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CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS

BY ALEXANDER BRAVERMAN, PavEL ETINGOF
AND MicHAEL FINKELBERG
WITH AN APPENDIX BY HIRAKU NAKAJIMA
AND DAISUKE YAMAKAWA

To Ivan Cherednik with admiration

ABSTRACT. — We show that the partially spherical cyclotomic rational Cherednik algebra (ob-
tained from the full rational Cherednik algebra by averaging out the cyclotomic part of the underlying
reflection group) has four other descriptions: (1) as a subalgebra of the degenerate DAHA of type A
given by generators; (2) as an algebra given by generators and relations; (3) as an algebra of differential-
reflection operators preserving some spaces of functions; (4) as equivariant Borel-Moore homology of
a certain variety. Also, we define a new ¢g-deformation of this algebra, which we call cyclotomic DAHA.
Namely, we give a g-deformation of each of the above four descriptions of the partially spherical ratio-
nal Cherednik algebra, replacing differential operators with difference operators, degenerate DAHA
with DAHA, and homology with K-theory, and show that they give the same algebra. In addition, we
show that spherical cyclotomic DAHA are quantizations of certain multiplicative quiver and bow va-
rieties, which may be interpreted as K-theoretic Coulomb branches of a framed quiver gauge theory.
Finally, we apply cyclotomic DAHA to prove new flatness results for various kinds of spaces of ¢-de-
formed quasiinvariants.

RESUME. — Nous démontrons que 1’algebre rationnelle cyclotomique de Cherednik partielle-
ment sphérique (obtenue a partir de I’algebre rationnelle de Cherednik compléte en effectuant la
moyenne par la partie cyclotomique du groupe de réflexions sous-jacent) admet quatre autres des-
criptions: (1) comme une sous-algeébre de la DAHA degenerée de type A donnée par générateurs;
(2) comme une algebre donnée par générateurs et relations; (3) comme une algeébre des opérateurs
différentiels-réflexions préservants certains espaces des fonctions; (4) comme I’homologie de Borel-
Moore équivariante d’une certaine variété. Aussi nous définissons une nouvelle g-déformation de cette
algébre que nous appelons DAHA cyclotomique. A savoir, nous donnons une g-déformation de chacune
des descriptions ci-dessus de ’algebre rationelle de Cherednik partiellement sphérique, remplagant les
opérateurs différentiels par les opérateurs en différences, DAHA dégénerée par DAHA, et ’homologie
par la K-théorie; et démontrons qu’ils donnent lieu a la méme algebre. En outre, nous montrons que
les DAHA sphériques cyclotomiques sont les quantifications de certaines variétés de carquois et arc
multiplicatives, qui peuvent étre interprétées comme les branches de Coulomb K-théoriques d’une
théorie de jauge de carquois encadrée. Enfin, nous appliquons la DAHA cyclotomique pour prouver
de nouveaux résultats de platitude pour des types différents d’espaces de quasi-invariants g-déformés.
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1250 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

1. Introduction

Let N > 0,/ > 0 be integers, cg,...,c/—1, h, k be parameters, and ¢ = (co,...,C1—1).
Let IEHi\’,cyc(c, h, k) be the cyclotomic rational Cherednik algebra attached to the complex
reflection group W = Sy x (Z/1Z)" . Let p be the symmetrizer of the subgroup (Z/1Z)",
and Hﬂﬁ\’,psc (c.h,k):= p[EHk,CyC (c, h, k)p be the corresponding partially spherical subalgebra.

In this paper we give a geometric interpretation of H—]I—H;’,psc as the equivariant Borel-Moore

homology of a certain variety R = R(N,I) equipped with a group action. This allows
us to define a natural g-deformation HHY, of IHHI;’,F’SC in terms of the equivariant K-theory

of RN, 1), which we call the cyclotomic double affine Hecke algebra (DAHA).

The existence of this ¢g-deformation may seem somewhat surprising from the viewpoint of
classical algebraic theory of DAHA ([15]), since typically DAHA are attached to crystallo-
graphic reflection groups (Weyl groups), while the group W is not crystallographic for [ > 3.
Yet, we also give a purely algebraic definition of cyclotomic DAHA. Namely, we characterize
the cyclotomic DAHA as the subalgebra of the usual Cherednik’s DAHA for GLy gener-
ated by certain elements, and also as the subalgebra preserving certain spaces of functions.
Finally, we present cyclotomic DAHA by generators and relations. These three descriptions
also make sense in the trigonometric limit ¢ — 1 (for partially spherical cyclotomic rational
Cherednik algebras). We note that for / = 1, cyclotomic DAHA essentially appeared in [3].

We also connect cyclotomic DAHA with multiplicative quiver and bow varieties. Namely,
we show that the spherical cyclotomic DAHA e HH Il\, (Z,1,t)e (where e is the symmetrizer of
the finite Hecke algebra) is commutative, and its spectrum for generic parameters is isomor-
phic to the algebra of regular functions on the multiplicative quiver variety for the cyclic
quiver of length / with dimension vector (N, ..., N); hence e HH }\, (Z,q,t)eis a quantization
of this variety. In particular, we show that this multiplicative quiver variety is connected,
and that HH le (Z,1,1) is an Azumaya algebra of degree N! over this variety. We also show
that if # is not a root of unity then the algebra e HH 1lv (Z,1,t)eis an integrally closed Cohen-
Macaulay domain isomorphic to the center Z(HH 1lv (Z,1,1)), while HH 1lv (Z,1,t)e is a
Cohen-Macaulay module over this algebra.

Finally, we provide some applications of cyclotomic DAHA to the theory of quasiinvari-
ants. Namely, we show that natural ¢-deformations of various classes of spaces of quasi-
invariants are flat, and therefore free modules over the algebra of symmetric polynomials.
We also introduce a new type of quasiinvariants (namely, twisted quasiinvariants) and their
g-deformation, and prove the freeness property for them.

We note that the degenerate cyclotomic DAHA were studied in a way similar to ours by
R. Kodera and H. Nakajima in [30]. In fact, their paper was one of the starting points for
our work.

The paper is organized as follows. In Section 2 we develop the theory of partially spher-
ical cyclotomic rational Cherednik algebras as subalgebras in trigonometric (degenerate)
DAHA, and give their presentation. In Section 3 we define cyclotomic DAHA as subalge-
bras of DAHA, and study their properties. We also give a presentation of cyclotomic DAHA,
which allows us to find various bases in them and prove flatness results. In Section 4 we give a
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CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1251

geometric description of cyclotomic DAHA and their degenerate versions in terms of equiv-
ariant K-theory and Borel-Moore homology, and apply it to proving flatness of these alge-
bras. In Section 5 we relate the spherical subalgebra of cyclotomic DAHA at ¢ = 1 with
certain multiplicative quiver and bow varieties; the latter are isomorphic to the K-theoretic
Coulomb branch of framed quiver gauge theories of affine type A. We also study the prop-
erties of the spectrum of the spherical cyclotomic DAHA for ¢ = 1. In Section 6 we give
applications of cyclotomic DAHA to proving flatness of g-deformation of various spaces of
quasi-invariants. Finally, Appendix , written by H. Nakajima and D. Yamakawa, explains the
relations between multiplicative bow varieties and (various versions of) multiplicative quiver
varieties for a cyclic quiver.

Acknowledgments. — The work of M.F. has been funded within the framework of the
HSE University Basic Research Program and the Russian Academic Excellence Project
‘5-100°. The work of M.F. has been partially funded by the Russian Academic Excellence
Project ‘5-100°. We are grateful to J. Stokman for useful discussions and reference [3];
to O. Chalykh for his comments cited in Remarks 3.26, 5.19; to J. F. van Diejen and S.
Ruijsenaars for Remark 3.25; to E. Rains for explaining the connection with [27] and
[39, 38] (Remark 3.12) and pointing out that Lemma 2.13 and Theorem 2.10(i) need the
assumption that k ¢ Z + 1/2; to B. Webster for sharing [44] with us prior to its publication
and explaining its results (see Remark 2.21); to J. Kamnitzer for explaining the KLR-type
construction of the convolution algebras of Section 4.1 to us; and to H. Nakajima for
explaining to us the results of [30] (see Remark 2.21). Also, Sections 5.4 and 5.5 are due to
H. Nakajima’s patient explanations.

2. Degenerate cyclotomic DAHA

2.1. Notation

In this paper, we will consider many different algebras depending on parameters. So let us
clarify our conventions.

First of all, if an algebra depends on parameters, we will list the parameters explicitly when
they are given numerical values, and omit them when they are indeterminates (i.e., we work
over a commutative base algebra generated by them). Also, throughout the paper, we will use
the following notation, to be defined below.

o HHpy 4co (R, k): the degenerate (trigonometric) DAHA, Definition 2.1;

o HH 1lv deg (z,h, k), z := (21, ..., z;): the degenerate cyclotomic DAHA, Definition 2.8;

. IHHI;’,cyC(c, h,k), ¢ := (co,...,ci—1): the cyclotomic rational Cherednik algebra for the
group S, X (Z/1Z)", Definition 2.16;

o IEH?(,FSC (c,h.k) = p]I-]I-]Iﬁ\’,cyc (c.h,k)p: the partially spherical cyclotomic rational
Cherednik algebra, Subsection 2.8;

e HHy(q,t): Cherednik’s DAHA, Definition 3.1;

e HH If\}’rmal(h, k): formal Cherednik’s DAHA over C[[¢]], with ¢ = e®" and 1 = e ¥,
Subsection 3.1;

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1252 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

I—ﬂLIII\, (Z,q,t), Z :=(Z4,...,7Z;): the cyclotomic DAHA, Definition 3.9;

IﬂLIII\;formal(z,h, k), the formal cyclotomic DAHA, with ¢ = e®", Z; = ¢®% and
t = e~% Definition 3.9;

HH " (h, k), the rational Cherednik algebra for Sy, Example 2.17;

nydeg: the geometric version of the degenerate cyclotomic DAHA,
C*XT(W)px PxC*

H, (R), Section 4;
° @7@5\,: the geometric version of the cyclotomic DAHA, K€ XTMW)exPxC( @)y
Section 4.

2.2. Degenerate (trigonometric) DAHA

Let A, k be variables.

DEFINITION 2.1. — The degenerate (or trigonometric) double affine Hecke algebra
(DAHA) HHy 4eg is generated over C[h, k] by 71, s0,...,s5y-1,Y1,..., yn with defining
relations

st =1, sisiv18i = Sipa8iSipr, si8; = 858 i — j # +1, w8 = sipa7,
i, yi] =0, mwy; = yiqamw ifi # N, ryn = (y1 — )7,
siyi = Yi+18i + k. 1f1 #0,50yn = (y1 — h)so + k.
Isi. 3] = 0if i —j # %1,

where addition is mod N.

PROPOSITION 2.2. — The algebra HHy gcq is generated by Sy x ZN  (generated by s;
and invertible commuting elements X1, ..., Xy ) and elements yy, ..., yN with commutation
relations

Siyi = Yit1Si + k. siy; = yjsi, j # i+ 1,
i, yj1 =0,
[yi. Xj] = kXjsij. i > ],
i, X;] = kX;sij, i < J,
[yvi. Xi] = hX; —k Z Xrsir —k ZXisirv
r<i r>i
and the relations of Sy x ZN, where s;; is the transposition of i and j. Namely, the transition

between the two definitions is given by the formulas

-1
7= X151---SN-1, So = Xy X181nN.

Proof. — The proposition is standard, and the proof is by a direct computation; see e.g.,
[40], Section 2. O
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REMARK 2.3. — The commutation relations between y; and X in Proposition 2.2 can be
replaced by the relations

@.1) i, [ Tx1 =] X5 or [ yis X1 = hX;,
J J i

and

(2.2) 2, X1] = kX1s1.

Indeed, the relation for [y;, X;], i # j can be obtained from (2.2) by the action of Sy, and
then the relation for [y;, X;] can be obtained by using one of the relations (2.1).

Note that HH v qcg is a bigraded algebra: deg(X;) = (1,0), deg(y;) = deg(h) = deg(k) = (0, 1),
deg(s;) = (0,0). Moreover, the PBW theorem for the degenerate DAHA, which follows from
the existence of its polynomial representation (see Subsection 2.3) implies that HH y qcg 1S @
free bigraded module over C[A, k].

Also, we have the specialization HHy deg(h, k) of the degenerate DAHA at h,k € C,
which is defined by the same generators and relations, where %,k are numerical. The
bigrading on HHy ¢cg induces a grading on this specialization defined by deg(X;) = 1,
deg(y;) = deg(s;) = 0 and an increasing filtration F* compatible with this grading, defined
by deg(X;) = deg(s;) = 0, deg(y;) = 1.

2.3. The polynomial representation
Let D; be the rational Dunkl operators
k
Dl‘ = ha,- — Z X,' — Xj (1 —S,‘j),
J#i
where 0; is the derivative with respect to X;, and s;; is the permutation of i and j (50 s; =s5;,+1).
Define the trigonometric Dunkl operators by the formula

D;rig = XiDi —k ZS,‘]‘.

J<i

The following well known proposition is due to Cherednik ([14]; see also [40], Proposi-
tion 3.1).

PROPOSITION 2.4. — We have a representation p of HHn geg(R, k) on P := CIXEL ..., Xﬁl],
defined by
p(si) = si fori #0, p(r) = X151+ 5N-1,
p(so) = sin X7 ' Xn,
p(yi) = D"
Proof. — The relations involving only 7 and s; are easy. Let us prove that [o(y;), p(ym)] = 0
fori < m. Using that [D;, X;,] = ksi,, and [D;, D,,] = 0, we get

[0(yi) p(m)] = kXiSimDm — kXmSimDi — k[Xi Di, sim] + k> [sij,Sim + Sjm].
i<j

The first three summands cancel, and the last summand is zero, as desired.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1254 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

Let us prove the commutation relations between p(7) and p(y;). Fori < N we have

p(m)p(yi) = X151 sn1(X;iDi =k Y sij)

Jj<i
=X1Xit1Diy1 — k Zsj+1,i+l)sl S SN—1
j<i
= (Xix1Dig1 =k Y sjprit)Xast syt —kXip181i4151 SN -1
J<i

= p(yi+1)p(m).
Also p(") = X1+ Xy, s0 p(r™)p(yi) = (p(yi) — h)p(x™), which implies that the relation
wyN = (y1 — h)m is preserved.
Let us show that the relation s; y; = y;+15; + k for i # 0 is preserved. We have
p(si)p(yi) = siit1(XiDi —k Y sij)
j<i
= (Xit1Dit1 =k ) sivr)sii1 = pic)p(si) + k.
j<i
The relation soyny — (1 — h)so + k is obtained from the previous relation by conjugation
by n. Finally, the relation [s;, y;] = Ofori — j # £l iseasyfori # 0,and fori = 0O1is
obtained from the case i = 1 by conjugation by 7. The proposition is proved. O

DEFINITION 2.5. — The representation P of HH y gee (R, k) is called the polynomial repre-
sentation.

It is easy to see that the polynomial representation is faithful when i # 0. Moreover,
replacing /0; with momentum variables p;, we can make it faithful in the limit # = 0 (see
[23], 2.10).

Let )y be the algebra of differential operators in X1, ..., Xy with poles at X; = 0 and
X; = X;. Then the algebra CSy x )y acts naturally on P[A™!], where

A= H(Xi - Xj).
i<j
and p defines an inclusion

PH‘IN,deg(l,k) — (CSN X @N-

We will use this inclusion to view HHy geg(1. k) as a subalgebra of CSy x Z)y. Note that
the filtration F* on HHy, 4eg(1, k) is induced under this inclusion by the order filtration on
differential operators.

Let v, be the automorphism of the algebra CSy x )y fixing X; and sending s; to —s;
and 0; to 9; + Zj;ﬁ,- X,~+X,-’ i.e., conjugation by |A[*sign(A) on the real locus.

LEMMA 2.6. — The algebra Yo (HH N e (1, k)) C CSy X Dy preservesP. In other words,
HHy 4co(1, k) preserves |A|*sign(A)P.

4¢ SERIE — TOME 53 — 2020 - N° 5
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Proof. — We need to check that

2k
Dy)y=D1— ) ——
Vi (D1) 1 Z X—X,
J#1
k 2k
=0d1— )y ——(L+s _—
1 ZXI—Xj( +SU)+ZX1—X]'
J#1 J#1
k
=+ ) ——(1—s;)
preserves P, which is straightforward. O

Let e= %erst be the symmetrizer of Sy. The algebra eHHpy gco(h. k)e is
called the spherical subalgebra of HHpy geq(h, k); it has the polynomial representation
eP = C[Xit!,... . XF5V. Let H := e(}; y?)e € eHHp geg(fi. k)e. This element acts on
the polynomial representation by the trigonometric Calogero-Moser Hamiltonian.

LEMMA 2.7. — The algebra A := eHHy 4c4(1, k)e is generated by H and (C[Xlil e Xﬁl]SN.

Proof. — The algebra A has a filtration F* given by deg(X;) = deg(s;) = 0, deg(y;) =1,
and gr(4) = (C[Xlil, ey Xﬁl,pl, ..., pN15V with Poisson bracket corresponding to the
symplectic form Y"; dp; AdX;/X;. Since the symbol of H is Hy := Y_; p?, it suffices to check
that gr(A) is Poisson generated by C[X 1i1, o X ﬁl]SN and H,. For this it suffices to show
that the Poisson algebra B generated by these elements contains F, s := Y, X/ p], where r is
any integer and s a nonnegative integer, as such elements generate gr(A4) as a commutative
algebra (by a theorem of H. Weyl). The Poisson bracket is given by {p;, X;} = 8;; X;, and X;
are pairwise Poisson commutative, as are p;. So for r # 0

1
Fr,s = ;{XI: pizv Fr,s—l}»

and F,o = Y; X € C[X{!, ..., XE1S¥ C B. So it remains to show that Fo s € B. For
this, it suffices to note that

1
Fos = ——{F_ ,Fi0}. O
0,s s + 1{ 1,s+1 1,0}

2.4. Degenerate cyclotomic DAHA

DerINITION 2.8. — Let [ € Z>o, z1,...,z1€C, and z = (z1,...,z;). The degen-
erate cyclotomic DAHA is the subalgebra HH jlv deg(z,h, k) of HHpy 4eg(h, k) generated
bys;j,i=1,....,N—1,y;,i =1,..., N, m, and the element

1
nim [T -2

i=1

Similarly, if z;, A, and k are variables, we define HH IZV,deg to be the subalgebra
of HH N deg[z1, - - ., z1] generated by the same elements.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1256 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

Note that by this definition
HH, 4o (. k) = HH acg (. k). HHY 400 (z' 1. k) € HHY 400 (2.1 k)

if I’ > [ and z’ D z as a multiset.
For u € C, let ¢, be the automorphism of CSy x &)x which preserves X;, s;, and sends
9; to d; +uX " (i.e., conjugation by ([]; X;)*).

PROPOSITION 2.9. — The algebras ¢, (I%va,deg(z, 1,k)), i €[1,1], preserve the subspace
P, :=C[Xy,..., Xn] C P. In other words, the algebra HH}V’deg(z, 1, k) preserves ([]; X;)* P+
foralli.

Proof. — We only need to show that 7~ '¢,, (y1 — z1) -+ (y1 — 2;)) preserves P... Note
that y; = X1D1,50 ¢, (y1) = y1+2z;. Thus, we need to check that 1y, nj?éi i—zj+zi)
preserves P . But this holds since 77 'y; = sy_;---5; D preserves P, (and, of course, so
does y1). O

A similar result holds when z;, k are variables.

THEOREM 2.10. — (1) [27] If k ¢ Z + 1/2 then HH y acs(1, k) is the algebra of all elements
of the algebra Sy x Q) which preserve P and | A|**sign(A)P.

(ii) Suppose z; — zj are not integers and k € C is Weil generic V) (i.e., outside a countable
set). Then the algebra Iﬂ-IIIV’deg (z,1,k) is the subalgebra of all elements of HH n gcg (1, k) which
preserve ([1; X;)? Py for alli.

(ii1) Under the assumption of (ii), the algebra HH Ilv’deg(z, 1,k) is the subalgebra of all
elements of Sy = )y which preserve P, |A|*sign(A)P, and (I1; Xj)# Py foralli.

Theorem 2.10 is proved in the next two subsections.

2.5. Thecase N =1

Let us first prove Theorem 2.10 for N = 1. Let B;(z) := HHll(l, z) (the parameter k
does not enter in this case). The algebra B;(z) is generated by X = X, the Euler element
E :=X0d=y;,and

Li=a_=XYX0-2z1)---(X0—2z).

Then Theorem 2.10 for N = 1 reduces to the following statement.

PROPOSITION 2.11. — If'z; — zj are not integers for i # j then Bj(z) is the algebra of all
differential operators on C* which preserve X* C|X| foralli = 1,...,1.

Proof. — Itisclear that every element of B;(z) preserves X % C[X], sincesodo X, E and L.
So we need to show that any operator M which preserves X % C[X] belongs to B;(z).

Suppose that M is of degree r, i.e, M = X"g(E), where g is some polynomial. If
r > 0,then M € Bj(z), as E € B;(z). So it remains to consider the case r = —¢g, where
g > 0. Then M has to annihilate X% ,..., X% 4 ~1 for all i (which are all different thanks
to the condition on the z;), so the degree of g is at least g/. On the other hand, if we take
g(y) = PPy — - P(y — q + Dh(y) where P(y) := (y —z1)---(y — z1), then
M = X 9g(E) = L9h(E),so M € Bj(z). This shows that M always belongs to B;(z)

() We don’t know if Theorem 2.10 (ii), (iii) actually fails for any value of k ¢ Z + 1/2.
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(as we can subtract L2k (E) to make the degree of the polynomial < ¢/). The proposition is
proved. O

REMARK 2.12. — Wehave E = XL + z;forl = land E = %([L,X] +z14+2z—1)
for [ = 2, so one may ask if B;(z) is in fact generated by L, X (i.e., if £ can be expressed via
L, X). Itis not hard to show that this is indeed the case for generic z;. Butif / > 3 and z; are
special, then the algebra B;(z) may not be generated by X, L. Indeed, let z; = 0,2z, = 1,
z3 = 2, and the other z; be arbitrary. Then B;(z) preserves C[X] and X2C[X], so has a
2-dimensional representation V = C[X]/(X?) where L acts by 0 and X acts nilpotently.
Hence, if Bj(z) C B;(z) is the subalgebra generated by L, X then every element of B;(z) has
only one eigenvalue on V. On the other hand, E has eigenvalues 0,1 on V, so E ¢ B;(z).

We will also need the following “unsymmetrized” version of Proposition 2.11 for [ = 2.
Let A(k) be the rational Cherednik algebra with parameter k attached to the group Z/27Z,
i.e., generated by x, s € Z/27 such that sx = —xs,and D = d — %(1 —5).

LEmMa 2.13. - Ifk ¢ Z + % then A(k) is the algebra of all elements of CZ /27 = J(C*)
which preserve C[x] and |x|**sign(x)C[x]. @

Proof. — 1t is clear that A(k) preserves these spaces, since so do its generators. So it
remains to show that any element M preserving these spaces is in A(k). We may assume
that M is homogeneous. Note that £ := %(xD 4+ Dx — 14 2k) = xd € A(k). So if
M is of nonnegative degree, then M = x"(g1(E)(1 — s) + g2(E)(1 + s)), where g1, g2
are some polynomials, hence M € A(k) automatically. Now suppose deg(M) = —¢q < 0,
e, M = x72(g1(E)(1 — 5) + g2(E)(1 + s5)). The operator M has to annihilate x™ and
sign(x)|x|**x™ for 0 < m < g — 1, so g1 (u) is divisible by ]_[?;(l)(u —j =+ (=DhHk),
while g, (u) is divisible by I—[?;(l)(u — j — (1 = (=1)7)k) (here we use that these products have
no repeated factors since k ¢ Z + 1/2). On the other hand, it is easy to see by acting on
monomials x? that

g—1
xTJE=j =+ =D)Hk)-(1—5) = DI(1—s),

Jj=0
while
qg—1
JE=-j == =D)k)-(1+5) = DIl +35).
j=0
which are both in A(k). This implies the lemma. O

@ Lemma 2.13 fails if k € Z + 1/2. For example, if k = 1/2 then the element (x 19 — x~2)(1 — s) preserves
the required spaces but is not in A(k).
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2.6. Proof of Theorem 2.10

Let us prove (i). By Lemma 2.13 and Lemma 2.6, HHn 4cg(1, k) is the space of elements
of Sy x &)y which upon formal completion at a generic point of each hyperplane X; = X,
(in the sense of [7]) lie in the formal completion of A(k) ® Wy_;, where Wy _; is the Weyl
algebra of N —1 variables. So (i) follows from the results of [19] (see also the appendix to [7]).

Itis clear that given (i), statements (ii) and (iii) are equivalent, so let us prove (ii) (assuming
[ > 0, as thecase! = 0is trivial). First consider the case k = 0. In this case, the result follows
from the following lemma.

LEMMA 2.14. — Let L € Sy x D(C*)®N be an element preserving the space (]_[j X)) Py
foralli. Then L € Sy x B;(z)®V.

Proof. — Let L =} .5, 0Lo, where L, are differential operators. Consider a
generic point x in the hyperplane X; = 0, and let E; be the formal completion of the
C[Xi,..., Xy]-module ([]; X;)* Py near the Sy-orbit of x. Then E; = Py,es, Eio>
where Ej ¢ is the completion of ([]; X;)* P+ at the point ox. It is clear that L preserves E;
for all i. This implies that for each o, Ly preserves E; ;. Hence L, preserves (] ] ;Xj)FPy
for all i and o. Thus we may assume without loss of generality that L € (C*)®" is a
differential operator.

Itis clear from taking completions that L preserves the space X;' C[X1, X 23:1 . ¢ f\}l] for
all i. Therefore, by Proposition 2.11, for any v € C[X}!, ..., X%, v € C[XF!, ... . XF)*
the differential operator (Id ® ¥)(L(Id ® v)) € Z(C*) in fact belongs to B;(z). Let {a;} be
a basis of B;(z), and {a}} its extension to a basis of Z)(C*). We can uniquely write L as

L = Zai ®L; + Za} ® L.
i J
Thus we have

> v(Liviai + Y y(Ljv)a) € Bi(2).
i J

Hence y(Lv) = 0 for all j. Since this holds for all ¥, we have L’v = 0. Since this holds
for all v, we have L = 0. Thus L = Y ;a; ® L; € Bi(2) ® SD(C*)®N-1 e, the first
component of L lies in B;(z). A similar argument applies to all the other components. Thus,

L € B;(z)®V, as desired. O

Now, consider the case k # 0. By Proposition 2.9, elements of HH }l\, deg(l, k) preserve
the spaces (]_[j X;)?'P4. Thus we only have to show that HH}lv,deg(L k) is “big enough”, i.e.,
coincides with the algebra Ay (z, k) of all the elements preserving the spaces ([ | G Xj)FP.
But this follows for Weil generic k from the case k = 0 by a standard deformation argu-
ment (the algebra can only “get bigger” if we deform its generators). More precisely, recall
that we have a grading on the algebra Sy x )y defined by deg(X;) = 1, deg(s;) = 0,
deg(0;) = —1 inherited by HH N gcg(1,k), An(z,k), and HH]IV,deg(z, 1,k), and the filtra-
tion F* by order of differential operators, and it is not hard to see that for each s,
FSAn(z,k) is a finitely generated graded C[Xy,..., Xny]-module. Thus, for each r,s, the
space FSAn(z,k)[r] is finite dimensional. Hence, for each r,s the set of k € C for which
F*$ HH]lv,deg(Zv 1,k)[r] # FSAn(z, k)[r] is finite.
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2.7. Comparison to the cyclotomic rational Cherednik algebra for N = 1

Let us now consider the cyclotomic rational Cherednik algebra HHY®® of rank 1 with

parameters i and ¢ = (co,...,c;—1) (see [21, 23]. By definition, this algebra is generated
over C[h, cp, ..., cj—1] by x and the cyclotomic Dunkl operator

-1
Deye = ho — x7! Zcio’,
i=0

where
o(x)=tx, (=l

This algebra is bigraded by deg(x) = (1,0), deg(Dcy) = (—1,1), deg(o) = (0,0),
deg(h) = deg(c) = (0, 1), and by the PBW theorem (see [18, 22]) is a free bigraded module
over Clc,]. We also have the algebra HH (¢, h) with numerical parameters, i.., the

1,cyc

specialization of HH["™", and it carries a grading and a compatible filtration F*°.

We have ]HHIII"’yc(c, 1) c CZ/1Z x &), where &) = &), is the algebra of differential oper-

ators on C*, and the filtration F* on ]I-]I-]Ill’cyc (c, 1) is induced by the order filtration on differ-
ential operators.

Let p be the symmetrizer of Z/[7Z. Then we have a spherical subalgebra B;(c) :=

pH—]HIll’Cyc (¢, 1)p. This algebra acts naturally on C[x*!], where X = x'.

PROPOSITION 2.15. — If z; — z; are not integers then B;(z) = B;(c) inside EndC[x*1],
where c; are related to zj by the linear inhomogeneous change of variables

1 ..
(2.3) =i +;cj§lf).

Proof. — Fix ¢ and let us find values of u for which X*C[X *!] is preserved by B;(c). The
condition is that there exists 1 < i <[ such that D¢y, (x* ! (xH)*) = 0, where we treat (x!)*
as a Z/ lZ-invariant. This gives the equation

i—l+lu—> ¢t =0,
J
ie.,
1 ) .
U=z = 7(1—1 —}—]ch{”).

This yields the desired change of variable.

Now, B; (c) preserves the subspaces X % C[X 1], so by Proposition 2.11 we have an inclu-
sion B;(c) C Bj(z). To show that this is actually an equality, it suffices to observe that the
element L of B;(z) is proportional to Déycp. O
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2.8. Comparison to cyclotomic Cherednik algebra for general N

Let us now extend the result of the previous subsection to general N.

DEFINITION 2.16. — The cyclotomic rational Cherednik algebra for the group
Sy X (Z/1Z)N, ]I-]I-I[;’,cyc, is the algebra generated over C[co,...,ci—1,h k] by the group
Sy % (Z/1Z)N, elements x;, and the cyclotomic Dunkl operators, also called Dunkl-Opdam
operators, [18, Definition 3.2]:

-1
1 : 1 ~
Dijcyc = ho; — — ZCjOl.j —k Z —m(l — SirGimUr ™,
Xi = — x; — ("X,
Jj=0 r#i,m

fori =1,..., N, where o; is ¢ acting in the i-th component.

As in the rank 1 case, this algebra is bigraded by deg(x;) = (1,0), deg(D; cyc) = (—1,1),
deg(o;) = (0,0), deg(h) = deg(c) = deg(k) = (0,1), and by the PBW theorem
(see [18]) is a free bigraded module over C[c, i, k]. We also have the algebra ]I-]I-]Iﬁ(,cyc (c,h, k)
with numerical parameters, i.e., the specialization of ]HI-]I;’,CYC, and it carries a grading and a
compatible filtration F*°.

Let p be the symmetrizer of the subgroup (Z/1Z)", and ]}H;’,psc(c, hk) = pH—]Iﬁ\’,Cyc(c, h,k)p
be the corresponding partially spherical subalgebra.

ExaMPLE 2.17. — Let! = 1. Then ]I-]I-]I;’,psc(c, h. k) does not depend on ¢ (up to a natural
isomorphism), and is the rational Cherednik algebra HH (%, k), generated by X;, D;, and
s € Sy such that X;, D; are permuted by Sy and satisfy the relations

[Xi, X;] = [Di, D;] =0,
[Di, X;] = ksij, [Di, Xi] = h—k ) sij.
J#i
Also in this case p = 1.
THEOREM 2.18. — Suppose z; — z; are not integers and k is Weil generic. Then we have

a natural isomorphism H&Ii\}psc(c, 1.k) = HH} deg(> 1,Kk), where z; are expressed via c; by
Formula (2.3). This isomorphism preserves the order filtration for differential operators.

Proof. — We have a natural faithful action of IHHIﬂ(,pSC (c,1,k) on P. Moreover, it is easy to
see that Hﬂi\’,psc(c, 1, k) satisfies the conclusion of Theorem 2.10(iii) (this follows by taking
formal completions at generic points of reflection hyperplanes, as in [19], and using Propo-

sition 2.15). Therefore, by Theorem 2.10, HIYP* (¢, 1.k) = HH} 4., (z. 1.k). O
One of our main results is the following theorem.

. . . . R
THEOREM 2.19. — (i) We have a natural isomorphism of bigraded algebras 6 : HIP* =~

HH le deg’ where z; are expressed via c; and h by the homogenization of Formula (2.3):
1 ) .
(2.4) zi = 7 (i —i) + ;cj;’f).

(i) HH jlv deg 18 @ free bigraded C|zy, ..., z;, h, k]-module, and HH zlv (z, h, k) are special-

izations of this algebra.

deg
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(ii1) The isomorphism 6 induces an isomorphism
I
Oz e : B (¢, hok) = HHY 4.0 (2. h. k)

forall zj, h, k € C, which is compatible with the grading and the filtration.

Proof. — Let gr(HH}V’deg(z, 1,k)) = m{I{/,deg(O’ 0,0) be the associated graded algebra
of HH zlv deg(z, 1, k) with respect to the filtration by order of differential operators. Then
gr(HH }V,deg(z, 1,k)) contains Sy x A®N, where A4 is the algebra of functions on the
Aj_;-singularity, generated by X, XP, and X !(XP)! (where P is the symbol of 9).
On the other hand, gr(Hﬂé\}psc(c,l,k)) clearly coincides with Sy x A®Y. Since by
Theorem 2.18, IHHIé\’,p (c,1,k) = HH ]lv deg (75 1, k) for Weil generic parameters, we conclude
that gr([—ﬂﬁlllv,deg(z, hk)) = Sy x A®N for all z;, h, k. This implies Theorem 2.19. O

REMARK 2.20. — 1. Since the degenerate DAHA has a G,-action given by y; — y; + a
and trivial on other generators, the algebra HH Il\/,deg(z’ 1,k) does not change under the
transformation z; — z; + a (i.e., it depends only on the differences z; — z;4+1). Under the
isomorphism of Theorem 2.19, this symmetry transforms into the symmetry ¢y — co + la.

2. Another proof of Theorem 2.19(ii) is given in the next subsection.

REMARK 2.21. — The isomorphism of spherical subalgebras of ]I-]I-]Iﬁ\’,pSC and HH Il\/,deg is
due to Kodera and Nakajima [30]. More precisely, the parameters of the cyclotomic rational
Cherednik algebra in [30] are related to ours by the formula AXV = —F, c,’,fN =cp(1=0")
for m # 0 (and ¢X is not used in [30]). Also in [30], one has Y-\ ¢,, = 0 and thus z; = 0,
which is not really a restriction due to the symmetry z; — z; + a, co — co + la.

Also, this isomorphism is closely related to the new presentation of the full cyclotomic
DAHA Hﬂé\’,cyc (c, h, k) given in [28, 3.3] and [44, Section 2]. Namely, the element e’x{~'oe’
in [44, (4.1)] (which in terms of the pictures is wrapping around the cylinder £ — 1 times, and
a little further so as to cross the seam £ times) matches up with our element 7_, and similarly

e'yt~1ze’ matches with our element 7 (with £ in [44] equal to our /).

2.9. A presentation of HH 1lv deg by generators and relations

Let us give a presentation of HH ]I\, deg by generators and relations. As generators we will
use the elements of Sy, y1,...,yn, X1,..., Xn, and the elements

) 1 1 _
Dl.() = sliDg )s.;, where Di) = X' —z1) - (1 — 21).

Obviously, these elements generate HH jlv so we only need to write down the relations.

deg’
First of all, the elements s € Sy, y; and X; satisfy the relations of Proposition 2.2, except
that X; are no longer invertible.

We also claim that

2.5) 0. D1 =0.
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Indeed, it suffices to check it fori = 1, j = 2. Then we have
DODY = X7 (y1 —z1) -+ (1 — 20512 X7 (1 — 20) -+ (01 — 21)s12
= X;'s12(ya +ksia—z1) - (2 + ks12 —2) X7 (1 — 21) - (1 — 21)s12
= X' X5 51202 —z1) - (2 — 2) (1 — 21) -+ (V1 — 21)S12.
This expression commutes with 515, which implies the statement.

We also see by direct computation that

1. DV = —hD® + &3 51 DY
i>1

and

! n .
;- D1 = —ksy; DY, j > 1.
Finally, we write down the commutation relations between Dl.(l) and X;.

LEMMA 2.22. — We have
I r—1

1
D X1 =3 [Ton =z +h=k Yo sipi=kI_sip) [ 1=z,

r=1i=1 Jj>1 Jj>1 i=r+1
and form > 1
I r—1 I
DO Xl =k Y [0 —zi 4+ h=k Y si)s1m [] 1 —20).
r=li=1 j>1 i=r+1

Proof. — The first relation holds because

D, X1l = P(y1 + h=k Y s17) = P(y1).

j>1
where P(y) = (y — z1) --- (y — z;7). To prove the second relation, note that

DV, X = X7 (P(31) = P01 — ks1m)) Xim

I r—1 1
= kZXl_l H(yl _Zi)slm 1_[ (yl —Zj —kslm)Xm

r=1 i=1 i=r+1
I r—1 I
:kZXTIH(YI—Zi)XISIm l_[ 1 —z)
r=1 i=1 i=r+1
I r—1 !
= kZ l_[(yl —zi + h—stlj)slm l_[ (yl —Z,‘),
r=1i=1 j>1 i=r+1
as desired. O

Note that the commutation relations between Dl.(l) and X, fori > 1 can now be obtained
by conjugating the relations of Lemma 2.22 by Sy .

4¢ SERIE — TOME 53 — 2020 - N° 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1263

PRrROPOSITION 2.23. — Letl > 1. Let My be a monomial in X;, Mp a monomial in Dl-(l),

M, a monomial in y; with degrees of all the y; at most | — 1, and s € Sy. Then the
elements of the form Mx My,sMp form a basis in HH le - in particular, HH 1lv is a free
Clh, k, z1, . . ., zj]-module.

deg’ deg

Proof. — Tt is easy to see by looking at the polynomial representation that these elements
are linearly independent, so we only need to establish the spanning property. Since the
generators are monomials of this form, it suffices to show that any (unordered) monomial
ins, X;, yi, Di(l) can be reduced to a linear combination of such standard monomials.

Let us introduce a filtration by setting deg(Sy) = 0, deg(y;) = 2, deg(X;) = deg(Di(l)) =1.
Using the above commutation relations, we can reduce any monomial to ordered form by
adding corrections of lower degree. Further, by using the relation

x, 0" = P(y)

and its conjugates, we can reduce powers of y; to 0, ...,/ —1. This implies the statement. [J
Thus, we obtain the following proposition.

PROPOSITION 2.24. — The degenerate cyclotomic DAHA Iﬂ'—ljlv deg IS generated by Sy and
elements y;, X;, D;, i = 1,..., N, with the following defining relations:
Siyi = Yi+18i +k,siy; = yjsi, j #i,1 + 1,
[yvi.yjl =0,
sXi = X54)s, s € Sy, [Xi, X;] =0,
i, X1] = kX515, i > 1,
1. X1l = hX1 —k Y Xisu,
i>1
SDi = Ds(i)s, [Di,Dj] = 0,
[yj,Dl] = —kslle, j>1,

V1. D1] = =hDy +k Y _suD1.

i>1
I r—1 1
Dy X1 =) [Jor—zi+h=kD siphi=k > s1)) T[] 1 -z,
r=1i=1 j>1 j>1 i=r+1
I r-1 1
Dy Xn) =k Y [Jor1—zi+h=k ) si)sim [] Gr—z).m> 1,
r=1i=1 j>1 i=r+1

X1Dy=(y1—z1) - (y1—z1).
Proof. — This follows from Proposition 2.23 (with D; = Dl.(l)). O

REMARK 2.25. — Itis easy to check using this presentation that we have an involution ¢
on HH zlv deg given by

¢(h) = —h, ¢p(k) = —k, ¢(X;) = D;i, ¢(D;) = Xi, ¢(sij) = sij,
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PO =yi+h—k Y sij.
J#i
The existence of this involution is also clear from the isomorphism of HH deg With Hﬂ?{,psc,
since the latter algebra is well known to have such an involution (coming from the corre-
sponding involution of the cyclotomic rational Cherednik algebra exchanging the coordi-
nates with the Dunkl operators).

The proof of Proposition 2.23 in fact shows that for any / > 0 ordered products
of Mx,M,,s, Mp in any of the 24 possible orders are a spanning set for Iﬁ]}v,deg, and
those of them with degrees of y; at most / — 1 are a basis for / > 1. This implies that we also
have another basis of this algebra, formed by monomials Mx MpsM, without restriction
on the degree of y;, but with the restriction that for each i either X; is missing in My or
D; is missing in Mp. Indeed, if this restriction is not satisfied, we may use the relation
X1D; = P(y1) and its permutations to lower the number of X; and D;, and it is easy to
see by looking at the polynomial representation that monomials with this restriction are
linearly independent. Thus we obtain the following proposition.

PROPOSITION 2.26. — The elements Mx Mp which miss either X; or D; for each i form
a basis of HHIIV deg 485 @ left or right module over the degenerate affine Hecke algebra Hpy deg

generated by s € Sy and y;, 1 < i < n; in particular, HH Il\, is a free module over this

deg
subalgebra.
Note that the basis of Proposition 2.26 is labeled by N-tuples of integers, (m1,...,my).
Namely, if My Mp contains X/ then we set m; = p, and if it contains D/ then we set
m; = —p.

We note that Propositions 2.23 and 2.26 also follow from Theorem 2.19. Yet another,
geometric proof of Proposition 2.26 will be given in Section 4.

3. Cyclotomic DAHA

3.1. DAHA and formal DAHA
Recall the definition of Cherednik’s double affine Hecke algebra (DAHA), [15].
Letg,t € C*,and r = t2.

DeriNITION 3.1. — The DAHA HHy(gq,t) is generated by invertible elements
X;,Y:,i=1,...,N,and T;,i = 1,..., N — 1, with relations ®

(T; —t)(T; +t71) =0, (R1)
TiTitaTi = Tit1Ti Tita,s (R2)

LTy =TT (li — j| = 2). (R3)

T XiTi = Xi+1, (R4)
TiX;=XT; (j #i.i+1), (R5)

® This algebra really depends on t rather than ¢ = t2, but it is traditional to use the parameter ¢, implying that
a square root of this parameter has been chosen, see [15]. While somewhat clumsy, this convention turns out to be
more natural from the viewpoint of Macdonald theory.
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LY, T; =Yiqq, (R6)

LY, =Y;T; (j #i.i +1), (R7)
X7 X Y, = T2, (R8)
VX =¢XY;, (R9)

X;Y =q7 'YX, (R10)

[Xi. Xj] =0, (R11)
[Y;,Y;] =0. (R12)

where X :=[]; X; and ¥ =[], V.
We can define the element
To:=T7 Ty, - T X' Xy

which together with 73,7 = 1,..., N — 1 generates the affine Hecke algebra of type Ay —1 in
the Coxeter presentation (i.e., relations (R1),(R2) are satisfied for all i, j € Z/NZ).

Similarly one defines the algebra HHy over C[g*!, t+1].

We will also consider a formal version of DAHA over C[[¢]], in which ¢ = e°" and
t = ek fork e C. Namely, set 7; = sie ¢ksil2 'y, = e®i and let HH]f\;’rmal(h,k) be
the e-adically complete algebra generated over C[[¢]] by s;, X; and y; with the relations of
Definition 3.1. We can also treat A, k as indeterminates, working over C[A, k].

Note that using (R6), relation (R8) can be written as

Xy T X TN Ty = T
or
XlTlYl =T1Y1T1X1T1. (R8a)
This shows that HHy has the Cherednik involution ¢ defined by ¢(q) = g~ 1, p(t) = t71,
(X)) =Y oY) = X7 o(Ty) =T "
3.2. The quasiclassical limit of the formal DAHA

The following proposition is well known; for instance, in the rank 1 case it appears in [15].

PROPOSITION 3.2. — The algebra Iﬂi%rmal(h, k)/(e) is isomorphic to the trigonometric
DAHA HHy geo (R, k), and PHLI%’,rmal(h, k) is a flat deformation of HHN deg (. k).

Proof. — To prove the first statement, we need to show that the DAHA relations of
Definition 3.1 degenerate to the relations of the trigonometric DAHA.

Clearly, relation (R1) yields si2 = 1, and relations (R2,R3) yield s;5;+15; = Si+15i8i+1
and s;5; = sjs5; for1 <i,j <N —1and|i — j| > 2. Relations (R4,R5) give 5; X; = X;s; if
j #i,i +1,and s; X; = X;4+15;. Relation (R6) gives a trivial relation in zeroth order, but in
the first order it gives

—ksi + 5iyisi = Vi1,
which yields

8iVi = Yi+18i + k.
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Relation (R7) gives

[si,y1 =0, j #i.i + 1.
Relation (R8) yields

y2— X7 'y Xy = —ksy,
which is equivalent to

[V2, X1] = kXys1.
Relations (R9,R 10) yield

Do [TX0 =0 ], D2 yin Xj1 = hX;.
J J i
Finally, relations (R11, R12) yield

[Xi, X;] =0, [yi,y;] = 0.

It is easy to see that these relations are exactly the relations of HH y 4c¢ (T, k) given in Propo-
sition 2.2 (see Remark 2.3).

The second statement of the proposition follows from the first one and the PBW theorem
for DAHA ([15)).

O
3.3. The polynomial representation of DAHA

PROPOSITION 3.3. — [15] We have an action of HH n(q,t) on P given by
p(Xi) = Xi,
(T;) = ts; + -t (si — 1)
pLLi) = 1S X/ Xit1 — 1 i )
p(Yi) =t p(T - Tyl Dap(Ty -+ Tiy).

where (wf)(X1,...,Xn) = f(¢Xn,

e XN—1).

The same formulas define a representation of I—H-ij\}’rmal(h, k). The representation p of
DAHA on P is called the polynomial representation of DAHA.

PROPOSITION 3.4. — The quasiclassical limit (i.e., reduction modulo ¢) of the polynomial

representation of I-ﬂ‘lf&’rmal(h, k) coincides with the polynomial representation of the trigono-
metric DAHA given by Proposition 2.4.

Proof. — The proof is by a direct calculation.
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3.4. The cyclotomic DAHA
Let 7 € HH y(g,t) be the element given by the formula
m=X1T1---Tn-1.
LetZy,....Z; € C*,and Z = (Z4, ..., Zy}).

DEerINITION 3.5. — The subalgebra HHﬂV(Z,q,t) of HHy(q,t) is generated by
T;,i=1,....N—1,Y;,i =1,...,N, , and the element

l
= T[_l H(Yl - Z,‘).

i=1
Letzy,...,z; € C,and Z; = g% (for some choice of branches).

PROPOSITION 3.6. — The algebra HH', ~(Z,q.t) preserves the space (H X;)? Py foralli.

Proof. — We only need to check that _ preserves this space. For this, it is enough to prove
that for any u € C, the element X' (Y; — ¢*) preserves the space ([] ; Xj)"P4. To this end,
note that

_1 _ .
p(Ti—l) =tls + ()t(»ﬂ——t)))((»l(si —1).
Now consider
G p(Yy) =T - p(TR! e
— a4+ ()1( )X (1 —s12)) -+ (1 + (;N ?;1 (1= s,

where 7; replaces X; with ¢X; and keeps X; fixed for i # j. By opening the brackets, this
product can be written as a sum of 2% terms (as in each factor, we can take the first or the
second summand). If we take the first summand from all factors, we get 71, and X; ! (t1 —¢%)
clearly preserves ([ [; X;)"P+. So it suffices to show that for each of the remaining 2N 1
terms 7', the operator X7 preserves ([] ; X;j)"P4. But all of these terms have a factor X,
on the left (as so does the second summand in each factor in (3.1)), which implies the desired
statement. O

Let HH i(,formal(z,h,k) be the formal version of HH) (Z,q,t), namely the subalgebra
of I—H-ij\?rmal(h, k) generated by 7;,i = 1,...,N—1,y;,i = 1,..., N, m, and the element

I
1 -1 l_[(Yl i) = 11—[ €

i=1 i=1

V1 _ pZ

COROLLARY 3.7. — Let z; —z; ¢ Z, and k be Weil generic. Then the algebra
I-H-Ié\’,fmmll (z,1,k) is the algebra of all elements of HH ™3\ (1, k) which preserve ([T X;)? P+
Sforalli.
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Proof. — Recall that by Proposition 3.2, HH'9™3(h k) is a flat deformation
of HH n 4eg (R, k), and by Proposition 3.4, the same applies to the polynomial representations
of these algebras. Thus the result follows by a deformation argument from Proposition 3.6
and the fact that a similar statement holds in the trigonometric case (Theorem 2.10(ii)).
Namely, the algebra HH l[;,f°rmal(z, 1,k) is a priori “at least as big” as HH 1’\, deg(Z5 1.K), as
its generators are deformations of generators of HH }V,deg(z, 1,k). At the same time, the

subalgebra of elements of I—H-Ijl\;formal(z, 1,k) preserving ([; X;)* Py for all i is “at most
as big” as HH}V,deg(z, 1,k), as by Theorem 2.10(i1), this condition cuts out I_FIIZV,deg(Z’ 1,k)
inside HHp,qeg(1, k). But by Theorem 3.6, the former subalgebra is contained in the latter

one. This implies the corollary. O
THEOREM 3.8. — For any z1,...,z;, the algebra HH[l\;formal(z, h, k) is a flat deformation
of HHY; 4.4(2, 1, k).

Proof. — Since Iﬂ{]l\;formal(z,h, k) is generated by deformations of generators
of HH Ilv,deg(z,h, k), it suffices to prove this statement for Weil generic z;, &, k, but in
this case it follows from Corollary 3.7. O

Another proof of Theorem 3.8 is obtained from the presentation of HH ]lv given below.

DEFINITION 3.9. — The algebra Iﬂ{}V(Z,q,t) is called the cyclotomic DAHA and
HH l[\’,f(’rmal(z, h, k) is called the formal cyclotomic DAHA.

As usual, one can similarly define versions of these algebras where the parame-
ters are indeterminates. Note also that by this definition HHy (¢q.t) = HHn(g.t), and
I—H-III\;(Z’,q,t) - I—H—I}V(Z,q,t) if /> 1 and Z’ D Z as a multiset.

Thus, the cyclotomic DAHA is a g-deformation of the partly spherical cyclotomic rational
Cherednik algebra. More precisely, it follows from Theorem 2.19 and Theorem 3.8 that
for any zy, .., z;, h, k, the formal cyclotomic DAHA HHII\;formal (z, h, k) is a flat deformation
of H&Ii\}psc(c, h, k), where ¢ is related to z by Equation (2.4). In particular, the cyclotomic
DAHA is interesting already for / = 1, as it provides a g-deformation of the rational
Cherednik algebra HH' (%, k) attached to Sy and its permutation representation.

REMARK 3.10. — Since the DAHA has a Gy,-action given by Y; — a¥; and trivial
on other generators, the algebra HH zlv (Z,q,t) does not change under the transformation
Z; — aZ; (i.e., it depends only on the ratios Z;/Z; +1).

ExaMmPLE 3.11. — Let N =1. Then there is no dependence on ¢, and HH;(q,t) = HH;(q) is
the quantum torus algebra with invertible generators X, Y and relation YX = ¢gXY . Letq be
not a root of unity. The polynomial representation is P = C[X*!] with Y acting by shift,
(Yf)(X) = f(gX), sothat HH;(q) is the algebra of polynomial g-difference operators. The
subalgebra I-H{f (Z,q,t) = I-HLI{ (Z,q) inside HH,(q) is generated by X, Y *!, and

Li= XTHY g™ (Y —g7),

where Z; = g% . We claim that if Z;/Z; ¢ ¢” then HHll (Z,q) is exactly the subalgebra
of all difference operators preserving X% C[X] for all i. Indeed, if we set deg(Y) =0,
deg(X) = 1, then any difference operator of nonnegative degree is in both subalgebras,
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while an operator M of degree —d < 0 has the form X ¢ g(Y), where g is a Laurent polyno-
mial, and applying this operator to X% T/, j < d, we must get zero, so we get g(¢% /) = 0,
i=1,...,1,j=0,...,d — 1. Thus M = th(Y) for some polynomial /.

REMARK 3.12. — We expect that Corollary 3.7 holds in the non-formal setting, i.e.,
HH jlv (Z,q,t) can be characterized as the algebra of elements of HHy (¢q,?) preserving the
spaces (][ X;)? P, as in Proposition 3.6. For N = 1 this is demonstrated in Example 3.11.
Moreover, recall that Ginzburg, Kapranov, and Vasserot ([27]) characterized DAHA (for
any Weyl group W) as the algebra of difference-reflection operators L = . Lypw
(where L, are difference operators) satisfying some residue conditions. These conditions
are equivalent to the conditions that L preserves P and A, P, where A, ; is an appro-
priate meromorphic function. Therefore, we expect that HH 1lv (Z,q,t) can be characterized
as the algebra of difference operators preserving the spaces P, A, P, and ([] X;)% Py
fori=1,...,1.

We note that this approach to DAHA-type algebras in the more general elliptic setting is
developed in the ongoing work [38]. In the one-variable case N = 1 such (spherical) algebras
generated by a given set of difference-reflection operators have been studied in [39].

3.5. Thecasel =1

Let us study the algebra HH ]’\, for / = 1 and give its presentation. These results can be
derived from the case of general / considered below, but the special case / = 1 is especially
nice, and it is instructive to do it separately first.

By rescaling Y; by the same scalar, we may assume without loss of generality that Z; = 1.
Then the algebra HH ), (q.t) := HHY (1,q.1) is generated inside HHy (¢.1) by T;, X;, Y1,
and X71(Y; — 1).

This algebra actually appeared a long time ago in the paper [3]. Let us describe it in more
detail, following [3]. (We note that our conventions are slightly different from those of [3]).

Define the Dunkl elements D;:=T,2}---T7'DyTy -+ T2} € HH\(q.1), where

1 14

Dy = X7'(Y1 — 1). It is easy to check that
D; = T;DiT;. (T3 D] = 0for j #i.i + 1.

LEmMaA 3.13. — We have [Dy, D3] = 0.

Proof. — By definition, we have D, = T ' DT}, so our job is to show that
T7'D\T;'Dy = DT D T
In other words, we must show that
T X' - DT XTI - ) = X7 - DT XN - )T

Since T1 X171 X1 = XX, = X1X, =X, T1 X, Ty, it suffices to prove two identities
in HHy (¢,1):

(3.2) T XN T XYy = X T X T
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and

(3.3)
(D Ol PP G CRN FD Gl €V MR (I Rl FED CR (Y MLED Cu CV MD Cal Pl

Identity (3.2) actually holds already in the braid group. Indeed, we have
T XTI T XY = T X T L T2 XYy = T X T X s
= X7\ T X I LY = XX L T
= X' TR X in T = Xoin 1ot
It remains to establish (3.3). Note that because 7; ! = T; —t + t~!, (3.3) is equivalent to

(3.4)
XD X' Y + TN X TG TN X = XTI T+ Xtn T X T

On the other hand, (3.4) holds already in the group algebra of the braid group (i.e., termwise).
Indeed, we have

T XTI T X = T X T L T2 X = 10 X T XY,
= XX T Y, = XM T XTI T
and
XTI XTYY = X7 X T Y = X T X L T
= X7\ A = xo i T x T O
COROLLARY 3.14. — One has [D;, D;] = 0 for all i, j.

Proof. — Forany j > 1, we have
[D1, D] = [Dl»j}__ll Ty DTt ---Tj__ll] =0,
since D; commutes with every factor by Lemma 3.13. Hence fori < j,
[D;,D;] = [T} --- T ' DTy -+ T2, D] = 0,
again because D; commutes with every factor. O

Thus, 7; and D; generate the “positive part” of an affine Hecke algebra.

When ¢ — 1 and ¢ = ¢, where k is fixed, the algebra HH x(g.1) degenerates to the
rational Cherednik algebra HH (1, k) for Sy (associated to the permutation representa-

tion), and X}, qDTil degenerate to the standard generators of HH (1, k). Thus, let us compute

the commutation relations between D; and X; which deform the corresponding relations
of HH};“(], k).
LeEmMMA 3.15. — One has
X1Dy = DyTEX, + (t—t T !
and

D1 Xy = XoT72Dy — (t—tHT).
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Proof. — We have
Do Xt =T X T X - T T X
Thus, by the proof of Lemma 3.13, we obtain
DoXi{' = X7 T X I T - X X T

= X7'DoTE + X7 X - X !

= X 'D TP+ t—tHXx X
Now the first relation of the lemma is obtained by multiplying both sides by X; on the left
and on the right. To obtain the second relation of the lemma from the first one, it suffices to

multiply the first relation by 77 on both sides, and apply the commutation relations between
Di s X i and T] . O]

COROLLARY 3.16. — Ifi < j, one has

XiDj = D;Tj— "'Ti+1Ti2Tijrl1 ...7"],:11Xi + (t_rl)]“jf_ll ...Tlfl "‘7}:11-

Ifi > j, one has

DjX; = X;T_} ...7}_—#17"]_—27*].“ o TimyDj — (6=t Ty Ty - Ty,

Proof. — First consider the case i = 1. Then

X,D; = X, Tj—_l1 ---T2_1D2T2_1 ...Tj—_l1 = Tj—_l1 ---T2_1X1D2T2_1 ...Tj—_ll_

By the first relation of Lemma 3.15, this implies

XiDj = T2y T DaTP Xa Tyt T2+ (= )T T T Ty T

=D;Tj_1 -~T2T12T2_1 ...Tj—_llxl + (t—t‘l)Tj__ll ---Tz_lTl_sz_l "'Tj_—lp
as claimed. Now consider the general case. We have
XiDj=Ti—1--ThX1T1---Ti-1Dj = Ti—1---T1 X1 DTy - Ti—1
=Ti—1---T1D; Tj—y ---T2T12T2_1 "'Tj__lleTl e Tiy
+t—t HTi_ - Ty Tj—_l1 ---T2_1T1_1T2_1 ...Tj—_l1 Ty Ti_y
= D;Tjo1- T TPT - T Xa + (0= OO T T T T, - T
(here we repeatedly used the braid relations between the 7;). This proves the first relation of
the corollary.
The second relation is proved similarly, using the second relation of Lemma 3.15. O

Finally, let us generalize the commutation relations between D; and X; (which are the only
relations containing ¢). It turns out that it is convenient to write instead the commutation
relations between D; and Zj-vzl X;.

LeEmMA 3.17. — We have
N
[Di.> X1 = (=g )DiX; + DT - T2 T
j=1
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Proof. — First assume i = 1. Looking at the polynomial representation and using
that Z,N=1 X; is symmetric, we find that
N
[D1.) X;]=(1—q"")(D1 X1 + D).
j=1

The general case is now obtained by multiplying both sides by Tl__l1 -+-T7! on the left and
by 77!+ T~} on the right. O

We obtain the following theorem.

THEOREM 3.18. — (i) Let I-H-IJI\,’+(q, t) be the subalgebra of HH]{,(q,t) generated by T,
1<i<N-1,X;,D;,1 <i < N. Then the defining relations for HH]{,’+(q,t) are
(Ti —t)(T; +t71) =0,
LiTinTi = Ti1 TiTiva,
LTy =TT (Ii — j1 = 2),

T XiTi = Xiy1, [Ti, X;] =0 for j #i,i +1,
Di =TiDinT;, [Ti,Dj] =0 Jorj #ii+1,

[Xi, X;] =0,

[Di, D;] =0,

1

DiXi = XiTZ\ - TN T2 T Tiea Dy = A= ) Timy - T Tim, i >

XiD; = DjTj—l---7}+17}2T-111“-7}__11Xi +(t—t_l)7}__11"'7}_1"'7}__117 i<,

N
;.Y X;1=(1—q )(DiX; + DT} - T2 T
j=1
(ii) (the PBW theorem) For any values of parameters, the elements [|; X;"' - Ty, - []; D}
form a basis ofI-H-I;,”L(q, t).
(iii) The algebra HHp(q.t) is obtained from HH ji,’+(q, t) by inverting the element
Y1 =14+ XD;.

Proof. — We have shown in Lemma 3.14, Corollary 3.16, Lemma 3.17 that the claimed
relations between T;, X;, D; are satisfied. These relations allow us to order any mono-
mial as claimed in (ii). Since HH 11\,’f°rmal is a flat deformation of the rational Cherednik
algebra HH Irvat(h, k), the relations in (i) are defining, and the monomials in (ii) are linearly
independent. This implies both (i) and (ii).

Now, by definition, HH} (¢,t) is generated inside HHy(q,1) by HH 1{,’+(q,t) and Y1,
where Y; = 1 4+ X1 D;. This implies (iii). O

The following proposition shows that there is a symmetry between X; and D;. Let us
regard ¢ and t as variables.

PROPOSITION 3.19. — There is an involutive automorphism ¢ ofI-H-II{, such that ¢(X;) = D,
¢(Di) = Xi, p(T;) = T, ¢(t) = t, ¢(q) = ¢~ . This automorphisms preserves the subal-
gebra PH-III\,’+.

4¢ SERIE — TOME 53 — 2020 - N° 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1273

Proof. — 1t is easy to see that all the relations of Theorem 3.18 except the last one are
invariant under ¢. It is sufficient to impose the last relation for i = 1, so let us consider this
case. The relation has the form

¢ " (D1X1 + D)—(X1Dq + 1)

=@t—t )Y GTZy - T T T T Dy 4 Timg - Ty oo i)
i>1

=t—t"HOQ_ Timr---Ti-- Tim)(X1 Dy + 1),
i>1

1€,
DiXi+1=q(+ @t~ Ty Tio Tio)(Xi D1+ 1).
i>1

Using braid relations, we see that 7; --- Ty ---T; = Ty --- T; - - - T1, so this can be also written
as

DiX;+1=q(l+@t—t")Y Ty---Tiy - T1)(X; Dy + 1).

i>1
Now let Jy = Tp--- Tﬁ_l --- T1 be the braid-like Jucys-Murphy element. Then, using the
quadratic relation for Ty_1, we get

IN=@t—t T Ty T1 + In—1.

This yields
Iy =1+@t—tH> Ty Ty Ty,
i>1
so our relation can be simplified to
3.5 D1 X1 +1=¢qJy(X1D; +1).

The invariance of this relation under ¢ reduces to the identity Jy¢(Jy) = 1, which is
obvious from the definitions of ¢ and Jx . This shows that ¢ is a well defined automorphism
of HH ]{,’+, which is obviously involutive.

We also see from (3.5) that ¢(Y7) = ¢Jn Y1, which implies that ¢ extends to HH ]{, O

COROLLARY 3.20. — (i) The last defining relation of I-H-I;,”L(q, t) may be replaced with
N
[Xi.) Djl=(1—q)(XiDi + DTjy---T7 - Ty,
ji=1

(i) The last defining relation of HH 1{,’+(q, t) may be replaced with (3.5).

Proof. — (i) follows immediately from Theorem 3.18, and (ii) from its proof. O
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3.6. A commutative subalgebra in HH le

In this subsection, we will construct a commutative subalgebra inside HH zlv In the case
[ =1, this subalgebra will reduce to the subalgebra C[Dy,..., Dy] constructed in the
previous subsection (so we will obtain an alternative construction of this subalgebra).
Let f € C[X] be any polynomial. Define the elements
Yi(f) = YiTZy - T f(XT DTy - Tiy € HHy.

Also let e be the symmetrizer of the finite Hecke algebra generated by the 7;. (To define e,
we need to invert [N],!).

LemMaA 3.21. — (1) The elements Y; ( f) are pairwise commuting:
[Yi (/). Y; (/)] =0.

(ii) For r > 1 the element M, (f) = (vazl er(Y1(f),....YN([f)))e (where e, is the r-th
elementary symmetric function) commutes with T;, i.e., M. (f) = e M. (f).

Proof. — (1) We may specialize the variables to numerical values. Let us compute the
action of Y; (/) in the polynomial representation. Using Proposition 3.3, we get

p(Yi(f) =t (Tt TR f (XDp(Th -+ Ticy).
Let g(X) be a meromorphic function such that g(g7'X) = g(X)f(X™'). Let us extend
the polynomial representations to meromorphic functions, and conjugate it by the function
G(X1,...,Xn) = g(X1)---g(Xy) This gives a representation pg such that
pe(Yi) = Gp(Y)G™' =tV p(T;7 - Tyl GG p(Ti -+~ Tio)
-1
=tV (T T Do G(Gq(Xl)gl) p(Ty---Tiz1)
=t (T TRl Do f (XTHA(Th - Ticn) = p(Yi(f)).
Thus p(Y;(f)) are pairwise commuting, hence so are Y; (f).
(ii) It suffices to show that ¢/, (/) maps symmetric polynomials to symmetric ones. But

this follows from the fact that p(H, (f)) = pg (M, ), where M, = Zf\;l e,(Y1,....YN),
and ¢/, act in the polynomial representation by Macdonald difference operators, [15]. [

Now let f(X) = (X — Z1)--- (X — Z;). Let us apply the Cherednik involution ¢ to the
elements Y; (f). Namely, let

l — — Dp— _
DY = o¥;(f) =T\ - 17 ' DPTT - T € HHy.

where, DV := X71(vy — Z1) -+ (V1 — Z)).
COROLLARY 3.22. — (i) The elements Dl-(l), i =1,..., N, are pairwise commuting.
(i) The elements M, (f) := @(cM,(f)) commute with T;.

Proof. — This follows from Lemma 3.21. O

ExampLE 3.23. — Let / =1 and f(X) = X — 1. Then we get Dl.(l) = D;. Thus, we
recover the g-deformed Dunkl operators of [3] described in the previous subsection and
therefore obtain another proof of Corollary 3.14.
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Corollary 3.22(ii) implies that the elements M, (/) act on symmetric functions by some

commuting symmetric difference operators M, (f) =: Mr(l). Thus for each / we obtain
a family of quantum integrable systems {M oM 1(\5)} depending on [ parameters
Z1,...,7Z; (and also ¢, t). This system is a g-deformation of the cyclotomic Calogero-

Moser system.

ExaMPLE 3.24 ([3], Lemma 5.3). — We have
N
M® =53] % %(rj —.
j=t \i#j 0 I
Thus, this operator defines a quantum integrable system.

REMARK 3.25. — J. F. Van Diejen and S. Ruijsenaars have explained to us that the system
defined by the operator M; := M 1(1) from Example 3.24 may be obtained as a limit of the
system from [17] defined by the Hamiltonian (3.13a). Namely, conjugating by the Gaussian

exp(d_; (13%0}; q) ) and rescaling X; and M, we can reduce the operator M; to the form

. X, —1X; _ .
M1=Z ]_[X 7 Zx =M - Zx
J=1 \i#j
where M is the first Macdonald operator. (Here we use the identity at the beginning of [17,
p. 1621]). On the other hand, let us multiply the Hamiltonian [17, (3.13a)] by 7o and then put
f1 = i;" and send 7y to 0. Conjugating the resulting operator by an appropriate function,
and again using the identity at the beginning of [17, p. 1621], one obtains the operator M.

REMARK 3.26. — It is interesting to compute the joint eigenfunctions of D(l), e, D%)
and symmetric joint eigenfunctions of M OoM 1(\5). For/ = 1, this is done in [3]. Let us

sketch how this can be done for any / in the nonsymmetric case (without working out any
details).

For simplicity, assume that Z;---Z; = (—1)! (this can be assumed without loss of
generality, as we can simultaneously rescale the Z;). Then f(0) = 1,soforg > 1 we
can set g(X) = [Io—; /(g7 X™1). Given a collection A = (41,...,Axn) of eigenvalues,
let F(X1,...,Xn,A) be the joint eigenfunction of ¥; (i.e., the nonsymmetric Macdonald
function). Then

F(X1,...,Xn,A) == g(X1) - g(XN)F(X1,..., XN, A)

is a joint eigenfunction of Y;(f). So the joint eigenfunctions of Di(l) can be obtained by
applying Cherednik’s difference Fourier transform ([15]) to F(X1,..., Xy, A):

(3.6) F(X1o.. .. XN A) = F Chereanik(F(X1. ... Xy, A)).

For [ = 1 this should recover the formulas of [3].

Also, the following observation was made by O. Chalykh when we sent him a preliminary
version of this paper. Consider the case where Z; = --- = Z; = 0 (this violates our
restriction that Z; € C*, but this restriction is not essential here). In this case, f(X) = X/,
and one can take g(X) to be the /-th power of the Gaussian g(X) = exp((l"g X )2) (this

2loggq
function is not single-valued but this is not important if we restrict to the locus ¢, X € R).
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Therefore, the symmetrized version of Formula (3.6) turns into formula (7.5) in O. Chalykh’s
appendix to [10] (up to changing g to ¢~ !). This shows that the Hamiltonians of the twisted
Macdonald-Ruijsenaars model of Theorem 7.1 in the appendix to [10] (for type Ay—1) are a
special case of the commuting Hamiltonians e, (Dgl), cey Dl(\l,)) when Z; =---=27; =0.

3.7. Presentation of cyclotomic DAHA by generators and relations

Let us give a presentation of HH le (Z,q,t) by generators and relations. We will use as
generators the elements 7;,i = 1,..., N — 1, and X,-,Yiil,Di(l),i =1,...,N.

First of all, the elements T;, X;, Yl.jEl satisfy the relations of DAHA, (R1-R12) from
Definition 3.1. More precisely, we need to rewrite relations (R§-R10) to account for non-
invertibility of X;. Namely, from (R8-R10) we get

(37) Xle = Y]-Xl.Tj—_ll ...’]"i:_llTiZTi_i_l ...TJ-_17 i <]
Similarly, we have
3.8) Y;X; = Tj_—ll ...7’1.:_117}27"1,_'_1 T XY, 0 <

Finally, we have

(3.9) YiTi__ll "'T1_2"‘Ti_—11Xi =gX;T; ...TI%_I - ThY.

Secondly, we have similar relations between D](l) (instead of X;) and T;, Y;. Namely, we know
from Corollary 3.22 that

(3.10) (b D1 =0,

and it follows from the definition that

(3.11) 7' pP17 = DY,
Also since X{ 'Y, = YoT;7 2 X!, we have

(7, DP) = 0 for |i — j| > 2.

pPy, = v,1;72Dp¥.
This implies that
(3.12) DY, = ;T - TN T2 T - T DY, i < .
Similarly, we have

1 1

p{12y, = v, DY,
which implies that
(3.13) DTy T TAT Y, - T Y =YDV i <
Finally, we have

Py, =41, ---T2_,---Ty Y, D,

which gives
(3.14) pPvirt T T =T TR - T DD,

Finally, we write commutation relations between X; and Dj(.l). First of all, we have

315 x, DV =, -z (Y1 = Z). DP X, = (qInYy = Z1) -+ (qInY1 — Z)).
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where Jy =Ty ---T7_, -+ T1. Also we have

I
DY X =3 X7 = Z0) - (N = Zp DV Xl (Y1 = Zpgr) -+ (Yh — Z))

r=1

I
= X7V =Z1) - (V1 = Zr (T2 = DX Y1 (Y1 = Zpga) -+ (Y1 = Z))

r=1

1
=t =0 X' = Z) o (V1 = Zeo )T X Vi (Vi = Zer) - (Y1 = Z)

r=1

I
=t -0 X'V =Z)- (N = Zr )X T (Y1 = Zeg) - (Y1 = Z))
r=1

1
= (t_l —t) Z(qJNyl - Zl)(qJNYl _Zr—l)TlYl(Yl —Zr+1)"'(Y1 - Z])

r=1

Therefore, we have

3.16) [D?, X

1
= (t"1-t) Z(qJNYI—zl)---(qJNYI—z,_l)YzT;Z(YzT;Z—Z,H)---(YZT;Z—Z,)Tl.
r=1
Now the commutation relations between Dl.(l) and X; can be obtained from this by applying
the elements Ty,.
Thus, we have the following proposition. Let I-IHIZ\;Jr be the “unlocalized” version of the
cyclotomic DAHA, generated by T;, X;, Di(l), and Y; (without Yi_l).

PROPOSITION 3.27. — Let My be a monomial in X;, Mp a monomial in Dl-(l), My a

monomial in Y; with powers of Y; being < | — 1. Then the monomials of the form Mx My TsMp,
s € Sy form a basis in I-H-III\;+.

Proof. — It is easy to see from considering the polynomial representation that these
monomials are linearly independent. Therefore, it remains to establish the spanning property.
We consider a filtration with deg(7;) = 0, deg(X;) = deg(Di(l)) =1,deg(Y;) = 2. Wecan use
the above commutation relations to order any monomial without increasing its degree. Then
we can reduce the degrees of ¥; below [ by using the relation X DY) =M-Zy)---("1—-2y)
and its conjugates by the 7;. Namely, we have the relation

l — _ _ — _ _
XD = T2 T2 T = Zy) e (T T T - Z)),

1

which can be used to express the monomial ¥/ as
Y} =x, DT -T2 Tiy +---

where - - is a linear combination of ordered monomials of degrees < / in Y;, T; and mono-
mials of degree / involving Y; in degree < / and some Y; with j < i. For example, fori = 2,
[ =2 we get
) _ -2 -2
XoD,' = (0T 7 = Z)(Y2T - — 2,),
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so we get
YoT; Y, = XzDg)le + lower degree terms .
But
V2T 2Y, = Y7+ (T =)V T,
$O
Y7 = XzDg)le + (t—t HY,Y, T; + lower degree terms .
This implies the required spanning property. O

THEOREM 3.28. — (i) The algebra I-ﬂ‘lll\;+ is generated by T;, X;, D; := Di(l), and Y; with
the following defining relations:

(1) relations (RI-R7), (R11), (R12) of DAHA;

(2) the relations (3.7)—(3.16).

The algebra HH 1lv is defined by the same generators and relations, adding the condition that Y;
are invertible.

Proof. — We have shown that these relations hold. Moreover, it was shown in the proof
of Proposition 3.27 that using these relations, we can reduce every monomial to a linear
combination of basis monomials. This implies that the relations are defining. O

PROPOSITION 3.29. — There is an involutive automorphism ¢ ofI-H-Ijlv such that ¢(X;) = D;,
¢(Di) = Xi, ¢(T1) =T, o) =71, ¢(q) = ¢~ " and
o(Yi) =qT; - Th_ - T, T\ - T2 T2

1

. . . l’+
This automorphism preserves the subalgebra HH \j™ .

Proof. — We check that ¢ preserves the defining relations. Relations (R1-R3) go to them-
selves. Relations (R4,R5) get exchanged with (3.11). Relations (R6,R7) go to themselves
once (R1-R3) are imposed. Relations (R11) get exchanged with (3.10) and (R12) with them-
selves once (R1-R3,R6,R7) are imposed. Relation (3.7) gets exchanged with (3.12), (3.8) with
(3.13), (3.9) with (3.14). Relations (3.15) go to themselves. So it remains to see that relation
(3.16) is preserved.

Let Ky = T+ T3_, -+ T». We have

l
[D2. X1] =) X5 ' (T7% = Z))

r=1

(VT2 = Ze e DT X (YT 2 = Zey) - (Yo T2 = Z)

1
=Y X3 (172 - Z))
r=1

(VT2 = Ze )Y (TT2 = D)X (Yo T2 = Zymy) - (Yo T2 = Zy)
!
=t -0 X3 (LT - 2Z)

r=1

(T2 = Zo )T X (VT2 = Zmy) - (T2 = Z1)
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I
=t -0 X' (LT —-27Z)

r=1

(VT2 = Ze )T 2 X T (VT2 = Zomy) - (Ya T2 = Zy).
Thus,

(3.17) [D2, X1]
I
=" =) (qKnY2—Z) - (qKNY2 = Zr s )GKNY2(Y1 = Z 1) - (Y1 — Z) T}
r=1
Now it is easy to see that ¢ maps (3.16) to (3.17) (as Y; commutes with Ky and Y5, hence
with Ky Y>). O

REMARK 3.30. — It is easy to see that as ¢ — 1, the involution ¢ degenerates to the
involution ¢ on H 1lv deg constructed in Remark 2.25.

COROLLARY 3.31. — The algebra I%I}\fr (Z1,....7Z;,q,t) is a free module over
C[X1.....XN]®C[Dy,..., Dylofrank N\-IN, where the first factor acts by left multiplication
and the second one by right multiplication.

Proof. — This follows immediately from Proposition 3.27. O

The proof of Proposition 3.27 in fact shows that for any / > 0 ordered products
of My, My, T, Mp in any of the 24 possible orders are a spanning set for IﬂLIZI\;Jr, and
those of them with degrees of ¥; at most / — 1 are a basis for / > 1. This implies that we also
have another basis of this algebra, formed by monomials My Mp T My without restriction
on the degree of Y;, but with the restriction that for each i either X; is missing in My or
D; is missing in Mp. Indeed, if this restriction is not satisfied, we may use the relation
X1D; = f(Y7) and its permutations to lower the number of X; and D;, and it is easy to
see by looking at the polynomial representation that monomials with this restriction are
linearly independent. Thus we obtain the following proposition.

PROPOSITION 3.32. — The elements Mx Mp which miss either X; or D; for eachi form a
basis of Iﬁ1}\;+ as a left or right module over the positive part of the affine Hecke algebra H ]‘\,"
generated by Tg,s € Sy and Y;, and a basis of I-H-IZI\, as a left or right module over the affine
Hecke algebra Hy generated by Ts,s € Sy and Yiil; in particular, Ir-ﬂLIII\;+ is a free module
over H;,' and PH-III\, is a free module over Hy .

Note that the basis of Proposition 3.32 is labeled by N-tuples of integers, (m1,...,my).
Namely, if Mx Mp contains Xl.p then we set m; = p, and if it contains Df then we set
m; = —p.

Another geometric proof of Proposition 3.32 (for a geometric version of HH 1lv) will be
given in Section 4.
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4. Geometric realization

4.1. A variety of triples

We consider a quiver with a set of vertices I and a set of arrows Q. Let V = @,; Vi,
W =@,;c; Wi be I-graded finite dimensional C-vector spaces; d; := dimV;. Given
a length ¢ sequence i = (i1,...,i¢) € I* and a length £ sequence a = (ai,...,a;) of
positive integers such that .. _;a, =d; for any i € I, we choose an I-graded flag
inV:V=v">V!>...5 V¥t =0suchthat V"~'/V" is an a,-dimensional vector space
supported at the vertex i, foranyn = 1,...,£.

We set & = C((z)) D CJ[[z]] = O. We consider the following flag of I-graded lattices
nmVeg=V® K:---DL_1DLyDLyD---,where L,y =zL, foranyr € Z; Lo = Vp;
Ly/Ly = V* CV = Lo/Lyforanyn = 1,...,L. Let GL(V) := [];¢; GL(V;), and
let 2 C GL(V)p C GL(V)g be the stabilizer of the flag L.. Then GL(V) g/ P is
the set of points of the ind-projective moduli space ¢#¢ of flags of I-graded lattices
-+ DM_1 D MyDM; D inVgsuchthat M, , = zM, foranyr € Z, and M,_1 /M, is
an a,-dimensional vector space supported at the vertex i, for any n = 1,...,£. This is
a partial affine flag variety of the reductive group GL (V). Note that the set of connected
components o ( F£) is naturally identified with Z/ (the virtual graded dimension of M).

Let R be the moduli space of the following data (cf. [31, Section 1]):

(a) Me € F;
(b) a K-linear homomorphism p;: W; ¢ — V; ¢ foranyi € I;
(c) a F-linear homomorphism b;_, ;: V; ¢ — V; ¢ foranyi — j € Q; such that
1) b:= Zi_ﬁeg bi_j takes L, to L,41 and M, to M, 4, for any r € Z,;
(2) p:=> ;¢ pi takes Wy to Lo N M.
Note that when £ = 1, we have 2 = GL(V)g, and R is nothing but the variety of
triples JRG (v~ associated in [8, 2(i)] to a GL(V)-module

N= (P Hom(Vi.V;) & (P Hom(W;. ;).

i>jeQ iel

The definition of equivariant Borel-Moore homology H.G L(V)M(Cx(ﬁguy),N) (respec-
tively, equivariant K-theory K L0 exC* (R, 1) N)) and the construction of convolution
product on it in [8, Sections 2,3] work without any changes in our situation, and produce
the convolution algebras H.‘@*'(CX (R) and K*C*(R). Moreover, if we choose a Cartan
torus T(W;) € GL(W;) and set T(W) := [l,e; TWi) C [lje; GL(W;) =: GL(W)
(a flavor symmetry group), we obtain the convolution algebras HE XXT(W)OX@NCX(J?/)
and KCXTMW)exPxC*( @) Here the first factor C* acts by dilations in the fibers of the

projection
4.1 w: R — L.
The following easy result will be important in the future.

LEmMaA 4.1. — The algebra Hicx XT(W)gx 2T (R) is free as a module over the equivariant

point cohomology Hi, .y , pwcx (P1)- Similarly, the algebra KEXTMoxPACE(R)) s
free as a module over Kexxrw),x 2xcx (p1)-
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Proof. — It is enough to show that 2 has an algebraic cell decomposition, which is
invariant under the maximal torus of the group C* x T(W)g x & x C*. For this we need
to choose an Iwahori subgroup 7 of GL(V) % which is contained in °. Then the .7-orbits
on ¥4 are affine spaces; hence their preimages in & are (infinite-dimensional) affine spaces
as well, which are clearly invariant under C* x T(W) ¢ x o7 x C*, hence under some maximal
torus of C* x T(W) g x P x C*. O

In case W = W’ @ W”, we denote the variety of triples corresponding to W' (resp. W")
by R/ (resp. R, and we have an evident closed embedding z: R’ < R. The argument
of [8, Lemma 5.11] goes through word for word in our situation and proves that

@2) 2 HE T () gETIOXIE (R @ He i (p1)
and
@3) 2 KEOTMex P (@) oy KEXTIDXPRE( RN @ Ky (pt)

are the convolution algebra homomorphisms.

4.2. Jordan quiver

In what follows we consider a special case of the construction of Section 4.1 where
I consists of a single vertex and € consists of a single loop, W = C! with a basis ey, ..., ¢
(hence the diagonal torus T(W) € GL(W)),and V = CV withabasis vy, ..., vy. Moreover,
{=N,a,=1foranyn =1,...,N,and V*isacomplete flag V" := Cv; & ... d Coy_y.
We fix a flag of lattices L; C V((z)), i € Z, suchthat Ly = V[[z]], Lj+n = zL;, and
Li=zV[z]] ®@Cvi ®---®Cun—j,j=0,....,N— 1L

The space of triples of Section 4.1 is the moduli space of the following data:

(a) a sequence of C[[z]]-lattices M; C V((z)), i € Z, such that M; 2 M;;, and
Miin = zM;;
(b) a C((2))-linear map b: V((z)) — V((z)); and
(¢) a C((z))-linear map p: W((z)) — V((z)); such that
(1) b strongly preserves L and M, i.e.,, bL; C Lj+1 and bM; C M;; and
(2) pWIlz]l € Lo N M.

The basis of V gives rise to the diagonal torus 7(V) C  GL(V), and we
denote by yi.....yny the generators of Hp, (pt). Also, we denote by zi.....z
(resp. h,—k) the generators of H;(W) (pt) (resp. HZx(pt) for the loop rotation
C*, Hl«(pt) for the dilation C*). We shall denote the corresponding generators
of Krvy(pt), Kraw)(pt), Kex(pt), Kex(pt) by Y1,....YN; Z1,...,Z;; g;t. The algebra
HE XTI XPNCT( @y (regp, KEXTMWxPxC*( @3y will be denoted W?V,deg (resp.
Wi\,). We shall also denote W?\,’deg by A/ N,deg» and W?\, by &M/ y. According
to (4.2) and (4.3) we have algebra embeddings z*: Wﬁ\,’deg — M deglz1 - - - z1] and
2 HHy — HANILE ... T,

Note that for W = 0 the variety of triples & is nothing but the affine Steinberg
variety of GL(V'), and ¢#¥ is nothing but the affine flag variety of GL(V). It is well known
that HH N geg ~ M/ N deg (se€ €.2., [37]), and one can check that HHy =~ &Ag/y, cf. [43]
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(see [8, Remark 3.9(2)]). More precisely, forn = 0,..., N — 1, we denote by P! C ¢ the
projective line formed by all the flags M, of lattices (see Section 4.1) such that M,, = L,,
form # n (mod N). Each P} contains the base point L. € /¢, and we denote by Al C PL
the complement. The restriction of the projection @w: R — £ to Al is a (profinite
dimensional) vector bundle, and the closure of w1 (Al) in R is still a vector bundle over P},
to be denoted by PL. We define s, € iy as 1 + [PL] forn = 0,..., N — 1 (the fundamental
cycle of ﬁ;) Also, let 77 (resp. 7~ !) be a point-orbit of the Iwahori group 2 in £ consisting
of the flag M, such that M, = L, (resp. M, = L,_,) for any n € Z. Finally, we define
7E € F N aeg 2 [ 1 (7@F")]. Now the desired isomorphism HH y,qeg—> AN aeq takes
the generators of HH y geg to the same named elements of ¢4/ geg» €XCEPt It > —h.

Furthermore, we define 7, € SAcky as —1 — [0@1 (—=2)] forn = 0,...,N — 1, and we

define 7*! € Sy as [Ow_l(ﬁil )]- The desired isomorphism HH N—> SHeH n takes the

generators of HHy to the same named elements of $#5/y, except g — g~ .

For arbitrary W = C/, in order to distinguish from the / = 0 case, we will denote
by w;: c%l — of L the corresponding projection. Let us set

W?V,deg S7- = [wl_l(ﬁ_l)]; Wﬁv >3- = (_q_lt_l)lzl "'Zl[Owl—l(ﬁ—l)]~

Then we have
1 1
(4.4) vro=[]On—zm—k) -7 =77 [ 01 —2zm—k + h) € HFnges:
m=1 m=1
and

/
(4.5) o= (—q ' t™Y2ZZ [T -YnZ, ') 7!

m=1

I
=a ' [ =Zng™"t7") € Sy
m=1

Indeed, z*n_ is obtained from #~! by multiplication with the Euler class of the
finite dimensional quotient space & lﬁfl/ c%)/lﬁfl, where ﬁ’/lﬁfl is the fiber of R/
at the point 7~!, and lf_l is defined similarly, but the condition (2) above:
pW]iz]] C Lo N My = Lo N L_; = Ly is relaxed to the condition pW{[z]] C My = L_4,
cf. [8, 4(v1)].

We preserve the name r for [, @) € Wiv,deg (resp. [Owl—l(ﬁ)] € Wﬂv) since z*
takes this 77 to the one in S/#/ n geg (resp. in A/ ). For the same reason we preserve the
names s, (resp. T,), n = 1,..., N — 1, for the corresponding elements of Wi\’,deg (resp.

Wé\,). Finally, we set z,, = z,, + k — h, and Z,, = Z,,q~'t~!. So the following diagrams
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commute:

(4.6) HH Y gog ——————— Ty e
HHN gegl215 - - -, 1) —— SN geglz1s - - 21

4.7 HH, Sy

|

HHN[ZEY, ... . ZF — SANIZE ... 2.

Note that in diagram (4.6) we have bigradings defined by deg(X;) = (1,0), deg(y;) =
deg(z, h, k) = (0, 1), which are preserved by all the maps.

The following theorem is independently obtained in [44, Lemma 4.2].

THEOREM 4.2. — The map € : Iﬂ-Ijl\, deg W?V,deg in diagram (4.6) is an isomorphism
of bigraded algebras.

Proof. — We may assume that / > 0. Recall from Lemma 4.1 that Wé\’,deg is a free
Clz1,...,z1, h, k]-module. Thus it suffices to show that &; is an isomorphism, where &g is the
specialization of £ at i = k = 0,z = 0. It is clear that & is injective, hence so are £ and all
its specializations £, j, x . Since the bigraded components HH 1{, deg [r, s] are finite dimensional
(as! > 0), it suffices to show that the specialization &, j, x is an isomorphism for Weil generic
z,h k.

We will now use the following easy lemma about unital rings.

LemMaA 4.3. — Let B be aunital ring and A C B a unital subring. If e € A is an idempotent
such that AeA = A and eAe = eBe, then A = B.

Proof. — Since AeA = A, we have AeB = AeAB = AB = B. Similarly BeA = B. Thus
AeBeA = BeA = B. Butsince ede = eBe and dedA = A, we have AeBeA = AeAdeA =
AeA = A. Thus A = B. ]

Now let e be the symmetrizer of Sy, and let us apply Lemma 4.3 to A = HH 1lv de g(z, 1,k)

and B = Wﬁv,deg(z, —1, k). Using Theorem 2.19, we see that the condition Aed = A is
satisfied for generic z, k, namely when the corresponding parameters of the cyclotomic
rational Cherednik algebras are not aspherical (see e.g., [7], Subsection 4.1). In fact, it suffices
to consider the case z = 0,k = 0, when this is easy, since HH 1{, 1eg(0:1,0) = Sy (D(C)H17)8N
is a simple algebra (by [32, Theorem 2.3]). Also, by [9, Proposition 3.24], the theorem holds
for spherical subalgebras, i.e., e§pe is an isomorphism. Hence so are efe and all its special-
izations e&; j, xe, which yields the condition ede = eBe for all z, h, k. Thus Lemma 4.3
applies and Theorem 4.2 follows. O
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We expect that an analog of Theorem 4.2 also holds in the K-theoretic setting, i.e., for
diagram (4.7). Let us prove a formal version of this statement. Let ¢ = e®", t = e~k Z; = %7
Let W?{,formal be the corresponding formal completion of c‘]/(%év (obtained by viewing
equivariant K-theory as a formal deformation of equivariant Borel-Moore homology ¥).
Diagram (4.7) furnishes a map £ : I%I}\;formal — W@formal.

COROLLARY 4.4. — The map Eis an isomorphism.

Proof. — By Lemma 4.1, C%%xformal is a flat formal deformation of Wév,deg over CJ[[¢]].
Finally, /§\|8:0 = &. This implies the corollary. O

In particular, this gives another, geometric proof of the facts that HH zlv deg is a free

bigraded Clzy,...,z;, h, k]-module, and the algebra HH[l\;f"rmal(z,h, k) is its flat formal
deformation.

We also have

THEOREM 4.5. — Let e be the symmetrizer of the finite Hecke algebra generated by T;,
1 <i < N — 1. Then the natural map

efz g€ eI-ﬂLI}V(Z,q, t)e — e&/(%é\,(z,q, t)e

is an isomorphism when q =t = land Z; = 1 for all i.

Proof. — Same as the proof of [9, Proposition 3.24]. O

THEOREM 4.6. — Let ILH'-IIIv (17/@%5\, be the completions of HHY, , e‘%’]ﬁ, atq=t=7Z; =1
(as modules over (C[Zlil, ey Zlil,qil,til]). Then the map

o~ /\l
£:HHY — SHHy

is an isomorphism.

Proof. — The proof is analogous to the proof of Theorem 4.2, using Theorem 4.5.
Namely, the identity AeA = A for A = HH zlv (Z,q,t) is established for generic ¢ and Z = 1,
t = 1 using the fact that in this case A4 is a simple algebra by [32, Theorem 2.3]. O

® Indeed, the Borel-Moore homology is the associated graded of the y-filtration on the K-theory. On the equiv-
ariant K-theory of the point, this is the filtration by the order of vanishing at the neutral element. See [2] for the
topological situation, and [42] for the comparison with the algebraic situation.
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5. Cyclotomic DAHA and multiplicative quiver and bow varieties
5.1. Multiplicative quiver varieties

Let ¢t € C* be not a root of unity, and Z;,...,Z; € C* be such that Z;/Z; is not an
integer power of ¢ for i # j. Let Q; be the cyclic quiver A;_; with vertices 1,...,/ and
an additional “Calogero-Moser vertex” 0 attached to the vertex 1. Let (ﬂfli\, (Z,t) be the
multiplicative quiver variety for Q; with dimension vectord; = --- =d; = N anddy = 1, see
[16]. Namely, given complex vector spaces V;,i = 1,...,[, withdimV; = N, Wﬂv (Z,t)i1s
the variety of collections of linear maps X; : V41 — V; and D; : V; — V; 41 (where addition
is mod /) satisfying the equations

(5.1 Zi(1+X;Di) =Zi—1(1 +D;1X;-1),2<i <!

and

(5.2) Z:(1 +X,D)T = Z;(1 + D;X)).

where T : V; — Vj is an operator conjugate to diag(t™!,...,z71,#""!), modulo simulta-

neous conjugation (i.e., the corresponding categorical quotient).

ExaMPLE 5.1. — Let I = 1. Then there is no dependence on Z;, and oﬂ/&}v(t) is the
variety of pairs (X, D) of N by N matrices such that

(1+XD)T = (1 + DX),

where 1 + XD is invertible, and T is as above, modulo simultaneous conjugation.

Let X := X;---X;,D := D;---Dy, Y = Z;(1 + X;Dy). Consider the operators
Ly:=27Z,---Z;]XD,L_:=2Z,---Z;DX.
LEMMA 5.2. — We have
Li=(Y=2Z) (Y2,
L_=XT—-2y)---(XT - Z)).
Proof. — We prove the formula for L ; the formula for L_ is proved in a similar way.
It suffices to prove by induction in r that
Zi-Z, X1 X, DDy = (Y= 2Z1)---(Y—=Z,).
The base r = 0 is obvious. For r > 0, we have, using the induction assumption:
ZyZ; Xy XDy Dy = Xy X (Z, X D)X, - XTHY = Z0) - (Y — Zom).
But
Xl o 'erl(ZrXrDr)X:_ll o 'Xl_l = Xl o 'erl(zrlerflxrfl + erl - Zr)Xr__ll . 'Xl_l
=Zr1 = Zr + X1 X2 (Zr XD )X, - X
Thus,
X; - "Xr—l(ZrXrDr)Xr__ll . "Xl_l =Z1—-2Z,+Z: XD =Y-Z,.
This implies the induction step. O
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Thus we have

(5.3) XD = (Z7'Y—-1)---(Z;7'Y=1), DX=(Z;'YT = 1)---(Z/'YT - 1),
(5.4) YX = XY7,YTD = DY.

LEMMA 5.3. — We have an isomorphism
®: M(Zy... . Zit) > MN(Zy. .. Zy 1Y)
given by ®(X;) = Dyy1-i, @(D;) = X411, D(Zi) = Zj41-i.

Proof. — Tt is easy to check that the relations defining these varieties are matched by ®.
O

5.2. Quadruple varieties and their connection to multiplicative quiver varieties

Let Mév (Z,t) be the variety of quadruples of matrices (X, D, Y, T') satisfying (5.3),(5.4)
such that Y is invertible, modulo simultaneous conjugation (i.e., the categorical quotient).
We have a natural map

¥ MN(Z.1) > My (Z.1)
sending X;,D;,1 <i <lto (X,D,Y,T).

PROPOSITION 5.4. — Any collection (X,D,Y,T) € Mﬂv (Z,1) acts irreducibly on CN

Proof. — Assume the contrary. Then there is an invariant subspace or quotient V
for (X,D,Y,T) of dimension 1 < n < N — 1 on which T acts by t71. So by Lemma 5.2,
on V we have

XD=(Z7'Y-1D--(Z7'Y=1), DX=(tZ)'Y-1--(tZ)'Y-1),

1YX = XY,
and
(5.5) YD = :DY.

Equation (5.5) implies that D cannot be invertible (otherwise taking determinants of both
sides gives a contradiction). Thus there is a nonzero vector v € V such that Dv = 0. Since
(again by (5.5)) KerD is Y-stable, we can choose v so that Yv = Av for some A # 0. Since
XDv = 0, we have A = Z; for some ;.

We may assume that V is irreducible for the action of (X, D, Y, T). Then V has a basis
v, Xv, ..., X" 1y with YXv =t~ AX v, and

DX'v = (Z'At7 = 1)---(Z; AT = DX w.

In particular, since X"v = 0, we must have A = " Z,, for some m. Thus, we have t" Z,,, = Z;,
which contradicts our assumption on the Z;. O

By Schur’s lemma, Proposition 5.4 implies that any operator A commuting with
X,D,Y, T has to be a scalar, so Mé\, (Z,1) is, in fact, the ordinary quotient of the set of
quadruples (X, D, Y, T) satisfying (5.3),(5.4) by the free action of PGL y (C).
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COROLLARY 5.5. — Every collection of endomorphisms A; : V; — V; which commute with
X1,...,X;,Dy,...,Dy) satisfying (5.1),(5.2) is a scalar (the same at all vertices).

Proof. — Suppose we have such a collection. Then A; commutes with (X, D, Y, T), so by
Proposition 5.4, it has to be a scalar. So by shifting A; by the same scalar we may assume
that A; = 0. Our job is to show that A; = 0 for all i. Assume the contrary, i.e., that A; # 0
for some s.

Let V/ = ImA;. Then V| = 0,so thereexist | <i < j < /suchthatV/ , =V/, =
-+ =V # 0, while V/ = V/ | = 0. The collection of nonzero spaces V{,i < s < j is
invariant under the operators X;, Dy, and these operators satisfy on V' the equations

Ziti(1+Xi41Di41) = Zi, Zivo(1 + Xi42Di42) = Zip1 (1 + Dit1Xig1), -
Zj=Zj—1(1+D;1X;-1).
(if j = i + 1, then we get just one equation Z; = Z;4q1). If j > i + 2, this implies that

any nonzero vector v € V/, , is an eigenvector of the operator Z;11(1 + X;41D; 1) with
eigenvalue Z;. Since Z;+1 # Z;, this implies that D; ;v is an eigenvector of the operator

Zit1(1+DipiXit1) = Zigpo(1 + Xi2Diyo)

with eigenvalue Z;. Continuing like this, we find that Z;_; (1 4+ D;_1X;_;) has eigenvector
D;_; ---D;4 v with eigenvalue Z;, hence Z; = Z;. This is a contradiction, which proves the
corollary. O

Corollary 5.5 implies that Jlflé\, (Z,t) is also an ordinary quotient. A similar argument
shows that Equations (5.1),(5.2) define a smooth complete intersection, i.e., the multiplicative
quiver variety o]%v (Z,t) is smooth (in fact, both of these statements follow from the results
of [16]).

Let Mév (Z,1)° be the open subset of Mé\, (Z,t) where X is invertible. On this set, D is
redundant (i.e., expresses in terms of X and Y), and the only equation we are left with is

YX = XYT.

Thus, Mﬂ\, t)° = Mé\, (Z,t)° is independent of the Z; and is the multiplicative Calogero-
Moser space considered in [35] (the phase space of the Ruijsenaars integrable system). In
particular, as explained in [35], Mév (¢)° is smooth and connected.

Now let us study the properties of the map . Note that if / = 1, ¥ is tautologically
an isomorphism. Moreover, we claim that ¥ is an isomorphism ¥~ (M) (£)°) — M, (£)°.
Indeed, if X is invertible then we canset V; = CN and X; = 1fori = 1,...,] — 1, while
X; = X. Then we get that Z;(1 +D;) = Y = Z;(1 + D;X;)T~ ! fori = 2,...,1. Thus
D, =Z'Y—1fori=1,....,[—l,andD; = X" (Z7'Y - 1).

PROPOSITION 5.6. — V is a closed embedding.

Proof. — Our job is to show that the map
Y* O (Z,1)) — O( M (Z, 1))

is surjective. By the Fundamental Theorem of invariant theory, O(Mé\, (Z,1)) is generated
by the elements Tr(w), where w are words in X, D, Y*!, and T*!. So it suffices to show
that O( c%ﬁv (Z,1)) is generated by the elements ¥ *Tr(w). We know that this algebra is
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generated by expressions Tr(u), where u is any cyclic word (i.e., closed path) consisting of D;,
X;, (1 +X;D;)*! and T*!, so it suffices to show that any such cyclic word can be expressed
as a cyclic word w in X, D, Y*!, and 7+!.

Let A be the deformed multiplicative preprojective algebra of the Calogero-Moser
quiver Q; defined in [16]; thus, O( WZN (Z,1)) is the representation variety of A for the
dimension vector (d;). Let e; € A be the idempotent of the vertex 1.

LEMMA 5.7. — One has A = Aei A.

Proof. — Assume the contrary. Then we have a nonzero A-module V' such that V; = 0
(namely, any nonzero module over A/Ae; A), and the argument in the proof of Corollary 5.5
gives a contradiction with the condition Z; # Z;. O

Lemma 5.7 implies that the closed path u in question may be assumed to pass through the
vertex 1. So it remains to show that using the relations of A, one may reduce u to a product w
of X,D, Y*1, T%1,

To this end, we may assume that the path u begins and ends at the vertex 1. The proof is
by induction in the length £ of u. The base of induction (¢ = 0) is clear. Let us make the
induction step from £ — 1 to £. Suppose that u ends with D; (the case of X; is similar). If all
the factors in u are D; then u is a power of D, and we are done. So let m be the number of
factors D; in u until the first X;, counting from the end. We may assume that m < [, since
otherwise we can split away the factor D at the end of u and pass to smaller length. If m = 1,
we can split away the factor X;D; = Z;'Y — 1 at the end and reduce to smaller length. On
the other hand, if m > 1, then

u = uX,DypDy—1---Dy
for some word u. By adding smaller length words, we may replace u with
u' := (1 4+ XpDm)Dp—1 -+ Dy = Zyy1Z,, it (1 + D1 Xpy—1)Dyy - - Dy
By adding words of smaller length and rescaling we can replace u’ by
u” = uDp_1X;n_1Dpm_1 -+ Dy,

which is a word of the same type as u but with m replaced by m — 1. Proceeding in this way,
we will eventually reach the case m = 1, which has already been considered. This implies the
claim. O

Let 071/4\, (Z.t)+ be the closure of ! (Mév ()°) and Mﬂv (Z, )« be the closure ofMﬂ\, (®)°.

PROPOSITION 5.8. — The map v : Wév(z,t)* — MﬁV(Z,t)* is an isomorphism of
smooth connected affine varieties.

Proof. — This follows from Proposition 5.6. O

We will also see that the multiplicative quiver variety J/Jév (Z,t) is connected, i.e.,
MA(Z. 1) = My (Z.1) (Theorem 5.17).
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5.3. Connection to cyclotomic DAHA

Now let us connect multiplicative quiver varieties with cyclotomic DAHA. Let ey be
the symmetrizer of the finite Hecke algebra of Sy generated by T;, and consider the
spherical subalgebra ey HH 1lv (Z,1,t)ey. This is a subalgebra of the commutative domain
ey HHy (1, 1)ey (see[35, Theorem 5.1(1),(2)]), so it is also a commutative domain. Consider
the module Iﬂ-lll\, (Z,1,t)ey over this algebra. Let Mﬂv (Z,t) = Specm(en HILI}v (Z,1,t)epn).

PROPOSITION 5.9. — For any Z; the algebra eNI-H-IIIV(Z, 1,t)ey is finitely generated
and Cohen-Macaulay (i.e., Mé\, (Z,t) is an irreducible Cohen-Macaulay variety) and the
module HH}v (Z,1,t)ey is Cohen-Macaulay. In particular, IﬂLIfV (Z,1,t)en is projective of
rank N on the smooth locus Mé\, (Z, t)smooth ofMﬂv (Z,1).

Proof. — The proof is analogous to the proof of [35, Theorem 5.1(2),(3)]. Namely,
the statements follow from the fact that by Proposition 3.31, }H-III\;JF(Z, 1,t)ey and

ey HHJI\;'|r (Z,1,1)ey are free modules of finite rank over the subalgebra C[X1, ..., Xy]5¥ ®
C[Dy....,Dn]5N, and HH}V(Z, 1,t)ey, eNPH-IIIV(Z, 1,t)ey are obtained from these by
inverting the element Y7 --- Yyey. O

ProPoSITION 5.10. — For any Z;, the variety Mé\, (Z,t) is smooth outside a set of codi-
mension two.

Proof. — Consider the open set MﬁV(Z,t)X = Mﬂv(t)x C Mﬂv(z,t) where [[; X; is
invertible. On this set, the localization of the spherical cyclotomic DAHA to Mé\, (t)x 1s the
usual spherical DAHA with ¢ = 1, so Mﬂ\, (t)x 1s smooth by the result of [35]. Similarly,
consider the open set Mﬂv (Z,t)p = Mﬁv (t)p C Mﬁv (Z,t) where D; are invertible. By
Proposition 3.29, the localization of the spherical cyclotomic DAHA to Mﬂ\, (t)p is also
isomorphic to the usual spherical DAHA, as there is an involution ¢ of the cyclotomic
DAHA exchanging X; and D;. Thus Mév (t)p is also smooth, by [35]. But it is easy to see
that the complement of Mé\, (t)x U Mﬂv (t)p has codimension at least two. O

COROLLARY 5.11. — The variety M\ (Z, t) is normal.

Proof. — The proof is similar to the proof of [35, Theorem 5.1(2)]. Namely, the statement
follows from Proposition 5.9 and Proposition 5.10, since by the Serre criterion, a Cohen-
Macaulay variety smooth outside a set of codimension 2 is normal. O

Let Z(HHY (Z, 1,1)) be the center of HHL, (Z,1,1)).
PROPOSITION 5.12. — For any Z;: (1) The natural map
HHY (Z,1,1) > End,, it (2100w (HH% (Z.1.1)ey)

is an isomorphism.
1 e natural map 1,1 — eN ,1,t)eny given Z — Zen IS an
i) 7% ! Z(HHL (Z.1 HHL(Z,1 jven by ]
isomorphism.

Proof. — The proof'is analogous to the proof of [35, Theorem 5.1(4),(5)], replacing Y; with
D; and the Cherednik involution with the involution ¢, and using [35, Theorem 5.1]. O

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1290 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

We can now define a regular map £: Mﬂv (Z,t) —> Mﬂv (Z,1)x as follows. Given
VaS Mﬂ\, (Z, t)smooth» consider the representation I(y) := HH}\, (Z,1,t)ey ey HHL (Z.1.0)ey X-
By Proposition 5.9, this representation has dimension N! and is the regular representation
of the finite Hecke algebra generated by T;. Let ey_; be the symmetrizer of the subalgebra
generated by T»,...,Tn—1, and let V(y) := en—11(x). This is an N-dimensional space,
and it carries an action of the operators X := X;,D = D; = Xl_l(Yl - Zy) (Y1 - Z)),
Y:=Yand T :=Ty--- .T3_,---Ti.

PRrROPOSITION 5.13. — The operators X, D, Y, T satisfy Equations (5.3),(5.4), i.e., define a
point ofMﬂv (Z,1).

Proof. — Relations (5.4) follow from relation (3.5). The first relation of (5.3) is easy, and
the second one follows from the first one and (3.5). O

REMARK 5.14. — On the open set where X is invertible, Proposition 5.13 reduces to the
result of [35].

Proposition 5.13 allows us to set £(y) := (X,D,Y, T), which defines the map & on the
smooth locus Mﬂ\, (Z, t)smooth- By Corollary 5.11, £ then uniquely extends from the smooth
locus to the whole variety Mﬂv (Z,1). It is also clear that this map lands in Mé\, (Z,1t)« (as
Mk, (Z, 1) is irreducible).

Thus, altogether we obtain amap k := ¢! o £ : MéV(Z, t) —> Jl/lév (Z,1)x.

PROPOSITION 5.15. — « is an isomorphism.

Proof. — Consider the restriction kx of « to the open set Mév (t)x C Mé\, (Z,t) where X;
are invertible. As shown above, kx is an isomorphism Mév tx — cﬁflév (Z, t)x onto the open
set cﬂ/fﬂv (Z,1)xy C oﬂ/lév (Z, 1)« where X is invertible. Similarly, by using the involution ¢ of
Proposition 3.29 and involution ® of Lemma 5.3 and the fact that x o ¢ = ® o k, we see
that the restriction kp of k to Mé\, (t)p is an isomorphism Mév t)p — @]Vlé\, (Z,t)p onto the
open set oﬂ%\, (Z,t)p C o]%v (Z, )« where D is invertible.

Consider the morphism «* : O( @71/4\, (Z,1)s) — O(Mé\, (Z,t)). Obviously, it is an
inclusion which becomes an isomorphism after passing to the fields of fractions.
Let F € O(Mﬂv (Z,t)). Then F is a rational function on WéV(Z ,1)x. As shown above,
this function is regular on Wﬂv (Z,t)xy U Wi\, (Z,t)p C 0]14\, (Z,1), an open subset whose
complement has codimension > 2. But we know that Wé\, (Z, t)« is smooth, hence normal.
Thus, F extends to a regular function on the whole oﬂ%é\, (Z,t)«. This implies that «* and
hence « is an isomorphism. O

Thus, we obtain the following theorem.

THEOREM 5.16. — Under the above assumptions on the Z;, the following statements hold.
(1) The variety Mﬂv (Z,t) is smooth.

(1) The module I—H’-IjlV (Z,1,t)ey over %(I-H-I}V (Z,1,1)) = en I—H’-IjlV (Z,1,¢t)ey is projective
of rank N\.

4¢ SERIE — TOME 53 — 2020 - N° 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1291

(111) IﬂLIII\, (Z,1,¢) is a split Azumaya algebra over %([—EI}\, (Z,1,1)) of rank N, namely
the endomorphism algebra of the vector bundle HH Il\, (Z,1,t)en. Thus, all irreducible
representations of HH IIV(Z ,1,t) have dimension N\ and are parametrized by points
of My (Z, 1).

Thus, we see that irreducible representations of HH 1lv (Z,1,t) are parametrized by points
of a connected component of the multiplicative quiver variety. In fact, it turns out that this
is the only connected component. Namely, we have

THEOREM 5.17. — The variety @Mév(Z,t) is connected, i.e., QM?\](Z,I) = Wév(Z,t)*.
Thus, « : Mﬁv (Z,t) — Wé\, (Z,t) is an isomorphism.

Proof. — See Subsection 5.6 below. O

REMARK 5.18. — 1. Recall that the multiplicative quiver variety (ﬂ/li\, (Z,t) carries a
Poisson structure (symplectic for generic parameters and generically symplectic for any
parameters), coming from the quasi-Hamiltonian reduction procedure ([6]). Our results
imply that the algebra ey HH le (Z,q,t)eny (Where ¢ = e® and ¢ is a formal parameter) is a
deformation quantization of this Poisson variety (namely, the matching of Poisson brackets
may be checked on the open set where X is invertible, using the results of [35]).

2. We expect that the results of this subsection can be lifted to the quantum level. Namely,
we expect that the algebra ey HH IlV (Z,q,t)ey isisomorphic to the quantization of the multi-
plicative quiver variety o]%\, (Z,t) defined by D. Jordan in [29], via a quantization of the
map k. We note that this is known in the degenerate setting, see [36, 20].

REMARK 5.19. — The functions Tr(D"), r = 1,..., N, form a classical integrable system
on the symplectic variety O]%v (Z,t). This system is the classical limit of the quantum inte-
grablesystem {D] + --- + D},,r = 1,..., N}inthe(spherical) cyclotomic DAHA discussed
in Subsection 3.6. These classical integrable systems have been studied independently by O.
Chalykh and M. Fairon ([11]).

5.4. Multiplicative bow varieties

In this section we follow the notations of [34]. Given a bow diagram with a balanced
dimension vector as in [34, (6.1)] we consider the auxiliary diagram of vector spaces and
linear maps asin [34,6.1]. Let Z,;, i =0,...,n—1; 1 <r < w;, be a collection of nonzero
complex numbers, and let ¢ be another nonzero complex number.

Let M},t (v, w) be the variety of collections (A4;, B;, B/, a;, b;, D;;, Cr;) such that (cf. [34,

(6.3),2.2))
(i) B;, B/ are invertible foralli =0,...,n—1;
(@ B/Ai—1—Ai-1Bi—1+aibi1 =0;
(b) (B)™' =17'Z7 (1 + D1, Cuy);
(© (1 + Cg,iDr,i) = Zk,iZ]:_}_l,i(l + Di41,i Ck+1i)s

() We note that for / = 1 we would need a slightly less localized version than that of [29], not requiring X to be
invertible, which should produce not the full DAHA but its subalgebra.
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(d) Bl_l = Z‘;il,i(l + Cw,-,ti,',i);
(S1) There is no nonzero subspace 0 # S C V;" with B;(S) C S, A;(S) =0 = b;(S);

(S2) There is no proper subspace T C V;°, v with B/ (T) C T, ImA; +Ima;4, CT.

i+1
Then M7 , (v, w) is an affine algebraic variety acted upon by G = 1= é k 0 GL(Vk ),
cf. [34, Proposition 3.2].
We define a multiplicative bow variety WEJ (v,w) as the categorical quotient
M, (v.w)//G, cf. [34, 2.2]. B

5.5. K-theoretic Coulomb branch

Recall [8, Section 2] that given a representation N of a reductive group G one can consider
the variety of triples &.© According to [8, Remark 3.9(3)], the equivariant K-theory
K%(R) is a commutative ring with respect to convolution. Moreover, if the G-action
on N extends to an action of a larger group G containing G as a normal subgroup, then
the equivariant K-theory K9¢(R) is a commutative ring with respect to convolution, a
deformation of K%¢(R) over Spec(K GF (pt)) where GF = G/G is the flavor symmetry
group. The affine variety Spec(K¢¢(R)) is denoted ME (G.N) and called the K-theoretic
Coulomb branch.

A framed oriented quiver representation gives rise to a representation

N = @Hom(l/,, i) @ @Hom(Wl, Vi)
l—)j
of G = GL(V) := []; GL(V;). Choosing a maximal torus 7'(W;) C GL(W;), we consider
the natural action of G := CX x G x [1; T(W;) on N where C* acts by dilation on the
component Nyor 1= @l_)] Hom(V;,V;) of N.If W := ; W; # 0, the action of scalars
C* c T(W) = []; T (W;) coincides with the action of scalars C* C G. Hence if W # 0, the
action of G on N factors through the action of G := C* x (G x T(W))/(CX IfW =0, we
denote G := G. The corresponding K -theoretic Coulomb branch oM ¢ (G,N) of a framed
quiver gauge theory will be denoted by ¢} for short.

Similarly to [34, Theorem 6.18] one can construct an isomorphism ¢ = JM}J (v, w)
from the K-theoretic Coulomb branch of a framed quiver gauge theory of affine type A,_,
with dimension vectors v,w. Here Z,¢ in the RHS are parameters corresponding to the
equivariant flavor symmetry parameters in the LHS, cf. [34, 6.8.2]. The proof of the above
isomorphism in particular shows that Wé’l (v,w) is connected (and oM is connected
similarly to [8, Corollary 5.22]). B

5.6. Example

We consider a special case when a bow diagram has 1 cross and / circles (we allow [ = 0),
thatisn = 1, wo = [, and dimV} = N for any k = ., 1. Then according to [34,
Lemma 3.1], Ao: V! — V{ is an isomorphism. We identify Vl = V) with the help of Ay,
and then the definition of ¢} ,(N.[) of Section 5.4 becomes nothing but the definition

(©) It is different from the one considered in Section 4.1.
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of oﬂ%é\, (Z,t) of Section 5.1, that is WZ,(N, l) ~ Jﬁflé\, (Z,t). In particular, we conclude
that eﬂflﬁv (Z,t) is connected, which proves Theorem 5.17.

REMARK 5.20. — The relations between general multiplicative bow varieties and (various
versions of) multiplicative quiver varieties for a cyclic quiver are explained in Appendix .

6. Application to ¢g-deformed m-quasiinvariants

6.1. g-deformed quasiinvariants

Let m be a nonnegative integer, and ¢ € C*.

DEFINITION 6.1. — [12] Wecall F € C[X{!,..., X§!] a g-deformed m-quasiinvariant if
(1 —s;j) F is divisible by [T)__,(X; —¢”X;) forany i < j.

The algebra of g-deformed m-quasiinvariant Laurent (or trigonometric) polynomials will
be denoted by Q.

Let Oy C Qﬁ;ifl be the graded algebra of g-deformed quasiinvariants inside C[ X1, ..., Xn].
By the Hilbert basis theorem, Q,, 4 is a finitely generated module over the ring of symmetric
polynomials C[X1,..., Xx]5¥ . Note that Om.1 = Qm, the usual space of m-quasiinvariants
defined by Chalykh and Veselov [13], i.e., polynomials F such that (1 — s;;)F is divisible
by (Xi _ Xj)2m+1.

THEOREM 6.2. — For all except countably many values of q, the algebra Qp, 4 has the same
Hilbert series as Q,, and is Cohen-Macaulay, i.e., a free module over C[X1, ..., Xn]5N.

In other words, Theorem 6.2 says that any quasiinvariant polynomial can be g-deformed.
Note that the Hilbert series of Q,, is known (see [26], [S]).

REMARK 6.3. — Theorem 6.2 was conjectured by P.E. and E. Rains on the basis of a
computer calculation.

Theorem 6.2 is proved in the next subsection.

REMARK 6.4. — The algebra of ¢-deformed trigonometric quasiinvariants Q:ﬁif] (R) may
be defined for any reduced root system R with Weyl group W and a W-invariant multi-
plicity function m : R — Z4, see [12]. Namely, it is the algebra of regular functions F' on
the corresponding torus 7" such that for each « € Ry the function F(X) — F(sqX) is
divisible by ]_[l'-”z"_ma (e* — ¢'). Moreover, this algebra is Cohen-Macaulay for generic g.
To see this, note that by using the exponential map exp : Lie(T) — T and rescaling
in Lie(T'), we may identify formal neighborhoods of closed points of Spec(Q::f,(R)) with
those of Spec( Qﬁ,r,ig(R)), the usual trigonometric (a.k.a. non-homogeneous) quasiinvariants
for R, seee.g., [24], Remark 6.4. But the algebra Q:,rlig(R) is Cohen-Macaulay, see [24], Propo-
sition 6.5. Hence so is Qﬁ,ﬁifl (R), as desired. Note that this result also holds for ¢ = 1 since in
this case formal neighborhoods are the same as for usual (rational) quasiinvariants Q,,(R).

Theorem 6.2 is a refinement of this result for R = Ay_1, as Qﬁ,r,ifl is a localization of Oy, 4.
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6.2. Proof of Theorem 6.2

The Cohen-Macaulayness statement of Theorem 6.2 holds for ¢ = 1 (i.e,, for Q,,) by
the results of [21], [5] (conjectured earlier in [25]). Thus it suffices to show that Q,, 4 is a flat
deformation of Q,, when ¢ = e and ¢ is a formal parameter.

Let e be the symmetrizer of the finite Hecke algebra generated by 7;, and consider the
action of the spherical subalgebra eHHy(q,1)e on C[XE!, ... XF!|5~. This action is
by g-difference operators. Consider the element Y; 4 --- 4+ Y. It is a central element of the
affine Hecke algebra generated by 7; and Y;, hence commutes with e. Thus

(Y1 +---+Yy)eceHHpN(q,1)e.

We will need the following lemma, due to Cherednik ([15]).

LEMMA 6.5. — The element M := (Y1 + -+ + Yy)eacts on C[XFL, ..., XFSN by the
first Macdonald operator

where t; X; = q% X;.

Proof. — Denote the g-difference operator by which (Y7 + --- + Yy)e acts by L. Clearly,
we have L = ), fjt;, where f; are rational functions such that s, f; = f; forr # j, j + 1,
and s; f; = fj+1. Thus it suffices to show that

X; —tX,
f“n Xi— X,
i#1

To this end, treat n as a variable, and note that
LXT 4+ X3 =D fi(Xi .. XN)(@"XP + ) XD,
J i#]
which we can treat as a polynomial in ¢", X, ..., X} with coefficients in C(Xy,..., Xn).
Thus, f1 may be obtained by extracting the coefficient of ¢” X7.

On the other hand, we have

—0)X; =l (1—17YX;
p(Y;) =1t H (1 4 X, — X, - U —Sij))fin(1+r)(il(1—sij))-
j=i+1 j=1
An easy direct computation using this formula shows that
Y14+ V) X] + -+ Xp)
N N N (10X,
=Q_ITHXT + o+ X+ @ -0 ] a+ X (1= i) X[

i=1 i=1 j=i+1
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Thus, only the second summand contributes to the coefficient of ¢”, and in the second
summand only i = 1 contributes to the coefficient of X]. Moreover, in this contribution,
the transposition terms (involving s; j) don’t contribute. Thus

N
[)X] XJ'—IXI
X1 Xy) = | | 14 ”_
Si(Xy, )=1]10+ X Xl) L P7ES?

as desired. O

We will also need the following lemma, which is a special case of Proposition 2.1 of [12]
(but we give a proof for reader’s convenience). Assume that ¢ is not a root of unity.

LEMMA 6.6. — Ift = q™™ then the operator M preserves Q:,?%I

Proof. — Letr > [,and F € C[XT!,..., X§']. A direct computation shows that
¢ —Srl)(MF)(Xl,---,XN)

_l_[ . (F( XpoqXy )= F(qXy X7 +0))
J#r Xr
X;i—q™X;
:_1_[JX—X(F(...Xr...le...)_F(...le...Xr...))_
, i — &l
J#l
If F e Q % is a quasiinvariant then F(-+-X;---¢X,--+) — F(---qX, --+ X; --+) vanishes

for X; = qPX with—-m—1<p<m-— l,whlle F(- Xy qX;-)—F(qX; - Xp ")
vanishes for X; = gP X, with —m + 1 < p < m + 1. Hence, both terms in the formula
for (1—s,;) M F vanish when X; = ¢? X, with—m < p < m, p # 0and are defined for p = 0
(vanishing in the extremal cases p = m, —m follows from vanishing of the prefactors). Thus,
(1 — s, ))MF(Xq,...,Xy) is a polynomial which is antisymmetric in X;, X, so divisible
by X, — X;. This takes care of the case p = 0. O

Now note that since the algebra e HHy (¢, t)e acts on C[X f—Ll, ey Xﬁl] by g-difference
operators, this action can be extended tautologically to non-symmetric rational functions
C(X{L, ..., XEY) (by the same difference operators).

COROLLARY 6.7. — If t =q™™ form € Z>o then the spherical cyclotomic DAHA
eHH 1{,(q,t)e (with Z1 = 1) preserves the subspace of q-deformed m-quasiinvariants
Omqg CC(XEL ... XEY).

Proof. — By Proposition 3.6, the difference-reflection operators p(L), L € HHjy (q.t)
do not create poles at X; = 0. Therefore, the action of eI—EII{,(q,t)e C eHHpy(q,t)e
on C(Xi,...,Xn) preserves the subspace C(Xi,..., Xn)rwg of functions regular at the
hyperplanes X; =0,i =1,...,N.

We now claim that the algebra eHHy (q.1)e preserves Qme. It suffices to prove this
in the formal setting ¢ = e®, t = ¢™™¢. By Lemma 6.5 and Lemma 6.6, the element M
preserves Q},r,ifl. Also, C[X{!,..., X&'V and Y := []; ¥ preserve Qi,rlif]. But we claim that
the element H := s 2(cM — N —&(Y —1)) and C[XF', ..., X%']5N (topologically) generate
eHH]f\‘,)rmal(l, k)e. Indeed, the quasiclassical limit of H is the trigonometric Calogero-Moser
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operator H =e) ; y?e = ; y?e,and by Lemma 2.7 H and C[X!, ..., XF!]5V generate
eHH y qeq (1, k)e. This implies the claim.
Thus, e HH (¢, t)e preserves C(X1, ..., XN )reg N Om% = Qm.g» as desired. O

Now we can complete the proof of the theorem. Since every polynomial divisible
by [];< j l—[;":_m (X; — q?X;) is automatically a g-deformed m-quasiinvariant, the leading
coeflicient of the Hilbert polynomial of O, is the same as that of Q,,. On the other
hand, working in the formal setting (¢ = ) and reducing Corollary 6.7 modulo e,
we find that Q. ,/(¢) is a submodule of the module Q,, over the spherical rational
Cherednik algebra e HH (1, m)e. But as shown in [5], O, = @, eMu(1) ® 7;, where
A runs over partitions of N, m, is the Specht module for Sy corresponding to A, and
My, (1) is the Verma module over the rational Cherednik algebra HH(1,m) attached
to A. Since the eHH (1, m)e-modules eM,,(A) are irreducible (see [5]), any proper
eHH (1, m)e-submodule of Q, would have a strictly smaller leading coefficient of the
Hilbert series than that of Qp,. This implies that Q,, 4/(¢) = Om., i.e., Om4 is a flat defor-
mation of Q,, (i.e., has the same Hilbert series). By standard abstract nonsense, this applies
also to numerical values of ¢, excluding a countable set. The theorem is proved.

6.3. Generalization: q-deformed cyclotomic quasiinvariants

Let us now use the cyclotomic DAHA to generalize Theorem 6.2 to the cyclotomic case.
Letm > 0,1 > 1,q € C*, and ¢ = ¢’. Let us first define the algebra of q-deformed cyclo-

tomic trigonometric quasiinvariants Qi,’,tjlig. We introduce variables x; such that X; = xf . We
define Qi,’,t,f]lg C (C[xftl, ey x;\—Lll] to be the subalgebra of Laurent polynomials F such that

for every i, j, r, the Laurent polynomial
F(o.oxivooo,xj, ) —F(C. .0 x50, 0 X,
is divisible by [T)__,, (xi — {"q”x;).
Now let m,my, ..., m;—; be nonnegative integers. For 0 < r </ — 1 let p, be the homo-
geneous projector C[x] — x” C[x'], and pgl) denotes p, acting with respect to x;. By analogy
with [4], let an’m Lmi—1q C Qiiztj;g be the graded space of all q-deformed cyclotomic

trigonometric quasiinvariants F inside C[xy, ..., xy] such that
(6.1 p® F is divisible by x/ " fori = 1,...,Nandr =1,...,1 — 1.

DEFINITION 6.8. — The space an,m - is called the space of q-deformed cyclo-

tomic (m,mq, ..., mj_q1)-quasiinvariants.

<M —1,4

By the Hilbert basis theorem, an,m Looomy_1q 18 @ finitely generated module over the ring
/ !

of symmetric polynomials C[ X7, ..., XN]SN. Note that an,ml ..... my_y = Qmm1 ..... S 1S
the usual space of (m,mi,...,mj_1)-quasiinvariants for the complex reflection
group Sy x (Z/1Z)N defined in [4]. Note also that similarly to [4], an,ml _____ my_1.q 18

not necessarily an algebra.
Our main result about cyclotomic g-deformed quasiinvariants is the following theorem,
which is a generalization (") of Theorem 6.2.

(M Theorem 6.2 is a special case of Theorem 6.9 for I = 1, but it is convenient for us to treat this special case first,
and then pass to the general case.
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THEOREM 6.9. — For all except countably many values of q, the space an,m] vy .q 11aS

the same Hilbert series as an,ml and is a free module over C[X, ..., Xn]|5N.

In other words, every quasiinvariant for Sy x (Z/1Z)V can be q-deformed.
We note that the Hilbert series of Sy x (Z/1Z)N is computed in [4].

Theorem 6.9 is proved in the next subsection.

6.4. Proof of Theorem 6.9

The proof of Theorem 6.9 is parallel to the proof of Theorem 6.2, using the results of [4].
In fact, most of the technical statements we’ll need have already been obtained in the proof
of Theorem 6.2.

The freeness statement of Theorem 6.9 holds for Qin,ml,...,ml_l

the results of [4]. Thus it suffices to show that Qin,ml ,,,,, my_1,q 18 @ flat deformation
e/l '

and ¢ is a formal parameter.

(ie., for q =1) by

1 _
of Qm,,,,l,m,ml_1 whenq =e

To this end, recall from [4] that the space an,m]

cyclotomic Cherednik algebra eEHIi\’,psc (c,1,m)e, where e is the symmetrizer for Sy and c;

are certain linear functions of m; (in fact, this action is the main tool in [4] for proving

.,m;_, carries an action of the spherical

.....

carries an action ofeHH}v(z, 1,m)e, and it is easy to compute thatz; = m;/[,i = 1,...,[—1
and z; = 0.

The main idea of the proof is to show that this representation can be q-deformed to a
representation of the spherical cyclotomic DAHA e HHY (Z,q,t)e on an,m Loy q0 WhHere
t = ¢ ™and Z; = g% = ™. Then, similarly to the proof of Theorem 6.2, the result will
follow by looking at the leading coefficient of the Hilbert series and using [4, Theorem 8.2],
which gives a decomposition of the e HH}, (z, 1, m)e-module an’m \.om,_, into a direct sum

of irreducible modules.

1

Finally, let us show that the representation of e HH, (z, 1, m)e on the space Qf,,,m T
admits a q-deformation. Recall from the proof of Theorem 6.2 that the algebra e HHx (¢, t)e
acts on (C(x{ ey X 5\,) by difference operators. This action can be straightforwardly extended
to the field extension C(x1, ..., xy) by using the same formulas, where now 7;x; = q‘gif X;.
Hence, the subalgebra eHHIlV (Z,q,t)e C eHHpy(q,t)e acts on C(xy,...,xN).

Since X; — ¢?X; = ]_[i_zlo(x,- — {"q”x;), the argument in the proof of Theorem 6.2
implies that e HH y (¢, t )e preserves the subspace Qf,’,tfqig C C(xy,...,xn). Hence, so does the
subalgebra e HH ]lv (Z,q,t)e. Also, by Proposition 3.6, the algebra e HH Il\, (Z,q,t)e preserves
the space (x1---xn)™C(X1,...,XN)reg, Where, as before, the subscript “reg” means
functions regular at the generic points of the hyperplanes X; = 0. Therefore, the algebra
eHH 1lv (Z,q,1)e preserves quasiinvariance conditions (6.1).

Thus, we see that the algebra eI—H-IIIv (Z,q,t)e preserves the space an,ml ,,,, my_y.q- More-
over, it is easy to see that the classical limit of this representation as ¢ — 1 is exactly the repre-
sentation of e HH 1lv (z, 1, m)eonthespace Q £n’m . _, constructed in [4]. This completes the

proof of Theorem 6.9.

..... m;
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6.5. Twisted quasiinvariants

Let a1,...,an €C, meZy. Let Qp(ay,...,ay) be the space of polynomials
F € C[Xy,..., Xy] such that the function

F(Xp.....Xy) = ([[X)F(X1..... XN)

(regarded as a function of X; > 0) is m-quasiinvariant, in the sense that (1 —s; j)F vanishes
to order 2m + 1 at X; = X foralli < j. Note that O, (ai....,an) = Om(a1 —a,....any —a),
and Q,u(a,...,a) = Q,, for alla. Obviously, O (ay, ..., ay) is a graded C[X, ..., X§]5N -mod-
ule. By the Hilbert basis theorem, this module is finitely generated.

DEFINITION 6.10. — We will call Q,,(ay,...,ay) the module of twisted quasiinvariants.

THEOREM 6.11. — If a; —a; ¢ Z \ {0} for alli < j, then Qn(ai,...,an) is a free
C[X1.....Xn]5N -module (of rank N!).

EXAMPLE 6.12. — Let N = 2. Then Q,,(a,0) is a free module over R := C[X{, X,]52
for any a € C. We show this by induction in m. The base case m = 0 is obvious. Let m > 0.
Then it is easy to show that the lowest degree d of a nonzero element P, , in Q,(a,0)
isaifa = 0,1,...,m — 1, and m otherwise. Moreover, we can uniquely choose P, so
that P, (X, X) = X4, for example, if 0 < a < m is an integer, then Py = X5, and

a@a—-DX1+ @+ DX,
2a

Pg (X1, X2) =
for a # 0. Therefore,
(6.2) Om(a,0) = RPam + (X1 — X2)>Om-1(a,0),

Indeed, given a nonzero homogeneous F € Q,(a,0) such that F(X, X) = X", consider
F':=F —297B(X; 4+ X5)" 4P, n. Then F’ € Q,,(a,0) and is divisible by X; — X», so it
isin (X; — X2)?Om_1(a,0).

Consider first the case when 0 < a < m — 1 is an integer. Then by the induction
assumption, the module Q,,—1(a,0) is free (of rank 2), so it is generated by X§ and some
homogeneous polynomial f; , of degree 2m—1—a. So by (6.2), Om(a, 0) is generated by X5
and fy m+1 := (X1 — X2)? fa.m, which validates the induction step.

Now consider the case a #0,...,m —1. Then Q,_1(a,0) is free by the induction
assumption, so it is generated by some homogeneous polynomials of P, m—1, Tgm—1 of
degrees m — 1 and m, respectively, such that 7, ,, (X, X) = 0 (as one can easily check that
one always has such generators). It is easy to see that there exists ¢4, € C such that

1
Pa,m = Ta,m—l + Eaa,m(Xl + XZ)Pa,m—l € Qm(a’ 0)7

and Ty, = (X3 —X2)2Pa,m_1 € Om(a,0). Moreover, by (6.2), these elements gener-
ate O, (a,0). This completes the induction step.

This argument also implies that the Hilbert series of Q,,(a,0) is %
if 0 <a <m —1is an integer, and % otherwise.
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ExaMPLE 6.13. — In spite of Example 6.12, for N > 3 the condition on the a; cannot
be dropped. Indeed, for N = 3, the computer calculation shows that the Hilbert series
of 0,(1,0,0) has the form

W) =120+ 1 + 202 + 303 + 505 + 76° +100% 4+ 1507 + 2018 +26¢° + 33110 4 ...)
24+ + 17420 + 10— 4124
- (1—0)(1—2)(1-13)
and the minus sign in the numerator shows that Q,(1,0,0) cannot be a free module over

symmetric polynomials. Indeed, if this module were free, the numerator would have been the
Hilbert polynomial of the generators.

Proof of Theorem 6.11. — By permuting a; we may assume that

(ar,....,an) = (Z1,... 21,y 21, .., 2]),

where z; # z; and z; occurs N; times, where N = Ny +---+ N;. By simultaneously shifting a;
we may assume that z; = 0.
Assume first that z, = 7 4+ m,, 1 <r <[ — 1. Let x be the character of (Z)1Z)N given

Then it is easy to see that F € Qf,;)fm] ,..m;_, if and only if it has the form
F(xl,...,xN) = Xlal ...,XlaVNf(Xl,...,XN),
where X; = xf , and satisfies the quasiinvariance condition saying that (1 — s;;) F vanishes
to order 2m + 1 at X; = X; (for X; > 0),1.e,if and onlyif f € On(ay,....an).
Let G := Sy x (Z/1Z)N . By [4, Theorem 8.2],
(6.3) o = @B ecMer@) @7,
t€lrrep(G):tX #0
where eg is the symmetrizer for G, M, x (t) denotes the Verma module over the cyclotomic

rational Cherednik algebra H—Hé\’,cyc (c, 1, k) for appropriate ¢, k, and the superscript y denotes

.....

right hand side of (6.3) (given by the scaling element h of the rational Cherednik algebra)

o o N(N-1) | N
by dividing by / and shifting by m —=5— + 7.

Thus, Qm(ay,...,an) is a free module over C[X1, ..., X§]5V, with Hilbert series inde-
pendent of the numbers m, . Since this holds for a Zariski dense set of vectors (z1, ..., z;—1)
(namely, z, = 7 4+ m,, m, € Z), this holds for Weil generic (z1,....,z;-1).

It remains to show that the statement holds if z; —z; is not a nonzero integer
for 1 <i < j <. Using Theorem 2.19 and Formula (6.3), we see that Qﬁ,;)fml ,,,,, my_; 18
a module over the spherical subalgebra e HH Zl\,’deg(z, I,m)e, where z, = 7 + m,
for1 < i <[ —1andz = 0. Interpolating to arbitrary complex values of z;, we get
that for any zq,...,z;_1 € C, the algebra elﬂ-lllv’deg(z, 1,m)e with z := (z1,...,2;-1,0)
acts on Qp(ai,...,an). If z; — z; is not a nonzero integer, then the category O for the
algebra e HH ]lV,deg(Z’ 1, m)e is semisimple (see [4, Theorem 6.6]). Moreover, by a deforma-
tion argument, Q,,(ay,...,ay) must contain representation (6.3). Since every irreducible
representation in O has full support, this implies that Q,,(a;, ...,ax) coincides with (6.3).
This proves the theorem. O
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Formula (6.3) allows us to easily compute the character of Q,(ay,...,an) as a graded
Sy, X -+ x Sy,-module. Namely, given irreducible representations r, of Sy, , we have from
(6.3):

HomanNr(T[l ®®7T], Qm(al""’aN)) = eGMC,k(T(nl""57tl’X)*)’

@/ 17)N xSy

@I [, Sy, X0 and the grading is modified as explained

where 7(my,...,7m7, ) = Ind
above. Therefore, we have

ProrosITION 6.14. — If (a;,....an) = (z1,...,21,...,2],...,2]) and z; — zZj are not
nonzero integers, then the Hilbert series of the graded vector space Homyy g, (71 ® -+ ®
7wy, Om(ay, ..., an)) equals

NN

—1) /
hﬂl ] (t) = lm( 2 1 _Zr:lcont(n"))hﬂl (t)h:’l’l (t)7

where for an irreducible representation w of Sy, cont(x) is the content of the Young diagram
of , and hy(t) is the Hilbert series of the graded space (w ® C[X1,..., Xn])5", i.e.,
K (t
) = ——x O
I—=2)---(1—1")

where K, (t) is the Kostka polynomial associated to 7.

ExampPLE 6.15. — 1. If Il = 1 (i.e,, a; = 0), we recover the standard formula for the
character of Q,,, see e.g., [26].

2.Let N =2,1 =2, N; = N, = 1. We get from Proposition 6.14 that the Hilbert series
of Om(ay,az)is h(t) = %, 1.e., we recover the formula of Example 6.12 for the case of
generic a.

3.Let N =3,/ =3, N\ = N = N3 = 1. Then we get from Proposition 6.14 that the
Hilbert series of Om (a1, as, a3) is h(t) = (I’f—j’)g
4. Let N =3,1 =2, N, =1, N = 2. The space Q,,(a, 0,0) splits into the direct sum

Qm(a,0,0) = Qm(a’o’ 0)+ 2 Qm(a7ov 0)—7

the symmetric and antisymmetric part under s,3. Denoting the Hilbert series of these spaces
by 24 and h_, we get from Proposition 6.14:

t2m
hy(t) = (ENEDh
l4m+1
h_(t) =

(1—02(1—12)
6.6. g-deformed twisted quasiinvariants

Keep the notation of the previous subsection, and let ¢ > 0. Define the module of
q-deformed twisted quasiinvariants Qmg4(ap,...,ay) to be the space of polynomials
F € C[Xy,..., Xn] such that the function

F(Xp.....Xy) = ([[X)F(X1.....Xn)

(regarded as a function of X; > 0) is a g-deformed m-quasiinvariant, in the sense
that (1 —s;;)F is divisible by [[__, (X; — ¢?X;) in the ring of analytic functions. If

p=—m
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q # 1, this is equivalent to saying that (1 — s,-,-)lF vanishes if X; = ¢?X;,—m < p < m.
Note that

Oma(ai,....an) = Qmlay,...,an),
Omgqlai,....an) = Omglar —a,...,an —a),

and Qm4(a,...,a) = Qmq foralla.

Obviously, Qm4(ai,...,an) is a graded C[Xy, ..., Xy]5¥ -module. By the Hilbert basis
theorem, this module is finitely generated.

THEOREM 6.16. — If a; — a; are not nonzero integers then for all but countably many q,
the Hilbert series of Omg(ai,...,an) coincides with the one for Qm,(ay,....an) (ie.,
Omyg(ay,....an) isaflat g-deformation of Qm(ay, ....an)). Moreover, Qp 4(ai,...,ay)is
afree C[X1, ..., XN]5N -module (of rank N!).

Proof. — The proofis parallel to the proof of Theorem 6.9, using Theorem 6.11. Namely,
the second statement follows from the first one, and it suffices to prove the first statement in
the formal setting ¢ = ¢°. In this case, one shows as in the proof of Theorem 6.9 that the
action of eHH}V’deg(z, 1,m)e on Qp(ay,...,ay) constructed in the proof of Theorem 6.11

can be g-deformed to an action of eHH]lv’formal (z,1,m)eon O 4(ay,...,an). The rest of the
argument is the same as in the proof of Theorem 6.9. O

REMARK 6.17. — We expect that Q,, 4(a1,...,ay) is a flat deformation of Qp(ay,...,an)
for all values of a;, in particular when the module Q,,(a;,...,an) is not necessarily free.
This has been confirmed by a computer calculation in low degrees in Example 6.13.

Also, we expect that Theorems 6.2, 6.9, 6.16 hold for all nonzero values of g.

Appendix

More general multiplicative quiver and bow varieties
by Hiraku Nakajima and Daisuke Yamakawa

In this appendix, we study more general multiplicative quiver and bow varieties, as multi-
plicative analog of results in [34].

Multiplicative bow varieties are defined as in Section 5.4 corresponding to more general
bow diagrams with dimension vectors not necessarily satisfying the balanced condition:

Viei Vi v v Vg

....... V. T\
A\ J
(A.1) Z; hj+1 h] Tit1
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Recall that the balanced condition is v; = v; = v/ for alli. We put 4, B, a, b at x, and C,
D at O as
B/
Bi_, B; d Bit1

= SN Cy )
LoV A o —>(Cv —>(CV O Vi

blx % Dj1 Dj l}\ % 1
C C

We only consider the stability parameter v® = 0 for brevity, as generalization to arbitrary v®
is straightforward.

The definition of multiplicative quiver varieties is more delicate when dim W ## 1, hence
will be given in Section A.3.

A.1. Hanany-Witten transition

We first introduce Hanany-Witten transition for multiplicative bow varieties.
Consider the following part of bow data:

B3

B B

h ﬁ ) Bi=t1Z(+DC)! =1Z(1—-D(1+CD)'C).
D

Vie—=V,—2 Vv,  By=2Z'(1+CD)y'=2'(1-C(+DC)"'D),

C
x % BsA— ABy +ab =0,
C

where ¢, Z, Z’ are fixed nonzero scalars. We consider another bow data with the same V7,
V3, By, Bs:

B,

BY B
) ﬁ (3 BY =tZ(1+ D"C™) ' = Z(1— D"(1 + C"D™)~lCM),
n Dﬂ
R =V B=Z(+ c"p™! = Z/(1-C"(1 + D*C™) "' D),

\ / BIA" — A"B, 4 a"b" = 0

We take quotients by GL(V>2), GL(V3') respectively. (But not by GL(Vy), GL(V3).)

PROPOSITION A.l1. — There exists a GL(V1) x GL(V3)-equivariant isomorphism between
two varieties above.

The isomorphism is explicitly given during the proof.

Proof. — We consider a three term complex

a:[l‘g] ,B=[A32C (Bg—Z/) a]
V2 Vl @ V3 @ (C . V3,

where Sa = 0 follows from one of the definining equation. We claim that « is injective. We
consider S = Kera. Then A(S) = 0 = b(S) and B»(S) = (1 - C(1+ DC)"'D)(S) = S.
Therefore the condition (S1) implies S = 0.

4¢ SERIE — TOME 53 — 2020 - N° 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1303

Let
V5 := Cokera.
We define new bow data as
e A" D™ g™ are composition of inclusions of V1, V3, C, to V; & V3 & C and the projection
V1 ® V3 @ C — V3 respectively.
e b" = bCBy, and C™ is a homomorphism induced from —B3 ! 8.
o BY =1Z(1+ D C")~' =1Z(1 — D*(Z'"'B3)C™).

The last definition requires checking of the invertibility of 1 + D"C™. Let us consider

1 + C"D™. From the definition it is 1 — By ' (B3 — Z’) = Z’B5 . This is the second of the

defining equation. Thus 1 + C" D™ is invertible, and hence 1 + D™*C" is also invertible. (In
fact, (1 + D*C™)~! =1— D"(1 + C"D™)~'C™.) Hence the above BY is well defined.

In order to check the remaining defining equation, we consider
tZ—B;
a"=[—C“B§A“i| .
Vi b VieVseC ATy

This is a complex if and only if the last defining equation holds. Observe that 8 is nothing
but the natural projection. We also have

tZ — B, DCB;
(A.2) o = | —tZZ'"1ByCPA" | = | 1271 AB,C | = aCB;.
bCB; bCB,

where we have used CB; =tZZ'"'B,C,C"B} = tZZ'~' B3C™. Therefore f"a" = 0.

Let us check the condition (S1) for new data. Take a subspace S C V; such that B{(S)CS,
A™(S) = 0 = b"(S). Observe that A"(S) = Omeans S & 0 0 C Ima. Let us consider
S=a"1(S®00). Then D(S) = S and A(S) = 0 = b(S). Therefore

(Z - B1)(S)
a(Z' = B5)(S) = aB>CD(S) = aB,C(S) = aCB;1(S) = a"(S) = 0
0

The condition B;(S) C S implies B,(S) C S. Hence S = 0 thanks to (S1) for the original
data. We have S = 0 as well.

Let us check the condition (S2). Suppose we have a subspace T C V' such that B3 (T)CT,
Im A™ 4+ Ima™ C T. We take its inverse image T = (8)~}(T) in V; & V3 @ C. By the second
assumption, it contains V; & {0} & C. Hence Tisaformof Vi@ T & Cfor T C Vi. We
also have Imar C 7. Hence A(V») C T. As B} = tZ(1 — D™(Z'~'B;)C™), the condition
BY(T) C T implies 0 & B(T)®0CT,ie, AB,C(Vy) + (B3 — Z')(T) + a(C) c T. Hence
T = V3 thanks to (S2) for the original data. We have 7 = V as well.

The inverse construction is clear. The original vector space V5 is recovered from the new
data as Kerp™. Note also 8" is surjective thanks to (S2). Then A, b, D are given as restrictions
of projections V1 @ V3 & C to V3, C, V7 to Ker™ respectively, a is —B3;C"a™, and C is oz“Bl_1
by (A.2). Finally we set B, = Z/(1 + CD)~ L.
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The conditions (S1),(S2) for (A, Bz, Bs3,a,b) follow from the conditions (S1),(S2)
for (A", By, B3 .a", b"). We leave the details to the reader as an exercise. O

Once this isomorphism is established, the remaining arguments of [34, §7] only use dimen-
sion vectors, hence work for the multiplicative case. To state the result, we recall invariants
(see [34, §7.3]): Let Ny, be the difference (left minus right) of entries of the dimension vector
at x;. Then set N(x;, Xj+1) = Nx; — Nx, ., plus the number of O between x; — x;41. [tis
invariant under Hanany-Witten transition. Now by [34, Prop. 7.20] we have

ProrosITION A.2. — If N(x;, Xi+1) = O foranyi, the multiplicative bow variety is isomor-
phic to another multiplicative bow variety with a cobalanced dimension vector by successive
applications of Hanany-Witten transitions of Proposition A.1.

Recall the cobalanced condition is Ny; = 0 for all i.

Recall (Section 5.5) a K-theoretic Coulomb branch for a framed quiver gauge theory of
an affine type with dimension vectors v, w is isomorphic to a multiplicative bow variety with
the balanced condition. In this case, the condition N(x;, x;4+1) > 0 for all i is equivalent to

the dominance condition w — Cy € Z ), as the number of O between x; — x;41 is W;.

A.2. Multiplicative bow varieties with cobalanced dimension vector

Now we study a multiplicative bow variety with cobalanced condition. Consider the
following part of a bow diagram:

B> B3 By
5 () W O O b,
Vie—=W V3 VoT——= Vs

We assume dim V, = dim V3 = dim V, by the cobalanced condition. By [41, Lemma 2.18§],
Ay, Az are isomorphisms. So we normalize A, = A3 = id by the action of GL(V3)x GL(V,).
Then the defining equation becomes

14+ CiDy = Z>B;' = Z5(Bs +ashy)™' = Zo(1 + B3 'azhy) ' B3!
=17'Zy(1 + B3 'azhy) ' (1 + By 'asbs) ' B!
=t72Z'Zo(1 + B3 asby) ™ (1 + B 'ashs) ™' (1 + D4Cy).

This can be regarded as the defining equation of a multiplicative quiver variety with

D Dy
(A.3) Vi Vs Vs
C C
bzl //a/:as\R%I“t
77 b\
C C,

4¢ SERIE — TOME 53 — 2020 - N° 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1305

where we do not take the quotient by C* x C* at bottom vertices. We can further make

D, Dy
(A.4) Vi Vs Vs

C Cy
[Zi]ﬂ[as sl

CZ

where a3 = (1 + Bj'asbs)B;'as, G4 = B} 'as. For additive quiver varieties, (A.3) and
(A.4) give isomorphic varieties. But in the multiplicative case, (A.3) gives an open subvariety
in (A.4) as the invertibility of both (1 + B3 'asby), (1 + B;'asbs) is stronger than the
invertibility of (1+dzby +d4b3). In fact, we have an additional requirement that (1+d4b3) is
invertible. Note that the difference between (A.3) and (A.4) disappears when we only have
one C.

A.3. Multiplicative quiver varieties

Before generalizing the definition of multiplicative quiver varieties given in Section 5.1,
let us recall the notion of quasi-Hamiltonian spaces and fusion/reduction procedures intro-
duced in [1].

Let G be a complex reductive group with Lie algebra g and fix a non-degenerate
Adg-invariant symmetric bilinear form (.,.) on g. Let 6 (resp. 0) be the left (resp. right)
invariant Maurer-Cartan form on G.

A quasi-Hamiltonian G-space is a smooth G-variety M equipped with a G-invariant two-
form w on M and a G-equivariant morphism u: M — G (where G acts on G by conjugation)
satisfying the following three axioms:

(QH1): 12dw = —u*(6 A [0 A 9)).
(QH2): 2u(E*)w = p*(0 + 6.£) for all £ € g. Here &* is the fundamental vector field:

. d
£ = owE) x| (e M),

(QH3): Kerwy, = {&5 | £ € Ker(Ad,(x)+1) } forallx € M.

The map u is called the group-valued moment map.

EXAMPLE A.3. — Any conjugacy class C of G has a structure of quasi-Hamiltonian
G-space whose group-valued moment map is just the inclusion ¢ < G. This is a multi-
plicative analogue of a coadjoint orbit of g*.

Also, the double G x G is a quasi-Hamiltonian G x G-space, which is a multiplicative
analogue of T*G.

ExaMPLE A.4. — In [6] Van den Bergh introduced a multiplicative analogue of the
Hamiltonian GL(V) x GL(W)-space T*Hom(V, W), where V, W are finite-dimensional
C-vector spaces. It is defined to be the quasi-Hamiltonian GL (V) x GL(W)-space

BV, W) ={(X,Y) € Hom(V, W) x Hom(W, V) | det(1 + XY) # 01,
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where the two-form and the group-valued moment map are given by

w éTr (1+XY)"'dX AdY) — %Tr (1+YX)"'dY ndX).

wX,Y)=((1+YX)"', 14+ XY).
This is called the Van den Bergh space.

Next we introduce the internal fusion of quasi-Hamiltonian spaces. Let H be another
complex reductive group equipped with a non-degenerate Adg -invariant symmetric bilinear
form on its Lie algebra b.

THEOREM A.5 ([1]). — Let (M, w, (41, 12, v)) be a quasi-Hamiltonian G x G x H -space.
Let G x H act on M through the diagonal embedding (g, h) — (g, g,h). Then M equipped
with the two-form

ons = 0 + 5 (116 A 136)
and the map
(Hgus, V) := (11 - p2,v): M - G x H
is a quasi-Hamiltonian G x H -space.

The quasi-Hamiltonian G x H -space (M, wgys, (Heus, v)) is called the internal fusion and
denoted by Myys.

The internal fusion procedure is associative in the following sense: if M is a quasi-
Hamiltonian G x G x G x H-space, then two quasi-Hamiltonian G x H-spaces M(12)3
obtained by first fusioning the first two G-factors and M (,3) obtained by first fusioning the
last two G-factors are identical. Therefore, if / is a non-empty totally ordered finite set and
M is a quasi-Hamiltonian G’ x H-space with group-valued moment map ((i; )iz, v), then
we can define its internal fusion Mpy,s as a quasi-Hamiltonian G x H-space in a canonical
way so that its group-valued moment map is (u, v), where p := [];2; ti-

A multiplicative analogue of the Marsden-Weinstein theorem is the following theorem:

THEOREM A.6 ([1]). — Let (M, w, (i, v)) be a quasi-Hamiltonian G x H-space and C be
a conjugacy class of G. If the G-action on =1 (C) is free, then u=1(C) is a smooth subvariety
of M, and if furthermore the action has a geometric quotient = (C)/G, then w and v induce
a quasi-Hamiltonian H -structure on u='(C)/G.

The above quasi-Hamiltonian H-space 1~ 1(C)/G is called the quasi-Hamiltonian reduc-
tion of M by G along C and denoted by M//¢ G.

Note that in the above situation if H is abelian then M//; G is symplectic. The following
fact is also useful.

THEOREM A.7. — Let (M,w, (u,v)) be a quasi-Hamiltonian G x H-space. Assume
that H is abelian and M has a good quotient m: M — M/G. Then for any open U C M/G
and f € T(U, Opy ), there exists a unique vector field vy € T (=1 (U), Opr) such that

tp)w =da* f, (vp)u*6 =0.
Each vy is G-invariant and preserves w and . Also, n*{f, g} = vs(7*g) (f.g € Omyc)
defines an H -invariant Poisson structure on M/ G.
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See [1, Proposition 4.6], where H is assumed to be trivial but the arguments in the proof
work in the general case.

Since each vy preserves u, for any conjugacy class C C G the closed subvariety M//; G :=
w Y (C)/G c M/G is Poisson. We call it the quasi-Hamiltonian reduction of M by G
along C. On the other hand, if there exists an openU C pu~! (E) /G such that u(z~(U)) c C
and G acts freely on 7~!(U), then Theorem A.6 shows that U is a quasi-Hamiltonian
H -space, in particular symplectic. By the definition, the Poisson structure on U given by
Theorem A.7 coincides with one induced from the symplectic structure.

Now we introduce the multiplicative quiver varieties. Let Q = (Qo, Q1,s,t) be a finite
quiver. Let V = EBZ-GQO Viand W = @ier W; be two finite-dimensional Qq-graded
C-vector spaces with dimension vectors v = (v;)ieq, and w = (W;);eq,. respectively. For
each i € Qo fix a decomposition of W; into one-dimensional pieces

wi
Wi= Wi dimW,; =1
j=1

andlet T(W) C GL(W) =[] GL(W;) be the associated maximal torus. Define

i€Qo

Ba(V. W) = [T BVewy. Vew) x ] 1 BWis V).

heQ; i€QoJj=1
which is a quasi-Hamiltonian G x T'(W)-space, where
G:= [T (6L x GLGaa)) x [ ] GLV)™.
heQ i€Qo
Using the double Q of Q with involution *:61 — 61 (so 61 = QUQjandsox =t,
tox = s), we denote an element of B (V, W) by (C,a,b), where C = (Ch)peq,»a = (ai,j),
b= (bi,j) and
(Ch, Cnx) € BVey, Vi) (h € Qu),
(ai,j.bij) € BWi ;. Vi) (€Qo.j=1....w).
(In other places, Cj, is denoted by C; or D; according to whether £ is in Q; or not.) Fix a
total ordering < on Q; and define a quasi-Hamiltonian GL(V) x T(W)-space by
$Q(V’ W)= (‘%)Q(Vv W)fus,<,

where the internal fusion is taken with respect to the diagonal embedding GL(V) < G so
that the resulting group-valued moment map (u, v) = ((ii), (vi,;)) is

<

Wi
piBoa,by =[] (0 +CCr)* P[]0 +aijbi ),
heQ;t(h)=i j=1

vi ;j(C,a,b) = (1 + b; ja; ;))~",
where e(h) = 1if 7 € Q, and e(h) = —1if h € Q%

DEFINITION A.8. — For y = (yi)ieq, € (C*), put yy = (y; 1y,)ieq, € GL(V) and
define

My (v, W) = " (yv)/ GL(V),
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where the quotient is taken as the affine GIT quotient. We call QM; (v, w) the multiplicative
quiver variety.

By Theorem A.7, @]I/Z; (v.w) = Bq(V.W)//y,, GL(V) is a Poisson variety. Also, as in the
case of additive quiver varieties, the GL(V)-action on the open subset £~ (yy)* C u='(yy)
consisting of stable points has stabilizer C* 1y everywhere (where the definition of stability
is exactly the same as in the additive case), and Theorem A.6 implies that the open subset
My E (v, W) i= u N (yy)*/ GL(V) of oM, (v.w) is a quasi-Hamiltonian T (W)-space. We
also call },,"* (v, w) the multiplicative quiver variety.

ExaMPLE A.9. — The multiplicative quiver variety oﬂ%\, (Z,t) introduced in Section 5.1
coincides with Qﬂ%; (v, w) with Q = A;_; (the orientationis 1 - — --- — 2 — 1) and

Zy Zy Zi—
v=(N,N,...,N), w=(1,0,...,0), y= (Z—II,Z—Z,..., 7 )

REMARK A.10. — Definition A.8§ is close to the definition of framed multiplicative quiver
variety introduced in [45]. Let us identify all W; ; with C. Then the framed multiplicative
quiver variety is obtained by replacing Bq(V, W) with its internal fusion for the diagonal
subgroup C* C T'(W) in the definition of o}/, (v. w). Itis the same as o}/, (v, W) as a variety,
but the Poisson brackets are different in general.

REMARK A.11. — There is another multiplicative analogue of quiver variety. It is
obtained by replacing Bq(V, W) with the quasi-Hamiltonian G x GL(W)-space

BaV.W) = [ BVay. Vew) x [] BWi. Vi)
heQ i€Qo

-
in the definition of @M; (v, w). But note that in general the two-form on CG/3Q(V, W)tus,< does
not induce a Poisson structure on the resulting variety. It is why we decompose each W; into
one-dimensional pieces. Of course if dim W; < 1 for alli € Qg then the two definitions
coincide.

ExaMPLE A.12. — Consider Q = Ay_; withw = (£,0,...,0). The usual quiver variety
M (v, w),ifitisnot @, is a semisimple coadjoint orbit of gl(£) for generic ¢. The multiplicative
quiver variety in the definition in Remark A.11 is a conjugacy class of GL({). (See e.g., [16,
§8].) On the other hand, Definition A.8 gives its open subset, the intersection with a big
Bruhat cell of GL (£). To see this, take a decomposition W = @le W; into one-dimensional
spaces, and write a = (a;), b = (b;). Thena = (a.....d¢), b = *(by.....by) with
d; = (1+ayby)---(1 +aj_1bj_1)a;, b; = b; satisfy the defining equation in Remark A.11
as

)4
L+ ajbj = (14 aiby)-- (1 + aghy).
j=1

The isomorphism to a conjugacy class is given by the group-valued moment map (1 + ba)~!.
If anelement 1+ba is coming from (a;), (b;), we have additional constraint det(1+a;b;) # 0
for j = 1,..., ¢, which is equivalent to require that every leading principal minor of 1+ bais
nonzero.
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Now we understand the correct definition of multiplicative quiver varieties, and the argu-
ment in Section A.2 gives the following.

THEOREM A.13. — Consider a multiplicative bow variety with a cobalanced dimension
vector. It is isomorphic to a multiplicative quiver variety oﬂ%; (v, w) such that v (resp. w;) is the
dimension of vector spaces (resp. the number of x) between h; and hj 1, andy; =t/ Z; |/ Zj 1.

Combining this with Proposition A.2, we obtain an isomorphism between a K-theo-
retic Coulomb branch and a multiplicative quiver variety when the dominance condition is
satisfied. We conjecture that this is an isomorphism of Poisson varieties. More generally we
conjecture

CONJECTURE A.14. — (1) The space consisting of A;_1, B;_1, B}, a;, bj— with (i), (a),
(S1), (S2) in Section 5.4 is a quasi-Hamiltonian GL(V;—1) x GL(V;) x C*-space with the
group-valued moment map B;),, B/, det B;_; det B/~!. Therefore a multiplicative bow
variety is a quasi-Hamiltonian reduction.

(2) The Hanany-Witten transition is a quasi-Hamiltonian GL (V1) x GL(V3) x C*-spaces
isomorphism.

(3) The isomorphism of Theorem A.13 is an isomorphism of quasi-Hamiltonian
T (W)-spaces.

REMARK A.15. — Both homological and K-theoretic Coulomb branches have a torus
action induced from Hom(m;(G), Z). See [33, 4(iii)(c)] and the original physics literature
therein. It is expected that the torus action extends to a nonabelian group action for homo-
logical Coulomb branches [33, 4(iii)(d)], and proved for ADE quiver gauge theories in
[9, Remark 3.12]. On the other hand, it is not true for K-theoretic Coulomb branches as
Example A.12 shows.
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