
Chaos, Solitons and Fractals 143 (2021) 110550 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Solitons of Whitham equation with resonance dispersion 

A. Gevorgian 

a , N. Kulagin 

b , L. Lerman 

c , d , ∗, A. Malkin 

b 

a Dept. of Applied Math., Moscow Aviation Institute, Russia 
b A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow, Russia 
c National Research University Higher School of Economics, Nizhny Novgorod, Russia 
d Scientific Center “Mathematics for Future Technologies”, Research State University of Nizhny Novgorod, Russia 

a r t i c l e i n f o 

Article history: 

Received 29 September 2020 

Revised 18 November 2020 

Accepted 4 December 2020 

Keywords: 

Whitham equation 

Solitons 

Velocity spectra 

a b s t r a c t 

Localized stationary solutions of nonlinear nonlocal Whitham equation with resonance dispersion relation 

are considered. The existence of exponentially localized smooth and singular solitons, bound states of the 

solitons and localized solutions with oscillating asymptotics is recognized. The velocity spectra of solitons, 

in contrast to all other known Whitham equations, appear to be discrete. Asymptotic “quantization rules”

for calculation of discrete spectra are obtained. 
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. Introduction 

Nonlinear nonlocal Whitham equation 

∂V 

∂t 
+ V 

∂V 

∂x 
= 

∂ 

∂x 

∞ ∫ 
−∞ 

dx ′ R (x − x ′ ) V (x ′ , t) (1) 

epresents a wide class of equations which are of great interest for 

onlinear wave theory. It combines the typical hydrodynamic non- 

inearity and an integral term descriptive of dispersion of the linear 

heory. The dispersion relation for linearized Eq. (1) is defined by 

he Fourier transform of the kernel R (x ) 

 = k ̃  R (k ) , ˜ R (k ) = 

∫ ∞ 

−∞ 

dxR (x ) e ikx . (2)

A number of special cases of Eq. (1) were examined in de- 

ail. Among them are the Benjamin-Ono [1] and Joseph [2] equa- 

ions describing internal waves in stratified fluids of infinite and 

nite depth. These equations appeared to be integrable by inverse 

cattering technique and the behavior of their solutions has been 

tudied well. The Benjamin-Ono and Joseph equations are how- 

ver the only representatives of the Whitham equations possessing 

his property [3] . Another widely known equations of that class are 

tudied not so exhaustively although the literature on the subject 

s quite extensive [4] . A list of well-studied equations involves, in 

articular, the Leibovitz one for the waves in rotating fluid [5] , the 
∗ Corresponding author. 
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limontovich equation for magnetohydrodynamic waves in non- 

sothermal collision-less plasma [6] and equations for shallow wa- 

er waves [7] . 

More or less comprehensive review of recent works cannot be 

resented within the limits of a short communication. It should 

e however noted that the interest in the Whitham equations is 

till great since the use of relatively simple equations of the form 

q. (1) turns out to be very fruitful for various physical applica- 

ions. New representatives of that equation have recently been pro- 

osed for capillary [8] and hydroelastic [9] waves, shallow water 

aves with vorticity [10] , acoustic waves in a medium with strong 

patial dispersion [11] . A great number of works is devoted to the 

ongstanding problem of formation and stability of traveling waves 

ue the interplay between nonlinear and dispersive effects (see, for 

xample, [12] and references herein) 

The characteristic feature of Whitham equations is the existence 

f solitons. The velocity spectra of solitons can be bounded or not 

ut for all known cases the spectra are continuous. This raises the 

uestion of whether or not the continuous spectra are the com- 

on property of solitons of Whitham equations? Here we examine 

he particular case of Whitham equation with resonance dispersion 

ith special emphasis on the spectra of solitons. 

We consider solitary wave solutions of Whitham equation with 

 

 (k ) = 

1 

1 − k 2 + D 

2 k 4 
. (3) 

hat equation has been proposed for the waves in compressible 

uid in thin elastic tube with slip boundary condition on the tube 

all. Such model is justified in the case of liophobic surface of the 

all for liquids or extremely small accommodation coefficient for 

https://doi.org/10.1016/j.chaos.2020.110550
http://www.ScienceDirect.com
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Fig. 1. Slow dynamics: D 2 = 0 . 
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ases. Dimensionless parameter in Eq. (3) is equal 

 

2 = 

E x h 

2 

12(1 − ν2 ) ρ2 
S 

a 2 c 4 
0 

, 

here E x , ρs , ν are Young modulus, density and Poisson ratio of the 

ube material, h and a are thickness and radius of the tube, c 0 is

ound speed of the fluid [13] . In addition, with small D 

2 including 

 

2 = 0 that equation is applicable to the specific case of waves in

 medium with internal oscillators, that is with an oscillatory re- 

ponse of internal degrees of freedom to the disturbance of pres- 

ure [14] . 

It should be noted that the form of the integral term in 

q. (1) depends on the poles location of Fourier transform of the 

ernel. While D 

2 < 1 / 4 the poles are located in the real axis so

hat the causative-type dispersion takes place, R (x < 0) = 0 . Other- 

ise, the poles are located symmetrically with respect to Im (k ) = 

 , R (−x ) = R (x ) , and dispersion therefore takes a spatial form. The

patial dispersion occurs when the sound velocity of a fluid is 

reater than the minimum phase velocity of bending oscillations 

f the shell. This is caused by the origination of radiation physi- 

ally similar to Cherenkov one. 

The consideration below is restricted to the specific properties 

f solitary wave solutions of Eqs. (1) –(3) . It is shown that the equa-

ion possesses exponentially localized smooth and singularity in- 

olving solutions, and solutions with oscillating asymptotics. The 

pectrum of velocities of exponentially localized solutions appears 

herewith to be a discrete one. Asymptotic “quantization rules”

uitable for D 

2 � 1 are obtained. 

. Localized traveling waves 

Hereafter we consider traveling wave solutions V (y ) depending 

n the single variable y = x + λt. For such solutions the left hand

ide of Eq. (1) is the derivative in y of the function S = λV + 

1 
2 V 

2 .

he inversion of integral operator in Eq. (1) , with the account of 

he form Eq. (3) for ˜ R , then gives 

 

2 d 
4 S 

dy 4 
+ 

d 2 S 

dy 2 
+ S = V, S = λV + 

1 

2 

V 

2 (4) 

Real solutions V (S) exist for λ2 + 2 S ≥ 0 , and there function

 (S) is two-valued, V = −λ ±
√ 

λ2 + 2 S . Eq. (4) with boundary 

onditions of vanishing of function V (y ) and all its derivatives as 

 → ±∞ presents a nonlinear eigenvalue problem for parameter λ. 

he first integral of Eq. (4) has the form 

 

2 

[ 

2 

dS 

dy 
· d 3 S 

dy 3 
−

(
d 2 S 

dy 2 

)2 
] 

+ 

(
dS 

dy 

)2 

+ S 2 − V 

2 
(
λ + 

2 

3 

V 

)
= E. 

(5) 

q. (4) can be transformed to a 2 degrees of freedom re- 

ersible Hamiltonian system with equilibria whose homoclinic or- 

its just correspond to solitons of the equation. To show this 

e introduce new variables Q 1 = S, P 1 = −d S/d y − Dd 3 S/dy 3 ,Q 2 =
 S/d y, P 2 = Dd 2 S/d y 2 . Then Eq. (4) is reduced to the Hamiltonian

ystem 

dQ 1 

dy 
= Q 2 , 

dP 1 
dy 

= Q 1 − V (Q 1 ) , 

 

dQ 2 

dy 
= P 2 , D 

dP 2 
dy 

= −Q 2 − P 1 . (6) 

ith the Hamiltonian H = Q 2 P 1 − Q 

2 
1 / 2 + (Q 

2 
2 + P 2 2 ) / 2 + 

∫ 
V (Q 1 ) dQ 1 

nd symplectic form � = d P 1 ∧ d Q 1 + Dd P 2 ∧ d Q 2 . For D 

2 small the

elated Hamiltonian system is slow-fast with one slow and one fast 

egrees of freedom [15] . A detailed study of this system will be 

erformed elsewhere. 
2 
Consider singular limit D 

2 = 0 . This corresponds to the slow 

ubsystem of the above Hamiltonian system. The set of integral 

urves of Eq. (5) for 0 ≤ λ ≤ 1 , where localized solutions exist, 

as the form shown by Fig. 1 and as is easily seen, there exist 

wo types of localized solutions. The first one is presented by the 

mooth loop in the region V > 0 whereas the second corresponds 

o the discontinuous loop in the region V < 0 . For brevity sake 

e will call them as solitons and cavitons, respectively. The sin- 

ularity in the caviton profile is described by the relations V + λ ∼
 | y | , S + λ2 / 2 ∼ | y | . 

The amplitudes of solitons and cavitons are defined by the re- 

ation 

 ± = 

2 

3 

(2 − 3 λ) ± 2 

3 

√ 

4 − 3 λ. (7) 

s would be expected, in the limit λ → 1 the solitons are turned 

o the well known KdV-ones 

 = 

3(1 − λ) 

cosh 

2 
(√ 

1 − λ y/ 2 

) . (8) 

n the opposite limit λ → 0 soliton acquires simple finite form 

 = 

8 

3 

cos 2 
y 

4 

, | y | ≤ 2 π. (9) 

We now turn to the general case of Eq. (4) with D 

2 > 0 . Quali-

ative inspection shows that the localized solutions can exist in the 

ollowing cases: 

1. D 

2 > 0 , λ ∈ (0 , 1) 

2. 0 < D 

2 < 

1 
4 , λ ∈ 

(
− 4 D 2 

1 −4 D 2 
, 0 

)
3. D 

2 > 

1 
4 , λ ∈ (−∞ , 0) ∪ 

(
4 D 2 

4 D 2 −1 
, ∞ 

)
In the former case, for the related Hamiltonian system the ori- 

in is the saddle-center equilibrium (its eigenvalues are a pair of 

ure imaginary and a pair real nonzero ones) and the localized so- 

utions, if any, share an exponential asymptotics as | y | → ∞ ; in the

ther cases asymptotics possesses an oscillating character, since 

he related equilibrium is a saddle-focus (with a quadruple of com- 

lex eigenvalues). The integral curves of Eq. (4) pertain to 3 D phase 

pace determined by the first integral Eq. (5) . 

Hereafter we concentrate upon the exponentially localized so- 

utions. With D 

2 = 0 , λ ∈ (0 , 1) the homoclinic orbits exist for

ny value of λ; the velocity spectra of solitons and cavitons are 

ounded but continuous. With D 

2 > 0 the situation changes: the 

elocity spectra should generally be discrete due to the splitting 
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Fig. 2. Nodal lines in the plane of symmetry d V/d y = 0 , E = 0 . 
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f the separatrices. Indeed, in three-dimensional space defined 

y the equality E = 0 the existence of a separtrix loop for the 

addle-center equilibrium means a coincidence of its one unstable 

nd one stable one-dimensional separatrices corresponding to real 

igenvalues. As λ varies, this closed separatrix loop is usually de- 

troyed. In other words, for D 

2 > 0 , the continuous spectra should 

enerally decay. 

Qualitative inspection enables one to make some conclusions 

n the behavior of integral curves to Eq. (5) at E = 0 . As is seen

rom Eq. (5) , the integral curves cross the symmetry plane E = 0 ,

 V/d y = 0 only along the lines of nodal points. At other points,

he component of the tangent vector of integral curves normal 

o that plane vanishes since the derivative d 3 S/dy 3 tends to in- 

nity at d V/d y = 0 (see Eq. (5) ). It should be emphasized that

ll amplitude-bounded solutions, both symmetric and asymmetric 

nes must intersect the symmetry plane since the derivative d V/d y 

hanges the sign on this plane. 

The form of these nodal lines at E = 0 is defined by relation 

 

2 

(
d 2 S 

dy 2 

)2 

= −V 

2 

4 

(A + − V )(V − A −) (10) 

here the constants are given by Eq. (7) . The geometry of these 

ines is presented by Fig. 2 . 

In the vicinity of arbitrary singular point V ∗ the set of integral 

urves is presented by the expansion 

 − V ∗ = ± V ∗
4 D (V ∗ + λ) 

√ 

(V ∗ − A + )(V ∗ − A −) y 2 + cy 3 + · · · . 

mong the integral curves entering the point V ∗ only one ( c = 0 )

nters along the normal to the plane and pertains to symmetry 

olution. As Fig. 2 suggests, all local extremums of function V (y ) 

re greater than A + or lesser than A −. In particular, the amplitudes 

f solitons and cavitons are greater than A + and | A −| , respectively.

The integral curve starting from the origin to half-space V > 

 (V < 0) cross the symmetry plane for the first time only in the

oint of branch δ(β) shown by Fig. 2 . Exponentially localized so- 

utions are conveniently classified by the sequence of intersec- 

ions of the symmetry plane. We denote each intersection by the 

ymbol of branch; the symbol O is attributed to passing near the 

rigin. Then the sequences “OδO ” and “OβO ” correspond respec- 

ively to soliton and caviton solutions. Another exponentially local- 

zed solutions can be interpreted as the bound states of solitons 

nd cavitons. For example, the “OδαδO ” and “OδβδO ” sequences 

orrespond to configurations “soliton-soliton” and “soliton-caviton- 
3 
oliton”, etc. Some examples of localized solutions are presented 

y Fig. 3 . 

emark 1. It is worth noting that asymmetric localized solutions 

ike OδβO can exist only for specific values of the pair of param- 

ters (λ, D 

2 ) . Indeed, a related solution of the Hamiltonian system 

eans an existence of a nonsymmetric orbit in the 3-dimensional 

evel of the Hamiltonian which belongs to the 1-dimensional un- 

table manifold of the saddle-center, makes one passage near the 

olitonic homoclinic orbit of the slow manifold, then passes one 

ime near the caviton homoclinic orbit of the slow manifold, and 

nally gets lie on the stable 1-dimensional manifold of the saddle- 

enter. This means that two 1-dimensional stable and unstable 

urves in 3-dimensional level have to coincide, this an event that 

s possible only at specific values of the pair (λ, D 

2 ) . 

Computational investigation shows the existence of asymmetric 

olutions (see picture 0 δβ0 in Fig. 3 ). 

. Asymptotic “quantization rules”

As noted above, the spectrum of eigenvalues at D 

2 = 0 is con- 

inuous and coincides with 0 ≤ λ ≤ 1 . It is of interest to trace how 

he continuous spectra of λ decay at small finite values of D 

2 . 

o do that it is necessary to calculate the splitting of separatrices 

hown by Fig. 1 in relation to the value of λ. 

To that purpose we introduce the new variable U = d 2 S/dy 2 and 

rite the Lagrangian of Eq. (4) as 

 = 

1 

2 
(λ + V ) 2 ˙ V 2 + 

1 

8 
V 2 (A + − V )(V − A −) + D 

2 (λ + V ) ̇ V ˙ U + 

1 

2 
D 

2 U 

2 

(11) 

here differentiation is traditionally indicated by a dot above the 

unction. We introduce the Routhian which is Hamiltonian with re- 

pect to variables P = ∂ L/∂ ˙ V , V and Lagrangian with respect to U .

hen, we turn from the variables P, V to the variables of the type 

f action-angle and choose the variable E from Eq. (5) with D 

2 = 0 

nstead of the action. After that canonical transformation we obtain 

 

2 Ü + U = (1 − λ) V + 

1 
2 
V 

2 , ˙ E = D 

2 
[
(1 − λ) V + 

1 
2 
V 

2 
]

˙ U (12) 

here V (y, E) is defined by the integration of Eq. (5) with D 

2 = 0

nd E = const . The first integral of Eq. (12) takes the form 

 = 

1 

2 

D 

2 
(
D 

2 ˙ U 

2 + U 

2 
)

+ const (13) 

here for the localized solutions the constant is zero, because E, U

nd 

˙ U vanish at the origin. For homoclinic orbits E(y = −∞ ) = 

(y = + ∞ ) = 0 . At D 

2 = 0 the condition E(y = + ∞ ) = 0 is satisfied

dentically when E(y = −∞ ) = 0 . However, at D 

2 > 0 , an integral

urve leaving the origin does not have to return there with an ar- 

itrary value of λ It is easy to see that the increment of E in one 

ypass of separatrix loop of Eq. (4) with D 

2 = 0 is the measure

f the separatrix splitting under the action of small singular per- 

urbation. Recall that now E is not conserved, since it is here the 

ction-like variable (compare with [16] ). 

For approximate calculation of the solitons and cavitons spec- 

ra we can now use the method of separatrix mapping developed 

n [17] . To do that one need to put V (y, E) = V (y, 0) and calcu-

ate the increment of E in bypass of soliton or caviton loop from 

qs. (12) , (13) . The eigenvalues of parameter λ therewith corre- 

pond to the vanishing of the increment of E. From Eqs. (12) , (13)

t follows that 

 E = D 

2 

[∫ ∞ 

−∞ 

dyV 

(
1 − λ + 

1 

2 

V 

)
exp 

{ 

ı y 

D 

} 

]2 

(14) 

here V (y, 0) is the soliton or caviton Eq. (4) with D 

2 = 0 . In order

o obtain the asymptotic “quantization rules”we need to calculate 
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Fig. 3. Shapes of exponentially localized symmetric and asymmetric solutions. 
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he integral in Eq. (14) in the limit D 

2 → 0 , λ = const . After the

eplacing of integration variable by V, the integral is calculated by 

he saddle point method for solitons and the method of stationary 

hase for cavitons. The result of calculation takes the form B sin θ
here 

 ∼ D 

3 / 2 exp (−π
√ 

λ/ (1 − λ) /D ) 

or the solitons and B ∼ D 

5 / 2 for the cavitons. The spectra are de- 

ned from the evident condition θ = πn which can be presented 

n the form 

 

( 

π − arcsin 

√ 

λs 

2 

) 

−
√ 

λs 

1 − λs 
arcsh 

√ 

3(1 − λs ) = nπD (15) 

or the solitons and 

 arcsin 

√ 

λc 

2 

−
√ 

λc 

1 − λc 
arcsh 

√ 

3(1 − λc ) = nπD (16) 

or the cavitons. The number of solitons and cavitons is clearly fi- 

ite and proportional to 1 /D . 

To elucidate the characteristics of the spectra in the vicinity of 

he boundaries of the interval 0 ≤ λ ≤ 1 we calculate the integral 

n the limits λ → 0 and λ → 1 , D 

2 = const � 1 . The results show

he lack of eigenvalues with λs → 1 and the existence of solitons 

ith λs = 0 for a denumerable set of values of parameter D 

2 de- 

ned by Eq. (15) . As for the cavitons, they are absent with λc → 0

nd exist with λc = 1 for a denumerable set of values of D 

2 defined

y Eq. (16) . 
4 
The above procedure closely resembles semi-classical quanti- 

ation; Eqs. (15) , (16) therewith correspond to Bohr-Sommerfeld 

uantization rule. On the other hand, this procedure reproduces 

emi-classical approach to the problem of transitions of a quan- 

um system under the effect of slow time-varying perturbation 

18] . However, the approximate methods as applied to the non- 

inear system, are not sufficiently substantiated. It is well known 

see, for instance, [19] ) that for slow-fast analytic Hamiltonian sys- 

ems the problem of finding separatrices after splitting is very sub- 

le and hard. The results obtained from the calculation of only 

ominant term of the asymptotic expansion in the limit D 

2 → 0 , 

 → ∞ , cannot be interpreted rigorously. Nevertheless, a compar- 

son between computer-calculated and asymptotic spectra shows 

nexpectedly good agreement both for solitons and cavitons. 

. Conclusion 

In summary, the set of stationary localized solutions of 

hitham equation contains solitons, cavitons and bound states of 

he solitons and cavitons including the asymmetric ones at specific 

alues of the pair (λ, D 

2 ) . The velocity spectra of exponentially lo- 

alized solutions at D 

2 � = 0 are discrete, and the number of solitons

nd cavitons is finite. On the other hand, for any λ from the inter- 

al (0,1) there exists denumerable set of values of parameter D 

2 

uch that λ is the eigenvalue of velocity of soliton or caviton. 

The discreteness of spectra of localized solutions should signif- 

cantly affect the evolution of disturbances. In particular, the adia- 

atic drift of soliton parameters under the influence of weak per- 

urbation is impossible in that case. 
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