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Abstract The basic automorphism group AB(M,F ) of a Cartan foliation (M,F )
is the quotient group of the automorphism group of (M,F ) by the normal subgroup,
which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find
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1 Introduction

One of the main objects associated with a geometric structure on a smooth manifold
is its automorphism group. In the introduction to the monograph by S. Kobayashi [11],
it was emphasized that the existence of a structure of a finite-dimensional Lie group
in the group of automorphisms of a manifold with a geometric structure is one of the
central problems in differential geometry.

As is known, the solved Hilbert’s 5-th problem is devoted to finding conditions under
which a topological group admits the structure of a Lie group [16]. It is known from
the numerous works of E. Cartan, R. Mayer, H. Steenrod, K. Nomizu, S. Kabayashi,
S. Ehresmann and other authors that the automorphism groups of many geometric
structures are Lie groups of transformations (see overview [7]).

The spaces that are now called Cartan geometries were introduced by E. Cartan
in the 1920-s. The theory of Cartan geometries is presented in the monographs of
A. Čap, J. Slovak [5], R.V. Sharpe [14], M. Krampin and D. Saunders [8]. Currently,
Cartan geometries and Cartan foliations are studied by many mathematicians and find
application in various physical theories, see, for example, [1], [6], [13] and [9], [17].

Let (M,F ) be a smooth foliation. Recall that geometry structure on the manifold
M is called transverse to (M,F ) if it is a invariant with respect to local holonomic
diffeomorphisms. Another, equivalent definition of a transverse geometric structure,
which is represented by Cartan geometry, is given in Section 3. Morphisms are under-
stood as local diffeomorphisms mapping leaves onto leaves and preserving transverse
geometries (the precise definition see in Section 3). Let us denote by CF the category
of Cartan foliations.

This paper is devoted to the investigation of automorphism groups of Cartan
foliations, i.e. foliations that admit Cartan geometries as transverse structures. The
study of Cartan foliations is motivated by the fact that such broad classes of foliations
as parabolic, conformal, projective, pseudo-Riemannian, Lorentzian, Weyl, transverse
homogeneous foliations and foliations with transverse linear connection belong to Cartan
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foliations. Therefore, the investigation of Cartan foliations allows us to study the
general properties of these foliations from a single point of view, while many authors
study them separately.

Let us denote by A(M,F ) the group of all the automorphisms of the Cartan foliation
(M,F ) in the category CF. The group

AL(M,F ) := {f ∈ A(M,F ) | f(Lα) = Lα ∀Lα ∈ F}

is a normal subgroup of the group A(M,F ) and called the group of leaf automorphisms
of (M,F ). The quotient group A(M,F )/AL(M,F ) is called the basic automorphism
group and denoted by AB(M,F ).

We study the groups of basic automorphisms AB(M,F ) of Cartan foliations (M,F )
covered by fibration and find sufficient conditions for the existence of a structure of a
finite-dimensional Lie group in the group AB(M,F ). J. Leslie [12] was the first who
solved a similar problem for smooth foliations on compact manifolds and considered
an application to foliations with transverse G-structures. For foliations with complete
transversely projectable affine connection, this problem was raised by I.V. Belko [2].
Foliations (M,F ) with effective transverse rigid geometries were investigated by N.I. Zhu-
kova [19] where an algebraic invariant g0 = g0(M,F ), called the structural Lie algebra
of (M,F ), was constructed and it was proved that g0 = 0 is a sufficient condition for
the existence of a unique Lie group structure in the basic automorphism group of this
foliation. In [15], the existence of a Lie group structure was investigated in the basic
automorphism groups of Cartan foliations modeled on inefficient Cartan geometries.

2 Main results

Among the Cartan foliations, foliations covered by fibrations are distinguished.

Definition 1. Let κ : M̃ → M be the universal covering map. We say that a smooth
foliation (M,F ) is covered by fibration if the induced foliation (M̃, F̃ ) is formed by

fibres of a locally trivial fibration r̃ : M̃ → B.

The following theorem describes the global structure of Cartan foliations covered
by fibrations.

Theorem 1. Let (M,F ) be a Cartan foliation modeled on a Cartan geometry ξ covered

by the fibration r̃ : M̃ → B, where κ̃ : M̃ →M is the universal covering map. Then:

(1) there exists a regular covering map κ : M̂ → M such that the induced foliation

F̂ is made up of fibres of the locally trivial bundle r : M̂ → B over a simply
connected manifold B, and ξ induces on B a Cartan geometry η that is locally
isomorphic to ξ;

(2) an epimorphism χ : π1(M,x) → Ψ, x ∈ M, of the fundamental group π1(M,x)
onto a subgroup Ψ of the automorphism Lie group Aut(B, η) of the Cartan
manifold (B, η) is determined;

(3) the group of deck transformations of the covering κ : M̂ → M is isomorphic to
the group Ψ.

Definition 2. The group Ψ = Ψ(M,F ) satisfying Theorem 1 is called the global
holonomy group of the Cartan foliation (M,F ) covered by fibration.
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We give a detailed proof of the following theorem, formulated without a proof
in the work [15, Prop. 8]. Theorem 2 establishes a connection between the basic
automorphism group AB(M,F ) of a Cartan foliation (M,F ) covered by fibration and
its global holonomy group Ψ.

Theorem 2. Let (M,F ) be a Cartan foliation covered by fibration r : M̂ → B, and
B is the simply connected Cartan manifold. Suppose that the global holonomy group
Ψ is a discrete subgroup of the Lie group Aut(B, η). Let N(Ψ) be the normalizer
of Ψ in Aut(B, η). Then the basic automorphism group AB(M,F ) is a Lie group
which is isomorphic to an open-closed subgroup of the Lie quotient group N(Ψ)/Ψ
and dim(AB(M,F )) = dim(N(Ψ)/Ψ). The structure of the Lie group in AB(M,F ) is
unique.

The following theorem specifies a method for computing basic automorphism groups
for Cartan foliations with an integrable Ehresmann connection.

Theorem 3. Let (M,F ) be Cartan foliation with an integrable Ehresmann connection.
Then

1.There is a regular cover κ : M̃ → M such that M̃ = L0 × B, where L0 is
a manifold diffeomorphic to any leaf with a trivial holonomy group and B is a simply
connected manifold, and the induced foliation F̃ = κ∗F is formed by leaves of the
canonical projection r : L0 ×B → B onto the second factor, and Cartan geometry η is
induced on B, with respect to which κ is a morphism of Cartan foliations (M,F ) and

(M̃, F̃ ) in the category CF.
2. The foliation (M,F ) is an (Aut(B, η), B)-foliation.
3. If moreover, the normalizer N(Ψ) of global holonomy group Ψ is equal to the

centralizer Z(Ψ) of Ψ in the group Aut(B, η), then

AB(M,F ) ∼= N(Ψ)/Ψ.

Using Theorem 3, we construct an example of computing the basic automorphism
group of some conformal foliation of an arbitrary codimension q, where q ≥ 3, on
a (q + 1)-dimensional manifold in Section 7.2. Some other examples are constructed
in [15].

3 The category of Cartan foliations

The category of Cartan geometries Let G and H be Lie groups with the Lie
algebras g and h relatively. Let H be a closed subgroup of G. A Cartan geometry of
type (G,H) on the smooth manifold N is a principal H-bundle P (N,H) with a g-
valued 1-form ω on P satisfying the following conditions:
(c1) the map ωu : TuP → g is an isomorphism of vector spaces for every u ∈ P ;
(c2) ω(A

∗) = A for every A ∈ h, where A∗ is the fundamental vector field determined
by A;
(c3) R

∗
hω = AdG(h

−1)ω for every h ∈ H , where AdG : H → GL(g) is the adjoint
representation of the Lie subgroup H of G in the Lie algebra g.

The g-valued form ω is called a Cartan connection form. This Cartan geometry is
denoted by ξ = (P (N,H), ω). The pair (N, ξ) is called a Cartan manifold.

Maximal normal subgroup K of the group G belonging to H is called the kernel
of pair (G,H). We denote the Lie algebra of the group K by k. The Cartan geometry
ξ = (P (M,H), ω) of type (G,H) is called effective if the kernel K of the pair (G,H) is
trivial. Further, we assume that all Cartan geometries under consideration are effective.

3



Let ξ = (P (N,H), ω) and ξ′ = (P ′(N ′, H), ω′) be two Cartan geometries with the
same structure Lie group H . The smooth map Γ : P → P ′ is called a morphism from
ξ to ξ′ if Γ∗ω′ = ω and Ra ◦ Γ = Γ ◦Ra ∀a ∈ H . The category of Cartan geometries is
denoted by Car. If Γ ∈Mor(ξ, ξ′), then the projection γ : N → N ′ is defined such that
p′ ◦ Γ = γ ◦ p, where p : P → N and p′ : P ′ → N ′ are the projections of the respective
H-bundles.

The projection γ is called an automorphism of the Cartan manifold (N, ξ). Denote
by Aut(N, ξ) the full automorphism group of a Cartan foliation (N, ξ) and by Aut(ξ)
the full automorphism group of a Cartan geometry ξ. Let A(P, ω) := {Γ ∈ Diff(P ) |
Γ∗ω = ω} be the automorphism group of the parallelizable manifold (P, ω), which is
known to be a Lie group, and dim(A(P, ω)) ≤ dimP.

Remark, that Aut(ξ) = {Γ ∈ A(P, ω) |Γ ◦ Ra = Ra ◦ Γ ∀a ∈ H} is a closed Lie
subgroup of the Lie group A(P, ω). Therefore, Aut(ξ) is a Lie group, and due to the
effictivity of a Cartan geometry ξ, there exists a Lie group isomorphism

σ : AH(P, ω) → Aut(N, ξ) : Γ 7→ γ

mapping Γ ∈ AH(P, ω) to its projection γ.

Cartan foliations Let N be a smooth q-dimensional manifold, the connectivity of
which is not assumed. Let M be a smooth n-dimensional manifold, where 0 < q < n.
Assume, that ξ = (P (N,H), ω) is a Cartan geometry of type (G,H) on the manifold
N . Let p : P → N be the projection the principal H-bundle. For every open subset
V ⊂ N , the Cartan geometry ξV = (PV (V,H), ωV ) of the same type (G,H) is induced,
where PV := p−1(V ) and ωV := ω|PV

. Remind that (N, ξ)-cocycle on M is a family
ζ = {Ui, fi, {γij}}ij∈J satisfying the following conditions:
1)the set {Ui | i ∈ J} is a covering of the manifold M by open connected subsets Ui of
M , and every fi : Ui → N is a submersion with connected fibres;
2) if Ui ∩ Uj 6= ∅, i, j ∈ J , then there exists an isomorphism Γij : ξfj(Ui∩Uj) → ξfi(Ui∩Uj)

of the Cartan geometries induced on open subsets fj(Ui ∩ Uj) and fi(Ui ∩ Uj) such
that the projection γij of the isomorphism Γij satisfies the equality fi = γij ◦ fj on
Ui ∩ Uj , i, j ∈ J ;
3) if Ui ∩ Uj ∩ Uk 6= ∅, then γij ◦ γjk = γik for all x ∈ Ui ∩ Uj ∩ Uk and γii = idUi

,
i, j, k ∈ J .

Two N -cocycles are called equivalent if there exists an N -cocycle containing both
of these cocycles. Let [{Ui, fi, {γij}}ij∈J ] be the equivalence class of N -cocycles on the
manifold M containing the cocycle ζ = {Ui, fi, {γij}}ij∈J . Denote by Σ the set of fibres
of all the submersions fi of this equivalence class. Note, that Σ is the base of some
new topology τ on M . The path-connected components of the topological space (M, τ)
form a partition F := {Lα | α ∈ J} of the manifold M . The pair (M,F ) is called a
Cartan foliation of codimension q modeled on the Cartan geometry ξ = (P (N,H), ω)
which is called a transverse Cartan geometry for (M,F ). Subsets Lα, α ∈ J are called
leaves of this foliation. It is said that (M,F ) is given by the (N, ξ)-cocycle ζ .

Morphisms in the category of Cartan foliations Let (M,F ) and (M ′, F ′) are
Cartan foliations defined by an (N, ξ)-cocycle ζ = {Ui, fi, {γij}}ij∈J and an (N ′, ξ′)-
cocycle ζ ′ = {U ′

r, f
′
r, {γ

′
rs}}i′j′∈J ′ , respectively. All objects belonging to ζ ′ are distingui-

shed by prime. Let f : M →M ′ be a smooth map which is a local isomorphism in the
foliation category Fol. Hence for any x ∈ M and y := f(x) there exist neighborhoods
Uk ∋ x and U ′

s ∋ y from ζ and ζ ′ respectively, a diffeomorphism ϕ : Vk → V ′
s , where

Vk := fk(Uk) and V ′
s := f ′

s(U
′
s), satisfying the relations f(Uk) = U ′

s and ϕ◦fk = f ′
s◦f |Uk

.
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Further we shall use the following notations: Pk := P |Vk
, P ′

s := P ′|V ′

s
and pk := p|Pk

,
p′s := p|P ′

s

We say that f preserves transverse Cartan geometry if every such diffeomorphism
ϕ : Vk → V ′

s is an isomorphism of the induced Cartan geometries (Vk, ξVk
) and (V ′

s , ξ
′
V ′

s
).

This means the existence of isomorphism Φ : Pk → P ′
s in the category Car with the

projection ϕ such that the following diagram

Pk

pk

��

Φ

$$❍
❍❍

❍❍
❍❍

❍❍
❍

M ⊃ Uk

fk //

f |Uk

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

Vk
ϕ

##❍
❍❍

❍❍
❍❍

❍❍
❍ P ′

s

p′s
��

M ′ ⊃ U ′
s

f ′

s // V ′
s

is commutative. We emphasize that the indicated above isomorphism Φ : Pk → P ′
s is

unique if the transverse Cartan geometries are effective. The introduced concept is well
defined, i. e., it does not depend of the choice of neighborhoods Uk and U ′

k from the
cocycles ζ and ζ ′.

Definition 3. By a morphism of two Cartan foliations (M,F ) and (M ′, F ′) we mean
a local diffeomorphism f : M → M ′ which transforms leaves to leaves and preserves
transverse Cartan structure. The category CF objects of which are Cartan foliations,
morphisms are their morphisms, is called the category of Cartan foliations.

4 Ehresmann connections for foliations

R. A. Blumenthal and J. J. Hebda [3] introduced the notion of Ehresmann connection
for foliation (M,F ) as a natural generalization of Ehresmann connection for submersions.

Let (M,F ) be a foliation of codimension q and M be a smooth q-dimensional
distribution on M that is transverse to the foliation F, i. e. TxM = Mx⊕TxF ∀x ∈ M .
The piecewise smooth integral curves of the distribution M are said to be horizontal,
and the piecewise smooth curves in the leaves are said to be vertical. A piecewise
smooth mapping H of the square I1 × I2 to M is called a vertical-horizontal homotopy
if the curve H|{s}×I2 is vertical for any fixed s ∈ I1 and the curve H|I1×{t} is horizontal
for any fixed t ∈ I2. In this case, the pair of paths (H|I1×{0}, H|{0}×I2) is called the base
of H. It is well known that there exists at most one vertical-horizontal homotopy with
a given base.

A distribution M is called an Ehresmann connection for a foliation (M,F ) (in the
sense of R. A. Blumenthal and J. J. Hebda [3]) if, for any pair of paths (σ, h) in M with
a common initial point σ(0) = h(0), where σ is a horizontal curve and h is a vertical
curve, there exists a vertical-horizontal homotopy H with the base (σ, h).

A simple foliation with an Ehresmann connection Let f : M → N be a
submersion with connected fibers. Recall that the foliation F = {p−1(z), z ∈ N}
formed by the fibers of the submersion is called a simple foliation. Let (M,F ) be an
arbitrary smooth foliation with the Ehresmann connection. It easy to show that, the
existens of a covering k̂ : M̂ → M such that the lifted foliation is simple implies that
the foliation (M,F ) is covered by fibration.
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5 Classes of foliations covered by fibrations

(G,X)-foliations with an Ehresmann connection Let X be a smooth connected
manifold and G be the Lie group of diffeomorphisms of X. Recall that the action of a
group G on a manifold X is called quasi-analytically if for any open subset U ⊂ X and
an element g ∈ G the equality g|U = idU implies g = e, where e = idX .

Assume that a Lie group G of diffeomorphisms of a manifold X acts on N quasi-
analytically. A foliation (M,F ) defined by an X-cocycle {Ui, fi, {γij}}i,j∈J is called a
(G,X)-foliation if for any Ui ∩ Uj 6= ∅, i, j ∈ J , there is an element g ∈ G such that
γij = g|fj(Ui∩Uj). If, moreover, (X, ξ) is a Cartan manifold and the groupG is a subgroup
of the automorphism Lie group Aut(X, ξ), then (M,F ) is a Cartan (G,X)-foliation.
It follows from [7, Section VI] that every Cartan (G,X)-foliations with Ehresmann
connections is a foliation covered by fibration.

Cartan foliation with a vanishing transverse curvature Let (M,F ) be a Cartan
foliation of type (G,H) with an Ehresmann connection. As is known [1, Section VI],
if the transverse curvature of (M,F ) vanishes, then foliation (M,F ) is covered by
fibration. Consequently, all the obtained results are valid for Cartan foliations with
zero transverse curvature that admiting an Ehresmann connection.

Conformal foliations of codimension q, q ≥ 3 According to [20, Thm. 5], any non-
Riemannian conformal foliation of codimension q ≥ 3 with an Ehresmann connection
is covered by fibration.

Foliations with an integrable Ehresmann connection Recall that an Ehresmann
connection M for a foliation (M,F ) is called integrable if the distribution M is integrable
i.e. if there exists the foliation such that TF t = M. Accoding to Kashiwabara’s theorem
[10], foliations with an integrable Ehresmann connection are covered by fibrations.

Suspended foliations The construction of a suspension foliation was proposed by
A. Haefliger and described in detail in [18]. Note that suspension foliations form a class
of foliations with integrable Ehresmann connection and are covered by fibrations.

Cartan foliation of codimension q = 1 Any smooth one-dimensional distribution
is integrable, so a Cartan foliation (M,F ) of codimension q = 1 with an Ehresmann
connection is covered by fibration.

6 Proof of Theorems 1 and 2

6.1 Regular covering maps

Definition 4. Let f : M → B be a submersion. It is said that ĥ ∈ Diff(M) lying

over h ∈ Diff(B) relatively f if h ◦ f = f ◦ ĥ. In this case ĥ is called a lift of h with
respect to f :M → B.

Let κ̃ : K̃ → K be the universal covering map, where K and K̃ are smooth
manifolds. By analogy with Theorem 28.10 in [4], it is easy to show that for any

h ∈ Diff(K) there exists h̃ ∈ Diff(K̃) lying over h. For an arbitrary covering map
the same statement is incorrect, in general. It is not difficult to prove the following
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criterion for the existence of lifts of arbitrary diffeomorphisms with respect to regular
covers.

Proposition 1. Let κ : K̂ → K be a smooth regular covering map with the deck
transformation group Γ. A diffeomorphism ĥ ∈ Diff(K̂) lies over some diffeomorphism

h ∈ Diff(K) if and only if it satisfies the equality ĥ ◦ Γ = Γ ◦ ĥ.

6.2 Proof of Theorem 1

Suppose that a Cartan foliation (M,F ) modeled on an effective Cartan geometry

ξ = (P (N,H), ω) is covered by a fibration r̃ : M̃ → B, where κ̃ : M̃ → M is the

universal covering map. The fibration r̃ : M̃ → B has connected fibres and simply
connected space M̃ . Therefore, due to the application of the exact homotopic sequence
for this fibration we obtain that the base manifold B is also simply connected.

For an arbitrary point b ∈ B take y ∈ r̃−1(b) and x = κ̃(y). Without loss genera-
lity, we assume that there is a neighbourhood Ui, x ∈ Ui, from the (N, ξ)-cocycle

{Ui, fi, {γij}}i,j∈J which defines (M,F ) and a neighbourhood Ũi, y ∈ Ũi, such that

κ̃|Ũi
: Ũi → Ui is a diffeomorphism.

Let Ṽi := r̃(Ũi). Then there exists a diffeomorphism φ : Ṽi → Vi satisfying the
equality φ ◦ r̃|

Ũi
= fi ◦ κ̃|Ũi

. The diffeomorphism φ induces the Cartan geometry η
Ṽi

on Ṽi such that φ becomes the isomorphism (Ṽi, ηṼi
) and (Vi, ξVi

) in the category Car

of Cartan geometries. The direct check shows that by this way we define the Cartan
geometry η on B, and η|Ṽi

= ηṼi
, i ∈ J . Thus, the statement (1) is proved.

Let us fix points x0 ∈ M and y0 ∈ κ̃−1(x0) ∈ M̃ . Then the fundamental group

π1(M,x0) acts on the universal covering space M̃ as the deck transformation group

G̃ ∼= π1(M,x0) of κ̃. Since G̃ preserves the inducted foliation (M̃, F̃ ) formed by fibres

of the fibration r̃ : M̃ → B, then every ψ̃ ∈ G̃ defines ψ ∈ Diff(B) satisfying the

relation r̃ ◦ ψ̃ = ψ ◦ r̃. The map χ : G̃ → Ψ : ψ̃ → ψ is a group epimorphism and the
statement (2) is proved.

Observe that G̃ is a subgroup of the automorphism group Aut(M̃, F̃ ) of (M̃, F̃ ) in
the category CF. Therefore Ψ is a subgroup of the automorphism group Aut(B, η) in
the category of Cartan geometries Car. The kernel ker(χ) of χ determines the quotient

manifold M̂ := M̃/ker(χ) with the quotient map κ̂ : M̃ → M̂ and the quotient group

Ĝ := G̃/ker(χ) such that M ∼= M̂/Ĝ. The quotient map κ : M̂ → M is the required

regular covering map, with Ĝ acts on M̂ as a deck transformation group. The map
Ĝ→ Ψ : ψ̃ · ker(χ) 7→ χ(ψ̃), ψ̃ ∈ G̃, is a group isomorphism. Thus the statment (3) is
proved.

6.3 The associated foliated bundle

Let (M,F ) be a Cartan foliation modeled on Cartan geometry ξ = (P (N , H), ω) of
type (G,H). Then there exists a principal H-bundle with the projection π : R → M ,
the H-invariant foliation (R,F) and the g-valued H-equivariant 1-form β on R which
satisfy the following conditions:

(i) β(A∗) = A for any A ∈ h;

(ii) the mapping βu : TuR → g ∀u ∈ R is surjective, and ker(βu) = TuF ;

(iii) the foliation (R,F) is transversely parallelizable;
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(iv) the Lie derivative LXβ is equal to zero for every vector field X tangent to the
foliation (R,F).

Definition 5. The principal H-bundle R(M,H) is called the foliated bundle over the
Cartan foliation (M,F ). The foliation (R,F) is called the lifted foliation for the Cartan
foliation (M,F ).

If the lifted foliation (R,F) is formed by fibres of the locally trivial fibration
πb : R → W , then W = R/F is a smooth manifold , and a g-valued 1-form β

such that π∗
b β̃ := β and locally free action of the Lie group H on W are induced.

In this case, (W, β̃) is a parallelizable manifold and A(W, β̃) is the Lie group of its

automorphisms that acts freely on W . Further, as above, by AH(W, β̃) we denote the

closed Lie subgroup of A(W, β̃) formed by transformations commuting with the induced
action of the Lie group H on W .

6.4 Proof of Theorem 2

Suppose that a Cartan foliation (M,F ) is covered by fibration. By definition 1, the

induced foliation (M̃, F̃ ) on the space of the universal covering κ̃ : M̃ → M is defined

by a locally trivial fibration r̃ : M̃ → B. Due to Theorem 1, the regular covering map
κ : M̂ → M and locally trivial fibration r : M̂ → B are defined, where B is a simply
connected manifold with the inducted Cartan geometry η. Let Ψ be the global holonomy
group of the foliation (M,F ), then Ψ is isomorphic to the deck transformations group

G of the covering κ : M̂ → M . Since the manifold M̃ is simply connected, there exists
the universal covering map κ̂ : M̃ → M̂ satisfying the equality κ ◦ κ̂ = κ̃. Let G̃, G
and Ĝ be the deck transformation groups of the covering maps κ̃, κ and κ̂ respectively,
with Ψ ∼= G ∼= G̃/Ĝ.

Let us consider the following preimages of the H-bundle R respectively κ̃ and κ

R̃ := {(x̃, u) ∈ M̃ ×R | κ̃(x̃) = π(u)} = κ̃∗R and

R̂ := {(x̂, u) ∈ M̂ ×R | κ(x̂) = π(u)} = κ∗R.

Remark that the maps

θ̃ : R̃ → R : (x̃, u) 7→ (κ̃(x̃), u) ∀(x̃, u) ∈ R̃,

θ : R̂ → R : (x̂, u) 7→ (κ(x̂), u) ∀(x̂, u) ∈ R̂,

θ̂ : R̃ → R̂ : (x̃, u) 7→ (κ̂(x̃), u) ∀(x̃, u) ∈ R̃,

are regular covering maps with the deck transformation groups Γ̃, Γ and Γ̂, respectively,
which are isomorphic to the relevant groups G̃, G and Ĝ, i.e. Γ̃ ∼= G̃, Γ ∼= G and Γ̂ ∼= Ĝ.

Let (R̃, F̃) and (R̂, F̂) be the corresponding lifted foliations for (M,F ). Since

(M̃, F̃ ) and (M̂, F̂ ) are simple foliations, then (R̃, F̃) and (R̂, F̂) are also simple

foliations, which are formed by locally trivial fibrations π̃b : R̃ → W̃ and π̂b : R̂ → Ŵ .
Hence g0 (R̃, F̃) = 0, g0(R̂, F̂) = 0, and W̃ = R̃/F̃ , Ŵ = R̂/F̂ are manifolds.

Since the fibrations r̃ : M̃ → B and r : M̂ → B have the same base B, each
leaf of the foliation (M̃, F̃ ) is invariant respectively the group Ĝ, i.e. Ĝ ⊂ AL(M̃, F̃ ).

Therefore Γ̂ ⊂ AL(R̃, F̃) and the leaf spaces R̃/F̃ = W̃ and R̂/F̂ = Ŵ are coincided,

i.e. W̃ = Ŵ . Consequently, basic automorphism groups AB(R̃, F̃) and AB(R̂, F̂) may

be identified. Further we put AB(R̃, F̃) = AB(R̂, F̂).

8



According to the conditions of Theorem 2, Ψ is a discrete subgroup of the Lie group
Aut(B, η). Let N(Ψ) be the normalizer of Ψ in the Lie group Aut(B, η) ∼= AH(W, β̃).
Hence, N(Ψ) is a closed Lie subgroup of the Lie group Aut(B, η) and the quotient
group N(Ψ)/Ψ is also a Lie group.

Let π : R → M be the projection of the foliated bundle over (M,F ). Due to the
discreteness of the global holonomy group Ψ, the lifted foliation (R,F) is formed by
fibres of some locally trivial fibration πb : R → W , which is called the basic fibration.

Observe that there exists a map τ : Ŵ →W satisfying the equality τ ◦π̂b = θ◦πb. It
is easy to show that τ : Ŵ →W is a regular covering map with the deck transformations
group Φ, Φ ⊂ AH(Ŵ , β̂), which is naturally isomorphic to each of the groups Ψ, G and
Γ.

Denote by η = (P (B,H), ω) the Cartan geometry with the projection p : P → B

onto B determined in the proof of Theorem 1. Remark that Ŵ = P is the space of the
H-bundle of the Cartan geometry η.

Since κ : M̂ → M , θ : R̂ → R and π : R → M are morphisms of the following
foliations κ : (M̂, F̂ ) → (M,F ), θ : (R̂, F̂) → (R,F) и π : (R,F) → (M,F ) in the
category of the foliations Fol, then maps τ̂ : B → M/F and s : W → W/H ∼= M/F
are defined, and the following diagram

P = Ŵ

p

��

τ //W

s

��

κ̃∗R = R̃
π̃B

gg◆◆◆◆◆◆◆◆◆◆◆

π̃
��

θ̂

// κ∗R = R̂

π̂B

kk❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

θ
//

π̂
��

R

πB

<<③③③③③③③③③③

π

��
M̃

r̃

xx♣♣♣
♣♣
♣♣
♣♣
♣♣
♣

κ̂ // M̂

r

ss❤❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

κ //M
q

!!❈
❈❈

❈❈
❈❈

❈❈

M̂/F̂ = B
τ̂ //M/F

is commutative.
Due to Proposition [15, Thm. 1] there are the Lie group isomorphisms

ε : AB(M,F ) → im(ε) ⊂ AH(W, β̃) and

ε̂ : AB(M̃, F̃ ) = AB(M̂, F̂ ) → im(ε̂) ⊂ AH(Ŵ , β̂).

Let us define a map Θ : im(ε) → N(Φ)/Φ by the following a way. Take any

h ∈ im(ε) ⊂ AH(W, β̃). Denote the element ε−1(h) ∈ AB(M,F ) by f · AL(M,F ) ∈

AB(M,F ), where f ∈ A(M,F ). Since κ̃ : M̃ → M is the universal covering map there

exists f̃ ∈ Diff(M̃) lying over f relatively κ̃. It not difficult to see that f̃ ∈ A(M̃, F̃ ).

Hence f̃ ·AL(M̃, F̃ ) ∈ AB(M̃, F̃ ). Consider ĥ := ε̂(f̃ ·AL(M̃, F̃ )) ∈ im(ε̂) ⊂ AH(Ŵ , β̂).

The direct check shows that ĥ lies over h respectively τ . Remind that Φ is the deck
transformation group of the covering map τ : Ŵ → W . Applying the Proposition 1, we
get that ĥ ∈ N(Φ), hence the set of all automorphisms in im(ε̂) lying over h is equal

to the set of transformations from the class ĥ ·Φ. Let us put Θ(h) := ĥ ·Φ ∈ N(Φ)/Φ.
It is easy to check that the map Θ : im(ε) → N(Φ)/Φ is a group monomorphism.

The effectiveness of the Cartan geometry η = (P (B,H), ω) on B, where P =

Ŵ , implies the existence of the Lie group isomorphism σ : AH(Ŵ , β̂) → Aut(B, η).

Observe that σ(Φ) = Ψ and σ(N(Φ̃)) = N(Ψ), hence there exists the inducted Lie
group isomorphism σ̃ : N(Φ)/Φ → N(Ψ)/Ψ. Thus, the composition of the Lie group

9



monomorphisms

δ := σ̃ ◦Θ ◦ ε : AB(M,F ) → N(Ψ)/Ψ

is the required Lie group monomorphism. Due to uniqueness of the Lie group structure
in AB(M,F ), in conforming with [15, Thm. 1], the image im(δ) is an open-closed
subgroup of the Lie group N(Ψ)/Ψ.

7 Basic automorphism groups of Cartan foliations

with an integrable Ehresmann connection

7.1 Proof of Theorem 3

1. According to the conditions of the theorem being proved, (M,F ) has an intagrable
Ehresmann connection M. In this case, distribution M is integrable. In this case, there
is q-dimensional foliation (M,F t) such that TF t = M.

Let κ̃ : M̃ → M be the universal covering map. According to the decomposition
theorem belonging to S. Kashiwabara [10], the universal covering manifold M̃ is equal

to the product of manifolds M̃ = Q̃ × B, where Q̃ is the universal covering manifold
for any leaf of the foliation (M,F ), and B is the universal covering manifold for any

leaf of the foliation (M,F t). The induced foliations F̃ = κ̃∗F = {Q̃ × {y} | y ∈ B},

F̃ t = κ̃∗F t = {{z} × B | z ∈ Q̃} are defined. Therefore, (M, F) is covered by fibration

s̃ : Q̃×B → B. In this case, by the same way as in the proof of Theorem 1, the Cartan
geometry η is induced on B such that (M,F ) becomes an (Aut(B, η), B)-foliation.

2. Let Ψ be the global holonomy group of this foliation. Suppose now that the
normalizer N(Ψ) is equal to the centralizer Z(Ψ) of the group Ψ in the group Aut(B, η).

Let us fix points x0 ∈M and (z0, y0) ∈ κ̃−1(x0) ∈ M̃ . Then the fundamental group

π1(M,x0) acts on the universal covering space M̃ = Q̃×B as the deck transformation

group G̃ ∼= π1(M,x0) of κ̃. Since G̃ preserves both the inducted foliations (M̃, F̃ ) and

(M̃, F̃ t), then every g̃ ∈ G̃ may be written in the form g̃ = (ψt, ψ), where ψt generates

a subgroup Ψt in Diff(Q̃), ψ ∈ Ψ, and g̃(z, y) = (ψt(z), ψ(y)), (z, y) ∈ Q̃ × B. The

maps χ̃ : G̃→ Ψ : g̃ → ψ and χ̃t : G̃→ Ψt : g̃ → ψt are the group epimorphisms.
Let h be any element from N(Ψ)/Ψ. Since N(Ψ) = Z(Ψ), we have the following

chain of equalities

g̃ ◦ (id
Q̃
, h) = (ψt, ψ) ◦ (id

Q̃
, h) = (ψt ◦ id

Q̃
, ψ ◦ h) =

(id
Q̃
◦ ψt, h ◦ ψ) = (id

Q̃
, h) ◦ (ψt, ψ) = (id

Q̃
, h) ◦ g̃

for any g̃ = (ψt, ψ) ∈ G̃, i.e. G̃ · (id
Q̃
, h) = (id

Q̃
, h) · G̃. Therefore, by the Proposition 1,

for the deck transformation group G̃, there exists h̃ ∈ Diff(M) such that (id
Q̃
, h) lies

over h̃ respectively to κ̃ : M̃ →M .
Taking into account that (id

Q̂
, h) ∈ A(M̃, F̃ ), it is not difficult to check that

h̃ ∈ A(M,F ). Hence, ε(h̃ ·AL(M,F )) = h. This means that ε : AB(M,F ) → N(Ψ)/Ψ
is surjective. Thus, ε is a the group isomorphism.

Since N(Ψ) is a closed Lie subgroup of the automorphism Lie group Aut(B, η),
and Ψ is a discrete subgroup of N(Ψ), the quotient group N(Ψ)/Ψ is a Lie group.
Therefore, the group isomorphism ε induces a Lie group structure in AB(M,F ) such
that ε : AB(M,F ) → N(Ψ)/Ψ becomes a Lie group isomorphism. According to [15,
Thm. 1], the Lie group structure in AB(M,F ) is unique.
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7.2 Example of finding a basic automorphism group

Let S
q be a q-dimensional standard sphere, where q ≥ 3. We identify S

q with
R

q ∪ {∞}, where {∞} is the point at infinity. Define the transformation ψ : Sq ∼=
R

q ∪ {∞} → S
q by equality ψ(z) = λz for any z ∈ S

q ∼= R
q ∪ {∞}, where λ is a

real number, and 0 < λ < 1. We denote by Conf(Sq) the Lie group of all conformal
transformations of the sphere S

q.
Let Ψ =< ψ > be the subgroup of the group Conf(Sq) generated by ψ, and Ψ

is isomorphic to the group of integers Z. Define the action of the group Z on the
product of manifolds R

1 × S
q by the equality n(t, z) = (t − n, ψn(z)) for any n ∈ Z,

(t, z) ∈ R
1×Z. This action is free and properly discontinuous. Therefore, the manifold

of orbits M = R
1 ×Z S

q is defined. Denote by f : R1 × S
q → M the quotient map.

Fix a point (t0, z0) ∈ R
1 × S

q, put x0 = f(t0, z0) ∈ M . Then the fundamental group
π1(M,x0) acts on the universal covering space R1×S

q as the deck transformation group

G̃ ∼= π1(M,x0) of f . Since the action G̃ preserves the structure of the product R1× S
q,

then two foliations (M,F ) and (M,F t), covered by trivial fibrations pr2 : R
1×S

q → S
q

and pr1 : R
1×S

q → R
1 respectively, are defined. Let us denote by χ : R1 → S

1 = R
1/Z

and ν : Sq → S
q/Ψ the quotient maps onto the orbit spaces. Let r :M →M/F be the

quotient map onto the leaf space. Observations show that the topological spaces M/F
and S

q/Ψ are homeomorphic and satisfy the commutative diagram

R
1

χ

��

oo pr1
R

1 × S
q pr2 //

f

��

S
q

ν

��
S
1 oo

p M r
// S

q/Ψ ∼= M/F,

where p : M → S
1 is the projection of the locally trivial fibration transforming the

orbit Z.(t, z) of a point (t, z) ∈ R
1 × S

q, considered as a point from M , into the orbit
Z.t of a point t ∈ R

1, considered as a point of the circle S
1. Since the manifold M is

the space of a locally trivial fibration p : M → S
1 over the circle S

1 with a compact
standard fiber S

q, then M is compact.
The distribution M tangent to (M,F t), is an integrable Ehresmann connection for

the foliation (M,F ). The foliation (M,F ) has two compact leaves L1 and L2 which are
diffeomorphic to the circle S

1. Every other leaf L of (M,F ) is diffeomorphic to R
1, and

its closure L is equal to the union L ∪ L1 ∪ L2. We emphasize that (M,F ) is a proper
conformal foliation, which can be regarded as a Cartan foliation of type (G,H), where
G = Conf(Sq) and H is a stationary subgroup of the group Conf(Sq) at some point
in S

q.
As is known, H ∼= CO(q)⋉R

q is a semidirect product of a conformal group CO(q) ∼=
R

+×O(q) and a normal abelian subgroup R
q. Note that Ψ is the global holonomy group

of the foliation (M,F ), and Ψ is a discrete subgroup of the Lie group Conf(Sq).
The direct check shows that the normalizer of the group Ψ is equal to N(Ψ) =

R
+ × O(q), and N(Ψ) coincides with the centralizer Z(Ψ). Applying Theorem 3, we

obtain that the group of basic automorphisms AB(M,F ) is a Lie group isomorphic to
the quotient group N(Ψ)/Ψ ∼= U(1)× O(q), where U(1) ∼= S

1. Thus, the Lie group of
basic automorphisms AB(M,F ) is isomorphic to the product of Lie groups U(1)×O(q).
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