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Abstract— We introduce primal and dual stochastic gradient
oracle methods for distributed convex optimization problems
over networks. We show that the proposed methods are optimal
(in terms of communication steps) for primal and dual oracles.
Additionally, for a dual stochastic oracle, we propose a new
analysis method for the rate of convergence in terms of duality
gap and probability of large deviations. This analysis is based
on a new technique that allows to bound the distance between
the iteration sequence and the optimal point. By the proper
choice of batch size, we can guarantee that this distance equals
(up to a constant) to the distance between the starting point
and the solution.

I. INTRODUCTION

Distributed algorithms have been prevalent in the control
theory and machine learning communities since early 70s
and 80s [1]–[3]. The structural flexibilities introduced by a
networked structure has been particularly relevant for recent
applications, such as robotics and resource allocation [4]–[8],
where large quantities of data are involved, and generation
and processing of information is not centralized [9]–[13].

A distributed system is usually modeled as a network
of computing agents connected in a definite way. These
agents can act as local processors or sensors, and have
communication capabilities to exchange information with
each other. Precisely, the communication between agents is
subject to the constraints imposed by the network structure.
The object of study of distributed optimization is then to
design algorithms that can be locally executed by the agents,
and that exploit the network communications to solve a
network-wide global problem cooperatively [14], [15].

Formally, we consider the optimization problem of mini-
mizing the finite sum of m convex functions

min
x∈Rn

f(x) :=

m∑
i=1

fi(x), (1)
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where each agent i = {1, 2, . . . ,m} in the network has
access to the function fi only, and yet, we seek that every
agent cooperatively achieves a solution of (1).

In this paper, we consider the stochastic version of prob-
lem (1), when fi(x) = Ef̃i(x, ξ), and ξ is a random variable.
We provide an accelerated primal gradient method and an
accelerated dual gradient method for this stochastic problem
and estimate, for each case, the number of communication
steps in the network and the number of stochastic oracle calls
in order to obtain a solution with high probability. We also
discuss extensions of our algorithms under additional strong
convexity assumption.

Optimal methods for distributed optimization over net-
works were recently proposed and analyzed [16], [17].
However, there were only studied for deterministic settings.
In [18], the authors studied a primal-dual method for stochas-
tic problems. The setting of the latter paper is close to what
we consider as the primal approach, but our algorithm and
analysis are different, and, unlike [18], we consider smooth
primal problem. Other approaches for distributed stochastic
optimization has been studied in the literature [19], [20]. In
contrast, we provide optimal communication complexities,
as well as explicit dependency on the network topology.

This paper is organized as follows. Section II describes
a primal approach for the solution of stochastic distributed
optimization problems. Section III presents our main result
on the communication and oracle complexity of a dual
based stochastic distributed optimization problems. Finally,
in Section IV, conclusions and future work are presented.
Notation: We define the maximum eigenvalue and minimal
non-zero eigenvalue of a symmetric matrix W as λmax(W )
and λ+min(W ) respectively, and define the condition number
of matrix W as χ(W ). We denote by 1m the vector of ones
in Rm. Denoting by ‖ · ‖2 the standard Euclidean norm, we
say that a function f is M -Lipschitz if ‖∇f(x)‖2 ≤ M , a
function f is L-smooth if ‖∇f(x)−∇f(y)‖2 ≤ L‖x−y‖2, a
function f is µ-strongly convex (µ-s.c.) if, for all x, y ∈ Rn,
f(y) ≥ f(x)+〈∇f(x), y−x〉+ µ

2 ‖x−y‖
2
2. Given β ∈ (0, 1),

we denote ρβ = 1 + ln(1/β) +
√

ln(1/β).
Due to space limitations, we omit the proofs of the main

lemmas and theorems. For a complete version see [21].

II. PRIMAL DISTRIBUTED APPROACHES

In this section, we study the problem of distributed
stochastic optimization over networks from a primal ap-
proach. Initially, we analyze the optimal convergence rate of
the consensus algorithm from the optimization point of view.
This allows us to establish the number of communication
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rounds necessary for a group of agents over a network to
reach some approximate agreement on a consensus value.
This communication complexity is explicitly stated in terms
of the condition number of the graph Laplacian. Then, we
propose a primal-based method that uses the consensus
algorithm to reach some approximate agreement on the
gradient values. We analyze the effects of the deviations
from the consensus value at each of the agents as a form
of inexactness in the gradient oracle.

A. Consensus Problem

Consider a network of m agents whose interactions are
represented by a connected and undirected graph G = (V,E)
with the set V of m vertices and the set of edges E =
{(i, j) : i, j ∈ V }. Thus, agent i can communicate with
agent j if and only if (i, j) ∈ E. Assume that each agent
i has its own vector vector y0i ∈ Rn, and its goal is to
find an approximation to the vector y∗ = 1

m

∑m
i=1 y

0
i by

performing communications with neighboring agents. To do
this, consider the Laplacian of the graph G, to be defined as
a matrix W̄ with entries,

[W̄ ]ij =


−1, if (i, j) ∈ E,
deg(i), if i = j,

0, otherwise,

where deg(i) is the degree of vertex i (i.e., the number of
neighboring nodes). Let us denote W = W̄ ⊗ In, where ⊗
denotes Kronecker product and In is the unit matrix. Now,
consider the optimization problem

min
y∈Rmn

g(y) :=
1

2
〈y,Wy〉. (2)

Since the gradient of the objective in (2) coincides with
the sparcity pattern of of W , which is orthogonal to the
null space of W , gradient type methods generate a sequence
belonging to this space: {yk}Nk=1 ∈ y0 + Ker(W)⊥. In the
space Ker(W)⊥, the objective g(y) is λmax(W )-smooth and
λ+min(W )-strongly convex.

Therefore, any vector y with equal components is a
solution of (2). Note that y1 = · · · = ym ⇐⇒ Wy = 0
if and only if W is the Laplacian of a connected graph.
Starting from an arbitrary point y0 = [y01 , . . . , y

0
m], classical

gradient methods [22], [23] converge to the exact solution
y∗ = 1

m

∑m
i=1 y

0
i · 1 which has the natural interpretation

that agents reached agreement on a common decision by
exchanging the information with their immediate neighbors.

Solving problem (2) over a network of agents supposes
that each agent i has access only to yi. However, the sparcity
structure of W , which is induced by the network topol-
ogy, allows us to write a version of Nesterov’s accelerated
gradient method [22], [23], that can be excecuted in a
distributed manner for L = λmax(W ) and µ = λ+min(W ),
see Algorithm 1.

The next theorem, provides the iteration complexity of
Algorithm 1. It shows the number of iterations, or commu-
nication rounds, required to reach a ∆-relative precision of
solution for Problem 2.

Algorithm 1 Consensus Algorithm

Input: Starting point y0 = (y01 , . . . , y
0
m), number of itera-

tions N , κ(W ) =

√
λmax(W )−

√
λ+
min(W )√

λmax(W )+
√
λ+
min(W )

1: Each agent i do
2: y1i = y0i − 1

λmax(W )

∑m
j=1Wijy

0
j

3: for k = 1, . . . N − 1 do
4:

yk+1
i = yki −

1

λmax(W )

m∑
j=1

Wij(y
k
j+

+ κ(W )(ykj − yk−1j )) + κ(W )(yki − yk−1i )

Output: yN1 , . . . , yNm

Theorem 1: Let ∆ > 0 some required relative precision,
N = O

(√
χ(W ) ln ∆

)
, y0 be some arbitrary initial point,

and y∗ = 1
m

∑m
i=1 y

0
i · 1 be a solution for (2). Then, the

output of Algorithm 1 has the following property:

‖yN − y∗‖2 ≤ ∆‖y0 − y∗‖2. (3)
Theorem 1 states the minimum number of communication

rounds needed for Algorithm 1 to reach some ∆ > 0
accuracy on a solution for (2)

Next, we analyse how to use Algorithm 1 in the context
of stochastic distributed optimization.

B. Finite Sum Minimization

Consider Problem (1), in the stochastic setting when
fi(x) = Ef̃i(x, ξ), for i = 1, ...,m, and ξ being a random
variable. Now, we use the idea of consensus for designing a
distributed accelerated gradient method for this problem. We
assign each function fi to the agent i and assume that this
agent is able to calculate the stochastic gradient of fi using
a batch of size r, i.e., ∇rf̃i(x, ξi) = (1/r)

∑r
j=1∇f̃i(x, ξ

j
i ).

We assume that the network of agents is represented by the
graph G as in the previous subsection.

At this point we use Algorithm 1 taking yi =
m∇rf̃i(x, ξi) and N specified in Theorem 1 to find a δ-
approximation to the stochastic gradient of f in (1), i.e.,

∇̃fi(xi) =

m∑
i=1

∇rf̃i(xi, ξi) + δ ∀i ∈ V. (4)

Algorithm 2 describes a method, to distributedly solve
problem (1). In particular, we assume that at each iteration,
the set of agents, can run Algorithm 1 on their local gradi-
ents, and compute an inexact gradient. Contrary to existing
literature on distributed optimization, we use the inexact
gradient formulation [24]–[27] to analyze the communication
and oracle complexity of this method.

Theorem 2 describes the iteration and communication
complexity of Algorithm 2. It shows how many communica-
tion rounds, how many oracle calls and the size of the mini-
batch required to guarantee that the output of Algorithm 2
is approximated with arbitrary precision.

Assumption 1: Each function fi has the following prop-
erties:
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Algorithm 2 Distributed Primal Algorithm

Input: Starting point x0 = z0, N , α0 = 0, r.
1: Each agent i do
2: for k = 1, . . . , N − 1 do
3: Ak+1 = Ak + αk+1 = 2Lα2

k+1

4: yk+1
i = (Akx

k
i + αk+1z

k
i )/Ak+1

5: Compute ∇̃fi(xk+1
i ), as in (4) with r, using Algo-

rithm 1
6: zk+1

i = zki − α∇̃fi(x
k+1
i )

7: xk+1
i = (Akx

k + αk+1z
k+1
i )/Ak+1

Output: xNi for each agent i = 1, . . . ,m

• For i ∈ V , Eξi∇f̃i(x, ξi) = ∇fi(x), for all x, where
{ξi}mi=1 are i.i.d.

• For i ∈ V , Eξi exp
(
‖∇f̃i(x, ξi)−∇fi(x)‖22/σ2

)
≤

exp(1), for all x, where {ξi}mi=1 are i.i.d.
Theorem 2: Let Assumption 1 hold, β ∈ (0, 1) be con-

fidence level, ε > 0 be the desired accuracy, and R
such that ‖x∗ − x0‖ ≤ R. Moreover, assume that f(x)
is L-smooth and ∀x ‖∇f̃i(x, ξ)‖2 ≤ M i = 1, . . . ,m.
Let Algorithm 2 be run for N = O

(√
LR2/ε

)
iterations

with ∆ = O
(
(1/mM)

√
Lε/N

)
in Algorithm 1 and r =

O
(
max

{
1,m2σ2ρβ/(ε

2N)
})
, where ρβ is defined in Sect.

I. Then, with probability at least 1 − β, the output xNi , i =
1, . . . ,m generated by Algorithm 2 satisfies

m∑
i=1

fi(x
N
i )−

m∑
i=1

fi(x
∗) ≤ ε.

It remains to estimate the number of communications
and stochastic oracle calls. Each iteration of the algorithm,
by Theorem 1, requires O

(√
χ(W ) ln ∆

)
communications,

which gives the number of communications. At each iteration
the stochastic oracle is called r times and the total number
of calls is Nr, which gives the number of stochastic oracle
calls.

Thus, Theorem 2 states that Algorithm 2 requires
Õ
(√

(LR2/ε)χ(W )
)

communication rounds and

O

(
max

{√
LR2

ε
,
m2σ2ρβ
ε2

})
.

stochastic gradient oracle calls in order to reach some arbi-
trary accuracy ε.

The result of Theorem 2 can be generalized for the case
of strongly convex objective f . Using the restart technique
[23], [28], [29] for Algorithm 2, we can obtain stochastic
oracle complexity

Õ

(
max

{√
L

µ
,
m2σ2ρβ
µε

})

and communication complexity Õ
(√

(L/µ)χ(W )
)

. The
idea of the algorithm is that we run Algorithm 2 for
O
(√

L/µ
)

iterations to make the objective residual twice
smaller than on the previous restart. Then, the number of
restarts is logarithmic in 1/ε.

C. Finite sum minimization on a spanning tree graph

The communication complexity of the primal approach
described in Subsection II-B can be improved by a transition
to a centralized topology by constructing a spanning tree
for the given network presented by a graph G with the
additional assumption that one has access to a representation
of this graph. In particular, we notice that this spanning tree
computation can be done in a distributed manner as well [30],
[31]. This additional pre-processing allows us to obtain,
centralized network topology (master-slaves architecture) for
arbitrary graph: we take the root of the spanning tree as the
master node, and assume that all other nodes are slaves. We
also assign each function fi to each slaves, and then we
can organize the distributed process as follows: each slave
i calculates its gradient ∇fi(xki ) and then sends it to the
master node, which aggregates all gradients and computes
the gradient step. Then it sends calculated value xk+1 back to
the child nodes. This process presents forward and backward
propagation of gradients and the argument via spanning tree
with updating the argument xk at each iteration k.

Denoting the diameter of graph G by d one can improve
the number of communications rounds in Theorem 2 to
O
(
d
√
LR2/ε

)
. Note that for any graph d ≤

√
χ(W ). For

example, for a star graph d = 2 and
√
χ(W ) ∼

√
m. This

approach allows to have a better dependency on the topology
of the network. However, this approach might not be tractable
for recent applications when the network topology changes
which time [32], which might require the computation of the
spanning tree at each iteration.

III. DUAL DISTRIBUTED APPROACHES

In this section, we follow [16], [17], [33], [34] and use
primal-dual accelerated gradient methods [35]–[39], and use
a dual formulation of the distributed optimization problem
to design a class of optimal algorithms that can be executed
over a network. We assume that the network of agents
is represented by the graph G and matrix W as in the
subsection II-A.

First, we present the dual formulation of the distributed
optimization problem for the deterministic case, and then
we develop our novel analysis for the case of stochastic dual
oracles.

We assume that for all i = 1, . . . ,m function fi can be
represented as the Fenchel-Legendre transform

fi(x) = max
y∈Rn
{〈y, x〉 − ϕi(y)}.

Thus, we rewrite the problem (1) as follows

max
x1,...,xm∈Rn,
x1=···=xm

−F (x) : = −
m∑
i=1

fi(xi)

= max
x1,...,xm∈Rn,√

Wx=0

−
m∑
i=1

fi(xi), (5)

where x = [x1, . . . , xm]T ∈ Rnm is the stacked column
vector.
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Algorithm 3 Distributed Dual Algorithm

Input: Starting point λ̄0 = ȳ0 = ζ̄0 = x0 = 0, number of
iterations N , C0 = α0 = 0.

1: Each agent i do
2: for k = 0, . . . , N − 1 do
3: αk+1 = k+2

4L , Ak+1 =
∑k+1
i=1 αi

4: λ̄k+1
i = (αk+1ζ̄

k
i +Akȳ

k
i )/Ak+1.

5: ζ̄k+1
i = ζ̄ki − αk+1

∑m
j=1Wijxj(λ̄

t
j).

6: ȳk+1
i = (αk+1ζ̄

k+1
i +Akȳ

k
i )/Ak+1.

7: xNi = 1
AN

∑N
k=0 αkxi(λ̄

k
i ).

Output: xN , ȳN .

Then, we introduce the Lagrangian dual problem to prob-
lem (5) with dual variables y = [yT1 , · · · , yTm]T ∈ Rmn as

min
y∈Rmn

max
x∈Rnm

m∑
i=1

(
〈yi, [
√
Wx]i〉 − fi(xi)

)
= min

y∈Rmn
ψ(y) := ϕ(

√
Wy) :=

m∑
i=1

ϕi([
√
Wy]i), (6)

where we used the notations [
√
Wx]i and [

√
Wy]i for

describing the i-th n-dimensional block of vectors
√
Wx

and
√
Wy respectively, and also we used the equality∑m

i=1〈yi, [
√
Wx]i〉 =

∑m
i=1〈[

√
Wy]i,xi〉.

Note that dealing with the dual problem does not oblige
us to use dual oracle of ∇ϕi. Indeed,

∇ϕ([
√
Wy]i) = [

√
Wx(

√
Wy)]i, (7)

where xi([Wy]i) = arg max
xi∈Rn

{
〈[
√
Wx]i, yi〉 − fi(xi)

}
. So

we can use the primal oracle ∇fi to solve this auxiliary
subproblem and find an approximation to ∇ϕi.

Making the change of variables ȳ :=
√
Wy and structure

of Laplacian matrix W allows us to present accelerated
gradient method in a distributed manner for the dual problem.

Theorem 3: Let ε > 0 be a desired accuracy and assume
that ‖∇F (x∗)‖2 = MF and that the primal objective in (5) is
µ-strongly convex. Then the sequences xN and yN generated
by Algorithm 3 after N = O

(√
(M2

F /µε)χ(W )
)

iterations
and oracle calls of dual function ∇ϕi per node i = 1, . . .m
satisfy the following condition F (xN ) + ψ(ȳN ) ≤ ε

Next, we focus on the case where we only have access to
the stochastic dual oracle.

A. Dual Approach with Stochastic Dual Oracle

Now, we suppose that ψ(y) is endowed with stochastic
oracle ∇ψ(y, ξ), satisfying the following conditions1:

Eξ∇ψ(y, ξ) = ∇ψ(y) and

Eξ exp
(
‖∇ψ(y, ξ)−∇ψ(y)‖22/σ2

ψ

)
≤ exp(1).

We assume that the function ψ is Lψ-smooth. If, the primal
objective is µ-strongly convex, then Lψ ≤ λmax(W )/µ.

1We believe that the light-tail assumption can be relaxed to a more general
setting [40].

Algorithm 4 Dual Stochastic Algorithm

Input: Starting point λ0 = y0 = ζ0 = x0 = 0, number of
iterations N , C0 = α0 = 0,

1: for k = 0, . . . , N − 1 do
2: Ak+1 = Ak + αk+1 = 2Lψα

2
k+1 (9)

3:
λk+1 = (αk+1ζ

k +Aky
k)/Ak+1. (10)

4: Calculate ∇rk+1ψ(λk+1, {ξs}
rk+1

s=1 ) according to (8)
with batch size

rk+1 = O
(
max

{
1, σ2

ψαk+1 ln(N/δ)/ε
})

5:
ζk+1 = ζk − αk+1∇rk+1ψ(λk+1, {ξs}

rk+1

s=1 ). (11)
6:

yk+1 = (αk+1ζ
k+1 +Aky

k)/Ak+1. (12)

7: Set xN = 1
AN

∑N
k=0 αkx(λk, {ξi}rki=1).

Output: xN , yN .

Moreover, we assume that we can construct an approximation
for ∇ψ(y) using batches of size r in the following form:

∇rψ(y, {ξi}ri=1) =
1

r

r∑
i=1

∇ψ(y, ξi). (8)

Theorem 4: Assume that F is µ-strongly convex and
‖∇F (x∗)‖2 = MF . Let ε > 0 be a desired accuracy.
Assume that at each iteration of Algorithm 4 the approx-
imation for ∇ψ(y) is chosen according to (8) with batch
size rk = O

(
max

{
1, σ2

ψαk ln(N/δ)/ε
})

. Then, after N =

O
(√

(M2
F /µε)χ(W )

)
iterations, the outputs xN and yN of

Algorithm 4 satisfy

F (xN )− F (x∗) ≤ ε, ‖
√
WxN‖2 ≤ ε/Ry (13)

with probability at least 1 − 3δ, where δ ∈ (0, 1/3),
ln(N/δ) ≥ 3 and Ry is such that ‖y∗‖2 ≤ Ry, y∗ being an
optimal solution of the dual problem.

Moreover, the number of stochastic oracle calls for the
dual function ∇ϕi per node i = 1, . . .m is

O

max

 σ2
ψM

2
F

ε2λ+
min(W )

ln

1

δ

√
M2
F

µε
χ(W )

 ,

√
M2
F

µε
χ(W )




To prove the theorem we first state a number of technical
lemmas.

Lemma 5: For the sequence αk+1 defined in (9) we have
for all k ≥ 0

αk+1 ≤ α̃k+1
def
=
k + 2

2Lψ
. (14)

Lemma 6: Let A,B, and {ri}Ni=0 be non-negative num-
bers such that for all l = 1, . . . , N

1

2
r2l ≤ Ar20 +B

r0
N

√√√√ l−1∑
k=0

(k + 2)r2k. (15)
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Then rl ≤ Cr0, where C is such positive number that C2 ≥
max{1, 2A+ 2BC}.
The proof of the Lemma is followed from induction.

Lemma 7: Let the sequences of non-negative numbers
{αk}k≥0, random non-negative variables {Rk}k≥0 and ran-
dom vectors {ηk}k≥0 and {ak}k≥0 for all l = 1, . . . , N
satisfy

1

2
R2
l ≤ A+ u

l−1∑
k=0

αk+1〈ηk+1, ak〉+ c

l−1∑
k=0

α2
k+1‖ηk+1‖22 (16)

where A is deterministic non-negative number, ‖ak‖2 ≤
dR̃k, d ≥ 1 is some positive deterministic constant and
R̃k = max{R̃k−1, Rk} for all k ≥ 1, R̃0 = R0, R̃k depends
only on η0, . . . , ηk.
Moreover, assume, vector ak is a function of η0, . . . , ηk−1

∀k ≥ 1, a0 is a deterministic vector, and ∀k ≥ 0,

E
[
ηk | {ηj}k−1j=0

]
= 0,

E
[
exp

(
‖ηk‖22σ−2k

)
| {ηj}k−1j=0

]
≤ exp(1), (17)

αk+1 ≤ α̃k+1 = D(k + 2), σ2
k ≤ (Cε)/(α̃k+1 ln(N/δ)) for

some D,C > 0, ε > 0. If additionally ε ≤ HR2
0/N

2, then
with probability at least 1− 2δ the inequalities

R̃l ≤ JR0 and (18)
u
∑l−1
k=0 αk+1〈ηk+1, ak〉+ c

∑l−1
k=0 α

2
k+1‖ηk+1‖22

≤
(

24cCDH + udC1

√
CDHJg(N)

)
R2

0 (19)

hold ∀l = 1, . . . , N simultaneously. Here C1 is some positive
constant, g(N) =

(
ln (N/δ) + ln ln (B/b)

)
/ln (N/δ),

B = 2d2CDHR2
0

(
2A+ udR̃2

0

+12CDε (2c+ ud)N(N + 3)
)

(2ud)N ,

b = σ2
0α̃

2
1d

2R̃2
0 and

J = max
{

1, udC1

√
CDHg(N)

+
√
u2d2C2

1CDHg(N) + 2A
R2

0
+ 48cCDH

}
.

B. Example: Computation of Wasserstein Barycenters

It may seem that the problem with dual stochastic oracle
is artificial. Next, we present the regularized Wasserstein
barycenter problem [41]–[44], which is a recent example of
a function with stochastic dual oracle,

min
p∈Sn(1)

m∑
i=1

Wµ,qi(p), (20)

where Wµ,qi(p) = min
π1=p,πT 1=q

π≥0

{〈C, π〉+ µ〈π lnπ〉} .

Here C is a transportation cost matrix, p, q are elements of
standard probability simplex, logarithm of a matrix is taken
componentwise. Problem (20) is not easily tractable in the
distributed setting since cost of approximating of the gradient

of Wµ,qi(p) requires to solve a large-scale minimization
problem. On the other hand, as it is shown in [41],

Wµ,qi(p) = max
u∈Rn

{
〈u, p〉 −W∗q,µ(u)

}
W∗q,µ(u) = µ

n∑
j=1

qj ln

(
1

qj

n∑
i=1

exp

(
−Cij + ui

µ

))
.

So, the conjugate function has an explicit expression and
its gradient can be calculated explicitly. Moreover, as the
conjugate function has the form of finite-sum, we can use
randomization and take a component i with probability qi.
As a corollary of our general Theorem 4, we obtain

Corollary 8: Taking the batch size rk =
O
(
(σ2
ψαk ln(N/β)/εµ)

)
, where σ2

ψ = mλmax(W ) after
N = O

(√
(M2

F /µε)χ(W )
)

iterations the following holds
for the output pN of Algorithm 4 with probability
at least 1 − 3δ, where δ ∈ (1, 1/3) is such that
(1 +

√
ln(1/δ))/

√
ln(N/δ) ≤ 2.

m∑
i=1

Wµ,qi(p
N
i )−

m∑
i=1

Wµ,qi(p
∗) ≤ ε, ‖

√
WpN‖2 ≤ ε/Ry.

Moreover, the total complexity per node is

O

nmax

mM2
F

ε2
χ ln

1

δ

√
M2
F

µε
χ

 ,

√
M2
F

µε
χ


 ,

where MF
2 = 2nm‖C‖2∞ [42] and χ = χ(W ) .

IV. CONCLUSION

We consider primal and dual distributed accelerated gradi-
ent methods for stochastic finite-sum minimization. One of
the key features of our analysis are large deviations bounds
for the error of the algorithms. Moreover, we show that the
proposed methods have optimal communication complexity,
up to logarithmic factors. For each of the proposed methods
we provide an explicit oracle and communication complexity
analysis. We illustrate the dual approach by the Wasserstein
barycenter problem. As a future work we consider extending
these results for different classes of problems, i.e., non-
smooth and/or also strongly convex problems.
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