, for the related Hamiltonian system the ori-
gin is the saddle-center equilibrium (its eigenvalues are a pair of
pure imaginary and a pair real nonzero ones) and the localized so-
lutions, if any, share an exponential asymptotics as |y| — oo; in the
other cases asymptotics possesses an oscillating character, since
the related equilibrium is a saddle-focus (with a quadruple of com-
plex eigenvalues). The integral curves of Eq. (4) pertain to 3D phase
space determined by the first integral Eq. (5).

Hereafter we concentrate upon the exponentially localized so-
lutions. With D2 =0, € (0,1) the homoclinic orbits exist for
any value of A; the velocity spectra of solitons and cavitons are
bounded but continuous. With D? > 0 the situation changes: the
velocity spectra should generally be discrete due to the splitting
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Fig. 2. Nodal lines in the plane of symmetry dV/dy =0, E = 0.

of the separatrices. Indeed, in three-dimensional space defined
by the equality E =0 the existence of a separtrix loop for the
saddle-center equilibrium means a coincidence of its one unstable
and one stable one-dimensional separatrices corresponding to real
eigenvalues. As A varies, this closed separatrix loop is usually de-
stroyed. In other words, for D? > 0, the continuous spectra should
generally decay.

Qualitative inspection enables one to make some conclusions
on the behavior of integral curves to Eq. (5) at E = 0. As is seen
from Eq. (5), the integral curves cross the symmetry plane E =0,
dV/dy =0 only along the lines of nodal points. At other points,
the component of the tangent vector of integral curves normal
to that plane vanishes since the derivative d3S/dy3 tends to in-
finity at dV/dy =0 (see Eq. (5)). It should be emphasized that
all amplitude-bounded solutions, both symmetric and asymmetric
ones must intersect the symmetry plane since the derivative dV/dy
changes the sign on this plane.

The form of these nodal lines at E = 0 is defined by relation

20\ 2 2
DZ(S;) :7%(A+—V)(V—A,) (10)

where the constants are given by Eq. (7). The geometry of these
lines is presented by Fig. 2.

In the vicinity of arbitrary singular point V, the set of integral
curves is presented by the expansion

Vi 2 3
m\/(v* —ADVe—A)y ey 4
Among the integral curves entering the point V, only one (c=0)
enters along the normal to the plane and pertains to symmetry
solution. As Fig. 2 suggests, all local extremums of function V(y)
are greater than A, or lesser than A_. In particular, the amplitudes
of solitons and cavitons are greater than A, and |A_|, respectively.

The integral curve starting from the origin to half-space V >
0 (V < 0) cross the symmetry plane for the first time only in the
point of branch §(8) shown by Fig. 2. Exponentially localized so-
lutions are conveniently classified by the sequence of intersec-
tions of the symmetry plane. We denote each intersection by the
symbol of branch; the symbol O is attributed to passing near the
origin. Then the sequences “050” and “OB0" correspond respec-
tively to soliton and caviton solutions. Another exponentially local-
ized solutions can be interpreted as the bound states of solitons
and cavitons. For example, the “O8a60” and “O8 880" sequences
correspond to configurations “soliton-soliton” and “soliton-caviton-

V-V.,=+
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soliton”, etc. Some examples of localized solutions are presented
by Fig. 3.

Remark 1. It is worth noting that asymmetric localized solutions
like 0580 can exist only for specific values of the pair of param-
eters (A, D?). Indeed, a related solution of the Hamiltonian system
means an existence of a nonsymmetric orbit in the 3-dimensional
level of the Hamiltonian which belongs to the 1-dimensional un-
stable manifold of the saddle-center, makes one passage near the
solitonic homoclinic orbit of the slow manifold, then passes one
time near the caviton homoclinic orbit of the slow manifold, and
finally gets lie on the stable 1-dimensional manifold of the saddle-
center. This means that two 1-dimensional stable and unstable
curves in 3-dimensional level have to coincide, this an event that
is possible only at specific values of the pair (A, D?).

Computational investigation shows the existence of asymmetric
solutions (see picture 0580 in Fig. 3).

3. Asymptotic “quantization rules”

As noted above, the spectrum of eigenvalues at D> = 0 is con-
tinuous and coincides with 0 < A < 1. It is of interest to trace how
the continuous spectra of A decay at small finite values of D2,
To do that it is necessary to calculate the splitting of separatrices
shown by Fig. 1 in relation to the value of A.

To that purpose we introduce the new variable U = d2S/dy? and
write the Lagrangian of Eq. (4) as

L= %(A LV 4 %VZ(A+ “V)(V —AL) + D*(A+V)VU + %DZUZ
(11)

where differentiation is traditionally indicated by a dot above the
function. We introduce the Routhian which is Hamiltonian with re-
spect to variables P = 9L/dV, V and Lagrangian with respect to U.
Then, we turn from the variables P, V to the variables of the type
of action-angle and choose the variable E from Eq. (5) with D2 =0
instead of the action. After that canonical transformation we obtain

DU+U=(1-1V+3V2,  E=D[(1-1V+3V2]U (12)

where V(y,E) is defined by the integration of Eq. (5) with D2 =0
and E = const. The first integral of Eq. (12) takes the form

E= %Dz (D*U? +U?) + const (13)
where for the localized solutions the constant is zero, because E, U
and U vanish at the origin. For homoclinic orbits E(y = —o0) =
E(y = +o00) = 0. At D? = 0 the condition E(y = +00) = 0 is satisfied
identically when E(y = —o0) = 0. However, at D? > 0, an integral
curve leaving the origin does not have to return there with an ar-
bitrary value of A It is easy to see that the increment of E in one
bypass of separatrix loop of Eq. (4) with D =0 is the measure
of the separatrix splitting under the action of small singular per-
turbation. Recall that now E is not conserved, since it is here the
action-like variable (compare with [16]).

For approximate calculation of the solitons and cavitons spec-
tra we can now use the method of separatrix mapping developed
in [17]. To do that one need to put V(y,E) =V(y,0) and calcu-
late the increment of E in bypass of soliton or caviton loop from
Egs. (12),(13). The eigenvalues of parameter A therewith corre-
spond to the vanishing of the increment of E. From Eqs. (12),(13)
it follows that

AE:Dz[deyv<1—A+;v>exp{'Dy]T (14)

where V (y, 0) is the soliton or caviton Eq. (4) with D? = 0. In order
to obtain the asymptotic “quantization rules”we need to calculate
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Fig. 3. Shapes of exponentially localized symmetric and asymmetric solutions.

the integral in Eq. (14) in the limit D2 — 0, A = const. After the
replacing of integration variable by V, the integral is calculated by
the saddle point method for solitons and the method of stationary
phase for cavitons. The result of calculation takes the form Bsinf
where

B~ D3*?2exp(-m+\/A/(1 = 1)/D)

for the solitons and B ~ D>/2 for the cavitons. The spectra are de-
fined from the evident condition & = wn which can be presented
in the form

VA
27 —aresin Y25 ) = /-2 aresh 3(1—As)=nwD  (15)
2 1— X
for the solitons and
.V Ac Ac
2 arcsin Y— — arcshy/3(1 — A¢) =nnD (16)
2 1-AXc

for the cavitons. The number of solitons and cavitons is clearly fi-
nite and proportional to 1/D.

To elucidate the characteristics of the spectra in the vicinity of
the boundaries of the interval 0 < A <1 we calculate the integral
in the limits A — 0 and A — 1, D? = const « 1. The results show
the lack of eigenvalues with A; — 1 and the existence of solitons
with As = 0 for a denumerable set of values of parameter D? de-
fined by Eq. (15). As for the cavitons, they are absent with A, — 0
and exist with A, = 1 for a denumerable set of values of D? defined
by Eq. (16).

The above procedure closely resembles semi-classical quanti-
zation; Egs. (15), (16) therewith correspond to Bohr-Sommerfeld
quantization rule. On the other hand, this procedure reproduces
semi-classical approach to the problem of transitions of a quan-
tum system under the effect of slow time-varying perturbation
[18]. However, the approximate methods as applied to the non-
linear system, are not sufficiently substantiated. It is well known
(see, for instance, [19]) that for slow-fast analytic Hamiltonian sys-
tems the problem of finding separatrices after splitting is very sub-
tle and hard. The results obtained from the calculation of only
dominant term of the asymptotic expansion in the limit D? — 0,
y — oo, cannot be interpreted rigorously. Nevertheless, a compar-
ison between computer-calculated and asymptotic spectra shows
unexpectedly good agreement both for solitons and cavitons.

4. Conclusion

In summary, the set of stationary localized solutions of
Whitham equation contains solitons, cavitons and bound states of
the solitons and cavitons including the asymmetric ones at specific
values of the pair (A, D?). The velocity spectra of exponentially lo-
calized solutions at D2 # 0 are discrete, and the number of solitons
and cavitons is finite. On the other hand, for any A from the inter-
val (0,1) there exists denumerable set of values of parameter D2
such that A is the eigenvalue of velocity of soliton or caviton.

The discreteness of spectra of localized solutions should signif-
icantly affect the evolution of disturbances. In particular, the adia-
batic drift of soliton parameters under the influence of weak per-
turbation is impossible in that case.
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