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CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS

 A BRAVERMAN, P ETINGOF
 M FINKELBERG

    H NAKAJIMA
 D YAMAKAWA

To Ivan Cherednik with admiration

A. – We show that the partially spherical cyclotomic rational Cherednik algebra (ob-
tained from the full rational Cherednik algebra by averaging out the cyclotomic part of the underlying
reflection group) has four other descriptions: (1) as a subalgebra of the degenerate DAHA of type A
given by generators; (2) as an algebra given by generators and relations; (3) as an algebra of differential-
reflection operators preserving some spaces of functions; (4) as equivariant Borel-Moore homology of
a certain variety. Also, we define a new q-deformation of this algebra, which we call cyclotomic DAHA.
Namely, we give a q-deformation of each of the above four descriptions of the partially spherical ratio-
nal Cherednik algebra, replacing differential operators with difference operators, degenerate DAHA
with DAHA, and homology with K-theory, and show that they give the same algebra. In addition, we
show that spherical cyclotomic DAHA are quantizations of certain multiplicative quiver and bow va-
rieties, which may be interpreted as K-theoretic Coulomb branches of a framed quiver gauge theory.
Finally, we apply cyclotomic DAHA to prove new flatness results for various kinds of spaces of q-de-
formed quasiinvariants.

R. – Nous démontrons que l’algèbre rationnelle cyclotomique de Cherednik partielle-
ment sphérique (obtenue à partir de l’algèbre rationnelle de Cherednik complète en effectuant la
moyenne par la partie cyclotomique du groupe de réflexions sous-jacent) admet quatre autres des-
criptions: (1) comme une sous-algèbre de la DAHA degenerée de type A donnée par générateurs;
(2) comme une algèbre donnée par générateurs et relations; (3) comme une algèbre des opérateurs
différentiels-réflexions préservants certains espaces des fonctions; (4) comme l’homologie de Borel-
Moore équivariante d’une certaine variété. Aussi nous définissons une nouvelle q-déformation de cette
algèbre que nous appelons DAHA cyclotomique. À savoir, nous donnons une q-déformation de chacune
des descriptions ci-dessus de l’algèbre rationelle de Cherednik partiellement sphérique, remplaçant les
opérateurs différentiels par les opérateurs en différences, DAHA dégénerée par DAHA, et l’homologie
par la K-théorie; et démontrons qu’ils donnent lieu à la même algèbre. En outre, nous montrons que
les DAHA sphériques cyclotomiques sont les quantifications de certaines variétés de carquois et arc
multiplicatives, qui peuvent être interprétées comme les branches de Coulomb K-théoriques d’une
théorie de jauge de carquois encadrée. Enfin, nous appliquons la DAHA cyclotomique pour prouver
de nouveaux résultats de platitude pour des types différents d’espaces de quasi-invariants q-déformés.
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1250 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

1. Introduction

Let N � 0; l � 0 be integers, c0; : : : ; cl�1; ~; k be parameters, and c D .c0; : : : ; cl�1/.
Let HHl;cyc

N .c; ~; k/ be the cyclotomic rational Cherednik algebra attached to the complex
reflection group W D SN n .Z=lZ/N . Let p be the symmetrizer of the subgroup .Z=lZ/N ,
andHHl;psc

N .c; ~; k/ WD pHHl;cyc
N .c; ~; k/p be the corresponding partially spherical subalgebra.

In this paper we give a geometric interpretation of HHl;psc
N as the equivariant Borel-Moore

homology of a certain variety R D R .N; l/ equipped with a group action. This allows
us to define a natural q-deformation HH l

N of HHl;psc
N in terms of the equivariant K-theory

of R .N; l/, which we call the cyclotomic double affine Hecke algebra (DAHA).

The existence of this q-deformation may seem somewhat surprising from the viewpoint of
classical algebraic theory of DAHA ([15]), since typically DAHA are attached to crystallo-
graphic reflection groups (Weyl groups), while the groupW is not crystallographic for l � 3.
Yet, we also give a purely algebraic definition of cyclotomic DAHA. Namely, we characterize
the cyclotomic DAHA as the subalgebra of the usual Cherednik’s DAHA for GLN gener-
ated by certain elements, and also as the subalgebra preserving certain spaces of functions.
Finally, we present cyclotomic DAHA by generators and relations. These three descriptions
also make sense in the trigonometric limit q ! 1 (for partially spherical cyclotomic rational
Cherednik algebras). We note that for l D 1, cyclotomic DAHA essentially appeared in [3].

We also connect cyclotomic DAHA with multiplicative quiver and bow varieties. Namely,
we show that the spherical cyclotomic DAHA eHH l

N .Z; 1; t/e (where e is the symmetrizer of
the finite Hecke algebra) is commutative, and its spectrum for generic parameters is isomor-
phic to the algebra of regular functions on the multiplicative quiver variety for the cyclic
quiver of length l with dimension vector .N; : : : ; N /; hence eHH l

N .Z; q; t/e is a quantization
of this variety. In particular, we show that this multiplicative quiver variety is connected,
and that HH l

N .Z; 1; t/ is an Azumaya algebra of degree NŠ over this variety. We also show
that if t is not a root of unity then the algebra eHH l

N .Z; 1; t/e is an integrally closed Cohen-
Macaulay domain isomorphic to the center Z .HH l

N .Z; 1; t//, while HH l
N .Z; 1; t/e is a

Cohen-Macaulay module over this algebra.

Finally, we provide some applications of cyclotomic DAHA to the theory of quasiinvari-
ants. Namely, we show that natural q-deformations of various classes of spaces of quasi-
invariants are flat, and therefore free modules over the algebra of symmetric polynomials.
We also introduce a new type of quasiinvariants (namely, twisted quasiinvariants) and their
q-deformation, and prove the freeness property for them.

We note that the degenerate cyclotomic DAHA were studied in a way similar to ours by
R. Kodera and H. Nakajima in [30]. In fact, their paper was one of the starting points for
our work.

The paper is organized as follows. In Section 2 we develop the theory of partially spher-
ical cyclotomic rational Cherednik algebras as subalgebras in trigonometric (degenerate)
DAHA, and give their presentation. In Section 3 we define cyclotomic DAHA as subalge-
bras of DAHA, and study their properties. We also give a presentation of cyclotomic DAHA,
which allows us to find various bases in them and prove flatness results. In Section 4 we give a
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CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1251

geometric description of cyclotomic DAHA and their degenerate versions in terms of equiv-
ariant K-theory and Borel-Moore homology, and apply it to proving flatness of these alge-
bras. In Section 5 we relate the spherical subalgebra of cyclotomic DAHA at q D 1 with
certain multiplicative quiver and bow varieties; the latter are isomorphic to the K-theoretic
Coulomb branch of framed quiver gauge theories of affine type A. We also study the prop-
erties of the spectrum of the spherical cyclotomic DAHA for q D 1. In Section 6 we give
applications of cyclotomic DAHA to proving flatness of q-deformation of various spaces of
quasi-invariants. Finally, Appendix , written by H. Nakajima and D. Yamakawa, explains the
relations between multiplicative bow varieties and (various versions of) multiplicative quiver
varieties for a cyclic quiver.

Acknowledgments. – The work of M.F. has been funded within the framework of the
HSE University Basic Research Program and the Russian Academic Excellence Project
‘5-100’. The work of M.F. has been partially funded by the Russian Academic Excellence
Project ‘5-100’. We are grateful to J. Stokman for useful discussions and reference [3];
to O. Chalykh for his comments cited in Remarks 3.26, 5.19; to J. F. van Diejen and S.
Ruijsenaars for Remark 3.25; to E. Rains for explaining the connection with [27] and
[39, 38] (Remark 3.12) and pointing out that Lemma 2.13 and Theorem 2.10(i) need the
assumption that k … ZC 1=2; to B. Webster for sharing [44] with us prior to its publication
and explaining its results (see Remark 2.21); to J. Kamnitzer for explaining the KLR-type
construction of the convolution algebras of Section 4.1 to us; and to H. Nakajima for
explaining to us the results of [30] (see Remark 2.21). Also, Sections 5.4 and 5.5 are due to
H. Nakajima’s patient explanations.

2. Degenerate cyclotomic DAHA

2.1. Notation

In this paper, we will consider many different algebras depending on parameters. So let us
clarify our conventions.

First of all, if an algebra depends on parameters, we will list the parameters explicitly when
they are given numerical values, and omit them when they are indeterminates (i.e., we work
over a commutative base algebra generated by them). Also, throughout the paper, we will use
the following notation, to be defined below.

� HHN;deg.~; k/: the degenerate (trigonometric) DAHA, Definition 2.1;

� HH l
N;deg.z; ~; k/, z WD .z1; : : : ; zl /: the degenerate cyclotomic DAHA, Definition 2.8;

� HHl;cyc
N .c; ~; k/, c WD .c0; : : : ; cl�1/: the cyclotomic rational Cherednik algebra for the

group Sn n .Z=lZ/n, Definition 2.16;

� HHl;psc
N .c; ~; k/ WD pHHl;cyc

N .c; ~; k/p: the partially spherical cyclotomic rational
Cherednik algebra, Subsection 2.8;

� HHN .q; t/: Cherednik’s DAHA, Definition 3.1;

� HH formal
N .~; k/: formal Cherednik’s DAHA over CŒŒ"��, with q D e"~ and t D e�"k ,

Subsection 3.1;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1252 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

� HH l
N .Z; q; t/, Z WD .Z1; : : : ; Zl /: the cyclotomic DAHA, Definition 3.9;

� HH
l;formal
N .z; ~; k/, the formal cyclotomic DAHA, with q D e"~, Zi D e"zi and

t D e�"k , Definition 3.9;

� HH rat
N .~; k/, the rational Cherednik algebra for SN , Example 2.17;

� HH l
N;deg: the geometric version of the degenerate cyclotomic DAHA,

H
C��T.W / O�PoC�
� .R /, Section 4;

� HH l
N : the geometric version of the cyclotomic DAHA, KC��T.W / O�PoC�.R /,

Section 4.

2.2. Degenerate (trigonometric) DAHA

Let ~; k be variables.

D 2.1. – The degenerate (or trigonometric) double affine Hecke algebra
(DAHA) HHN;deg is generated over CŒ~; k� by �˙1; s0; : : : ; sN�1; y1; : : : ; yN with defining
relations

s2i D 1; sisiC1si D siC1sisiC1; sisj D sj si if i � j ¤ ˙1; �si D siC1�;

Œyi ; yj � D 0; �yi D yiC1� if i ¤ N; �yN D .y1 � ~/�;
siyi D yiC1si C k; if i ¤ 0; s0yN D .y1 � ~/s0 C k;

Œsi ; yj � D 0 if i � j ¤ ˙1;

where addition is mod N .

P 2.2. – The algebra HHN;deg is generated by SN n ZN (generated by si
and invertible commuting elements X1; : : : ; XN ) and elements y1; : : : ; yN with commutation
relations

siyi D yiC1si C k; siyj D yj si ; j ¤ i; i C 1;

Œyi ; yj � D 0;

Œyi ; Xj � D kXj sij ; i > j;

Œyi ; Xj � D kXisij ; i < j;

Œyi ; Xi � D ~Xi � k
X
r<i

Xrsir � k
X
r>i

Xisir ;

and the relations of SN n ZN , where sij is the transposition of i and j . Namely, the transition
between the two definitions is given by the formulas

� D X1s1 � � � sN�1; s0 D X
�1
N X1s1N :

Proof. – The proposition is standard, and the proof is by a direct computation; see e.g.,
[40], Section 2.

4 e SÉRIE – TOME 53 – 2020 – No 5
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R 2.3. – The commutation relations between yi andXj in Proposition 2.2 can be
replaced by the relations

(2.1) Œyi ;
Y
j

Xj � D ~
Y
j

Xj or Œ
X
i

yi ; Xj � D ~Xj ;

and

(2.2) Œy2; X1� D kX1s1:

Indeed, the relation for Œyi ; Xj �, i ¤ j can be obtained from (2.2) by the action of SN , and
then the relation for Œyi ; Xi � can be obtained by using one of the relations (2.1).

Note that HHN;deg is a bigraded algebra: deg.Xi / D .1; 0/, deg.yi / D deg.~/ D deg.k/ D .0; 1/,
deg.si / D .0; 0/. Moreover, the PBW theorem for the degenerate DAHA, which follows from
the existence of its polynomial representation (see Subsection 2.3) implies that HHN;deg is a
free bigraded module over CŒ~; k�.

Also, we have the specialization HHN;deg.~; k/ of the degenerate DAHA at ~; k 2 C,
which is defined by the same generators and relations, where ~; k are numerical. The
bigrading on HHN;deg induces a grading on this specialization defined by deg.Xi / D 1,
deg.yi / D deg.sj / D 0 and an increasing filtration F � compatible with this grading, defined
by deg.Xi / D deg.sj / D 0, deg.yi / D 1.

2.3. The polynomial representation

Let Di be the rational Dunkl operators

Di WD ~@i �
X
j¤i

k

Xi �Xj
.1 � sij /;

where @i is the derivative with respect to Xi , and sij is the permutation of i and j (so siDsi;iC1).
Define the trigonometric Dunkl operators by the formula

D
trig
i WD XiDi � k

X
j<i

sij :

The following well known proposition is due to Cherednik ([14]; see also [40], Proposi-
tion 3.1).

P 2.4. – We have a representation � of HHN;deg.~; k/ on P WD CŒX˙11 ; : : : ; X˙1N �,
defined by

�.si / D si for i ¤ 0; �.�/ D X1s1 � � � sN�1;

�.s0/ D s1NX
�1
1 XN ;

�.yi / D D
trig
i :

Proof. – The relations involving only � and si are easy. Let us prove that Œ�.yi /; �.ym/� D 0
for i < m. Using that ŒDi ; Xm� D ksim and ŒDi ;Dm� D 0, we get

Œ�.yi /; �.ym/� D kXisimDm � kXmsimDi � kŒXiDi ; sim� C k2
X
i<j

Œsij ; sim C sjm�:

The first three summands cancel, and the last summand is zero, as desired.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1254 A. BRAVERMAN, P. ETINGOF AND M. FINKELBERG

Let us prove the commutation relations between �.�/ and �.yi /. For i < N we have

�.�/�.yi / D X1s1 � � � sN�1.XiDi � k
X
j<i

sij /

D X1.XiC1DiC1 � k
X
j<i

sjC1;iC1/s1 � � � sN�1

D .XiC1DiC1 � k
X
j<i

sjC1;iC1/X1s1 � � � sN�1 � kXiC1s1;iC1s1 � � � sN�1

D �.yiC1/�.�/:

Also �.�n/ D X1 � � �Xn, so �.�n/�.yi / D .�.yi / � ~/�.�n/, which implies that the relation
�yN D .y1 � ~/� is preserved.

Let us show that the relation siyi D yiC1si C k for i ¤ 0 is preserved. We have

�.si /�.yi / D si;iC1.XiDi � k
X
j<i

sij /

D .XiC1DiC1 � k
X
j<i

siC1;j /si;iC1 D �.yiC1/�.si /C k:

The relation s0yN � .y1 � ~/s0 C k is obtained from the previous relation by conjugation
by � . Finally, the relation Œsi ; yj � D 0 for i � j ¤ ˙1 is easy for i ¤ 0, and for i D 0 is
obtained from the case i D 1 by conjugation by � . The proposition is proved.

D 2.5. – The representation P ofHHN;deg.~; k/ is called the polynomial repre-
sentation.

It is easy to see that the polynomial representation is faithful when ~ ¤ 0. Moreover,
replacing ~@i with momentum variables pi , we can make it faithful in the limit ~ D 0 (see
[23], 2.10).

Let DN be the algebra of differential operators in X1; : : : ; XN with poles at Xi D 0 and
Xi D Xj . Then the algebra CSN n DN acts naturally on PŒ��1�, where

� WD
Y
i<j

.Xi �Xj /;

and � defines an inclusion

HHN;deg.1; k/ ,! CSN n DN :

We will use this inclusion to view HHN;deg.1; k/ as a subalgebra of CSN n DN . Note that
the filtration F � on HHN;deg.1; k/ is induced under this inclusion by the order filtration on
differential operators.

Let  � be the automorphism of the algebra CSN n DN fixing Xi and sending si to �si
and @i to @i C

P
j¤i

�
Xi�Xj

, i.e., conjugation by j�j�sign.�/ on the real locus.

L 2.6. – The algebra 2k.HHN;deg.1; k// � CSN n DN preserves P. In other words,
HHN;deg.1; k/ preserves j�j2ksign.�/P.
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Proof. – We need to check that

 2k.D1/ D D1 �
X
j¤1

2k

X1 �Xj

D @1 �
X
j¤1

k

X1 �Xj
.1C sij /C

X
j¤1

2k

X1 �Xj

D @1 C
X
j¤1

k

X1 �Xj
.1 � sij /

preserves P, which is straightforward.

Let e D 1
NŠ

P
s2SN

s be the symmetrizer of SN . The algebra eHHN;deg.~; k/e is
called the spherical subalgebra of HHN;deg.~; k/; it has the polynomial representation
eP D CŒX˙11 ; : : : ; X˙1N �SN . Let H WD e.

P
i y

2
i /e 2 eHHN;deg.~; k/e. This element acts on

the polynomial representation by the trigonometric Calogero-Moser Hamiltonian.

L 2.7. – The algebra A WD eHHN;deg.1; k/e is generated by H and CŒX˙11 ; : : : ; X˙1N �SN .

Proof. – The algebraA has a filtration F � given by deg.Xi / D deg.sj / D 0, deg.yi / D 1,
and gr.A/ D CŒX˙11 ; : : : ; X˙1N ; p1; : : : ; pN �

SN with Poisson bracket corresponding to the
symplectic form

P
i dpi^dXi=Xi . Since the symbol ofH isH0 WD

P
i p

2
i , it suffices to check

that gr.A/ is Poisson generated by CŒX˙11 ; : : : ; X˙1N �SN and H0. For this it suffices to show
that the Poisson algebraB generated by these elements contains Fr;s WD

P
i X

r
i p

s
i , where r is

any integer and s a nonnegative integer, as such elements generate gr.A/ as a commutative
algebra (by a theorem of H. Weyl). The Poisson bracket is given by fpj ; Xig D ıijXi , andXi
are pairwise Poisson commutative, as are pj . So for r ¤ 0

Fr;s D
1

2r
f

X
i

p2i ; Fr;s�1g;

and Fr;0 D
P
i X

r
i 2 CŒX˙11 ; : : : ; X˙1N �SN � B. So it remains to show that F0;s 2 B. For

this, it suffices to note that

F0;s D
1

s C 1
fF�1;sC1; F1;0g:

2.4. Degenerate cyclotomic DAHA

D 2.8. – Let l 2 Z�0, z1; : : : ; zl 2 C, and z D .z1; : : : ; zl /. The degen-
erate cyclotomic DAHA is the subalgebra HH l

N;deg.z; ~; k/ of HHN;deg.~; k/ generated
by si , i D 1; : : : ; N � 1, yi , i D 1; : : : ; N , � , and the element

�� WD �
�1

lY
iD1

.y1 � zi /:

Similarly, if zi , ~, and k are variables, we define HH l
N;deg to be the subalgebra

of HHN;degŒz1; : : : ; zl � generated by the same elements.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Note that by this definition

HH 0
N;deg.~; k/ D HHN;deg.~; k/; HH l 0

N;deg.z
0; ~; k/ � HH l

N;deg.z; ~; k/

if l 0 � l and z0 � z as a multiset.
For u 2 C, let �u be the automorphism of CSN n DN which preserves Xi ; si , and sends

@i to @i C uX�1i (i.e., conjugation by .
Q
i Xi /

u).

P 2.9. – The algebras �zi .HH
l
N;deg.z; 1; k//, i 2 Œ1; l�, preserve the subspace

PC WD CŒX1; : : : ; XN � � P. In other words, the algebra HH l
N;deg.z; 1; k/ preserves .

Q
j Xj /

ziPC
for all i .

Proof. – We only need to show that ��1�zi ..y1 � z1/ � � � .y1 � zl // preserves PC. Note
that y1 D X1D1, so �zi .y1/ D y1Czi . Thus, we need to check that ��1y1

Q
j¤i .y1�zjCzi /

preserves PC. But this holds since ��1y1 D sN�1 � � � s1D1 preserves PC (and, of course, so
does y1).

A similar result holds when zi ; k are variables.

T 2.10. – (i) [27] If k … ZC 1=2 then HHN;deg.1; k/ is the algebra of all elements
of the algebra SN n DN which preserve P and j�j2ksign.�/P.

(ii) Suppose zi � zj are not integers and k 2 C is Weil generic (1) (i.e., outside a countable
set). Then the algebraHH l

N;deg.z; 1; k/ is the subalgebra of all elements ofHHN;deg.1; k/which
preserve .

Q
j Xj /

ziPC for all i .
(iii) Under the assumption of (ii), the algebra HH l

N;deg.z; 1; k/ is the subalgebra of all
elements of SN n DN which preserve P, j�j�sign.�/P, and .

Q
j Xj /

ziPC for all i .

Theorem 2.10 is proved in the next two subsections.

2.5. The case N D 1

Let us first prove Theorem 2.10 for N D 1. Let Bl .z/ WD HH l
1.1; z/ (the parameter k

does not enter in this case). The algebra Bl .z/ is generated by X D X1, the Euler element
E WD X@ D y1, and

L WD �� D X
�1.X@ � z1/ � � � .X@ � zl /:

Then Theorem 2.10 for N D 1 reduces to the following statement.

P 2.11. – If zi � zj are not integers for i ¤ j then Bl .z/ is the algebra of all
differential operators on C� which preserve XziCŒX� for all i D 1; : : : ; l .

Proof. – It is clear that every element ofBl .z/ preservesXziCŒX�, since so doX ,E andL.
So we need to show that any operator M which preserves XziCŒX� belongs to Bl .z/.

Suppose that M is of degree r , i.e., M D X rg.E/, where g is some polynomial. If
r � 0, then M 2 Bl .z/, as E 2 Bl .z/. So it remains to consider the case r D �q, where
q > 0. Then M has to annihilate Xzi ; : : : ; XziCq�1 for all i (which are all different thanks
to the condition on the zi ), so the degree of g is at least ql . On the other hand, if we take
g.y/ D P.y/P.y � 1/ � � �P.y � q C 1/h.y/ where P.y/ WD .y � z1/ � � � .y � zl /, then
M WD X�qg.E/ D Lqh.E/, so M 2 Bl .z/. This shows that M always belongs to Bl .z/

(1) We don’t know if Theorem 2.10 (ii), (iii) actually fails for any value of k … ZC 1=2.
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(as we can subtract Lqh.E/ to make the degree of the polynomial < ql). The proposition is
proved.

R 2.12. – We have E D XL C z1 for l D 1 and E D 1
2
.ŒL;X� C z1 C z2 � 1/

for l D 2, so one may ask if Bl .z/ is in fact generated by L;X (i.e., if E can be expressed via
L;X). It is not hard to show that this is indeed the case for generic zi . But if l � 3 and zi are
special, then the algebra Bl .z/ may not be generated by X;L. Indeed, let z1 D 0, z2 D 1,
z3 D 2, and the other zi be arbitrary. Then Bl .z/ preserves CŒX� and X2CŒX�, so has a
2-dimensional representation V D CŒX�=.X2/ where L acts by 0 and X acts nilpotently.
Hence, if B 0

l
.z/ � Bl .z/ is the subalgebra generated by L;X then every element of B 0

l
.z/ has

only one eigenvalue on V . On the other hand, E has eigenvalues 0; 1 on V , so E … B 0
l
.z/.

We will also need the following “unsymmetrized” version of Proposition 2.11 for l D 2.
Let A.k/ be the rational Cherednik algebra with parameter k attached to the group Z=2Z,
i.e., generated by x, s 2 Z=2Z such that sx D �xs, and D D @ � k

x
.1 � s/.

L 2.13. – If k … ZC 1
2

then A.k/ is the algebra of all elements of CZ=2Zn D.C�/
which preserve CŒx� and jxj2ksign.x/CŒx�. (2)

Proof. – It is clear that A.k/ preserves these spaces, since so do its generators. So it
remains to show that any element M preserving these spaces is in A.k/. We may assume
that M is homogeneous. Note that E WD 1

2
.xD C Dx � 1 C 2k/ D x@ 2 A.k/. So if

M is of nonnegative degree, then M D xr .g1.E/.1 � s/ C g2.E/.1 C s//, where g1; g2
are some polynomials, hence M 2 A.k/ automatically. Now suppose deg.M/ D �q < 0,
i.e., M D x�q.g1.E/.1 � s/ C g2.E/.1 C s//. The operator M has to annihilate xm and
sign.x/jxj2kxm for 0 � m � q � 1, so g1.u/ is divisible by

Qq�1
jD0.u � j � .1 C .�1/

j /k/,

while g2.u/ is divisible by
Qq�1
jD0.u� j � .1� .�1/

j /k/ (here we use that these products have
no repeated factors since k … Z C 1=2). On the other hand, it is easy to see by acting on
monomials xp that

x�q
q�1Y
jD0

.E � j � .1C .�1/j /k/ � .1 � s/ D Dq.1 � s/;

while

x�q
q�1Y
jD0

.E � j � .1 � .�1/j /k/ � .1C s/ D Dq.1C s/;

which are both in A.k/. This implies the lemma.

(2) Lemma 2.13 fails if k 2 ZC 1=2. For example, if k D 1=2 then the element .x�1@ � x�2/.1 � s/ preserves
the required spaces but is not in A.k/.
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2.6. Proof of Theorem 2.10

Let us prove (i). By Lemma 2.13 and Lemma 2.6, HHN;deg.1; k/ is the space of elements
of SN n DN which upon formal completion at a generic point of each hyperplane Xi D Xj
(in the sense of [7]) lie in the formal completion of A.k/˝WN�1, where WN�1 is the Weyl
algebra ofN �1 variables. So (i) follows from the results of [19] (see also the appendix to [7]).

It is clear that given (i), statements (ii) and (iii) are equivalent, so let us prove (ii) (assuming
l > 0, as the case l D 0 is trivial). First consider the case k D 0. In this case, the result follows
from the following lemma.

L 2.14. – LetL 2 SN n D.C�/˝N be an element preserving the space .
Q
j Xj /

ziPC
for all i . Then L 2 SN n Bl .z/˝N .

Proof. – Let L D
P
�2SN

�L� , where L� are differential operators. Consider a
generic point x in the hyperplane X1 D 0, and let Ei be the formal completion of the
CŒX1; : : : ; XN �-module .

Q
j Xj /

ziPC near the SN -orbit of x. Then Ei D
L
�2SN

Ei;� ,
where Ei;� is the completion of .

Q
j Xj /

ziPC at the point �x. It is clear that L preserves Ei
for all i . This implies that for each � , L� preserves Ei;1. Hence L� preserves .

Q
j Xj /

ziPC
for all i and � . Thus we may assume without loss of generality that L 2 D.C�/˝N is a
differential operator.

It is clear from taking completions thatL preserves the spaceXzi1 CŒX1; X˙12 ; : : : ; X˙1N � for
all i . Therefore, by Proposition 2.11, for any v 2 CŒX˙12 ; : : : ; X˙1N �,  2 CŒX˙12 ; : : : ; X˙1N ��

the differential operator .Id˝ /.L.Id˝ v// 2 D.C�/ in fact belongs to Bl .z/. Let faig be
a basis of Bl .z/, and fa0j g its extension to a basis of D.C�/. We can uniquely write L as

L D
X
i

ai ˝ Li C
X
j

a0j ˝ L
0
j :

Thus we have X
i

 .Liv/ai C
X
j

 .L0j v/a
0
j 2 Bl .z/:

Hence  .L0j v/ D 0 for all j . Since this holds for all  , we have L0j v D 0. Since this holds
for all v, we have L0j D 0. Thus L D

P
i ai ˝ Li 2 Bl .z/ ˝ D.C�/˝N�1, i.e., the first

component ofL lies in Bl .z/. A similar argument applies to all the other components. Thus,
L 2 Bl .z/

˝N , as desired.

Now, consider the case k ¤ 0. By Proposition 2.9, elements of HH l
N;deg.1; k/ preserve

the spaces .
Q
j Xj /

ziPC. Thus we only have to show thatHH l
N;deg.1; k/ is “big enough”, i.e.,

coincides with the algebra AN .z; k/ of all the elements preserving the spaces .
Q
j Xj /

ziPC.
But this follows for Weil generic k from the case k D 0 by a standard deformation argu-
ment (the algebra can only “get bigger” if we deform its generators). More precisely, recall
that we have a grading on the algebra SN n DN defined by deg.Xi / D 1, deg.si / D 0,
deg.@i / D �1 inherited by HHN;deg.1; k/, AN .z; k/, and HH l

N;deg.z; 1; k/, and the filtra-
tion F � by order of differential operators, and it is not hard to see that for each s,
F sAN .z; k/ is a finitely generated graded CŒX1; : : : ; XN �-module. Thus, for each r; s, the
space F sAN .z; k/Œr� is finite dimensional. Hence, for each r; s the set of k 2 C for which
F sHH l

N;deg.z; 1; k/Œr� ¤ F
sAN .z; k/Œr� is finite.
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2.7. Comparison to the cyclotomic rational Cherednik algebra for N D 1

Let us now consider the cyclotomic rational Cherednik algebra HHl;cyc
1 of rank 1 with

parameters ~ and c D .c0; : : : ; cl�1/ (see [21, 23]. By definition, this algebra is generated
over CŒ~; c0; : : : ; cl�1� by x and the cyclotomic Dunkl operator

Dcyc WD ~@ � x�1
l�1X
iD0

ci�
i ;

where

�.x/ D �x; � D e2�i=l :

This algebra is bigraded by deg.x/ D .1; 0/, deg.Dcyc/ D .�1; 1/, deg.�/ D .0; 0/,
deg.~/ D deg.c/ D .0; 1/, and by the PBW theorem (see [18, 22]) is a free bigraded module
over CŒc; ~�. We also have the algebra HHl;cyc

1 .c; ~/ with numerical parameters, i.e., the
specialization of HHl;cyc

1 , and it carries a grading and a compatible filtration F �.

We have HHl;cyc
1 .c; 1/ � CZ=lZ n D, where D D D1 is the algebra of differential oper-

ators on C�, and the filtration F � on HHl;cyc
1 .c; 1/ is induced by the order filtration on differ-

ential operators.

Let p be the symmetrizer of Z=lZ. Then we have a spherical subalgebra Bl .c/ WD
pHHl;cyc

1 .c; 1/p. This algebra acts naturally on CŒx˙1�, where X D xl .

P 2.15. – If zi � zj are not integers then Bl .z/ D Bl .c/ inside EndCŒx˙1�,
where ci are related to zj by the linear inhomogeneous change of variables

(2.3) zi D
1

l
.l � i C

X
j

cj �
ij /:

Proof. – Fix c and let us find values of u for whichXuCŒX˙1� is preserved by Bl .c/. The
condition is that there exists 1 � i � l such that Dcyc.x

i�l .xl /u/ D 0, where we treat .xl /u

as a Z=lZ-invariant. This gives the equation

i � l C lu �
X
j

cj �
ij
D 0;

i.e.,

u D zi WD
1

l
.l � i C

X
j

cj �
ij /:

This yields the desired change of variable.

Now, Bl .c/ preserves the subspacesXziCŒX˙1�, so by Proposition 2.11 we have an inclu-
sion Bl .c/ � Bl .z/. To show that this is actually an equality, it suffices to observe that the
element L of Bl .z/ is proportional to Dl

cycp.
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2.8. Comparison to cyclotomic Cherednik algebra for general N

Let us now extend the result of the previous subsection to general N .

D 2.16. – The cyclotomic rational Cherednik algebra for the group
SN n .Z=lZ/N , HHl;cyc

N , is the algebra generated over CŒc0; : : : ; cl�1; ~; k� by the group
SN n.Z=lZ/N , elements xi , and the cyclotomic Dunkl operators, also called Dunkl-Opdam
operators, [18, Definition 3.2]:

Di;cyc D ~@i �
1

xi

l�1X
jD0

cj�
j
i � k

X
r¤i;m

1

xi � �mxr
.1 � sir�

m
i �
�m
r /;

for i D 1; : : : ; N , where �i is � acting in the i -th component.

As in the rank 1 case, this algebra is bigraded by deg.xi / D .1; 0/, deg.Di;cyc/ D .�1; 1/,
deg.�i / D .0; 0/, deg.~/ D deg.c/ D deg.k/ D .0; 1/, and by the PBW theorem
(see [18]) is a free bigraded module over CŒc; ~; k�. We also have the algebra HHl;cyc

N .c; ~; k/
with numerical parameters, i.e., the specialization of HHl;cyc

N , and it carries a grading and a
compatible filtration F �.

Let p be the symmetrizer of the subgroup .Z=lZ/N , and HHl;psc
N .c; ~; k/ D pHHl;cyc

N .c; ~; k/p
be the corresponding partially spherical subalgebra.

E 2.17. – Let l D 1. Then HHl;psc
N .c; ~; k/ does not depend on c (up to a natural

isomorphism), and is the rational Cherednik algebra HH rat
N .~; k/, generated by Xi ;Di ; and

s 2 SN such that Xi ;Di are permuted by SN and satisfy the relations

ŒXi ; Xj � D ŒDi ;Dj � D 0;

ŒDi ; Xj � D ksij ; ŒDi ; Xi � D ~ � k
X
j¤i

sij :

Also in this case p D 1.

T 2.18. – Suppose zi � zj are not integers and k is Weil generic. Then we have
a natural isomorphism HHl;psc

N .c; 1; k/ Š HH l
N;deg.z; 1; k/, where zi are expressed via cj by

Formula (2.3). This isomorphism preserves the order filtration for differential operators.

Proof. – We have a natural faithful action of HHl;psc
N .c; 1; k/ on P. Moreover, it is easy to

see that HHl;psc
N .c; 1; k/ satisfies the conclusion of Theorem 2.10(iii) (this follows by taking

formal completions at generic points of reflection hyperplanes, as in [19], and using Propo-
sition 2.15). Therefore, by Theorem 2.10, HHl;psc

N .c; 1; k/ D HH l
N;deg.z; 1; k/.

One of our main results is the following theorem.

T 2.19. – (i) We have a natural isomorphism of bigraded algebras � W HHl;psc
N Š

HH l
N;deg, where zi are expressed via cj and ~ by the homogenization of Formula (2.3):

(2.4) zi D
1

l
.~.l � i/C

X
j

cj �
ij /:

(ii) HH l
N;deg is a free bigraded CŒz1; : : : ; zl ; ~; k�-module, and HH l

N;deg.z; ~; k/ are special-
izations of this algebra.
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(iii) The isomorphism � induces an isomorphism

�z;~;k W HH
l;psc
N .c; ~; k/ Š HH l

N;deg.z; ~; k/

for all zi ; ~; k 2 C, which is compatible with the grading and the filtration.

Proof. – Let gr.HH l
N;deg.z; 1; k// D HH l

N;deg.0; 0; 0/ be the associated graded algebra

of HH l
N;deg.z; 1; k/ with respect to the filtration by order of differential operators. Then

gr.HH l
N;deg.z; 1; k// contains SN n A˝N , where A is the algebra of functions on the

Al�1-singularity, generated by X;XP , and X�1.XP /l (where P is the symbol of @).
On the other hand, gr.HHl;psc

N .c; 1; k// clearly coincides with SN n A˝N . Since by

Theorem 2.18, HHl;psc
N .c; 1; k/ D HH l

N;deg.z; 1; k/ for Weil generic parameters, we conclude

that gr.HH l
N;deg.z; ~; k// D SN n A˝N for all zi ; ~; k. This implies Theorem 2.19.

R 2.20. – 1. Since the degenerate DAHA has a Ga-action given by yi 7! yi C a

and trivial on other generators, the algebra HH l
N;deg.z; 1; k/ does not change under the

transformation zi ! zi C a (i.e., it depends only on the differences zi � ziC1). Under the
isomorphism of Theorem 2.19, this symmetry transforms into the symmetry c0 7! c0 C la.

2. Another proof of Theorem 2.19(ii) is given in the next subsection.

R 2.21. – The isomorphism of spherical subalgebras of HHl;psc
N and HH l

N;deg is
due to Kodera and Nakajima [30]. More precisely, the parameters of the cyclotomic rational
Cherednik algebra in [30] are related to ours by the formula ~KN D �~, cKNm D cm.1� �

m/

form ¤ 0 (and cKN0 is not used in [30]). Also in [30], one has
Pl�1
mD0 cm D 0 and thus zl D 0,

which is not really a restriction due to the symmetry zi 7! zi C a, c0 7! c0 C la.

Also, this isomorphism is closely related to the new presentation of the full cyclotomic
DAHA HHl;cyc

N .c; ~; k/ given in [28, 3.3] and [44, Section 2]. Namely, the element e0x`�11 �e0

in [44, (4.1)] (which in terms of the pictures is wrapping around the cylinder `� 1 times, and
a little further so as to cross the seam ` times) matches up with our element ��, and similarly
e0y`�1n �e0 matches with our element � (with ` in [44] equal to our l).

2.9. A presentation of HH l
N;deg by generators and relations

Let us give a presentation of HH l
N;deg by generators and relations. As generators we will

use the elements of SN , y1; : : : ; yN , X1; : : : ; XN , and the elements

D
.l/
i WD s1iD

.l/
1 s1i ; where D.l/

1 WD X
�1
1 .y1 � z1/ � � � .y1 � zl /:

Obviously, these elements generate HH l
N;deg, so we only need to write down the relations.

First of all, the elements s 2 SN , yi andXi satisfy the relations of Proposition 2.2, except
that Xi are no longer invertible.

We also claim that

(2.5) ŒD
.l/
i ;D

.l/
j � D 0:
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Indeed, it suffices to check it for i D 1; j D 2. Then we have

D
.l/
1 D

.l/
2 D X

�1
1 .y1 � z1/ � � � .y1 � zl /s12X

�1
1 .y1 � z1/ � � � .y1 � zl /s12

D X�11 s12.y2 C ks12 � z1/ � � � .y2 C ks12 � zl /X
�1
1 .y1 � z1/ � � � .y1 � zl /s12

D X�11 X�12 s12.y2 � z1/ � � � .y2 � zl /.y1 � z1/ � � � .y1 � zl /s12:

This expression commutes with s12, which implies the statement.

We also see by direct computation that

Œy1;D
.l/
1 � D �~D

.l/
1 C k

X
i>1

s1iD
.l/
1

and

Œyj ;D
.l/
1 � D �ks1jD

.l/
1 ; j > 1:

Finally, we write down the commutation relations between D.l/
i and Xj .

L 2.22. – We have

ŒD
.l/
1 ; X1� D

lX
rD1

r�1Y
iD1

.y1 � zi C ~ � k
X
j>1

s1j /.~ � k
X
j>1

s1j /

lY
iDrC1

.y1 � zi /;

and for m > 1

ŒD
.l/
1 ; Xm� D k

lX
rD1

r�1Y
iD1

.y1 � zi C ~ � k
X
j>1

s1j /s1m

lY
iDrC1

.y1 � zi /:

Proof. – The first relation holds because

ŒD
.l/
1 ; X1� D P.y1 C ~ � k

X
j>1

s1j / � P.y1/;

where P.y/ D .y � z1/ � � � .y � zl /. To prove the second relation, note that

ŒD
.l/
1 ; Xm� D X

�1
1 .P.y1/ � P.y1 � ks1m//Xm

D k

lX
rD1

X�11

r�1Y
iD1

.y1 � zi /s1m

lY
iDrC1

.y1 � zi � ks1m/Xm

D k

lX
rD1

X�11

r�1Y
iD1

.y1 � zi /X1s1m

lY
iDrC1

.y1 � zi /

D k

lX
rD1

r�1Y
iD1

.y1 � zi C ~ � k
X
j>1

s1j /s1m

lY
iDrC1

.y1 � zi /;

as desired.

Note that the commutation relations betweenD.l/
i andXm for i > 1 can now be obtained

by conjugating the relations of Lemma 2.22 by SN .
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P 2.23. – Let l � 1. Let MX be a monomial in Xi , MD a monomial in D.l/
i ,

My a monomial in yi with degrees of all the yi at most l � 1, and s 2 SN . Then the
elements of the form MXMysMD form a basis in HH l

N;deg; in particular, HH l
N;deg is a free

CŒ~; k; z1; : : : ; zl �-module.

Proof. – It is easy to see by looking at the polynomial representation that these elements
are linearly independent, so we only need to establish the spanning property. Since the
generators are monomials of this form, it suffices to show that any (unordered) monomial
in s, Xi , yi , D

.l/
i can be reduced to a linear combination of such standard monomials.

Let us introduce a filtration by setting deg.SN / D 0, deg.yi / D 2, deg.Xi / D deg.D.l/
i / D l .

Using the above commutation relations, we can reduce any monomial to ordered form by
adding corrections of lower degree. Further, by using the relation

X1D
.l/
1 D P.y1/

and its conjugates, we can reduce powers of yi to 0; : : : ; l�1. This implies the statement.

Thus, we obtain the following proposition.

P 2.24. – The degenerate cyclotomic DAHAHH l
N;deg is generated by SN and

elements yi ; Xi ;Di , i D 1; : : : ; N , with the following defining relations:

siyi D yiC1si C k; siyj D yj si ; j ¤ i; i C 1;

Œyi ; yj � D 0;

sXi D Xs.i/s; s 2 SN ; ŒXi ; Xj � D 0;

Œyi ; X1� D kX1s1i ; i > 1;

Œy1; X1� D ~X1 � k
X
i>1

X1s1i ;

sDi D Ds.i/s; ŒDi ;Dj � D 0;

Œyj ;D1� D �ks1jD1; j > 1;

Œy1;D1� D �~D1 C k
X
i>1

s1iD1;

ŒD1; X1� D

lX
rD1

r�1Y
iD1

.y1 � zi C ~ � k
X
j>1

s1j /.~ � k
X
j>1

s1j /

lY
iDrC1

.y1 � zi /;

ŒD1; Xm� D k

lX
rD1

r�1Y
iD1

.y1 � zi C ~ � k
X
j>1

s1j /s1m

lY
iDrC1

.y1 � zi /;m > 1;

X1D1 D .y1 � z1/ � � � .y1 � zl /:

Proof. – This follows from Proposition 2.23 (with Di D D
.l/
i ).

R 2.25. – It is easy to check using this presentation that we have an involution �
on HH l

N;deg given by

�.~/ D �~; �.k/ D �k; �.Xi / D Di ; �.Di / D Xi ; �.sij / D sij ;
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�.yi / D yi C ~ � k
X
j¤i

sij :

The existence of this involution is also clear from the isomorphism of HH l
N;deg with HHl;psc

N ,
since the latter algebra is well known to have such an involution (coming from the corre-
sponding involution of the cyclotomic rational Cherednik algebra exchanging the coordi-
nates with the Dunkl operators).

The proof of Proposition 2.23 in fact shows that for any l � 0 ordered products
of MX ;My ; s;MD in any of the 24 possible orders are a spanning set for HH l

N;deg, and
those of them with degrees of yi at most l � 1 are a basis for l � 1. This implies that we also
have another basis of this algebra, formed by monomials MXMDsMy without restriction
on the degree of yi , but with the restriction that for each i either Xi is missing in MX or
Di is missing in MD . Indeed, if this restriction is not satisfied, we may use the relation
X1D1 D P.y1/ and its permutations to lower the number of Xi and Di , and it is easy to
see by looking at the polynomial representation that monomials with this restriction are
linearly independent. Thus we obtain the following proposition.

P 2.26. – The elements MXMD which miss either Xi or Di for each i form
a basis of HH l

N;deg as a left or right module over the degenerate affine Hecke algebra HN;deg

generated by s 2 SN and yi , 1 � i � n; in particular, HH l
N;deg is a free module over this

subalgebra.

Note that the basis of Proposition 2.26 is labeled by N -tuples of integers, .m1; : : : ; mN /.
Namely, if MXMD contains Xpi then we set mi D p, and if it contains Dp

i then we set
mi D �p.

We note that Propositions 2.23 and 2.26 also follow from Theorem 2.19. Yet another,
geometric proof of Proposition 2.26 will be given in Section 4.

3. Cyclotomic DAHA

3.1. DAHA and formal DAHA

Recall the definition of Cherednik’s double affine Hecke algebra (DAHA), [15].
Let q; t 2 C�, and t D t2.

D 3.1. – The DAHA HHN .q; t/ is generated by invertible elements
Xi ; Yi , i D 1; : : : ; N , and Ti , i D 1; : : : ; N � 1, with relations (3)

.Ti � t/.Ti C t�1/ D 0; .R1/

TiTiC1Ti D TiC1TiTiC1; .R2/

TiTj D TjTi .ji � j j � 2/; .R3/

TiXiTi D XiC1; .R4/

TiXj D XjTi .j ¤ i; i C 1/; .R5/

(3) This algebra really depends on t rather than t D t2, but it is traditional to use the parameter t , implying that
a square root of this parameter has been chosen, see [15]. While somewhat clumsy, this convention turns out to be
more natural from the viewpoint of Macdonald theory.
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TiYiTi D YiC1; .R6/

TiYj D YjTi .j ¤ i; i C 1/; .R7/

X�11 Y �12 X1Y2 D T
2
1 ; .R8/

Yi QX D q QXYi ; .R9/

Xi QY D q
�1 QY Xi ; .R10/

ŒXi ; Xj � D 0; .R11/

ŒYi ; Yj � D 0: .R12/

where QX WD
Q
i Xi and QY D

Q
i Yi .

We can define the element

T0 WD T
�1
1 � � �T

�1
N�1 � � �T

�1
1 X�11 XN

which together with Ti , i D 1; : : : ; N � 1 generates the affine Hecke algebra of type AN�1 in
the Coxeter presentation (i.e., relations (R1),(R2) are satisfied for all i; j 2 Z=NZ).

Similarly one defines the algebra HHN over CŒq˙1; t˙1�.
We will also consider a formal version of DAHA over CŒŒ"��, in which q D e"~ and

t D e�"k for k 2 C. Namely, set Ti D sie
�"ksi=2, Yi D e"yi , and let HH formal

N .~; k/ be
the "-adically complete algebra generated over CŒŒ"�� by si , Xi and yi with the relations of
Definition 3.1. We can also treat ~; k as indeterminates, working over CŒ~; k�.

Note that using (R6), relation (R8) can be written as

X�11 T �11 Y �11 T �11 X1T1Y1T1 D T
2
1 ;

or
X1T1Y1 D T1Y1T1X1T1: .R8a/

This shows that HHN has the Cherednik involution ' defined by '.q/ D q�1, '.t/ D t�1,
'.Xi / D Y

�1
i , '.Yi / D X�1i , '.Ti / D T �1i .

3.2. The quasiclassical limit of the formal DAHA

The following proposition is well known; for instance, in the rank 1 case it appears in [15].

P 3.2. – The algebra HH formal
N .~; k/=."/ is isomorphic to the trigonometric

DAHA HHN;deg.~; k/, and HH formal
N .~; k/ is a flat deformation of HHN;deg.~; k/.

Proof. – To prove the first statement, we need to show that the DAHA relations of
Definition 3.1 degenerate to the relations of the trigonometric DAHA.

Clearly, relation (R1) yields s2i D 1, and relations (R2,R3) yield sisiC1si D siC1sisiC1
and sisj D sj si for 1 � i; j � N � 1 and ji � j j � 2. Relations (R4,R5) give siXj D Xj si if
j ¤ i; i C 1, and siXi D XiC1si . Relation (R6) gives a trivial relation in zeroth order, but in
the first order it gives

�ksi C siyisi D yiC1;

which yields

siyi D yiC1si C k:
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Relation (R7) gives

Œsi ; yj � D 0; j ¤ i; i C 1:

Relation (R8) yields

y2 �X
�1
1 y2X1 D �ks1;

which is equivalent to

Œy2; X1� D kX1s1:

Relations (R9,R10) yield

Œyi ;
Y
j

Xj � D ~
Y
j

Xj ; Œ
X
i

yi ; Xj � D ~Xj :

Finally, relations (R11, R12) yield

ŒXi ; Xj � D 0; Œyi ; yj � D 0:

It is easy to see that these relations are exactly the relations ofHHN;deg.~; k/ given in Propo-
sition 2.2 (see Remark 2.3).

The second statement of the proposition follows from the first one and the PBW theorem
for DAHA ([15]).

3.3. The polynomial representation of DAHA

P 3.3. – [15] We have an action of HHN .q; t/ on P given by

�.Xi / D Xi ;

�.Ti / D tsi C
t � t�1

Xi=XiC1 � 1
.si � 1/;

�.Yi / D tN�1�.T �1i � � �T
�1
N�1/!�.T1 � � �Ti�1/;

where .!f /.X1; : : : ; XN / WD f .qXN ; : : : ; XN�1/.

The same formulas define a representation of HH formal
N .~; k/. The representation � of

DAHA on P is called the polynomial representation of DAHA.

P 3.4. – The quasiclassical limit (i.e., reduction modulo ") of the polynomial
representation of HH formal

N .~; k/ coincides with the polynomial representation of the trigono-
metric DAHA given by Proposition 2.4.

Proof. – The proof is by a direct calculation.
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3.4. The cyclotomic DAHA

Let � 2 HHN .q; t/ be the element given by the formula

� D X1T1 � � �TN�1:

Let Z1; : : : ; Zl 2 C�, and Z D .Z1; : : : ; Zl /.

D 3.5. – The subalgebra HH l
N .Z; q; t/ of HHN .q; t/ is generated by

Ti , i D 1; : : : ; N � 1, Yi , i D 1; : : : ; N , � , and the element

�� WD �
�1

lY
iD1

.Y1 �Zi /:

Let z1; : : : ; zl 2 C, and Zi D qzi (for some choice of branches).

P 3.6. – The algebraHH l
N .Z; q; t/ preserves the space .

Q
j Xj /

ziPC for all i .

Proof. – We only need to check that�� preserves this space. For this, it is enough to prove
that for any u 2 C, the element X�11 .Y1 � q

u/ preserves the space .
Q
j Xj /

uPC. To this end,
note that

�.T �1i / D t�1si C
.t�1 � t/Xi
XiC1 �Xi

.si � 1/:

Now consider

(3.1) �.Y1/ D tN�1�.T �11 / � � � �.T �1N�1/!

D .1C
.1 � t /X1

X2 �X1
.1 � s12// � � � .1C

.1 � t /X1

XN �X1
.1 � s1N //�1;

where �j replaces Xj with qXj and keeps Xi fixed for i ¤ j . By opening the brackets, this
product can be written as a sum of 2N terms (as in each factor, we can take the first or the
second summand). If we take the first summand from all factors, we get �1, andX�11 .�1�q

u/

clearly preserves .
Q
j Xj /

uPC. So it suffices to show that for each of the remaining 2N � 1
terms T , the operator X�11 T preserves .

Q
j Xj /

uPC. But all of these terms have a factor X1
on the left (as so does the second summand in each factor in (3.1)), which implies the desired
statement.

Let HH l;formal
N .z; ~; k/ be the formal version of HH l

N .Z; q; t/, namely the subalgebra
of HH formal

N .~; k/ generated by Ti , i D 1; : : : ; N � 1, yi , i D 1; : : : ; N , � , and the element

"�l��1
lY
iD1

.Y1 � e
"zi / D ��1

lY
iD1

e"y1 � e"zi

"
:

C 3.7. – Let zi � zj … Z, and k be Weil generic. Then the algebra
HH

l;formal
N .z; 1; k/ is the algebra of all elements of HH formal

N .1; k/ which preserve .
Q
Xj /

ziPC
for all i .
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Proof. – Recall that by Proposition 3.2, HH formal
N .~; k/ is a flat deformation

ofHHN;deg.~; k/, and by Proposition 3.4, the same applies to the polynomial representations
of these algebras. Thus the result follows by a deformation argument from Proposition 3.6
and the fact that a similar statement holds in the trigonometric case (Theorem 2.10(ii)).
Namely, the algebra HH l;formal

N .z; 1; k/ is a priori “at least as big” as HH l
N;deg.z; 1; k/, as

its generators are deformations of generators of HH l
N;deg.z; 1; k/. At the same time, the

subalgebra of elements of HH l;formal
N .z; 1; k/ preserving .

Q
j Xj /

ziPC for all i is “at most
as big” as HH l

N;deg.z; 1; k/, as by Theorem 2.10(ii), this condition cuts out HH l
N;deg.z; 1; k/

inside HHN;deg.1; k/. But by Theorem 3.6, the former subalgebra is contained in the latter
one. This implies the corollary.

T 3.8. – For any z1; : : : ; zl , the algebra HH l;formal
N .z; ~; k/ is a flat deformation

of HH l
N;deg.z; ~; k/.

Proof. – Since HH
l;formal
N .z; ~; k/ is generated by deformations of generators

of HH l
N;deg.z; ~; k/, it suffices to prove this statement for Weil generic zi , ~, k, but in

this case it follows from Corollary 3.7.

Another proof of Theorem 3.8 is obtained from the presentation of HH l
N given below.

D 3.9. – The algebra HH l
N .Z; q; t/ is called the cyclotomic DAHA and

HH
l;formal
N .z; ~; k/ is called the formal cyclotomic DAHA.

As usual, one can similarly define versions of these algebras where the parame-
ters are indeterminates. Note also that by this definition HH 0

N .q; t/ D HHN .q; t/, and
HH l 0

N .Z
0; q; t/ � HH l

N .Z; q; t/ if l 0 � l and Z0 � Z as a multiset.
Thus, the cyclotomic DAHA is a q-deformation of the partly spherical cyclotomic rational

Cherednik algebra. More precisely, it follows from Theorem 2.19 and Theorem 3.8 that
for any z1; ::; zl ; ~; k, the formal cyclotomic DAHA HH

l;formal
N .z; ~; k/ is a flat deformation

of HHl;psc
N .c; ~; k/, where c is related to z by Equation (2.4). In particular, the cyclotomic

DAHA is interesting already for l D 1, as it provides a q-deformation of the rational
Cherednik algebra HHrat

N .~; k/ attached to SN and its permutation representation.

R 3.10. – Since the DAHA has a Gm-action given by Yi 7! aYi and trivial
on other generators, the algebra HH l

N .Z; q; t/ does not change under the transformation
Zi ! aZi (i.e., it depends only on the ratios Zi=ZiC1).

E 3.11. – Let N D1. Then there is no dependence on t , and HH1.q; t/ D HH1.q/ is
the quantum torus algebra with invertible generatorsX; Y and relation YX D qXY . Let q be
not a root of unity. The polynomial representation is P D CŒX˙1� with Y acting by shift,
.Yf /.X/ D f .qX/, so that HH1.q/ is the algebra of polynomial q-difference operators. The
subalgebra HH l

1.Z; q; t/ D HH
l
1.Z; q/ inside HH1.q/ is generated by X; Y ˙1, and

L WD X�1.Y � qz1/ � � � .Y � qzl /;

where Zi D qzi . We claim that if Zi=Zj … qZ then HH l
1.Z; q/ is exactly the subalgebra

of all difference operators preserving XziCŒX� for all i . Indeed, if we set deg.Y / D 0,
deg.X/ D 1, then any difference operator of nonnegative degree is in both subalgebras,
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while an operatorM of degree�d < 0 has the formX�dg.Y /, where g is a Laurent polyno-
mial, and applying this operator toXziCj , j < d , we must get zero, so we get g.qziCj / D 0,
i D 1; : : : ; l , j D 0; : : : ; d � 1. Thus M D Ldh.Y / for some polynomial h.

R 3.12. – We expect that Corollary 3.7 holds in the non-formal setting, i.e.,
HH l

N .Z; q; t/ can be characterized as the algebra of elements of HHN .q; t/ preserving the
spaces .

Q
Xj /

ziPC, as in Proposition 3.6. For N D 1 this is demonstrated in Example 3.11.
Moreover, recall that Ginzburg, Kapranov, and Vasserot ([27]) characterized DAHA (for
any Weyl group W ) as the algebra of difference-reflection operators L D

P
w2W Lww

(where Lw are difference operators) satisfying some residue conditions. These conditions
are equivalent to the conditions that L preserves P and �q;tP, where �q;t is an appro-
priate meromorphic function. Therefore, we expect that HH l

N .Z; q; t/ can be characterized
as the algebra of difference operators preserving the spaces P, �q;tP, and .

Q
Xj /

ziPC
for i D 1; : : : ; l .

We note that this approach to DAHA-type algebras in the more general elliptic setting is
developed in the ongoing work [38]. In the one-variable caseN D 1 such (spherical) algebras
generated by a given set of difference-reflection operators have been studied in [39].

3.5. The case l D 1

Let us study the algebra HH l
N for l D 1 and give its presentation. These results can be

derived from the case of general l considered below, but the special case l D 1 is especially
nice, and it is instructive to do it separately first.

By rescaling Yi by the same scalar, we may assume without loss of generality thatZ1 D 1.
Then the algebra HH 1

N .q; t/ WD HH 1
N .1; q; t/ is generated inside HHN .q; t/ by Ti , Xi , Y ˙1i ,

and X�11 .Y1 � 1/.

This algebra actually appeared a long time ago in the paper [3]. Let us describe it in more
detail, following [3]. (We note that our conventions are slightly different from those of [3]).

Define the Dunkl elements Di WD T
�1
i�1 � � �T

�1
1 D1T

�1
1 � � �T

�1
i�1 2 HH

1
N .q; t/, where

D1 D X
�1
1 .Y1 � 1/. It is easy to check that

Di D TiDiC1Ti ; ŒTi ;Dj � D 0 for j ¤ i; i C 1:

L 3.13. – We have ŒD1;D2� D 0.

Proof. – By definition, we have D2 D T �11 D1T
�1
1 , so our job is to show that

T �11 D1T
�1
1 D1 D D1T

�1
1 D1T

�1
1 :

In other words, we must show that

T �11 X�11 .Y1 � 1/T
�1
1 X�11 .Y1 � 1/ D X

�1
1 .Y1 � 1/T

�1
1 X�11 .Y1 � 1/T

�1
1 :

Since T1X1T1X1 D X2X1 D X1X2 D X1T1X1T1, it suffices to prove two identities
in HHN .q; t/:

(3.2) T �11 X�11 Y1T
�1
1 X�11 Y1 D X

�1
1 Y1T

�1
1 X�11 Y1T

�1
1
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and

(3.3)
T �11 X�11 T �11 X�11 Y1CT

�1
1 X�11 Y1T

�1
1 X�11 D X

�1
1 T �11 X�11 Y1T

�1
1 CX

�1
1 Y1T

�1
1 X�11 T �11 :

Identity (3.2) actually holds already in the braid group. Indeed, we have

T �11 X�11 Y1T
�1
1 X�11 Y1 D T

�1
1 X�11 T �11 Y2T

�2
1 X�11 Y1 D T

�1
1 X�11 T �11 X�11 Y2Y1

D X�11 T �11 X�11 T �11 Y2Y1 D X
�1
1 T �11 X�11 Y2Y1T

�1
1

D X�11 T �11 Y2T
�2
1 X�11 Y1T

�1
1 D X�11 Y1T

�1
1 X�11 Y1T

�1
1 :

It remains to establish (3.3). Note that because T �11 D T1 � tC t�1, (3.3) is equivalent to

(3.4)
T1X

�1
1 T �11 X�11 Y1 C T

�1
1 X�11 Y1T

�1
1 X�11 D X�11 T �11 X�11 Y1T1 C X

�1
1 Y1T

�1
1 X�11 T �11 :

On the other hand, (3.4) holds already in the group algebra of the braid group (i.e., termwise).
Indeed, we have

T �11 X�11 Y1T
�1
1 X�11 D T

�1
1 X�11 T �11 Y2T

�2
1 X�11 D T

�1
1 X�11 T �11 X�11 Y2

D X�11 T �11 X�11 T �11 Y2 D X
�1
1 T �11 X�11 Y1T1;

and

T1X
�1
1 T �11 X�11 Y1 D X

�1
1 T �11 X�11 T1Y1 D X

�1
1 T �11 X�11 Y2T

�1
1

D X�11 T �11 Y2T
�2
1 X�11 T �11 D X�11 Y1T

�1
1 X�11 T �11 :

C 3.14. – One has ŒDi ;Dj � D 0 for all i; j .

Proof. – For any j > 1, we have

ŒD1;Dj � D ŒD1; T
�1
j�1 � � �T

�1
2 D2T

�1
2 � � �T

�1
j�1� D 0;

since D1 commutes with every factor by Lemma 3.13. Hence for i < j ,

ŒDi ;Dj � D ŒT
�1
i�1 � � �T

�1
1 D1T

�1
1 � � �T

�1
i�1;Dj � D 0;

again because Dj commutes with every factor.

Thus, Ti and Di generate the “positive part” of an affine Hecke algebra.

When q ! 1 and t D q�k , where k is fixed, the algebra HH 1
N .q; t/ degenerates to the

rational Cherednik algebra HH rat
N .1; k/ for SN (associated to the permutation representa-

tion), andXi ;
Di
q�1

degenerate to the standard generators ofHH rat
N .1; k/. Thus, let us compute

the commutation relations between Di and Xj which deform the corresponding relations
of HH rat

N .1; k/.

L 3.15. – One has

X1D2 D D2T
2
1 X1 C .t � t�1/T �11

and

D1X2 D X2T
�2
1 D1 � .t � t�1/T1:
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Proof. – We have

D2X
�1
1 D T

�1
1 X�11 Y1T

�1
1 X�11 � T

�1
1 X�11 T �11 X�11 :

Thus, by the proof of Lemma 3.13, we obtain

D2X
�1
1 D X

�1
1 T �11 X�11 Y1T1 �X

�1
1 T �11 X�11 T �11

D X�11 D2T
2
1 CX

�1
1 T �11 X�11 T1 �X

�1
1 T �11 X�11 T �11

D X�11 D2T
2
1 C .t � t�1/X�11 T �11 X�11 :

Now the first relation of the lemma is obtained by multiplying both sides by X1 on the left
and on the right. To obtain the second relation of the lemma from the first one, it suffices to
multiply the first relation by T1 on both sides, and apply the commutation relations between
Di ; Xi and Tj .

C 3.16. – If i < j , one has

XiDj D DjTj�1 � � �TiC1T
2
i T
�1
iC1 � � �T

�1
j�1Xi C .t � t�1/T �1j�1 � � �T

�1
i � � �T

�1
j�1:

If i > j , one has

DjXi D XiT
�1
i�1 � � �T

�1
jC1T

�2
j TjC1 � � �Ti�1Dj � .t � t�1/Ti�1 � � �Tj � � �Ti�1:

Proof. – First consider the case i D 1. Then

X1Dj D X1T
�1
j�1 � � �T

�1
2 D2T

�1
2 � � �T

�1
j�1 D T

�1
j�1 � � �T

�1
2 X1D2T

�1
2 � � �T

�1
j�1:

By the first relation of Lemma 3.15, this implies

X1Dj D T
�1
j�1 � � �T

�1
2 D2T

2
1 X1T

�1
2 � � �T

�1
j�1 C .t � t�1/T �1j�1 � � �T

�1
2 T �11 T �12 � � �T

�1
j�1

D DjTj�1 � � �T2T
2
1 T
�1
2 � � �T

�1
j�1X1 C .t � t�1/T �1j�1 � � �T

�1
2 T �11 T �12 � � �T

�1
j�1;

as claimed. Now consider the general case. We have

XiDj D Ti�1 � � �T1X1T1 � � �Ti�1Dj D Ti�1 � � �T1X1DjT1 � � �Ti�1

D Ti�1 � � �T1DjTj�1 � � �T2T
2
1 T
�1
2 � � �T

�1
j�1X1T1 � � �Ti�1

C .t � t�1/Ti�1 � � �T1T �1j�1 � � �T
�1
2 T �11 T �12 � � �T

�1
j�1T1 � � �Ti�1

D DjTj�1 � � �TiC1T
2
i T
�1
iC1 � � �T

�1
j�1X1 C .t � t�1/T �1j�1 � � �T

�1
iC1T

�1
i T �1iC1 � � �T

�1
j�1

(here we repeatedly used the braid relations between the Ti ). This proves the first relation of
the corollary.

The second relation is proved similarly, using the second relation of Lemma 3.15.

Finally, let us generalize the commutation relations betweenDi andXi (which are the only
relations containing q). It turns out that it is convenient to write instead the commutation
relations between Di and

PN
jD1Xj .

L 3.17. – We have

ŒDi ;

NX
jD1

Xj � D .1 � q
�1/.DiXi C 1/T

�1
i�1 � � �T

�2
1 � � �T

�1
i�1:
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Proof. – First assume i D 1. Looking at the polynomial representation and using
that

PN
jD1Xj is symmetric, we find that

ŒD1;

NX
jD1

Xj � D .1 � q
�1/.D1X1 C 1/:

The general case is now obtained by multiplying both sides by T �1i�1 � � �T
�1
1 on the left and

by T �11 � � �T
�1
i�1 on the right.

We obtain the following theorem.

T 3.18. – (i) Let HH 1;C
N .q; t/ be the subalgebra of HH 1

N .q; t/ generated by Ti ,
1 � i � N � 1, Xi ;Di , 1 � i � N . Then the defining relations for HH 1;C

N .q; t/ are

.Ti � t/.Ti C t�1/ D 0;

TiTiC1Ti D TiC1TiTiC1;

TiTj D TjTi .ji � j j � 2/;

TiXiTi D XiC1; ŒTi ; Xj � D 0 for j ¤ i; i C 1;

Di D TiDiC1Ti ; ŒTi ;Dj � D 0 for j ¤ i; i C 1;

ŒXi ; Xj � D 0;

ŒDi ;Dj � D 0;

XiDj D DjTj�1 � � �TiC1T
2
i T
�1
iC1 � � �T

�1
j�1Xi C .t � t�1/T �1j�1 � � �T

�1
i � � �T

�1
j�1; i < j;

DjXi D XiT
�1
i�1 � � �T

�1
jC1T

�2
j TjC1 � � �Ti�1Dj � .t � t�1/Ti�1 � � �Tj � � �Ti�1; i > j;

ŒDi ;

NX
jD1

Xj � D .1 � q
�1/.DiXi C 1/T

�1
i�1 � � �T

�2
1 � � �T

�1
i�1:

(ii) (the PBW theorem) For any values of parameters, the elements
Q
i X

mi
i � Tw �

Q
i D

ni
i

form a basis of HH 1;C
N .q; t/.

(iii) The algebra HH 1
N .q; t/ is obtained from HH

1;C
N .q; t/ by inverting the element

Y1 WD 1CX1D1.

Proof. – We have shown in Lemma 3.14, Corollary 3.16, Lemma 3.17 that the claimed
relations between Ti ; Xi ;Di are satisfied. These relations allow us to order any mono-
mial as claimed in (ii). Since HH 1;formal

N is a flat deformation of the rational Cherednik
algebra HH rat

N .~; k/, the relations in (i) are defining, and the monomials in (ii) are linearly
independent. This implies both (i) and (ii).

Now, by definition, HH 1
N .q; t/ is generated inside HHN .q; t/ by HH 1;C

N .q; t/ and Y �11 ,
where Y1 D 1CX1D1. This implies (iii).

The following proposition shows that there is a symmetry between Xi and Di . Let us
regard q and t as variables.

P 3.19. – There is an involutive automorphism � of HH 1
N such that �.Xi / D Di ,

�.Di / D Xi , �.Ti / D T �1i , �.t/ D t�1, �.q/ D q�1. This automorphisms preserves the subal-
gebra HH 1;C

N .
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Proof. – It is easy to see that all the relations of Theorem 3.18 except the last one are
invariant under �. It is sufficient to impose the last relation for i D 1, so let us consider this
case. The relation has the form

q�1.D1X1 C 1/�.X1D1 C 1/

D .t � t�1/
X
i>1

.XiT
�1
i�1 � � �T

�1
2 T �11 T2 � � �Ti�1D1 C Ti�1 � � �T1 � � �Ti�1/

D .t � t�1/.
X
i>1

Ti�1 � � �T1 � � �Ti�1/.X1D1 C 1/;

i.e.,

D1X1 C 1 D q.1C .t � t�1/
X
i>1

Ti�1 � � �T1 � � �Ti�1/.X1D1 C 1/:

Using braid relations, we see that Ti � � �T1 � � �Ti D T1 � � �Ti � � �T1, so this can be also written
as

D1X1 C 1 D q.1C .t � t�1/
X
i>1

T1 � � �Ti�1 � � �T1/.X1D1 C 1/:

Now let JN WD T1 � � �T
2
N�1 � � �T1 be the braid-like Jucys-Murphy element. Then, using the

quadratic relation for TN�1, we get

JN D .t � t�1/T1 � � �TN�1 � � �T1 C JN�1:

This yields

JN D 1C .t � t�1/
X
i>1

T1 � � �Ti�1 � � �T1;

so our relation can be simplified to

(3.5) D1X1 C 1 D qJN .X1D1 C 1/:

The invariance of this relation under � reduces to the identity JN�.JN / D 1, which is
obvious from the definitions of � and JN . This shows that � is a well defined automorphism
of HH 1;C

N , which is obviously involutive.

We also see from (3.5) that �.Y1/ D qJNY1, which implies that � extends to HH 1
N .

C 3.20. – (i) The last defining relation of HH 1;C
N .q; t/ may be replaced with

ŒXi ;

NX
jD1

Dj � D .1 � q/.XiDi C 1/Ti�1 � � �T
2
1 � � �Ti�1:

(ii) The last defining relation of HH 1;C
N .q; t/ may be replaced with (3.5).

Proof. – (i) follows immediately from Theorem 3.18, and (ii) from its proof.
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3.6. A commutative subalgebra in HH l
N

In this subsection, we will construct a commutative subalgebra inside HH l
N . In the case

l D 1, this subalgebra will reduce to the subalgebra CŒD1; : : : ;DN � constructed in the
previous subsection (so we will obtain an alternative construction of this subalgebra).

Let f 2 CŒX� be any polynomial. Define the elements

Yi .f / WD YiT
�1
i�1 � � �T

�1
1 f .X�11 /T1 � � �Ti�1 2 HHN :

Also let e be the symmetrizer of the finite Hecke algebra generated by the Ti . (To define e,
we need to invert ŒN �t Š).

L 3.21. – (i) The elements Yi .f / are pairwise commuting:

ŒYi .f /; Yj .f /� D 0:

(ii) For r � 1 the element M r .f / D .
PN
iD1 er .Y1.f /; : : : ; YN .f ///e (where er is the r-th

elementary symmetric function) commutes with Ti , i.e., M r .f / D e M r .f /.

Proof. – (i) We may specialize the variables to numerical values. Let us compute the
action of Yi .f / in the polynomial representation. Using Proposition 3.3, we get

�.Yi .f // D tN�1�.T �1i � � �T
�1
N�1/!f .X1/�.T1 � � �Ti�1/:

Let g.X/ be a meromorphic function such that g.q�1X/ D g.X/f .X�1/. Let us extend
the polynomial representations to meromorphic functions, and conjugate it by the function
G.X1; : : : ; XN / WD g.X1/ � � �g.XN / This gives a representation �G such that

�G.Yi / D G�.Yi /G
�1
D tN�1�.T �1i � � �T

�1
N�1/G!G

�1�.T1 � � �Ti�1/

D tN�1�.T �1i � � �T
�1
N�1/!

G.q�1X1/

G.X1/
�.T1 � � �Ti�1/

D tN�1�.T �1i � � �T
�1
N�1/!f .X

�1
1 /�.T1 � � �Ti�1/ D �.Yi .f //:

Thus �.Yi .f // are pairwise commuting, hence so are Yi .f /.
(ii) It suffices to show that M r .f / maps symmetric polynomials to symmetric ones. But

this follows from the fact that �.M r .f // D �G.M r /, where M r D
PN
iD1 er .Y1; : : : ; YN /,

and M r act in the polynomial representation by Macdonald difference operators, [15].

Now let f .X/ D .X � Z1/ � � � .X � Zl /. Let us apply the Cherednik involution ' to the
elements Yi .f /. Namely, let

D
.l/
i WD '.Yi .f // D T

�1
i�1 � � �T

�1
1 D

.l/
1 T

�1
1 � � �T

�1
i�1 2 HHN ;

where, D.l/
1 WD X

�1
1 .Y1 �Z1/ � � � .Y1 �Zl /.

C 3.22. – (i) The elements D.l/
i , i D 1; : : : ; N , are pairwise commuting.

(ii) The elements Mr .f / WD '.M r .f // commute with Ti .

Proof. – This follows from Lemma 3.21.

E 3.23. – Let l D 1 and f .X/ D X � 1. Then we get D.1/
i D Di . Thus, we

recover the q-deformed Dunkl operators of [3] described in the previous subsection and
therefore obtain another proof of Corollary 3.14.
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Corollary 3.22(ii) implies that the elements Mr .f / act on symmetric functions by some
commuting symmetric difference operators Mr .f / DW M

.l/
r . Thus for each l we obtain

a family of quantum integrable systems fM .l/
1 ; : : : ;M

.l/
N g depending on l parameters

Z1; : : : ; Zl (and also q, t ). This system is a q-deformation of the cyclotomic Calogero-
Moser system.

E 3.24 ([3], Lemma 5.3). – We have

M
.1/
1 D

NX
jD1

0@Y
i¤j

Xi � tXj

Xi �Xj

1A 1

Xj
.�j � 1/:

Thus, this operator defines a quantum integrable system.

R 3.25. – J. F. Van Diejen and S. Ruijsenaars have explained to us that the system
defined by the operator M1 WD M

.1/
1 from Example 3.24 may be obtained as a limit of the

system from [17] defined by the Hamiltonian (3.13a). Namely, conjugating by the Gaussian
exp.

P
i
.logXi /2

2 logq / and rescaling Xi and M1, we can reduce the operator M1 to the form

M 01 D

NX
jD1

0@Y
i¤j

Xi � tXj

Xi �Xj

1A �j � NX
jD1

X�1j DM �

NX
jD1

X�1j ;

where M is the first Macdonald operator. (Here we use the identity at the beginning of [17,
p. 1621]). On the other hand, let us multiply the Hamiltonian [17, (3.13a)] by Ot0 and then put
Ot1 D Ot

�1
0 and send Ot0 to 0. Conjugating the resulting operator by an appropriate function,

and again using the identity at the beginning of [17, p. 1621], one obtains the operator M 01.

R 3.26. – It is interesting to compute the joint eigenfunctions of D.l/
1 ; : : : ;D

.l/
N

and symmetric joint eigenfunctions of M .l/
1 ; : : : ;M

.l/
N . For l D 1, this is done in [3]. Let us

sketch how this can be done for any l in the nonsymmetric case (without working out any
details).

For simplicity, assume that Z1 � � �Zl D .�1/l (this can be assumed without loss of
generality, as we can simultaneously rescale the Zi ). Then f .0/ D 1, so for q > 1 we
can set g.X/ D

Q1
mD1 f .q

�mX�1/. Given a collection ƒ D .�1; : : : ; �N / of eigenvalues,
let F.X1; : : : ; XN ; ƒ/ be the joint eigenfunction of Yi (i.e., the nonsymmetric Macdonald
function). Then eF .X1; : : : ; XN ; ƒ/ WD g.X1/ � � �g.XN /F.X1; : : : ; XN ; ƒ/
is a joint eigenfunction of Yi .f /. So the joint eigenfunctions of D.l/

i can be obtained by
applying Cherednik’s difference Fourier transform ([15]) to eF .X1; : : : ; XN ; ƒ/:
(3.6) bF .X1; : : : ; XN ; ƒ/ D F Cherednik.eF .X1; : : : ; XN ; ƒ//:
For l D 1 this should recover the formulas of [3].

Also, the following observation was made by O. Chalykh when we sent him a preliminary
version of this paper. Consider the case where Z1 D � � � D Zl D 0 (this violates our
restriction that Zi 2 C�, but this restriction is not essential here). In this case, f .X/ D X l ,
and one can take g.X/ to be the l-th power of the Gaussian g.X/ D exp. .logX/2

2 logq / (this
function is not single-valued but this is not important if we restrict to the locus q;X 2 RC).
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Therefore, the symmetrized version of Formula (3.6) turns into formula (7.5) in O. Chalykh’s
appendix to [10] (up to changing q to q�1). This shows that the Hamiltonians of the twisted
Macdonald-Ruijsenaars model of Theorem 7.1 in the appendix to [10] (for type AN�1) are a
special case of the commuting Hamiltonians er .D

.l/
1 ; : : : ;D

.l/
N / when Z1 D � � � D Zl D 0.

3.7. Presentation of cyclotomic DAHA by generators and relations

Let us give a presentation of HH l
N .Z; q; t/ by generators and relations. We will use as

generators the elements Ti , i D 1; : : : ; N � 1, and Xi ; Y ˙1i ;D
.l/
i , i D 1; : : : ; N .

First of all, the elements Ti ; Xi ; Y ˙1i satisfy the relations of DAHA, (R1-R12) from
Definition 3.1. More precisely, we need to rewrite relations (R8-R10) to account for non-
invertibility of Xi . Namely, from (R8-R10) we get

(3.7) XiYj D YjXiT
�1
j�1 � � �T

�1
iC1T

2
i TiC1 � � �Tj�1; i < j:

Similarly, we have

(3.8) YiXj D T
�1
j�1 � � �T

�1
iC1T

2
i TiC1 � � �Tj�1XjYi ; i < j:

Finally, we have

(3.9) YiT
�1
i�1 � � �T

�2
1 � � �T

�1
i�1Xi D qXiTi � � �T

2
N�1 � � �TiYi :

Secondly, we have similar relations betweenD.l/
j (instead ofXj ) and Ti ; Yi . Namely, we know

from Corollary 3.22 that

(3.10) ŒD
.l/
i ;D

.l/
j � D 0;

and it follows from the definition that

(3.11) T �1i D
.l/
i T

�1
i D D

.l/
iC1; ŒTj ;D

.l/
i � D 0 for ji � j j � 2:

Also since X�11 Y2 D Y2T
�2
1 X�11 , we have

D
.l/
1 Y2 D Y2T

�2
1 D

.l/
1 :

This implies that

(3.12) D
.l/
i Yj D YjT

�1
j�1 � � � :T

�1
iC1T

�2
i TiC1 � � �Tj�1D

.l/
i ; i < j:

Similarly, we have
D
.l/
2 T

2
1 Y1 D Y1D

.l/
2 ;

which implies that

(3.13) D
.l/
j Tj�1 � � �TiC1T

2
i T
�1
iC1 � � �T

�1
j�1Yi D YiD

.l/
j ; i < j:

Finally, we have
D
.l/
1 Y1 D qT1 � � �T

2
N�1 � � �T1Y1D

.l/
1 ;

which gives

(3.14) D
.l/
i YiT

�1
i�1 � � �T

�2
1 � � �T

�1
i�1 D Ti � � �T

2
N�1 � � �TiYiD

.l/
i :

Finally, we write commutation relations between Xi and D.l/
j . First of all, we have

(3.15) X1D
.l/
1 D .Y1 �Z1/ � � � .Y1 �Zl /; D

.l/
1 X1 D .qJNY1 �Z1/ � � � .qJNY1 �Zl /;
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where JN D T1 � � �T 2N�1 � � �T1. Also we have

ŒD
.l/
1 ; X2� D

lX
rD1

X�11 .Y1 �Z1/ � � � .Y1 �Zr�1/ŒY1; X2�.Y1 �ZrC1/ � � � .Y1 �Zl /

D

lX
rD1

X�11 .Y1 �Z1/ � � � .Y1 �Zr�1/.T
�2
1 � 1/X2Y1.Y1 �ZrC1/ � � � .Y1 �Zl /

D .t�1 � t/
lX

rD1

X�11 .Y1 �Z1/ � � � .Y1 �Zr�1/T
�1
1 X2Y1.Y1 �ZrC1/ � � � .Y1 �Zl /

D .t�1 � t/
lX

rD1

X�11 .Y1 �Z1/ � � � .Y1 �Zr�1/X1T1Y1.Y1 �ZrC1/ � � � .Y1 �Zl /

D .t�1 � t/
lX

rD1

.qJNY1 �Z1/ � � � .qJNY1 �Zr�1/T1Y1.Y1 �ZrC1/ � � � .Y1 �Zl /:

Therefore, we have

(3.16) ŒD
.l/
1 ; X2�

D .t�1�t/
lX

rD1

.qJNY1�Z1/ � � � .qJNY1�Zr�1/Y2T
�2
1 .Y2T

�2
1 �ZrC1/ � � � .Y2T

�2
1 �Zl /T1:

Now the commutation relations betweenD.l/
i andXj can be obtained from this by applying

the elements Tm.
Thus, we have the following proposition. Let HH l;C

N be the “unlocalized” version of the

cyclotomic DAHA, generated by Ti , Xi , D
.l/
i , and Yi (without Y �1i ).

P 3.27. – Let MX be a monomial in Xi , MD a monomial in D.l/
i , MY a

monomial in Yi with powers of Yi being� l�1. Then the monomials of the formMXMY TsMD ,
s 2 SN form a basis in HH l;C

N .

Proof. – It is easy to see from considering the polynomial representation that these
monomials are linearly independent. Therefore, it remains to establish the spanning property.
We consider a filtration with deg.Ti / D 0, deg.Xi / D deg.D.l/

i / D l , deg.Yi / D 2. We can use
the above commutation relations to order any monomial without increasing its degree. Then
we can reduce the degrees of Yi below l by using the relationX1D

.l/
1 D .Y1�Z1/ � � � .Y1�Zl /

and its conjugates by the Ti . Namely, we have the relation

XiD
.l/
i D .YiT

�1
i�1 � � �T

�2
1 � � �T

�1
i�1 �Z1/ � � � .YiT

�1
i�1 � � �T

�2
1 � � �T

�1
i�1 �Zl /;

which can be used to express the monomial Y li as

Y li D XiD
.l/
i Ti�1 � � �T

2
1 � � �Ti�1 C � � �

where � � � is a linear combination of ordered monomials of degrees < l in Yi ; Ti and mono-
mials of degree l involving Yi in degree < l and some Yj with j < i . For example, for i D 2,
l D 2 we get

X2D
.l/
2 D .Y2T

�2
1 �Z1/.Y2T

�2
1 �Z2/;
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so we get
Y2T

�2
1 Y2 D X2D

.l/
2 T

2
1 C lower degree terms :

But
Y2T

�2
1 Y2 D Y

2
2 C .t

�1
� t/Y2Y1T1;

so
Y 22 D X2D

.l/
2 T

2
1 C .t � t�1/Y2Y1T1 C lower degree terms :

This implies the required spanning property.

T 3.28. – (i) The algebra HH l;C
N is generated by Ti , Xi , Di WD D

.l/
i , and Yi with

the following defining relations:
(1) relations (R1-R7), (R11), (R12) of DAHA;
(2) the relations (3.7) (3.16).
The algebraHH l

N is defined by the same generators and relations, adding the condition thatYi
are invertible.

Proof. – We have shown that these relations hold. Moreover, it was shown in the proof
of Proposition 3.27 that using these relations, we can reduce every monomial to a linear
combination of basis monomials. This implies that the relations are defining.

P 3.29. – There is an involutive automorphism � of HH l
N such that �.Xi / D Di ,

�.Di / D Xi , �.Ti / D T �1i , �.t/ D t�1, �.q/ D q�1 and

�.Yi / D qTi � � �T
2
N�1 � � �TiYiT

�1
i�1 � � �T

�2
1 � � �T

�1
i�1:

This automorphism preserves the subalgebra HH l;C
N .

Proof. – We check that � preserves the defining relations. Relations (R1-R3) go to them-
selves. Relations (R4,R5) get exchanged with (3.11). Relations (R6,R7) go to themselves
once (R1-R3) are imposed. Relations (R11) get exchanged with (3.10) and (R12) with them-
selves once (R1-R3,R6,R7) are imposed. Relation (3.7) gets exchanged with (3.12), (3.8) with
(3.13), (3.9) with (3.14). Relations (3.15) go to themselves. So it remains to see that relation
(3.16) is preserved.

Let KN D T2 � � �T 2N�1 � � �T2. We have

ŒD2; X1� D

lX
rD1

X�12 .Y2T
�2
1 �Zl /

� � � .Y2T
�2
1 �ZrC1/ŒY2T

�2
1 ; X1�.Y2T

�2
1 �Zr�1/ � � � .Y2T

�2
1 �Z1/

D

lX
rD1

X�12 .Y2T
�2
1 �Zl /

� � � .Y2T
�2
1 �ZrC1/Y2.T

�2
1 � 1/X1.Y2T

�2
1 �Zr�1/ � � � .Y2T

�2
1 �Z1/

D .t�1 � t/
lX

rD1

X�12 .Y2T
�2
1 �Zl /

� � � .Y2T
�2
1 �ZrC1/Y2T

�1
1 X1.Y2T

�2
1 �Zr�1/ � � � .Y2T

�2
1 �Z1/
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D .t�1 � t/
lX

rD1

X�12 .Y2T
�2
1 �Zl /

� � � .Y2T
�2
1 �ZrC1/Y2T

�2
1 X2T

�1
1 .Y2T

�2
1 �Zr�1/ � � � .Y2T

�2
1 �Z1/:

Thus,

(3.17) ŒD2; X1�

D .t�1 � t/
lX

rD1

.qKNY2 �Zl / � � � .qKNY2 �ZrC1/qKNY2.Y1 �Zr�1/ � � � .Y1 �Z1/T
�1
1 :

Now it is easy to see that � maps (3.16) to (3.17) (as Y1 commutes with KN and Y2, hence
with KNY2).

R 3.30. – It is easy to see that as q ! 1, the involution � degenerates to the
involution � on H l

N;deg constructed in Remark 2.25.

C 3.31. – The algebra HH
l;C
N .Z1; : : : ; Zl ; q; t/ is a free module over

CŒX1; : : : ; XN �˝CŒD1; : : : ;DN � of rankNŠ�lN , where the first factor acts by left multiplication
and the second one by right multiplication.

Proof. – This follows immediately from Proposition 3.27.

The proof of Proposition 3.27 in fact shows that for any l � 0 ordered products
of MX ;MY ; Ts;MD in any of the 24 possible orders are a spanning set for HH l;C

N , and
those of them with degrees of Yi at most l � 1 are a basis for l � 1. This implies that we also
have another basis of this algebra, formed by monomials MXMDTsMY without restriction
on the degree of Yi , but with the restriction that for each i either Xi is missing in MX or
Di is missing in MD . Indeed, if this restriction is not satisfied, we may use the relation
X1D1 D f .Y1/ and its permutations to lower the number of Xi and Di , and it is easy to
see by looking at the polynomial representation that monomials with this restriction are
linearly independent. Thus we obtain the following proposition.

P 3.32. – The elements MXMD which miss either Xi or Di for each i form a
basis of HH l;C

N as a left or right module over the positive part of the affine Hecke algebra HCN
generated by Ts; s 2 SN and Yi , and a basis of HH l

N as a left or right module over the affine
Hecke algebra HN generated by Ts; s 2 SN and Y ˙1i ; in particular, HH l;C

N is a free module
over HCN and HH l

N is a free module over HN .

Note that the basis of Proposition 3.32 is labeled by N -tuples of integers, .m1; : : : ; mN /.
Namely, if MXMD contains Xpi then we set mi D p, and if it contains Dp

i then we set
mi D �p.

Another geometric proof of Proposition 3.32 (for a geometric version of HH l
N ) will be

given in Section 4.
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4. Geometric realization

4.1. A variety of triples

We consider a quiver with a set of vertices I and a set of arrows �. Let V D
L
i2I Vi ,

W D
L
i2I Wi be I -graded finite dimensional C-vector spaces; di WD dimVi . Given

a length ` sequence i D .i1; : : : ; i`/ 2 I ` and a length ` sequence a D .a1; : : : ; a`/ of
positive integers such that

P
nWinDi

an D di for any i 2 I , we choose an I -graded flag
in V WV D V 0 � V 1 � � � � � V ` D 0 such that V n�1=V n is an an-dimensional vector space
supported at the vertex in for any n D 1; : : : ; `.

We set K D C..z// � CŒŒz�� D O. We consider the following flag of I -graded lattices
in VK D V ˝ K W � � � � L�1 � L0 � L1 � � � � , where LrC` D zLr for any r 2 Z; L0 D V O;
Ln=L` D V n � V D L0=L` for any n D 1; : : : ; `. Let GL.V / WD

Q
i2I GL.Vi /, and

let P � GL.V / O � GL.V /K be the stabilizer of the flag L�. Then GL.V /K=P is
the set of points of the ind-projective moduli space F ` of flags of I -graded lattices
� � � �M�1 �M0 �M1 � � � � in VK such thatMrC` D zMr for any r 2 Z, andMn�1=Mn is
an an-dimensional vector space supported at the vertex in for any n D 1; : : : ; `. This is
a partial affine flag variety of the reductive group GL.V /. Note that the set of connected
components �0.F `/ is naturally identified with ZI (the virtual graded dimension of M0).

Let R be the moduli space of the following data (cf. [31, Section 1]):

(a) M� 2 F `;

(b) a K -linear homomorphism pi WWi;K ! Vi;K for any i 2 I ;

(c) a K -linear homomorphism bi!j WVi;K ! Vj;K for any i ! j 2 �; such that

(1) b WD
P
i!j2� bi!j takes Lr to LrC1 and Mr to MrC1 for any r 2 Z;

(2) p WD
P
i2I pi takes W O to L0 \M0.

Note that when ` D 1, we have P D GL.V / O, and R is nothing but the variety of
triples RGL.V /;N associated in [8, 2(i)] to a GL.V /-module

N D
M

i!j2�

Hom.Vi ; Vj /˚
M
i2I

Hom.Wi ; Vi /:

The definition of equivariant Borel-Moore homology H
GL.V / OoC�
� .RGL.V /;N/ (respec-

tively, equivariant K-theory KGL.V / OoC�.RGL.V /;N/) and the construction of convolution
product on it in [8, Sections 2,3] work without any changes in our situation, and produce
the convolution algebras H PoC�

� .R / and KPoC�.R /. Moreover, if we choose a Cartan
torus T .Wi / � GL.Wi / and set T .W / WD

Q
i2I T .Wi / �

Q
i2I GL.Wi / DW GL.W /

(a flavor symmetry group), we obtain the convolution algebras HC��T.W / O�PoC�
� .R /

and KC��T.W / O�PoC�.R /. Here the first factor C� acts by dilations in the fibers of the
projection

(4.1) $ W R ! F `:

The following easy result will be important in the future.

L 4.1. – The algebraHC��T.W / O�PoC�
� .R / is free as a module over the equivariant

point cohomology H �C��T.W / O�PoC�.pt/. Similarly, the algebra KC��T.W / O�PoC�.R / is
free as a module over KC��T.W / O�PoC�.pt/.
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Proof. – It is enough to show that R has an algebraic cell decomposition, which is
invariant under the maximal torus of the group C� � T .W / O � P o C�. For this we need
to choose an Iwahori subgroup I of GL.V /K which is contained in P . Then the I -orbits
on F ` are affine spaces; hence their preimages in R are (infinite-dimensional) affine spaces
as well, which are clearly invariant under C��T .W / O� I oC�, hence under some maximal
torus of C� � T .W / O � P oC�.

In case W D W 0 ˚W 00, we denote the variety of triples corresponding to W 0 (resp. W 00)
by R

0 (resp. R
00), and we have an evident closed embedding zW R

0
,! R . The argument

of [8, Lemma 5.11] goes through word for word in our situation and proves that

(4.2) z�WHC��T.W / O�PoC�
� .R / ,! H

C��T.W 0/ O�PoC�
� .R

0
/˝H �T.W 00/.pt/

and

(4.3) z�WKC��T.W / O�PoC�.R / ,! KC��T.W 0/ O�PoC�.R
0
/˝KT.W 00/.pt/

are the convolution algebra homomorphisms.

4.2. Jordan quiver

In what follows we consider a special case of the construction of Section 4.1 where
I consists of a single vertex and � consists of a single loop, W D Cl with a basis e1; : : : ; el
(hence the diagonal torus T .W / � GL.W /), andV D CN with a basis v1; : : : ; vN . Moreover,
` D N; an D 1 for any n D 1; : : : ; N , and V � is a complete flag V n WD Cv1 ˚ : : :˚ CvN�n.
We fix a flag of lattices Li � V..z//; i 2 Z, such that L0 D V ŒŒz��, LjCN D zLj , and
Lj D zV ŒŒz��˚ Cv1 ˚ � � � ˚ CvN�j , j D 0; : : : ; N � 1.

The space of triples of Section 4.1 is the moduli space of the following data:

(a) a sequence of CŒŒz��-lattices Mi � V..z//; i 2 Z, such that Mi ) MiC1 and
MjCN D zMj ;

(b) a C..z//-linear map bWV..z//! V..z//; and

(c) a C..z//-linear map pWW..z//! V..z//; such that

(1) b strongly preserves L and M , i.e., bLi � LiC1 and bMi �MiC1; and

(2) pW ŒŒz�� � L0 \M0.

The basis of V gives rise to the diagonal torus T .V / � GL.V /, and we
denote by y1; : : : ; yN the generators of H �

T.V /
.pt/. Also, we denote by z1; : : : ; zl

(resp. ~;�k) the generators of H �
T.W /

.pt/ (resp. H �C�.pt/ for the loop rotation
C�, H �C�.pt/ for the dilation C�). We shall denote the corresponding generators
of KT.V /.pt/; KT.W /.pt/; KC�.pt/; KC�.pt/ by Y1; : : : ; YN I Z1; : : : ;Zl I qI t . The algebra

H
C��T.W / O�PoC�
� .R / (resp. KC��T.W / O�PoC�.R /) will be denoted HH l

N;deg (resp.

HH l
N ). We shall also denote HH0

N;deg by HHN;deg, and HH0
N by HHN . According

to (4.2) and (4.3) we have algebra embeddings z�W HH l
N;deg ,! HHN;degŒz1; : : : ; zl � and

z�W HH l
N ,! HHN ŒZ

˙1
1 ; : : : ;Z˙1

l
�.

Note that for W D 0 the variety of triples R is nothing but the affine Steinberg
variety of GL.V /, and F ` is nothing but the affine flag variety of GL.V /. It is well known
that HHN;deg ' HHN;deg (see e.g., [37]), and one can check that HHN ' HHN , cf. [43]
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(see [8, Remark 3.9(2)]). More precisely, for n D 0; : : : ; N � 1, we denote by P1n � F ` the
projective line formed by all the flags M� of lattices (see Section 4.1) such that Mm D Lm
form ¤ n .mod N/. Each P1n contains the base point L� 2 F `, and we denote by A1n � P1n
the complement. The restriction of the projection $ W R ! F ` to A1n is a (profinite
dimensional) vector bundle, and the closure of$�1.A1n/ in R is still a vector bundle overP1n,
to be denoted byeP1n. We define sn 2 HN as 1C ŒeP1n� for n D 0; : : : ; N � 1 (the fundamental
cycle ofeP1n). Also, let � (resp. ��1) be a point-orbit of the Iwahori group P in F ` consisting
of the flag M� such that Mn D LnC1 (resp. Mn D Ln�1) for any n 2 Z. Finally, we define
�˙1 2 HHN;deg as Œ$�1.�˙1/�. Now the desired isomorphismHHN;deg

�
�!HHN;deg takes

the generators of HHN;deg to the same named elements of HHN;deg, except ~ 7! �~.

Furthermore, we define Tn 2 HHN as �1 � Œ OeP1n.�2/� for n D 0; : : : ; N � 1, and we

define �˙1 2 HHN as Œ O$�1.�˙1/�. The desired isomorphism HHN
�
�!HHN takes the

generators of HHN to the same named elements of HHN , except q 7! q�1.

For arbitrary W D Cl , in order to distinguish from the l D 0 case, we will denote
by $l W R

l
! F ` the corresponding projection. Let us set

HH l
N;deg 3 �� D Œ$

�1
l .��1/�I HH l

N 3 �� D .�q
�1t�1/lZ1 � � �Zl Œ O$�1

l
.��1/�:

Then we have

z��� D
lY

mD1

.yN � zm � k/ � �
�1
D ��1

lY
mD1

.y1 � zm � k C ~/ 2 HHN;deg;(4.4)

and

z��� D .�q�1t�1/lZ1 � � �Zl
lY

mD1

.1 � YNZ�1m t / � �
�1(4.5)

D ��1
lY

mD1

.Y1 � Zmq
�1t�1/ 2 HHN :

Indeed, z��� is obtained from ��1 by multiplication with the Euler class of the
finite dimensional quotient space T

l
��1=R

l
��1 , where R

l
��1 is the fiber of R

l

at the point ��1, and T
l
��1 is defined similarly, but the condition (2) above:

pW ŒŒz�� � L0 \M0 D L0 \ L�1 D L0 is relaxed to the condition pW ŒŒz�� � M0 D L�1,
cf. [8, 4(vi)].

We preserve the name � for Œ$�1
l
.�/� 2 HH l

N;deg (resp. Œ O$�1
l
.�/� 2 HH l

N ) since z�

takes this � to the one in HHN;deg (resp. in HHN ). For the same reason we preserve the

names sn (resp. Tn), n D 1; : : : ; N � 1, for the corresponding elements of HH
l;deg
N (resp.

HH l
N ). Finally, we set zm D zm C k � ~, and Zm D Zmq

�1t�1. So the following diagrams
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commute:

HH l
N;deg

//

��

HH l
N;deg

z�

��

HHN;degŒz1; : : : ; zl �
� // HHN;degŒz1; : : : ; zl �;

(4.6)

HH l
N HH l

N
OO

��

z�

��

HHN ŒZ
˙1
1 ; : : : ; Z˙1

l
�

� // HHN ŒZ
˙1
1 ; : : : ; Z˙1

l
�:

(4.7)

Note that in diagram (4.6) we have bigradings defined by deg.Xi / D .1; 0/, deg.yi / D
deg.z; ~; k/ D .0; 1/, which are preserved by all the maps.

The following theorem is independently obtained in [44, Lemma 4.2].

T 4.2. – The map � W HH l
N;deg ! HH l

N;deg in diagram (4.6) is an isomorphism
of bigraded algebras.

Proof. – We may assume that l > 0. Recall from Lemma 4.1 that HH l
N;deg is a free

CŒz1; : : : ; zl ; ~; k�-module. Thus it suffices to show that �0 is an isomorphism, where �0 is the
specialization of � at ~ D k D 0; z D 0. It is clear that �0 is injective, hence so are � and all
its specializations �z;~;k . Since the bigraded componentsHH l

N;degŒr; s� are finite dimensional
(as l > 0), it suffices to show that the specialization �z;~;k is an isomorphism for Weil generic
z; ~; k.

We will now use the following easy lemma about unital rings.

L 4.3. – LetB be a unital ring andA � B a unital subring. If e 2 A is an idempotent
such that AeA D A and eAe D eBe, then A D B.

Proof. – Since AeA D A, we have AeB D AeAB D AB D B. Similarly BeA D B. Thus
AeBeA D BeA D B. But since eAe D eBe and AeA D A, we have AeBeA D AeAeA D
AeA D A. Thus A D B.

Now let e be the symmetrizer of SN , and let us apply Lemma 4.3 to A D HH l
N;deg.z; 1; k/

and B D HH l
N;deg.z;�1; k/. Using Theorem 2.19, we see that the condition AeA D A is

satisfied for generic z; k, namely when the corresponding parameters of the cyclotomic
rational Cherednik algebras are not aspherical (see e.g., [7], Subsection 4.1). In fact, it suffices
to consider the case z D 0; k D 0, when this is easy, since HH l

N;deg.0; 1; 0/ D Sn n .D.C/Z=lZ/˝N

is a simple algebra (by [32, Theorem 2.3]). Also, by [9, Proposition 3.24], the theorem holds
for spherical subalgebras, i.e., e�0e is an isomorphism. Hence so are e�e and all its special-
izations e�z;~;ke, which yields the condition eAe D eBe for all z; ~; k. Thus Lemma 4.3
applies and Theorem 4.2 follows.
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We expect that an analog of Theorem 4.2 also holds in the K-theoretic setting, i.e., for
diagram (4.7). Let us prove a formal version of this statement. Let q D e"~, t D e�"k , Zi D e"zi .
Let HH l;formal

N be the corresponding formal completion of HH l
N (obtained by viewing

equivariant K-theory as a formal deformation of equivariant Borel-Moore homology (4)).
Diagram (4.7) furnishes a mapb� W HH l;formal

N ! HH l;formal
N .

C 4.4. – The mapb� is an isomorphism.

Proof. – By Lemma 4.1, HH l;formal
N is a flat formal deformation of HH l

N;deg over CŒŒ"��.
Finally,b�j"D0 D �. This implies the corollary.

In particular, this gives another, geometric proof of the facts that HH l
N;deg is a free

bigraded CŒz1; : : : ; zl ; ~; k�-module, and the algebra HH
l;formal
N .z; ~; k/ is its flat formal

deformation.

We also have

T 4.5. – Let e be the symmetrizer of the finite Hecke algebra generated by Ti ,
1 � i � N � 1. Then the natural map

e�Z;q;te W eHH l
N .Z; q; t/e! e HH l

N .Z; q; t/e

is an isomorphism when q D t D 1 and Zi D 1 for all i .

Proof. – Same as the proof of [9, Proposition 3.24].

T 4.6. – Let ĤH l
N , ĤH l

N be the completions ofHH l
N ; HH l

N at q D t D Zi D 1
(as modules over CŒZ˙11 ; : : : ; Z˙1

l
; q˙1; t˙1�). Then the map

b� W ĤH l
N ! ĤH l

N

is an isomorphism.

Proof. – The proof is analogous to the proof of Theorem 4.2, using Theorem 4.5.
Namely, the identity AeA D A for A D HH l

N .Z; q; t/ is established for generic q andZ D 1,
t D 1 using the fact that in this case A is a simple algebra by [32, Theorem 2.3].

(4) Indeed, the Borel-Moore homology is the associated graded of the 
 -filtration on the K-theory. On the equiv-
ariant K-theory of the point, this is the filtration by the order of vanishing at the neutral element. See [2] for the
topological situation, and [42] for the comparison with the algebraic situation.
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5. Cyclotomic DAHA and multiplicative quiver and bow varieties

5.1. Multiplicative quiver varieties

Let t 2 C� be not a root of unity, and Z1; : : : ; Zl 2 C� be such that Zi=Zj is not an
integer power of t for i ¤ j . Let Ql be the cyclic quiver OAl�1 with vertices 1; : : : ; l and
an additional “Calogero-Moser vertex” 0 attached to the vertex 1. Let M l

N .Z; t/ be the
multiplicative quiver variety forQl with dimension vector d1 D � � � D dl D N and d0 D 1, see
[16]. Namely, given complex vector spaces Vi , i D 1; : : : ; l , with dimVi D N , M l

N .Z; t/ is
the variety of collections of linear maps Xi W ViC1 ! Vi and Di W Vi ! ViC1 (where addition
is mod l) satisfying the equations

(5.1) Zi .1C XiDi / D Zi�1.1C Di�1Xi�1/; 2 � i � l

and

(5.2) Z1.1C X1D1/T D Zl .1C DlXl /;

where T W V1 ! V1 is an operator conjugate to diag.t�1; : : : ; t�1; tn�1/, modulo simulta-
neous conjugation (i.e., the corresponding categorical quotient).

E 5.1. – Let l D 1. Then there is no dependence on Z1, and M 1
N .t/ is the

variety of pairs .X;D/ of N by N matrices such that

.1C XD/T D .1C DX/;

where 1C XD is invertible, and T is as above, modulo simultaneous conjugation.

Let X WD X1 � � �Xl , D WD Dl � � �D1, Y WD Z1.1 C X1D1/. Consider the operators
LC WD Z1 � � �ZlXD, L� WD Z1 � � �ZlDX.

L 5.2. – We have

LC D .Y �Z1/ � � � .Y �Zl /;

L� D .YT �Z1/ � � � .YT �Zl /:

Proof. – We prove the formula for LC; the formula for L� is proved in a similar way.

It suffices to prove by induction in r that

Z1 � � �ZrX1 � � �XrDr � � �D1 D .Y �Z1/ � � � .Y �Zr /:

The base r D 0 is obvious. For r > 0, we have, using the induction assumption:

Z1 � � �ZrX1 � � �XrDr � � �D1 D X1 � � �Xr�1.ZrXrDr /X�1r�1 � � �X
�1
1 .Y �Z1/ � � � .Y �Zr�1/:

But

X1 � � �Xr�1.ZrXrDr /X�1r�1 � � �X
�1
1 D X1 � � �Xr�1.Zr�1Dr�1Xr�1 CZr�1 �Zr /X�1r�1 � � �X

�1
1

D Zr�1 �Zr C X1 � � �Xr�2.Zr�1Xr�1Dr�1/X�1r�2 � � �X
�1
1 :

Thus,
X1 � � �Xr�1.ZrXrDr /X�1r�1 � � �X

�1
1 D Z1 �Zr CZ1X1D1 D Y �Zr :

This implies the induction step.
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Thus we have

(5.3) XD D .Z�11 Y � 1/ � � � .Z�1l Y � 1/; DX D .Z�11 YT � 1/ � � � .Z�1l YT � 1/;

(5.4) YX D XYT;YTD D DY:

L 5.3. – We have an isomorphism

ˆ W M l
N .Z1; : : : ; Zl ; t /! M l

N .Zl ; : : : ; Z1; t
�1/

given by ˆ.Xi / D DlC1�i , ˆ.Di / D XlC1�i , ˆ.Zi / D ZlC1�i .

Proof. – It is easy to check that the relations defining these varieties are matched by ˆ.

5.2. Quadruple varieties and their connection to multiplicative quiver varieties

Let Ml
N .Z; t/ be the variety of quadruples of matrices .X;D;Y; T / satisfying (5.3),(5.4)

such that Y is invertible, modulo simultaneous conjugation (i.e., the categorical quotient).
We have a natural map

 W M l
N .Z; t/!Ml

N .Z; t/

sending Xi ;Di ; 1 � i � l to .X;D;Y; T /.

P 5.4. – Any collection .X;D;Y; T / 2Ml
N .Z; t/ acts irreducibly on CN .

Proof. – Assume the contrary. Then there is an invariant subspace or quotient V
for .X;D;Y; T / of dimension 1 � n � N � 1 on which T acts by t�1. So by Lemma 5.2,
on V we have

XD D .Z�11 Y � 1/ � � � .Z�1l Y � 1/; DX D ..tZ1/�1Y � 1/ � � � ..tZl /
�1Y � 1/;

tYX D XY;

and

YD D tDY:(5.5)

Equation (5.5) implies that D cannot be invertible (otherwise taking determinants of both
sides gives a contradiction). Thus there is a nonzero vector v 2 V such that Dv D 0. Since
(again by (5.5)) KerD is Y-stable, we can choose v so that Yv D �v for some � ¤ 0. Since
XDv D 0, we have � D Zj for some j .

We may assume that V is irreducible for the action of .X;D;Y; T /. Then V has a basis
v;Xv; : : : ;Xn�1v with YXiv D t�i�Xiv, and

DXiv D .Z�11 �t�i � 1/ � � � .Z�1l �t�i � 1/Xiv:

In particular, since Xnv D 0, we must have � D tnZm for somem. Thus, we have tnZm D Zj ,
which contradicts our assumption on the Zi .

By Schur’s lemma, Proposition 5.4 implies that any operator A commuting with
X;D;Y; T has to be a scalar, so Ml

N .Z; t/ is, in fact, the ordinary quotient of the set of
quadruples .X;D;Y; T / satisfying (5.3),(5.4) by the free action of PGLN .C/.
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C 5.5. – Every collection of endomorphisms Ai W Vi ! Vi which commute with
.X1; : : : ;Xl ;D1; : : : ;Dl / satisfying (5.1),(5.2) is a scalar (the same at all vertices).

Proof. – Suppose we have such a collection. Then A1 commutes with .X;D;Y; T /, so by
Proposition 5.4, it has to be a scalar. So by shifting Ai by the same scalar we may assume
that A1 D 0. Our job is to show that Ai D 0 for all i . Assume the contrary, i.e., that As ¤ 0
for some s.

Let V 0i D ImAi . Then V 01 D 0, so there exist 1 � i < j � l such that V 0iC1 D V 0iC2 D

� � � D V 0j ¤ 0, while V 0i D V 0jC1 D 0. The collection of nonzero spaces V 0s , i < s � j is
invariant under the operators Xs;Ds , and these operators satisfy on V 0s the equations

ZiC1.1C XiC1DiC1/ D Zi ; ZiC2.1C XiC2DiC2/ D ZiC1.1C DiC1XiC1/; : : : ;

Zj D Zj�1.1C Dj�1Xj�1/:

(if j D i C 1, then we get just one equation Zi D ZiC1). If j � i C 2, this implies that
any nonzero vector v 2 V 0iC1 is an eigenvector of the operator ZiC1.1 C XiC1DiC1/ with
eigenvalue Zi . Since ZiC1 ¤ Zi , this implies that DiC1v is an eigenvector of the operator

ZiC1.1C DiC1XiC1/ D ZiC2.1C XiC2DiC2/

with eigenvalue Zi . Continuing like this, we find that Zj�1.1C Dj�1Xj�1/ has eigenvector
Dj�1 � � �DiC1v with eigenvalueZi , henceZi D Zj . This is a contradiction, which proves the
corollary.

Corollary 5.5 implies that M l
N .Z; t/ is also an ordinary quotient. A similar argument

shows that Equations (5.1),(5.2) define a smooth complete intersection, i.e., the multiplicative
quiver variety M l

N .Z; t/ is smooth (in fact, both of these statements follow from the results
of [16]).

Let Ml
N .Z; t/

ı be the open subset of Ml
N .Z; t/ where X is invertible. On this set, D is

redundant (i.e., expresses in terms of X and Y), and the only equation we are left with is

YX D XYT:

Thus, Ml
N .t/

ı D Ml
N .Z; t/

ı is independent of the Zi and is the multiplicative Calogero-
Moser space considered in [35] (the phase space of the Ruijsenaars integrable system). In
particular, as explained in [35], Ml

N .t/
ı is smooth and connected.

Now let us study the properties of the map  . Note that if l D 1,  is tautologically
an isomorphism. Moreover, we claim that  is an isomorphism  �1.Ml

N .t/
ı/ ! Ml

N .t/
ı.

Indeed, if X is invertible then we can set Vi D CN and Xi D 1 for i D 1; : : : ; l � 1, while
Xl D X. Then we get that Zi .1 C Di / D Y D Zl .1 C DlXl /T �1 for i D 2; : : : ; l . Thus
Di D Z�1i Y � 1 for i D 1; : : : ; l � 1, and Dl D X�1.Z�11 Y � 1/.

P 5.6. –  is a closed embedding.

Proof. – Our job is to show that the map

 � W O.Ml
N .Z; t//! O.M l

N .Z; t//

is surjective. By the Fundamental Theorem of invariant theory, O.Ml
N .Z; t// is generated

by the elements Tr.w/, where w are words in X;D;Y˙1, and T˙1. So it suffices to show
that O.M l

N .Z; t// is generated by the elements  �Tr.w/. We know that this algebra is
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generated by expressions Tr.u/, where u is any cyclic word (i.e., closed path) consisting of Di ,
Xi , .1CXiDi /˙1 and T˙1, so it suffices to show that any such cyclic word can be expressed
as a cyclic word w in X;D;Y˙1, and T˙1.

Let ƒ be the deformed multiplicative preprojective algebra of the Calogero-Moser
quiver Ql defined in [16]; thus, O.M l

N .Z; t// is the representation variety of ƒ for the
dimension vector .di /. Let e1 2 ƒ be the idempotent of the vertex 1.

L 5.7. – One has ƒ D ƒe1ƒ.

Proof. – Assume the contrary. Then we have a nonzero ƒ-module V such that V1 D 0

(namely, any nonzero module overƒ=ƒe1ƒ), and the argument in the proof of Corollary 5.5
gives a contradiction with the condition Zi ¤ Zj .

Lemma 5.7 implies that the closed path u in question may be assumed to pass through the
vertex 1. So it remains to show that using the relations ofƒ, one may reduce u to a productw
of X;D;Y˙1; T˙1.

To this end, we may assume that the path u begins and ends at the vertex 1. The proof is
by induction in the length ` of u. The base of induction (` D 0) is clear. Let us make the
induction step from `� 1 to `. Suppose that u ends with D1 (the case of Xl is similar). If all
the factors in u are Di then u is a power of D, and we are done. So let m be the number of
factors Di in u until the first Xi , counting from the end. We may assume that m < l , since
otherwise we can split away the factor D at the end of u and pass to smaller length. Ifm D 1,
we can split away the factor X1D1 D Z�11 Y � 1 at the end and reduce to smaller length. On
the other hand, if m > 1, then

u D NuXmDmDm�1 � � �D1

for some word Nu. By adding smaller length words, we may replace u with

u0 WD Nu.1C XmDm/Dm�1 � � �D1 D Zm�1Z�1m Nu.1C Dm�1Xm�1/Dm�1 � � �D1:

By adding words of smaller length and rescaling we can replace u0 by

u00 WD NuDm�1Xm�1Dm�1 � � �D1;

which is a word of the same type as u but with m replaced by m� 1. Proceeding in this way,
we will eventually reach the casem D 1, which has already been considered. This implies the
claim.

Let M l
N .Z; t/� be the closure of �1.Ml

N .t/
ı/ and Ml

N .Z; t/� be the closure of Ml
N .t/

ı.

P 5.8. – The map  W M l
N .Z; t/� ! Ml

N .Z; t/� is an isomorphism of
smooth connected affine varieties.

Proof. – This follows from Proposition 5.6.

We will also see that the multiplicative quiver variety M l
N .Z; t/ is connected, i.e.,

M l
N .Z; t/� D M l

N .Z; t/ (Theorem 5.17).
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5.3. Connection to cyclotomic DAHA

Now let us connect multiplicative quiver varieties with cyclotomic DAHA. Let eN be
the symmetrizer of the finite Hecke algebra of SN generated by Ti , and consider the
spherical subalgebra eNHH l

N .Z; 1; t/eN . This is a subalgebra of the commutative domain
eNHHN .1; t/eN (see [35, Theorem 5.1(1),(2)]), so it is also a commutative domain. Consider
the moduleHH l

N .Z; 1; t/eN over this algebra. Let Ml
N .Z; t/ D Specm.eNHH l

N .Z; 1; t/eN /.

P 5.9. – For any Zi the algebra eNHH l
N .Z; 1; t/eN is finitely generated

and Cohen-Macaulay (i.e., Ml
N .Z; t/ is an irreducible Cohen-Macaulay variety) and the

module HH l
N .Z; 1; t/eN is Cohen-Macaulay. In particular, HH l

N .Z; 1; t/eN is projective of
rank NŠ on the smooth locus Ml

N .Z; t/smooth of Ml
N .Z; t/.

Proof. – The proof is analogous to the proof of [35, Theorem 5.1(2),(3)]. Namely,
the statements follow from the fact that by Proposition 3.31, HH l;C

N .Z; 1; t/eN and
eNHH

l;C
N .Z; 1; t/eN are free modules of finite rank over the subalgebra CŒX1; : : : ; XN �SN ˝

CŒD1; : : : ;DN �SN , and HH l
N .Z; 1; t/eN , eNHH l

N .Z; 1; t/eN are obtained from these by
inverting the element Y1 � � �YN eN .

P 5.10. – For any Zi , the variety Ml
N .Z; t/ is smooth outside a set of codi-

mension two.

Proof. – Consider the open set Ml
N .Z; t/X D Ml

N .t/X � Ml
N .Z; t/ where

Q
i Xi is

invertible. On this set, the localization of the spherical cyclotomic DAHA to Ml
N .t/X is the

usual spherical DAHA with q D 1, so Ml
N .t/X is smooth by the result of [35]. Similarly,

consider the open set Ml
N .Z; t/D D Ml

N .t/D � Ml
N .Z; t/ where Di are invertible. By

Proposition 3.29, the localization of the spherical cyclotomic DAHA to Ml
N .t/D is also

isomorphic to the usual spherical DAHA, as there is an involution � of the cyclotomic
DAHA exchanging Xi and Di . Thus Ml

N .t/D is also smooth, by [35]. But it is easy to see
that the complement of Ml

N .t/X [Ml
N .t/D has codimension at least two.

C 5.11. – The variety Ml
N .Z; t/ is normal.

Proof. – The proof is similar to the proof of [35, Theorem 5.1(2)]. Namely, the statement
follows from Proposition 5.9 and Proposition 5.10, since by the Serre criterion, a Cohen-
Macaulay variety smooth outside a set of codimension 2 is normal.

Let Z .HH l
N .Z; 1; t// be the center of HH l

N .Z; 1; t//.

P 5.12. – For any Zi : (i) The natural map

HH l
N .Z; 1; t/! EndeNHH lN .Z;1;t/eN

.HH l
N .Z; 1; t/eN /

is an isomorphism.
(ii) The natural map Z .HH l

N .Z; 1; t// ! eNHH l
N .Z; 1; t/eN given by z 7! zeN is an

isomorphism.

Proof. – The proof is analogous to the proof of [35, Theorem 5.1(4),(5)], replacingYi with
Di and the Cherednik involution with the involution �, and using [35, Theorem 5.1].
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We can now define a regular map � WMl
N .Z; t/!Ml

N .Z; t/� as follows. Given
� 2Ml

N .Z; t/smooth, consider the representation I.�/ WD HH l
N .Z; 1; t/eN ˝eNHH lN .Z;1;t/eN

�.
By Proposition 5.9, this representation has dimension NŠ and is the regular representation
of the finite Hecke algebra generated by Ti . Let eN�1 be the symmetrizer of the subalgebra
generated by T2; : : : ; TN�1, and let V.�/ WD eN�1I.�/. This is an N -dimensional space,
and it carries an action of the operators X WD X1, D D D1 D X�11 .Y1 � Z1/ � � � .Y1 � Zl /,
Y WD Y1 and T WD T1 � � � :T 2N�1 � � �T1.

P 5.13. – The operators X;D;Y; T satisfy Equations (5.3),(5.4), i.e., define a
point of Ml

N .Z; t/.

Proof. – Relations (5.4) follow from relation (3.5). The first relation of (5.3) is easy, and
the second one follows from the first one and (3.5).

R 5.14. – On the open set where X1 is invertible, Proposition 5.13 reduces to the
result of [35].

Proposition 5.13 allows us to set �.�/ WD .X;D;Y; T /, which defines the map � on the
smooth locus Ml

N .Z; t/smooth. By Corollary 5.11, � then uniquely extends from the smooth
locus to the whole variety Ml

N .Z; t/. It is also clear that this map lands in Ml
N .Z; t/� (as

Ml
N .Z; t/ is irreducible).

Thus, altogether we obtain a map � WD  �1 ı � WMl
N .Z; t/! M l

N .Z; t/�.

P 5.15. – � is an isomorphism.

Proof. – Consider the restriction �X of � to the open set Ml
N .t/X � Ml

N .Z; t/ where Xi
are invertible. As shown above, �X is an isomorphismMl

N .t/X ! M l
N .Z; t/X onto the open

set M l
N .Z; t/X � M l

N .Z; t/� where X is invertible. Similarly, by using the involution � of
Proposition 3.29 and involution ˆ of Lemma 5.3 and the fact that � ı � D ˆ ı �, we see
that the restriction �D of � to Ml

N .t/D is an isomorphism Ml
N .t/D ! M l

N .Z; t/D onto the
open set M l

N .Z; t/D � M l
N .Z; t/� where D is invertible.

Consider the morphism �� W O.M l
N .Z; t/�/! O.Ml

N .Z; t//. Obviously, it is an
inclusion which becomes an isomorphism after passing to the fields of fractions.
Let F 2 O.Ml

N .Z; t//. Then F is a rational function on M l
N .Z; t/�. As shown above,

this function is regular on M l
N .Z; t/X [ M l

N .Z; t/D � M l
N .Z; t/, an open subset whose

complement has codimension � 2. But we know that M l
N .Z; t/� is smooth, hence normal.

Thus, F extends to a regular function on the whole M l
N .Z; t/�. This implies that �� and

hence � is an isomorphism.

Thus, we obtain the following theorem.

T 5.16. – Under the above assumptions on the Zi , the following statements hold.

(i) The variety Ml
N .Z; t/ is smooth.

(ii) The module HH l
N .Z; 1; t/eN over Z .HH l

N .Z; 1; t// Š eNHH l
N .Z; 1; t/eN is projective

of rank NŠ.
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(iii) HH l
N .Z; 1; t/ is a split Azumaya algebra over Z .HH l

N .Z; 1; t// of rank NŠ, namely
the endomorphism algebra of the vector bundle HH l

N .Z; 1; t/eN . Thus, all irreducible
representations of HH l

N .Z; 1; t/ have dimension NŠ and are parametrized by points
of Ml

N .Z; t/.

Thus, we see that irreducible representations of HH l
N .Z; 1; t/ are parametrized by points

of a connected component of the multiplicative quiver variety. In fact, it turns out that this
is the only connected component. Namely, we have

T 5.17. – The variety M l
N .Z; t/ is connected, i.e., M l

N .Z; t/ D M l
N .Z; t/�.

Thus, � WMl
N .Z; t/! M l

N .Z; t/ is an isomorphism.

Proof. – See Subsection 5.6 below.

R 5.18. – 1. Recall that the multiplicative quiver variety M l
N .Z; t/ carries a

Poisson structure (symplectic for generic parameters and generically symplectic for any
parameters), coming from the quasi-Hamiltonian reduction procedure ([6]). Our results
imply that the algebra eNHH l

N .Z; q; t/eN (where q D e" and " is a formal parameter) is a
deformation quantization of this Poisson variety (namely, the matching of Poisson brackets
may be checked on the open set where X is invertible, using the results of [35]).

2. We expect that the results of this subsection can be lifted to the quantum level. Namely,
we expect that the algebra eNHH l

N .Z; q; t/eN is isomorphic to the quantization of the multi-
plicative quiver variety M l

N .Z; t/ defined by D. Jordan in [29], via a quantization of the
map �. (5) We note that this is known in the degenerate setting, see [36, 20].

R 5.19. – The functions Tr.Dr /, r D 1; : : : ; N , form a classical integrable system
on the symplectic variety M l

N .Z; t/. This system is the classical limit of the quantum inte-
grable system fDr

1 C � � � CD
r
N ; r D 1; : : : ; N g in the (spherical) cyclotomic DAHA discussed

in Subsection 3.6. These classical integrable systems have been studied independently by O.
Chalykh and M. Fairon ([11]).

5.4. Multiplicative bow varieties

In this section we follow the notations of [34]. Given a bow diagram with a balanced
dimension vector as in [34, (6.1)] we consider the auxiliary diagram of vector spaces and
linear maps as in [34, 6.1]. LetZr;i ; i D 0; : : : ; n� 1I 1 � r � wi , be a collection of nonzero
complex numbers, and let t be another nonzero complex number.

Let M�Z;t .v;w/ be the variety of collections .Ai ; Bi ; B 0i ; ai ; bi ;Dr;i ; Cr;i / such that (cf. [34,
(6.3), 2.2])

(i) Bi ; B 0i are invertible for all i D 0; : : : ; n � 1;

(a) B 0iAi�1 � Ai�1Bi�1 C aibi�1 D 0;

(b) .B 0i /
�1 D t�1Z�11;i .1CD1;iC1;i /;

(c) .1C Ck;iDk;i / D Zk;iZ�1kC1;i .1CDkC1;iCkC1;i /;

(5) We note that for l D 1 we would need a slightly less localized version than that of [29], not requiring X to be
invertible, which should produce not the full DAHA but its subalgebra.
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(d) B�1i D Z
�1
wi ;i

.1C Cwi ;iDwi ;i /;

(S1) There is no nonzero subspace 0 ¤ S � V wi
i with Bi .S/ � S; Ai .S/ D 0 D bi .S/;

(S2) There is no proper subspace T ( V 0iC1 with B 0iC1.T / � T; ImAi C Im aiC1 � T .

Then M�Z;t .v;w/ is an affine algebraic variety acted upon by G D
Qn�1
iD0

Qwi
kD0

GL.V ki /,
cf. [34, Proposition 3.2].

We define a multiplicative bow variety M �

Z;t .v;w/ as the categorical quotient
M�Z;t .v;w/==G, cf. [34, 2.2].

5.5. K-theoretic Coulomb branch

Recall [8, Section 2] that given a representation N of a reductive groupG one can consider
the variety of triples R . (6) According to [8, Remark 3.9(3)], the equivariant K-theory
KG O .R / is a commutative ring with respect to convolution. Moreover, if the G-action
on N extends to an action of a larger group QG containing G as a normal subgroup, then
the equivariant K-theory K QG O .R / is a commutative ring with respect to convolution, a
deformation of KG O .R / over Spec.KGF .pt// where GF D QG=G is the flavor symmetry
group. The affine variety Spec.K QG O .R // is denoted M �

C .
QG;N/ and called the K-theoretic

Coulomb branch.

A framed oriented quiver representation gives rise to a representation

N D
M
i!j

Hom.Vi ; Vj /˚
M
i

Hom.Wi ; Vi /

of G D GL.V / WD
Q
i GL.Vi /. Choosing a maximal torus T .Wi / � GL.Wi /, we consider

the natural action of OG WD C� � G �
Q
i T .Wi / on N where C� acts by dilation on the

component Nhor WD
L
i!j Hom.Vi ; Vj / of N. If W WD

L
i Wi ¤ 0, the action of scalars

C� � T .W / WD
Q
i T .Wi / coincides with the action of scalars C� � G. Hence ifW ¤ 0, the

action of OG on N factors through the action of QG WD C� � .G � T .W //=C�. If W D 0, we
denote QG WD OG. The corresponding K-theoretic Coulomb branch M �

C .
QG;N/ of a framed

quiver gauge theory will be denoted by M �

C for short.

Similarly to [34, Theorem 6.18] one can construct an isomorphism M �

C

�
�! M �

Z;t .v;w/
from the K-theoretic Coulomb branch of a framed quiver gauge theory of affine type An�1
with dimension vectors v;w. Here Z; t in the RHS are parameters corresponding to the
equivariant flavor symmetry parameters in the LHS, cf. [34, 6.8.2]. The proof of the above
isomorphism in particular shows that M �

Z;t .v;w/ is connected (and M �

C is connected
similarly to [8, Corollary 5.22]).

5.6. Example

We consider a special case when a bow diagram has 1 cross and l circles (we allow l D 0),
that is n D 1; w0 D l , and dimV k0 D N for any k D 0; : : : ; l . Then according to [34,
Lemma 3.1], A0WV l0 ! V 00 is an isomorphism. We identify V l0 � V 00 with the help of A0,
and then the definition of M �

Z;t .N; l/ of Section 5.4 becomes nothing but the definition

(6) It is different from the one considered in Section 4.1.
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of M l
N .Z; t/ of Section 5.1, that is M �

Z;t .N; l/ ' M l
N .Z; t/. In particular, we conclude

that M l
N .Z; t/ is connected, which proves Theorem 5.17.

R 5.20. – The relations between general multiplicative bow varieties and (various
versions of) multiplicative quiver varieties for a cyclic quiver are explained in Appendix .

6. Application to q-deformed m-quasiinvariants

6.1. q-deformed quasiinvariants

Let m be a nonnegative integer, and q 2 C�.

D 6.1. – [12] We call F 2 CŒX˙11 ; : : : ; X˙1N � a q-deformedm-quasiinvariant if
.1 � sij /F is divisible by

Qm
pD�m.Xi � q

pXj / for any i < j .

The algebra of q-deformedm-quasiinvariant Laurent (or trigonometric) polynomials will
be denoted by Qtrig

m;q .

Let Qm;q�Q
trig
m;q be the graded algebra of q-deformed quasiinvariants inside CŒX1; : : : ; XN �.

By the Hilbert basis theorem,Qm;q is a finitely generated module over the ring of symmetric
polynomials CŒX1; : : : ; XN �SN . Note thatQm;1 D Qm, the usual space ofm-quasiinvariants
defined by Chalykh and Veselov [13], i.e., polynomials F such that .1 � sij /F is divisible
by .Xi �Xj /2mC1.

T 6.2. – For all except countably many values of q, the algebraQm;q has the same
Hilbert series as Qm and is Cohen-Macaulay, i.e., a free module over CŒX1; : : : ; XN �SN .

In other words, Theorem 6.2 says that any quasiinvariant polynomial can be q-deformed.

Note that the Hilbert series of Qm is known (see [26], [5]).

R 6.3. – Theorem 6.2 was conjectured by P.E. and E. Rains on the basis of a
computer calculation.

Theorem 6.2 is proved in the next subsection.

R 6.4. – The algebra of q-deformed trigonometric quasiinvariantsQtrig
m;q.R/may

be defined for any reduced root system R with Weyl group W and a W -invariant multi-
plicity function m W R! ZC, see [12]. Namely, it is the algebra of regular functions F on
the corresponding torus T such that for each ˛ 2 RC the function F.X/ � F.s˛X/ is
divisible by

Qm˛
iD�m˛

.e˛ � qi /. Moreover, this algebra is Cohen-Macaulay for generic q.
To see this, note that by using the exponential map exp W Lie.T / ! T and rescaling
in Lie.T /, we may identify formal neighborhoods of closed points of Spec.Qtrig

m;q.R// with
those of Spec.Qtrig

m .R//, the usual trigonometric (a.k.a. non-homogeneous) quasiinvariants
forR, see e.g., [24], Remark 6.4. But the algebraQtrig

m .R/ is Cohen-Macaulay, see [24], Propo-
sition 6.5. Hence so isQtrig

m;q.R/, as desired. Note that this result also holds for q D 1 since in
this case formal neighborhoods are the same as for usual (rational) quasiinvariants Qm.R/.

Theorem 6.2 is a refinement of this result forR D AN�1, asQtrig
m;q is a localization ofQm;q .
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6.2. Proof of Theorem 6.2

The Cohen-Macaulayness statement of Theorem 6.2 holds for q D 1 (i.e., for Qm) by
the results of [21], [5] (conjectured earlier in [25]). Thus it suffices to show that Qm;q is a flat
deformation of Qm when q D e" and " is a formal parameter.

Let e be the symmetrizer of the finite Hecke algebra generated by Ti , and consider the
action of the spherical subalgebra eHHN .q; t/e on CŒX˙11 ; : : : ; X˙1N �SN . This action is
by q-difference operators. Consider the element Y1 C � � � C YN . It is a central element of the
affine Hecke algebra generated by Ti and Yi , hence commutes with e. Thus

.Y1 C � � � C YN /e 2 eHHN .q; t/e:

We will need the following lemma, due to Cherednik ([15]).

L 6.5. – The element M WD .Y1 C � � � C YN /e acts on CŒX˙11 ; : : : ; X˙1N �SN by the
first Macdonald operator

M WD

NX
jD1

0@Y
i¤j

Xi � tXj

Xi �Xj

1A �j ;
where �iXj D qıijXj .

Proof. – Denote the q-difference operator by which .Y1 C � � � C YN /e acts by L. Clearly,
we have L D

P
j fj �j , where fj are rational functions such that srfj D fj for r ¤ j; j C 1,

and sjfj D fjC1. Thus it suffices to show that

f1 D
Y
i¤1

Xi � tX1

Xi �X1
:

To this end, treat n as a variable, and note that

L.Xn1 C � � � CX
n
N / D

X
j

fj .X1; : : : ; XN /.q
nXnj C

X
i¤j

Xni /;

which we can treat as a polynomial in qn; Xn1 ; : : : ; X
n
N with coefficients in C.X1; : : : ; XN /.

Thus, f1 may be obtained by extracting the coefficient of qnXn1 .

On the other hand, we have

�.Yi / D t
i�1

NY
jDiC1

.1C
.1 � t /Xi

Xj �Xi
.1 � sij //�i

i�1Y
jD1

.1C
.1 � t�1/Xi

Xj �Xi
.1 � sij //:

An easy direct computation using this formula shows that

.Y1 C � � � C Yn/.X
n
1 C � � � CX

n
N /

D .

NX
iD1

t i�1/.Xn1 C � � � CX
n
N /C .q

n
� 1/

NX
iD1

t i�1
NY

jDiC1

.1C
.1 � t /Xi

Xj �Xi
.1 � sij //X

n
i :
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Thus, only the second summand contributes to the coefficient of qn, and in the second
summand only i D 1 contributes to the coefficient of Xn1 . Moreover, in this contribution,
the transposition terms (involving sij ) don’t contribute. Thus

f1.X1; : : : ; Xn/ D

NY
jD2

.1C
.1 � t /X1

Xj �X1
/ D

NY
jD2

Xj � tX1

Xj �X1
;

as desired.

We will also need the following lemma, which is a special case of Proposition 2.1 of [12]
(but we give a proof for reader’s convenience). Assume that q is not a root of unity.

L 6.6. – If t D q�m then the operator M preserves Qtrig
m;q .

Proof. – Let r > l , and F 2 CŒX˙11 ; : : : ; X˙1N �. A direct computation shows that

.1 � srl /.MF /.X1; : : : ; XN /

D

Y
j¤r

Xj � q
�mXr

Xj �Xr
.F.� � �Xl � � � qXr � � � / � F.� � � qXr � � �Xl � � � //

D �

Y
j¤l

Xj � q
�mXl

Xj �Xl
.F.� � �Xr � � � qXl � � � / � F.� � � qXl � � �Xr � � � //:

If F 2 Q
trig
m;q is a quasiinvariant then F.� � �Xl � � � qXr � � � / � F.� � � qXr � � �Xl � � � / vanishes

for Xl D qpXr with �m � 1 � p � m � 1, while F.� � �Xr � � � qXl � � � / � F.� � � qXl � � �Xr � � � /
vanishes for Xl D qpXr with �m C 1 � p � m C 1. Hence, both terms in the formula
for .1�srl /MF vanish whenXl D qpXr with�m � p � m,p ¤ 0 and are defined forp D 0
(vanishing in the extremal cases p D m;�m follows from vanishing of the prefactors). Thus,
.1 � srl /MF.X1; : : : ; XN / is a polynomial which is antisymmetric in Xl ; Xr , so divisible
by Xr �Xl . This takes care of the case p D 0.

Now note that since the algebra eHHN .q; t/e acts on CŒX˙11 ; : : : ; X˙1N � by q-difference
operators, this action can be extended tautologically to non-symmetric rational functions
C.X˙11 ; : : : ; X˙1N / (by the same difference operators).

C 6.7. – If t D q�m for m 2 Z�0 then the spherical cyclotomic DAHA
eHH 1

N .q; t/e (with Z1 D 1) preserves the subspace of q-deformed m-quasiinvariants
Qm;q � C.X˙11 ; : : : ; X˙1N /.

Proof. – By Proposition 3.6, the difference-reflection operators �.L/, L 2 HH 1
N .q; t/

do not create poles at Xi D 0. Therefore, the action of eHH 1
N .q; t/e � eHHN .q; t/e

on C.X1; : : : ; XN / preserves the subspace C.X1; : : : ; XN /reg of functions regular at the
hyperplanes Xi D 0, i D 1; : : : ; N .

We now claim that the algebra eHHN .q; t/e preserves Qtrig
m;q . It suffices to prove this

in the formal setting q D e", t D e�m". By Lemma 6.5 and Lemma 6.6, the element M

preservesQtrig
m;q . Also, CŒX˙11 ; : : : ; X˙1N �SN and QY WD

Q
i Yi preserveQtrig

m;q . But we claim that
the element bH WD "�2.M �N �". QY �1// and CŒX˙11 ; : : : ; X˙1N �SN (topologically) generate
eHH formal

N .1; k/e. Indeed, the quasiclassical limit of bH is the trigonometric Calogero-Moser
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operatorH D e
P
i y

2
i e D

P
i y

2
i e, and by Lemma 2.7H and CŒX˙11 ; : : : ; X˙1N �SN generate

eHHN;deg.1; k/e. This implies the claim.
Thus, eHH 1

N .q; t/e preserves C.X1; : : : ; XN /reg \Q
trig
m;q D Qm;q , as desired.

Now we can complete the proof of the theorem. Since every polynomial divisible
by
Q
i<j

Qm
pD�m.Xi � q

pXj / is automatically a q-deformed m-quasiinvariant, the leading
coefficient of the Hilbert polynomial of Qm;q is the same as that of Qm. On the other
hand, working in the formal setting (q D e") and reducing Corollary 6.7 modulo ",
we find that Qm;q=."/ is a submodule of the module Qm over the spherical rational
Cherednik algebra eHH rat

N .1;m/e. But as shown in [5], Qm D
L
� eMm.�/ ˝ ��, where

� runs over partitions of N , �� is the Specht module for SN corresponding to �, and
Mm.�/ is the Verma module over the rational Cherednik algebra HH rat

N .1;m/ attached
to �. Since the eHH rat

N .1;m/e-modules eMm.�/ are irreducible (see [5]), any proper
eHH rat

N .1;m/e-submodule of Qm would have a strictly smaller leading coefficient of the
Hilbert series than that of Qm. This implies that Qm;q=."/ D Qm, i.e., Qm;q is a flat defor-
mation of Qm (i.e., has the same Hilbert series). By standard abstract nonsense, this applies
also to numerical values of q, excluding a countable set. The theorem is proved.

6.3. Generalization: q-deformed cyclotomic quasiinvariants

Let us now use the cyclotomic DAHA to generalize Theorem 6.2 to the cyclotomic case.
Letm � 0; l � 1;q 2 C�, and q D ql . Let us first define the algebra of q-deformed cyclo-

tomic trigonometric quasiinvariantsQl;trig
m;q . We introduce variables xi such thatXi D xli . We

define Ql;trig
m;q � CŒx˙11 ; : : : ; x˙1N � to be the subalgebra of Laurent polynomials F such that

for every i; j; r , the Laurent polynomial

F.: : : ; xi ; : : : ; xj ; : : :/ � F.: : : ; �
rxj ; : : : ; �

�rxi ; : : :/

is divisible by
Qm
pD�m.xi � �

rqpxj /:
Now let m;m1; : : : ; ml�1 be nonnegative integers. For 0 � r � l � 1 let pr be the homo-

geneous projector CŒx�! xrCŒxl �, and p.i/r denotes pr acting with respect to xi . By analogy
with [4], let Ql

m;m1;:::;ml�1;q
� Q

l;trig
m;q be the graded space of all q-deformed cyclotomic

trigonometric quasiinvariants F inside CŒx1; : : : ; xN � such that

(6.1) p.i/r F is divisible by xrCmr li for i D 1; : : : ; N and r D 1; : : : ; l � 1:

D 6.8. – The space Ql
m;m1;:::;ml�1;q

is called the space of q-deformed cyclo-
tomic .m;m1; : : : ; ml�1/-quasiinvariants.

By the Hilbert basis theorem, Ql
m;m1;:::;ml�1;q

is a finitely generated module over the ring
of symmetric polynomials CŒX1; : : : ; XN �SN . Note that Ql

m;m1;:::;ml�1
WD Ql

m;m1;:::;ml�1;1
is

the usual space of .m;m1; : : : ; ml�1/-quasiinvariants for the complex reflection
group SN n .Z=lZ/N defined in [4]. Note also that similarly to [4], Ql

m;m1;:::;ml�1;q
is

not necessarily an algebra.
Our main result about cyclotomic q-deformed quasiinvariants is the following theorem,

which is a generalization (7) of Theorem 6.2.

(7) Theorem 6.2 is a special case of Theorem 6.9 for l D 1, but it is convenient for us to treat this special case first,
and then pass to the general case.

4 e SÉRIE – TOME 53 – 2020 – No 5



CYCLOTOMIC DOUBLE AFFINE HECKE ALGEBRAS 1297

T 6.9. – For all except countably many values of q, the space Ql
m;m1;:::;ml�1;q

has
the same Hilbert series as Ql

m;m1;:::;ml�1
, and is a free module over CŒX1; : : : ; XN �SN .

In other words, every quasiinvariant for SN n .Z=lZ/N can be q-deformed.

We note that the Hilbert series of SN n .Z=lZ/N is computed in [4].

Theorem 6.9 is proved in the next subsection.

6.4. Proof of Theorem 6.9

The proof of Theorem 6.9 is parallel to the proof of Theorem 6.2, using the results of [4].
In fact, most of the technical statements we’ll need have already been obtained in the proof
of Theorem 6.2.

The freeness statement of Theorem 6.9 holds for Ql
m;m1;:::;ml�1

(i.e., for q D 1) by
the results of [4]. Thus it suffices to show that Ql

m;m1;:::;ml�1;q
is a flat deformation

of Ql
m;m1;:::;ml�1

when q D e"=l and " is a formal parameter.

To this end, recall from [4] that the space Ql
m;m1;:::;ml�1

carries an action of the spherical

cyclotomic Cherednik algebra eHHl;psc
N .c; 1;m/e, where e is the symmetrizer for SN and ci

are certain linear functions of mj (in fact, this action is the main tool in [4] for proving
that Ql

m;m1;:::;ml�1
is a free CŒX1; : : : ; XN �-module). Therefore, by Theorem 2.19, this space

carries an action of eHH l
N .z; 1;m/e, and it is easy to compute that zi D mi=l , i D 1; : : : ; l�1

and zl D 0.

The main idea of the proof is to show that this representation can be q-deformed to a
representation of the spherical cyclotomic DAHA eHH l

N .Z; q; t/e onQl
m;m1;:::;ml�1;q

, where
t D q�m and Zi D qzi D qmi . Then, similarly to the proof of Theorem 6.2, the result will
follow by looking at the leading coefficient of the Hilbert series and using [4, Theorem 8.2],
which gives a decomposition of the eHH l

N .z; 1;m/e-moduleQl
m;m1;:::;ml�1

into a direct sum
of irreducible modules.

Finally, let us show that the representation of eHH l
N .z; 1;m/e on the spaceQl

m;m1;:::;ml�1

admits a q-deformation. Recall from the proof of Theorem 6.2 that the algebra eHHN .q; t/e
acts on C.xl1; : : : ; xlN / by difference operators. This action can be straightforwardly extended
to the field extension C.x1; : : : ; xN / by using the same formulas, where now �ixj D qıij xj .
Hence, the subalgebra eHH l

N .Z; q; t/e � eHHN .q; t/e acts on C.x1; : : : ; xN /.

Since Xi � qpXj D
Ql�1
rD0.xi � �

rqpxj /, the argument in the proof of Theorem 6.2
implies that eHHN .q; t/e preserves the subspaceQl;trig

m;q � C.x1; : : : ; xN /. Hence, so does the
subalgebra eHH l

N .Z; q; t/e. Also, by Proposition 3.6, the algebra eHH l
N .Z; q; t/e preserves

the space .x1 � � � xN /
miC.X1; : : : ; XN /reg, where, as before, the subscript “reg” means

functions regular at the generic points of the hyperplanes Xi D 0. Therefore, the algebra
eHH l

N .Z; q; t/e preserves quasiinvariance conditions (6.1).

Thus, we see that the algebra eHH l
N .Z; q; t/e preserves the space Ql

m;m1;:::;ml�1;q
. More-

over, it is easy to see that the classical limit of this representation as q! 1 is exactly the repre-
sentation of eHH l

N .z; 1;m/e on the spaceQl
m;m1;:::;ml�1

constructed in [4]. This completes the
proof of Theorem 6.9.
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6.5. Twisted quasiinvariants

Let a1; : : : ; aN 2 C, m 2 ZC. Let Qm.a1; : : : ; aN / be the space of polynomials
F 2 CŒX1; : : : ; XN � such that the functioneF .X1; : : : ; XN / WD .Y

i

X
ai
i /F.X1; : : : ; XN /

(regarded as a function of Xi > 0) is m-quasiinvariant, in the sense that .1� sij /eF vanishes
to order 2mC 1 at Xi D Xj for all i < j . Note that Qm.a1; : : : ; aN / D Qm.a1 � a; : : : ; aN � a/,
and Qm.a; : : : ; a/ D Qm for all a. Obviously, Qm.a1; : : : ; aN / is a graded CŒX1; : : : ; XN �SN -mod-
ule. By the Hilbert basis theorem, this module is finitely generated.

D 6.10. – We will call Qm.a1; : : : ; aN / the module of twisted quasiinvariants.

T 6.11. – If ai � aj … Z n f0g for all i < j , then Qm.a1; : : : ; aN / is a free
CŒX1; : : : ; XN �SN -module (of rank NŠ).

E 6.12. – Let N D 2. Then Qm.a; 0/ is a free module over R WD CŒX1; X2�S2
for any a 2 C. We show this by induction in m. The base case m D 0 is obvious. Let m > 0.
Then it is easy to show that the lowest degree d of a nonzero element Pa;m in Qm.a; 0/
is a if a D 0; 1; : : : ; m � 1, and m otherwise. Moreover, we can uniquely choose Pa;m so
that Pa;m.X;X/ D Xd ; for example, if 0 � a � m is an integer, then Pa;m D Xa2 , and

Pa;1.X1; X2/ D
.a � 1/X1 C .aC 1/X2

2a

for a ¤ 0. Therefore,

(6.2) Qm.a; 0/ D RPa;m C .X1 �X2/
2Qm�1.a; 0/:

Indeed, given a nonzero homogeneous F 2 Qm.a; 0/ such that F.X;X/ D ˇX r , consider
F 0 WD F � 2d�rˇ.X1 CX2/

r�dPa;m. Then F 0 2 Qm.a; 0/ and is divisible by X1 �X2, so it
is in .X1 �X2/2Qm�1.a; 0/.

Consider first the case when 0 � a � m � 1 is an integer. Then by the induction
assumption, the module Qm�1.a; 0/ is free (of rank 2), so it is generated by Xa2 and some
homogeneous polynomial fa;m of degree 2m�1�a. So by (6.2),Qm.a; 0/ is generated byXa2
and fa;mC1 WD .X1 �X2/2fa;m, which validates the induction step.

Now consider the case a ¤ 0; : : : ; m � 1. Then Qm�1.a; 0/ is free by the induction
assumption, so it is generated by some homogeneous polynomials of Pa;m�1, Ta;m�1 of
degrees m � 1 and m, respectively, such that Ta;m.X;X/ D 0 (as one can easily check that
one always has such generators). It is easy to see that there exists ˛a;m 2 C such that

Pa;m WD Ta;m�1 C
1

2
˛a;m.X1 CX2/Pa;m�1 2 Qm.a; 0/;

and Ta;m WD .X1 �X2/
2Pa;m�1 2 Qm.a; 0/. Moreover, by (6.2), these elements gener-

ate Qm.a; 0/. This completes the induction step.

This argument also implies that the Hilbert series of Qm.a; 0/ is taCt2mC1�a

.1�t/.1�t2/

if 0 � a � m � 1 is an integer, and tm

.1�t/2
otherwise.
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E 6.13. – In spite of Example 6.12, for N � 3 the condition on the ai cannot
be dropped. Indeed, for N D 3, the computer calculation shows that the Hilbert series
of Q2.1; 0; 0/ has the form

h.t/ D t2.1C t C 2t2 C 3t3 C 5t4 C 7t5 C 10t6 C 15t7 C 20t8 C 26t9 C 33t10 C � � � /

D
t2 C t6 C t7 C 2t9 C t10 � t12 C � � �

.1 � t /.1 � t2/.1 � t3/

and the minus sign in the numerator shows that Q2.1; 0; 0/ cannot be a free module over
symmetric polynomials. Indeed, if this module were free, the numerator would have been the
Hilbert polynomial of the generators.

Proof of Theorem 6.11. – By permuting ai we may assume that

.a1; : : : ; aN / D .z1; : : : ; z1; : : : ; zl ; : : : ; zl /;

where zi ¤ zj and zi occursNi times, whereN D N1C� � �CNl . By simultaneously shifting ai
we may assume that zl D 0.

Assume first that zr D r
l
C mr , 1 � r � l � 1. Let � be the character of .Z=lZ/N given

by �.�i / D �lai . Denote by Ql;�
m;m1;:::;ml�1 the �-eigenspace of .Z=lZ/N in Ql

m;m1;:::;ml�1
.

Then it is easy to see that F 2 Ql;�
m;m1;:::;ml�1 if and only if it has the form

F.x1; : : : ; xN / D X
a1
1 : : : ; X

aN
N f .X1; : : : ; XN /;

where Xi D xli , and satisfies the quasiinvariance condition saying that .1 � sij /F vanishes
to order 2mC 1 at Xi D Xj (for Xi > 0), i.e., if and only if f 2 Qm.a1; : : : ; aN /.

Let G WD SN n .Z=lZ/N . By [4, Theorem 8.2],

(6.3) Ql;�
m;m1;:::;ml�1

D

M
�2Irrep.G/W��¤0

eGMc;k.�
�/˝ ��;

where eG is the symmetrizer for G, Mc;k.�/ denotes the Verma module over the cyclotomic
rational Cherednik algebra HHl;cyc

N .c; 1; k/ for appropriate c; k, and the superscript � denotes

the �-eigenspace. Here the grading on Ql;�
m;m1;:::;ml�1 is obtained from the grading on the

right hand side of (6.3) (given by the scaling element h of the rational Cherednik algebra)
by dividing by l and shifting by mN.N�1/

2
C

N
2l

.
Thus, Qm.a1; : : : ; aN / is a free module over CŒX1; : : : ; XN �SN , with Hilbert series inde-

pendent of the numbersmr . Since this holds for a Zariski dense set of vectors .z1; : : : ; zl�1/
(namely, zr D r

l
Cmr , mr 2 ZC), this holds for Weil generic .z1; : : : ; zl�1/.

It remains to show that the statement holds if zi � zj is not a nonzero integer
for 1 � i < j � l . Using Theorem 2.19 and Formula (6.3), we see that Ql;�

m;m1;:::;ml�1 is
a module over the spherical subalgebra eHH l

N;deg.z; 1;m/e, where zr D
r
l
C mr

for 1 � i � l � 1 and zl D 0. Interpolating to arbitrary complex values of zi , we get
that for any z1; : : : ; zl�1 2 C, the algebra eHH l

N;deg.z; 1;m/e with z WD .z1; : : : ; zl�1; 0/

acts on Qm.a1; : : : ; aN /. If zi � zj is not a nonzero integer, then the category O for the
algebra eHH l

N;deg.z; 1;m/e is semisimple (see [4, Theorem 6.6]). Moreover, by a deforma-
tion argument, Qm.a1; : : : ; aN / must contain representation (6.3). Since every irreducible
representation in O has full support, this implies that Qm.a1; : : : ; aN / coincides with (6.3).
This proves the theorem.
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Formula (6.3) allows us to easily compute the character of Qm.a1; : : : ; aN / as a graded
SN1 � � � � � SNl -module. Namely, given irreducible representations �r of SNr , we have from
(6.3):

HomQ
r SNr

.�1 ˝ � � � ˝ �l ;Qm.a1; : : : ; aN // D eGMc;k.�.�1; : : : ; �l ; �/
�/;

where �.�1; : : : ; �l ; �/ D Ind.Z=lZ/
NoSN

.Z=lZ/No
Q
r SNr

�, and the grading is modified as explained
above. Therefore, we have

P 6.14. – If .a1; : : : ; aN / D .z1; : : : ; z1; : : : ; zl ; : : : ; zl / and zi � zj are not
nonzero integers, then the Hilbert series of the graded vector space HomQ

r SNr
.�1 ˝ � � � ˝

�l ;Qm.a1; : : : ; aN // equals

h�1;:::;�l .t/ D t
m.N.N�1/2 �

Pl
rD1 cont.�r //h�1.t/ � � � h�l .t/;

where for an irreducible representation � of Sn, cont.�/ is the content of the Young diagram
of � , and h�.t/ is the Hilbert series of the graded space .� ˝ CŒX1; : : : ; Xn�/Sn , i.e.,

h�.t/ D
K�.t/

.1 � t / � � � .1 � tn/
;

where K�.t/ is the Kostka polynomial associated to � .

E 6.15. – 1. If l D 1 (i.e., ai D 0), we recover the standard formula for the
character of Qm, see e.g., [26].

2. Let N D 2, l D 2, N1 D N2 D 1. We get from Proposition 6.14 that the Hilbert series
of Qm.a1; a2/ is h.t/ D tm

.1�t/2
, i.e., we recover the formula of Example 6.12 for the case of

generic a.
3. Let N D 3, l D 3, N1 D N2 D N3 D 1. Then we get from Proposition 6.14 that the

Hilbert series of Qm.a1; a2; a3/ is h.t/ D t3m

.1�t/3
.

4. Let N D 3, l D 2, N1 D 1, N2 D 2. The space Qm.a; 0; 0/ splits into the direct sum

Qm.a; 0; 0/ D Qm.a; 0; 0/C ˚Qm.a; 0; 0/�;

the symmetric and antisymmetric part under s23. Denoting the Hilbert series of these spaces
by hC and h�, we get from Proposition 6.14:

hC.t/ D
t2m

.1 � t /2.1 � t2/
;

h�.t/ D
t4mC1

.1 � t /2.1 � t2/
:

6.6. q-deformed twisted quasiinvariants

Keep the notation of the previous subsection, and let q > 0. Define the module of
q-deformed twisted quasiinvariants Qm;q.a1; : : : ; aN / to be the space of polynomials
F 2 CŒX1; : : : ; XN � such that the functioneF .X1; : : : ; XN / WD .Y

i

X
ai
i /F.X1; : : : ; XN /

(regarded as a function of Xi > 0) is a q-deformed m-quasiinvariant, in the sense
that .1 � sij /eF is divisible by

Qm
pD�m.Xi � qpXj / in the ring of analytic functions. If
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q ¤ 1, this is equivalent to saying that .1 � sij /eF vanishes if Xi D qpXj , �m � p � m.
Note that

Qm;1.a1; : : : ; aN / D Qm.a1; : : : ; aN /;

Qm;q.a1; : : : ; aN / D Qm;q.a1 � a; : : : ; aN � a/;

and Qm;q.a; : : : ; a/ D Qm;q for all a:

Obviously, Qm;q.a1; : : : ; aN / is a graded CŒX1; : : : ; XN �SN -module. By the Hilbert basis
theorem, this module is finitely generated.

T 6.16. – If ai � aj are not nonzero integers then for all but countably many q,
the Hilbert series of Qm;q.a1; : : : ; aN / coincides with the one for Qm.a1; : : : ; aN / (i.e.,
Qm;q.a1; : : : ; aN / is a flat q-deformation ofQm.a1; : : : ; aN /). Moreover,Qm;q.a1; : : : ; aN / is
a free CŒX1; : : : ; XN �SN -module (of rank NŠ).

Proof. – The proof is parallel to the proof of Theorem 6.9, using Theorem 6.11. Namely,
the second statement follows from the first one, and it suffices to prove the first statement in
the formal setting q D e". In this case, one shows as in the proof of Theorem 6.9 that the
action of eHH l

N;deg.z; 1;m/e on Qm.a1; : : : ; aN / constructed in the proof of Theorem 6.11

can be q-deformed to an action of eHH l;formal
N .z; 1;m/e onQm;q.a1; : : : ; aN /. The rest of the

argument is the same as in the proof of Theorem 6.9.

R 6.17. – We expect that Qm;q.a1; : : : ; aN / is a flat deformation of Qm.a1; : : : ; aN /
for all values of ai , in particular when the module Qm.a1; : : : ; aN / is not necessarily free.
This has been confirmed by a computer calculation in low degrees in Example 6.13.

Also, we expect that Theorems 6.2, 6.9, 6.16 hold for all nonzero values of q.

Appendix

More general multiplicative quiver and bow varieties
by Hiraku Nakajima and Daisuke Yamakawa

In this appendix, we study more general multiplicative quiver and bow varieties, as multi-
plicative analog of results in [34].

Multiplicative bow varieties are defined as in Section 5.4 corresponding to more general
bow diagrams with dimension vectors not necessarily satisfying the balanced condition:

(A.1)

vi−1
×

xi

vi
�
hj+1

v′
i
�
hj

v′′
i
×

xi+1

vi+1
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Recall that the balanced condition is vi D v0i D v00i for all i . We put A, B, a, b at �, and C ,
D at O as

� � � Cvi�1 Cvi Cv0
i Cv00

i CviC1 � � �

C C

Ai

bi�1

Bi�1

CjC1

Bi

DjC1

Cj

Dj

bi

B00
i

AiC1

BiC1

ai aiC1

We only consider the stability parameter �R D 0 for brevity, as generalization to arbitrary �R

is straightforward.
The definition of multiplicative quiver varieties is more delicate when dimW ¤ 1, hence

will be given in Section A.3.

A.1. Hanany-Witten transition

We first introduce Hanany-Witten transition for multiplicative bow varieties.
Consider the following part of bow data:

V1

B1

��

C
// V2

B2

��Doo A //

b
��

V3

B3

��

C
a

DD

B1 D tZ.1CDC/
�1
D tZ.1 �D.1C CD/�1C/;

B2 D Z
0.1C CD/�1 D Z0.1 � C.1CDC/�1D/;

B3A � AB2 C ab D 0;

where t , Z, Z0 are fixed nonzero scalars. We consider another bow data with the same V1,
V3, B1, B3:

V1

B1

��
An

//

bn
��

V n
2

Bn
2

��

Cn
// V3

B3

��Dn
oo

C
an

CC

Bn
2 D tZ.1CD

nC n/�1 D tZ.1 �Dn.1C C nDn/�1C n/;

B3 D Z
0.1C C nDn/�1 D Z0.1 � C n.1CDnC n/�1Dn/;

Bn
2A

n
� AnB1 C a

nbn
D 0:

We take quotients by GL.V2/, GL.V n
2 / respectively. (But not by GL.V1/, GL.V3/.)

P A.1. – There exists a GL.V1/ �GL.V3/-equivariant isomorphism between
two varieties above.

The isomorphism is explicitly given during the proof.

Proof. – We consider a three term complex

V2

˛D

�
D
A
b

�
// V1 ˚ V3 ˚ C

ˇDŒAB2C .B3�Z
0/ a �
// V3;

where ˇ˛ D 0 follows from one of the definining equation. We claim that ˛ is injective. We
consider S D Ker˛. Then A.S/ D 0 D b.S/ and B2.S/ D .1 � C.1CDC/�1D/.S/ D S .
Therefore the condition (S1) implies S D 0.
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Let
V n
2 WD Coker˛:

We define new bow data as

� An,Dn, an are composition of inclusions of V1, V3,C, to V1˚V3˚C and the projection
V1 ˚ V3 ˚ C � V n

2 respectively.

� bn D bCB1, and C n is a homomorphism induced from �B�13 ˇ.

� Bn
2 D tZ.1CD

nC n/�1 D tZ.1 �Dn.Z0�1B3/C
n/.

The last definition requires checking of the invertibility of 1 C DnC n. Let us consider
1C C nDn. From the definition it is 1 � B�13 .B3 � Z

0/ D Z0B�13 . This is the second of the
defining equation. Thus 1C C nDn is invertible, and hence 1CDnC n is also invertible. (In
fact, .1CDnC n/�1 D 1 �Dn.1C C nDn/�1C n.) Hence the above Bn

2 is well defined.
In order to check the remaining defining equation, we consider

V1

˛nD

"
tZ�B1
�CnBn

2
An

bn

#
// V1 ˚ V3 ˚ C

ˇnDŒAn Dn an �
// V n
2 :

This is a complex if and only if the last defining equation holds. Observe that ˇn is nothing
but the natural projection. We also have

(A.2) ˛n
D

2664 tZ � B1

�tZZ0�1B3C
nAn

bCB1

3775 D
2664 DCB1

tZZ0�1AB2C

bCB1

3775 D ˛CB1;
where we have used CB1 D tZZ0�1B2C , C nBn

2 D tZZ
0�1B3C

n. Therefore ˇn˛n D 0.
Let us check the condition (S1) for new data. Take a subspace S�V1 such that B1.S/�S ,

An.S/ D 0 D bn.S/. Observe that An.S/ D 0 means S ˚ 0 ˚ 0 � Im˛. Let us consider
QS D ˛�1.S ˚ 0˚ 0/. Then D. QS/ D S and A. QS/ D 0 D b. QS/. Therefore

˛.Z0 � B2/. QS/ D ˛B2CD. QS/ D ˛B2C.S/ D ˛CB1.S/ D ˛
n.S/ D

2664.Z � B1/.S/0

0

3775 :
The condition B1.S/ � S implies B2. QS/ � QS . Hence QS D 0 thanks to (S1) for the original
data. We have S D 0 as well.

Let us check the condition (S2). Suppose we have a subspace T �V n
2 such that Bn

2 .T /�T ,
ImAnC Im an � T . We take its inverse image QT D .ˇn/�1.T / in V1˚V3˚C. By the second
assumption, it contains V1 ˚ f0g ˚ C. Hence QT is a form of V1 ˚ NT ˚ C for NT � V3. We
also have Im˛ � QT . Hence A.V2/ � NT . As Bn

2 D tZ.1 � Dn.Z0�1B3/C
n/, the condition

Bn
2 .T / � T implies 0˚ ˇ. QT /˚ 0 � QT , i.e., AB2C.V1/C .B3 �Z0/. NT /C a.C/ � NT . Hence
NT D V3 thanks to (S2) for the original data. We have T D V n

2 as well.
The inverse construction is clear. The original vector space V2 is recovered from the new

data as Kerˇn. Note alsoˇn is surjective thanks to (S2). ThenA, b,D are given as restrictions
of projections V1˚V3˚C to V3, C, V1 to Kerˇn respectively, a is�B3C nan, and C is ˛nB�11
by (A.2). Finally we set B2 D Z0.1C CD/�1.
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The conditions (S1),(S2) for .A;B2; B3; a; b/ follow from the conditions (S1),(S2)
for .An; B1; B

n
2 ; a

n; bn/. We leave the details to the reader as an exercise.

Once this isomorphism is established, the remaining arguments of [34, §7] only use dimen-
sion vectors, hence work for the multiplicative case. To state the result, we recall invariants
(see [34, §7.3]): Let Nxi be the difference (left minus right) of entries of the dimension vector
at xi . Then set N.xi ; xiC1/ D Nxi � NxiC1 plus the number of O between xi ! xiC1. It is
invariant under Hanany-Witten transition. Now by [34, Prop. 7.20] we have

P A.2. – IfN.xi ; xiC1/ � 0 for any i , the multiplicative bow variety is isomor-
phic to another multiplicative bow variety with a cobalanced dimension vector by successive
applications of Hanany-Witten transitions of Proposition A.1.

Recall the cobalanced condition is Nxi D 0 for all i .

Recall (Section 5.5) a K-theoretic Coulomb branch for a framed quiver gauge theory of
an affine type with dimension vectors v, w is isomorphic to a multiplicative bow variety with
the balanced condition. In this case, the condition N.xi ; xiC1/ � 0 for all i is equivalent to
the dominance condition w � Cv 2 Zn�0, as the number of O between xi ! xiC1 is wi .

A.2. Multiplicative bow varieties with cobalanced dimension vector

Now we study a multiplicative bow variety with cobalanced condition. Consider the
following part of a bow diagram:

V1
C1

// V2

B2

��D1oo A2 //

b2
��

V3

B3

�� A3 //

b3
��

V4

B4

��

C4

// V5
D4oo

C
a3

DD

C.

a4

DD

We assume dimV2 D dimV3 D dimV4 by the cobalanced condition. By [41, Lemma 2.18],
A2,A3 are isomorphisms. So we normalizeA2 D A3 D id by the action ofGL.V3/�GL.V4/.
Then the defining equation becomes

1C C1D1 D Z2B
�1
2 D Z2.B3 C a3b2/

�1
D Z2.1C B

�1
3 a3b2/

�1B�13

D t�1Z2.1C B
�1
3 a3b2/

�1.1C B�14 a4b3/
�1B�14

D t�2Z�14 Z2.1C B
�1
3 a3b2/

�1.1C B�14 a4b3/
�1.1CD4C4/:

This can be regarded as the defining equation of a multiplicative quiver variety with

(A.3) V1
C1

// V2
D1oo

C4

//

b2
�� b3 ��

V5
D4oo

C

B�1
3
a3

DD

C,

B�1
4
a4

ZZ
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where we do not take the quotient by C� � C� at bottom vertices. We can further make

(A.4) V1
C1

// V2
D1oo

C4

//�
b2
b3

�
��

V5
D4oo

C2,

Œ Qa3 Qa4 �

OO

where Qa3 D .1 C B�14 a4b3/B
�1
3 a3, Qa4 D B�14 a4. For additive quiver varieties, (A.3) and

(A.4) give isomorphic varieties. But in the multiplicative case, (A.3) gives an open subvariety
in (A.4) as the invertibility of both .1 C B�13 a3b2/, .1 C B�14 a4b3/ is stronger than the
invertibility of .1C Qa3b2C Qa4b3/. In fact, we have an additional requirement that .1C Qa4b3/ is
invertible. Note that the difference between (A.3) and (A.4) disappears when we only have
one C.

A.3. Multiplicative quiver varieties

Before generalizing the definition of multiplicative quiver varieties given in Section 5.1,
let us recall the notion of quasi-Hamiltonian spaces and fusion/reduction procedures intro-
duced in [1].

Let G be a complex reductive group with Lie algebra g and fix a non-degenerate
AdG-invariant symmetric bilinear form .:;:/ on g. Let � (resp. � ) be the left (resp. right)
invariant Maurer-Cartan form on G.

A quasi-HamiltonianG-space is a smoothG-varietyM equipped with aG-invariant two-
form! onM and aG-equivariant morphism�WM ! G (whereG acts onG by conjugation)
satisfying the following three axioms:

(QH1): 12d! D ���.� ^ Œ� ^ ��/.

(QH2): 2�.��/! D ��.� C �; �/ for all � 2 g. Here �� is the fundamental vector field:

��x D
d

dt
exp.t�/ � x

ˇ̌̌̌
tD0

.x 2M/:

(QH3): Ker!x D f ��x j � 2 Ker.Ad�.x/C1/ g for all x 2M .

The map � is called the group-valued moment map.

E A.3. – Any conjugacy class C of G has a structure of quasi-Hamiltonian
G-space whose group-valued moment map is just the inclusion C ,! G. This is a multi-
plicative analogue of a coadjoint orbit of g�.

Also, the double G � G is a quasi-Hamiltonian G � G-space, which is a multiplicative
analogue of T �G.

E A.4. – In [6] Van den Bergh introduced a multiplicative analogue of the
Hamiltonian GL.V / � GL.W /-space T �Hom.V;W /, where V;W are finite-dimensional
C-vector spaces. It is defined to be the quasi-Hamiltonian GL.V / �GL.W /-space

B.V;W / D f .X; Y / 2 Hom.V;W / �Hom.W; V / j det.1CXY / ¤ 0 g;
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where the two-form and the group-valued moment map are given by

! D
1

2
Tr
�
.1CXY /�1dX ^ dY

�
�
1

2
Tr
�
.1C YX/�1dY ^ dX

�
;

�.X; Y / D ..1C YX/�1; 1CXY /:

This is called the Van den Bergh space.

Next we introduce the internal fusion of quasi-Hamiltonian spaces. Let H be another
complex reductive group equipped with a non-degenerate AdH -invariant symmetric bilinear
form on its Lie algebra h.

T A.5 ([1]). – Let .M;!; .�1; �2; �// be a quasi-Hamiltonian G �G �H -space.
Let G � H act on M through the diagonal embedding .g; h/ 7! .g; g; h/. Then M equipped
with the two-form

!fus WD ! C
1

2
.��1� ^ �

�
2�/

and the map
.�fus; �/ WD .�1 � �2; �/WM ! G �H

is a quasi-Hamiltonian G �H -space.

The quasi-Hamiltonian G �H -space .M;!fus; .�fus; �// is called the internal fusion and
denoted by Mfus.

The internal fusion procedure is associative in the following sense: if M is a quasi-
Hamiltonian G � G � G � H -space, then two quasi-Hamiltonian G � H -spaces M.12/3

obtained by first fusioning the first two G-factors andM1.23/ obtained by first fusioning the
last two G-factors are identical. Therefore, if I is a non-empty totally ordered finite set and
M is a quasi-HamiltonianGI �H -space with group-valued moment map ..�i /i2I ; �/, then
we can define its internal fusion Mfus as a quasi-Hamiltonian G � H -space in a canonical
way so that its group-valued moment map is .�; �/, where � WD

Q<
i2I �i .

A multiplicative analogue of the Marsden-Weinstein theorem is the following theorem:

T A.6 ([1]). – Let .M;!; .�; �// be a quasi-Hamiltonian G �H -space and C be
a conjugacy class of G. If the G-action on ��1. C / is free, then ��1. C / is a smooth subvariety
of M , and if furthermore the action has a geometric quotient ��1. C /=G, then ! and � induce
a quasi-Hamiltonian H -structure on ��1. C /=G.

The above quasi-Hamiltonian H -space ��1. C /=G is called the quasi-Hamiltonian reduc-
tion of M by G along C and denoted by M==C G.

Note that in the above situation if H is abelian then M==C G is symplectic. The following
fact is also useful.

T A.7. – Let .M;!; .�; �// be a quasi-Hamiltonian G � H -space. Assume
that H is abelian and M has a good quotient � WM ! M=G. Then for any open U � M=G

and f 2 �.U; OM=G/, there exists a unique vector field vf 2 �.��1.U /;‚M / such that

�.vf /! D d�
�f; �.vf /�

�� D 0:

Each vf is G-invariant and preserves ! and �. Also, ��ff; gg D vf .�
�g/ (f; g 2 OM=G)

defines an H -invariant Poisson structure on M=G.
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See [1, Proposition 4.6], where H is assumed to be trivial but the arguments in the proof
work in the general case.

Since each vf preserves�, for any conjugacy class C � G the closed subvarietyM==C G WD

��1. C /=G � M=G is Poisson. We call it the quasi-Hamiltonian reduction of M by G
along C . On the other hand, if there exists an openU � ��1. C /=G such that�.��1.U // � C

and G acts freely on ��1.U /, then Theorem A.6 shows that U is a quasi-Hamiltonian
H -space, in particular symplectic. By the definition, the Poisson structure on U given by
Theorem A.7 coincides with one induced from the symplectic structure.

Now we introduce the multiplicative quiver varieties. Let Q D .Q0;Q1; s; t/ be a finite
quiver. Let V D

L
i2Q0

Vi and W D
L
i2Q0

Wi be two finite-dimensional Q0-graded
C-vector spaces with dimension vectors v D .vi /i2Q0 and w D .wi /i2Q0 , respectively. For
each i 2 Q0 fix a decomposition of Wi into one-dimensional pieces

Wi D

wiM
jD1

Wi;j ; dimWi;j D 1;

and let T .W / � GL.W / WD
Q
i2Q0

GL.Wi / be the associated maximal torus. Define

fBQ.V;W / D
Y
h2Q1

B.Vs.h/; Vt.h// �
Y
i2Q0

wiY
jD1

B.Wi;j ; Vi /;

which is a quasi-Hamiltonian G � T .W /-space, where

G WD
Y
h2Q1

�
GL.Vs.h// �GL.Vt.h//

�
�

Y
i2Q0

GL.Vi /
wi :

Using the double Q of Q with involution �WQ1 ! Q1 (so Q1 D Q1 t Q�1 and s ı � D t,
tı� D s), we denote an element of fBQ.V;W / by .C; a; b/, where C D .Ch/h2Q1 , a D .ai;j /,
b D .bi;j / and

.Ch; Ch�/ 2 B.Vs.h/; Vt.h// .h 2 Q1/;

.ai;j ; bi;j / 2 B.Wi;j ; Vi / .i 2 Q0; j D 1; : : : ;wi /:

(In other places, Ch is denoted by Ci or Di according to whether h is in Q1 or not.) Fix a
total ordering < on Q1 and define a quasi-Hamiltonian GL.V / � T .W /-space by

BQ.V;W / D
fBQ.V;W /fus;<;

where the internal fusion is taken with respect to the diagonal embedding GL.V / ,! G so
that the resulting group-valued moment map .�; �/ D ..�i /; .�i;j // is

�i .B; a; b/ D

<Y
h2Q1It.h/Di

.1C ChCh�/
�.h/

wiY
jD1

.1C ai;j bi;j /;

�i;j .C; a; b/ D .1C bi;jai;j /
�1;

where �.h/ D 1 if h 2 Q1 and �.h/ D �1 if h 2 Q�1 .

D A.8. – For 
 D .
i /i2Q0 2 .C�/Q0 , put 
V D .
i 1Vi /i2Q0 2 GL.V / and
define

M �


 .v;w/ D �
�1.
V /=GL.V /;

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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where the quotient is taken as the affine GIT quotient. We call M �


 .v;w/ the multiplicative
quiver variety.

By Theorem A.7, M �


 .v;w/ D BQ.V;W /==
V GL.V / is a Poisson variety. Also, as in the
case of additive quiver varieties, theGL.V /-action on the open subset ��1.
V /s � ��1.
V /
consisting of stable points has stabilizer C�1V everywhere (where the definition of stability
is exactly the same as in the additive case), and Theorem A.6 implies that the open subset
M �reg


 .v;w/ WD ��1.
V /
s=GL.V / of M �


 .v;w/ is a quasi-Hamiltonian T .W /-space. We
also call M �reg


 .v;w/ the multiplicative quiver variety.

E A.9. – The multiplicative quiver variety M l
N .Z; t/ introduced in Section 5.1

coincides with M �


 .v;w/ with Q D OAl�1 (the orientation is 1! l ! � � � ! 2! 1) and

v D .N;N; : : : ; N /; w D .1; 0; : : : ; 0/; 
 D

�
Zl

Z1
t;
Z1

Z2
; : : : ;

Zl�1

Zl

�
:

R A.10. – Definition A.8 is close to the definition of framed multiplicative quiver
variety introduced in [45]. Let us identify all Wi;j with C. Then the framed multiplicative
quiver variety is obtained by replacing BQ.V;W / with its internal fusion for the diagonal
subgroup C� � T .W / in the definition of M �


 .v;w/. It is the same as M �


 .v;w/ as a variety,
but the Poisson brackets are different in general.

R A.11. – There is another multiplicative analogue of quiver variety. It is
obtained by replacing fBQ.V;W / with the quasi-Hamiltonian G �GL.W /-spacefB0Q.V;W / WD Y

h2Q1

B.Vs.h/; Vt.h// �
Y
i2Q0

B.Wi ; Vi /

in the definition of M �


 .v;w/. But note that in general the two-form onfB0Q.V;W /fus;< does
not induce a Poisson structure on the resulting variety. It is why we decompose eachWi into
one-dimensional pieces. Of course if dimWi � 1 for all i 2 Q0 then the two definitions
coincide.

E A.12. – Consider Q D A`�1 with w D .`; 0; : : : ; 0/. The usual quiver variety
M� .v;w/, if it is not;, is a semisimple coadjoint orbit of gl.`/ for generic �. The multiplicative
quiver variety in the definition in Remark A.11 is a conjugacy class of GL.`/. (See e.g., [16,
§8].) On the other hand, Definition A.8 gives its open subset, the intersection with a big
Bruhat cell ofGL.`/. To see this, take a decompositionW D

L`
jD1Wj into one-dimensional

spaces, and write a D .aj /, b D .bj /. Then Qa D . Qa1; : : : ; Qa`/, Qb D t . Qb1; : : : ; Qb`/ with
Qaj D .1C a1b1/ � � � .1C aj�1bj�1/aj , Qbj D bj satisfy the defining equation in Remark A.11
as

1C
X̀
jD1

Qaj Qbj D .1C a1b1/ � � � .1C a`b`/:

The isomorphism to a conjugacy class is given by the group-valued moment map .1C Qb Qa/�1.
If an element 1CQb Qa is coming from .aj /, .bj /, we have additional constraint det.1Caj bj / ¤ 0
for j D 1; : : : ; `, which is equivalent to require that every leading principal minor of 1C Qb Qa is
nonzero.
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Now we understand the correct definition of multiplicative quiver varieties, and the argu-
ment in Section A.2 gives the following.

T A.13. – Consider a multiplicative bow variety with a cobalanced dimension
vector. It is isomorphic to a multiplicative quiver variety M �


 .v;w/ such that vj (resp. wj ) is the
dimension of vector spaces (resp. the number of �) between hj and hjC1, and 
j D twjZj =ZjC1.

Combining this with Proposition A.2, we obtain an isomorphism between a K-theo-
retic Coulomb branch and a multiplicative quiver variety when the dominance condition is
satisfied. We conjecture that this is an isomorphism of Poisson varieties. More generally we
conjecture

C A.14. – (1) The space consisting of Ai�1, Bi�1, B 0i , ai , bi�1 with (i), (a),
(S1), (S2) in Section 5.4 is a quasi-Hamiltonian GL.Vi�1/ � GL.Vi / � C�-space with the
group-valued moment map B�1i�1, B 0i , detBi�1 detB 0�1i . Therefore a multiplicative bow
variety is a quasi-Hamiltonian reduction.

(2) The Hanany-Witten transition is a quasi-Hamiltonian GL.V1/�GL.V3/�C�-spaces
isomorphism.

(3) The isomorphism of Theorem A.13 is an isomorphism of quasi-Hamiltonian
T .W /-spaces.

R A.15. – Both homological and K-theoretic Coulomb branches have a torus
action induced from Hom.�1.G/;Z/. See [33, 4(iii)(c)] and the original physics literature
therein. It is expected that the torus action extends to a nonabelian group action for homo-
logical Coulomb branches [33, 4(iii)(d)], and proved for ADE quiver gauge theories in
[9, Remark 3.12]. On the other hand, it is not true for K-theoretic Coulomb branches as
Example A.12 shows.
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