
Differential Geometry and its Applications 74 (2021) 101699
Contents lists available at ScienceDirect

Differential Geometry and its Applications

www.elsevier.com/locate/difgeo

On existence of global attractors of foliations with transverse 

linear connections

N.I. Zhukova
National Research University Higher School of Economics, Laboratory of Dynamical Systems and 
Applications, 25/12, Bolshaya Pecherskaya St., Nizhny Novgorod, 603155, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 January 2020
Received in revised form 3 July 2020
Accepted 20 October 2020
Available online xxxx
Communicated by J. Slovak

MSC:
53C12
57R30
35B41

Keywords:
Foliation
Attractor
Minimal set
Foliation with transverse linear 
connection
Global attractor

The existence problem for attractors of foliations with transverse linear connection 
is investigated. In general foliations with transverse linear connection do not admit 
attractors. Sufficient conditions are found for the existence of a global attractor 
that is a minimal set. An application to transversely similar pseudo-Riemannian 
foliations is obtained. The global structure of transversely similar Riemannian 
foliations is described. Different examples are constructed.

© 2020 Published by Elsevier B.V.

1. Introduction and main results

Investigation of dynamical properties of foliations is an actual area, see, e.g., the book [2].
There are several nonequivalent notions of an attractor in the theory of dynamical systems (e.g., see 

[9]). Some of these notions are equivalent [6]. For “typical” dynamical systems in the metric sense different 
notions of an attractor should coincide according to Palis’s hypothesis [14]. We use the most general notion 
of an attractor for a foliation that generalizes the notion of an attractor from [15]. Note that the attractor 
of a foliation may be disconnected and it may contain other attractors. This is not the case for a transitive 
attractor that contains a dense leaf. Attractors which are minimal sets are examples of transitive attractors.

We investigate foliations with transverse linear connections. They include, in particular, Weyl folia-
tions [21] and transversely similar pseudo-Riemannian foliations, which are of special interest. Among them 
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are transversely similar Loretzian and transversely similar Riemannian foliations. There are foliations from 
each of the indicated classes admitting attractors.

Deroin and Kleptsyn [6] investigated attractors of foliations with conformal transversal structures on 
compact manifolds. The Main theorem of [6] states that for every conformal foliation on a compact manifold 
either there exists a transverse invariant measure, or there exists a finite number of minimal sets equipped 
with probability measures, which are attractors satisfying some properties.

The case of transversely similar foliations is considered by the author in [18, Sec. 9]. In [20], it is shown 
that every non-Riemannian conformal foliation (M, F ) of codimension q ≥ 3 admits an attractor which is 
a minimal set, and the restriction of the foliation to the basin of the attractor is a transversely conformally 
flat foliation. Moreover, if the foliated manifold M is compact, then (M, F ) is a (Conf(Sq), Sq)-foliation 
[19, Th. 4]. Every complete non-Riemannian conformal foliation (M, F ) of codimension q ≥ 3 admits a 
global attractor M such that one of the following two conditions holds: 1) M is transitive; 2) M is either 
a closed leaf or a union of two leaves, and (M, F ) is covered by a locally trivial bundle over the standard 
q-dimensional sphere Sq or the Euclidean space Eq [20, Th. 5].

Note that in [19,20] as well as in the present work we use the methods of local and global differential 
geometry, while Deroin and Kleptsyn [6] used methods of random dynamical systems. In [6] they considered 
a Laplace operator along leaves and investigated the existence of a transverse invariant measure.

We give the following general definition of an attractor of a foliation.

Definition 1. Let (M, F ) be a foliation. A subset of a manifold M is called saturated if it is a union of leaves 
of this foliation. A nonempty closed saturated subset M of M is called an attractor of (M, F ) if there exists 
an open saturated neighbourhood U = U(M) of the set M such that the closure of every leaf from U \M
contains the set M. The neighbourhood U is uniquely determined by this condition and it is called the basin 
of this attractor ; we denote it by Attr(M). If in addition Attr(M) = M , then the attractor M is called 
global.

An attractor M of a foliation (M, F ) is said to be transitive if there exists a leaf L which is dense in M, 
i.e., if L = M.

Recall that a minimal set of a foliation on a manifold M is a nonempty closed subset in M that consists 
of a union of leaves and has no proper subset satisfying this condition. A minimal set is said to be trivial if 
it is a leaf of a foliation. Minimal sets for transformation groups are defined in a similar way.

At first we give different approaches to the concept of holonomy groups of foliations with transverse 
linear connection which used further. Denote by Γ(L, x) the germ holonomy group of a leaf L = L(x) of 
a foliation (M, F ) usually used in the foliation theory [4]. In Section 2.5 we recall the notion of a foliated 
bundle over a foliation with transverse linear connection. Applying Proposition 5 from [20] about different 
interpretations of the notion of holonomy groups of Cartan foliations to foliations with transverse linear 
connection and taking into account that a linear connection is a structure of the first order, we obtain the 
following statement.

Theorem 1. Let (M, F ) be a foliation with transverse linear connection and π : R → M be its foliated H-
bundle where H := GL(q, R), x ∈ M , u ∈ π−1(x). Let L = L(u) be the leaf through u of the lifted foliation 
(R, F). Then the germ holonomy group Γ(L, x) of the leaf L = L(x) through x is isomorphic to each of the 
following three groups:

1) the subgroup H(u) := {a ∈ H|Ra(L) = L} of H which preserves the leaf L = L(u) of (R, F);
2) the group of deck transformations of the regular covering map π|L : L → L;
3) the linear holonomy group DΓ(L, x) formed by the differentials of the local holonomy diffeomorphisms 

along leaf loops of a transversal q-dimensional disc at x.
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Remark 1. If û is an other point from π−1(x), then there exists b ∈ H such that û = u · b and H(û) =
b−1 ·H(u) · b.

Remark 2. Since the isomorphism of the subgroups DΓ(L, x) and H(u), x = π(u), of the Lie group H is 
induced by the action of H on the space of the foliated bundle R, it is an isomorphism of the topological 
subgroups DΓ(L, x) and H(u) of H.

A leaf L is referred to as proper if L is an embedded submanifold of M . A foliation having only proper 
leaves is said to be proper. A leaf L is called closed if it is a closed subset of M . As known, every closed leaf 
is proper, the converse is not true in general.

Recall that a subgroup of a Lie group G is called relatively compact if its closure in G is compact. In 
Section 3.1 we recall the notion of an Ehresmann connection for a foliation introduced in [3].

We denote by K =< A > the group generated by A. The next theorem contains conditions for a foliation 
(M, F ) that guarantee the existence of a global attractor which is a minimal set of (M, F ).

Theorem 2. Let (M, F ) be a foliation with transverse linear connection of codimension q. Assume that (M, F )
admits an Ehresmann connection. If there exists a leaf L such that its linear holonomy group contains an 
element defined by a matrix of the form A · D, where K = < A > is a relatively compact subgroup in the 
linear group GL(q, R) and D = diag(d1, ..., dq) with 0 < |di| < 1 for 1 ≤ i ≤ q, then (M, F ) has a global 
attractor M = L which is a minimal set.

If the leaf L is proper, then L is a unique closed leaf of (M, F ).

In Section 2.3 we recall the notions of transversely similar pseudo-Riemannian and Riemannian foliations. 
Applying Theorems 1 and 2 we get the following known statement [21, Th. 5].

Corollary 1. Let (M, F ) be a transversely similar pseudo-Riemannian foliation of codimension q on an n-
dimensional manifold M modelled on a transverse pseudo-Riemannian manifold (N, gN ) of signature (k, s), 
where k + s = q. Assume that (M, F ) has an Ehresmann connection. If there exists a leaf L such that its 
linear holonomy group contains an element defined by a matrix of the form λ · A, where 0 < λ < 1 and A
belongs to a compact subgroup of the pseudo-orthogonal group O(k, s), then the closure M := L of the leaf 
L is an attractor and a minimal set.

If, moreover, the leaf L is proper, then M is a global attractor and a unique closed leaf of (M, F ).

Denote by Sim(Eq) the Lie group of all the similarities of the q-dimensional Euclidean space Eq. As is 
well known [8], the topology in the Lie group Sim(Eq) coincides with the C∞ compact-open topology in 
Sim(Eq) considered as a transformation group of Eq.

Definition 2. If the linear holonomy group DΓ(L, x) of a leaf L of a transversely similar Riemannian foliation 
is relatively compact, then we say that L has an inessential holonomy group. Otherwise, the holonomy group 
of a leaf L is called essential.

A regular covering map L0 → Lα onto a leaf Lα of a foliation is called holonomic if its deck transformation 
group is isomorphic to the holonomy group of Lα.

Theorem 3. Let (M, F ) be a transversely similar Riemannian foliation of codimension q, q ≥ 1, with an 
Ehresmann connection, and (M, F ) is not Riemannian. Then:

(i) there exists a leaf L with an essential holonomy group, and M = L is a unique global attractor and a 
minimal set;
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(ii) (M, F ) is a complete (Sim(Eq), Eq)-foliation;
(iii) there exists a regular covering map κ : M̃ → M such that M̃ may be identified with the product of 

manifolds L0 × Eq, at that the induced foliation F̃ = κ∗F is formed by the fibres of the canonical 
projection r : L0 × Eq → Eq and the restriction κ|L0×{b}, b ∈ Eq, is a holonomic covering map onto 
the corresponding leaf of (M, F );

(iv) there exists an epimorphism χ : π1(M, x0) → Sim(Eq) of the fundamental group π1(M, x0) of M onto 
some subgroup Ψ = χ(π1(M, x0)) of Sim(Eq);

(v) the holonomy group of any leaf Lα = Lα(x), x ∈ M , is isomorphic to the isotropy subgroup Ψz of Ψ
at z ∈ pr(κ−1(Lα)) ⊂ Eq;

(vi) there exists a global attractor K of the group Ψ, and M = κ(r−1(K));
(vii) the closure Lα of every leaf Lα, belonging to M0 := M \ M, is equal to Lα ∪ M, where Lα is an 

embedded submanifold of M which is the closure of Lα in M0.

In the case when (M, F ) is a proper foliation, the global attractor M is a unique closed leaf of (M, F ).

Definition 3. The subgroup Ψ := χ(π1(M, x0)) of Sim(Eq) indicated in Theorem 3 is referred to as a global 
holonomy group of the transversely similar Riemannian foliation (M, F ).

The following statement is proved in the constructive way analogous to [20, Th. 7].

Theorem 4. Every countable subgroup Ψ of the group Sim(Eq) is realized as the global holonomy group of 
some transversely similar Riemannian foliation (M, F ) of codimension q.

Denote by Fol the category of foliations, where every morphism transforms each leaf of one foliation to 
a leaf of the other foliation.

It is said that a leaf L of a foliation (M, F ) is without holonomy if the holonomy group of L vanishes. If 
every leaf of (M, F ) is without holonomy, then (M, F ) is referred to as a foliation without holonomy.

Theorem 5. If (M, F ) is a transversely similar Riemannian foliation of codimension one, and (M, F ) is not 
Riemannian and admits an Ehresmann connection M, then (M, F ) is a complete (Sim(E1), E1)-foliation 
satisfying one of the following two statements:

I. Every leaf is dense in M , i.e. M is a minimal set of (M, F ).
II. There exists a unique closed leaf L of (M, F ) which is a global attractor homotopy equivalent to M , 

and M is not compact. The distribution M is formed by the tangent vector spaces to fibres of a locally 
trivial bundle p : M → L with the standard fibre R1. The foliation (M, F ) is defined by the suspension 
of a group homomorphism

ρ : π1(L, x0) → Sim(E1)

of the fundamental group π1(L, x0) of L to Sim(E1), and ρ(π1(L, x0)) = Ψ, where Ψ is the global 
holonomy group of (M, F ). The induced foliation (M0, F0) on the saturated open dense subset M0 =
M \ L is without holonomy and (M0, F0) has the following structure:
(1) if (M, F ) is proper and transversally non-orientable, then (M0, F0) is isomorphic in the category 

Fol to the trivial foliation (L0 × S1, Ftr) where S1 is the circle and Ftr = {L0 × {t} | t ∈ S1}. The 
closure Lα of every leaf Lα ⊂ M0 satisfies the equality Lα = Lα ∪ L;

(2) if (M, F ) is proper and transversely orientable, then M0 has two connected components M (i)
0 , i =

1, 2, and each induced foliation (M (i)
0 , F (i)

0 ) is isomorphic in Fol to the trivial foliation (L0×S1, Ftr)
as in (1). The closure of every leaf Lα ⊂ M0 satisfies the equality Lα = Lα ∪ L;
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(3) if (M, F ) is improper and transversally non-orientable, then M0 is connected and every leaf Lα ⊂
M0 is dense in M ;

(4) if (M, F ) is improper and transversely orientable, then M0 has two connected components M (i)
0 , 

i = 1, 2, and the closure of each leaf Lα ⊂ M
(i)
0 is equal to Lα = M

(i)
0 ∪ L.

Corollary 2. If (M, F ) is a complete non-Riemannian affine foliation of codimension one, then (M, F ) is a 
complete (Sim(E1), E1)-foliation satisfying Theorem 5.

Next theorem is proved without assumption of existence of an Ehresmann connection for a transversally 
similar Riemannian foliation (M, F ) and it contains conditions that guarantee the existence of a global 
attractor which is a minimal set of (M, F ). In Section 6.3 we recall the concept of the set of ends of a 
manifold L following [10].

Theorem 6. Let (M, F ) be a transversally similar Riemannian foliation of codimension q on n-dimensional 
compact manifold M , and (M, F ) is non-Riemannian. Assume that every leaf Lα without holonomy has 
only one end. Then:

1. (M, F ) is (Sim(Eq), Eq)-foliation.
2. There exists a unique global attractor M such that M is a minimal set of this foliation, and M is the 

closure of a leaf L with an essential holonomy group.

If the leaf L is proper, then L is a unique closed leaf of (M, F ).

Corollary 3. I. Let (M, F ) be a transversally similar Riemannian foliation of codimension q, 0 < q < n, 
on n-dimensional compact manifold M , and (M, F ) is non-Riemannian. Assume that every leaf Lα without 
holonomy is diffeomorphic to Rn−q. Then there exists a unique global attractor M which is a minimal set 
of this foliation, and M is the closure L of a leaf L with an essential holonomy group.

If the leaf L is proper, M is a global attractor and a unique closed leaf of (M, F ).

Remark 3. In Example 1, foliations satisfying Theorem 6 and Corollary 3 are constructed.

Denote by Eq the unit q-dimensional matrix. Recall that an ((R+ · {Eq}) � Rq, Rq)-foliation is referred 
to as a transversely homothety foliation [18]. Some examples of complete transversely homothety foliations 
which are not Riemannian were constructed in [18, Sec. 9].

The text is structured as follows:

• Section 2 contains well known fundamental facts about foliations with transverse linear connection and 
the associated constructions.

• In Section 3 we find condition for the existence of a global attractor which is a minimal set of a foliation 
with transverse linear connection admitting an Ehresmann connection.

• In Section 4 we describe the structure of transversely similar Riemannian foliations admitting an Ehres-
mann.

• Section 5 is devoted to a detailed description of the structure of codimension one transversely similar 
Riemannian foliations which are not Riemannian.

• In Section 6 we obtain sufficient conditions for the existence of global attractors of transversely similar 
foliations on compact manifolds.

• In Section 7 we construct examples.
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Assumptions. Throughout this paper we assume for simplicity that all manifolds and maps are smooth of 
the class C∞; in fact, the main results of the paper are valid for foliations of the class C2. All neighbourhoods
are assumed to be open and all manifolds are assumed to be Hausdorff.

Notations. The algebra of smooth functions on a manifold M will be denoted by F(M). Let X(N) denote 
the Lie algebra of smooth vector fields on a manifold N . If M is a smooth distribution of a constant rank 
on M and f : K → M is a submersion, then let f∗M be the distribution on the manifold K such that 
(f∗M)z = {X ∈ TzK | f∗z(X) ∈ Mf(z)}, where z ∈ K. Let XM(M) = {X ∈ X(M) | Xu ∈ Mu ∀u ∈ M}. 
As usually we denote by P (N, H) the principal H-bundle P over the manifold N . The symbol ∼= will denote 
the isomorphism of objects in the corresponding category.

2. Foliations with transverse linear connection and the associated constructions

2.1. (G, N)-manifolds and (G, N)-foliations

Recall the following notions usually used in the geometric foliation theory.
Let N be a q-dimensional manifold and M be a smooth n-dimensional manifold, where 0 < q < n. Unlike 

M , the connectivity of the topological space N is not assumed. An N -cocycle is the set {Ui, fi, {kij}}i,j∈J

such that:

1. The family {Ui | i ∈ J} forms an open cover of M .
2. The mappings fi : Ui → N are submersions into N with connected fibres, and {Vi := fi(Ui) | i ∈ J} is 

a cover of N .
3. If Ui ∩ Uj �= ∅, i, j ∈ J , then a diffeomorphism kij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj) is well-defined and 

satisfies the equality fi = kij ◦ fj .

Let N be a connected manifold and G be a Lie group of diffeomorphisms of N . It is customary to say 
that the group G acts quasi-analytically on X if, for any open subset U in N and an element g ∈ G, the 
condition g|U = idU implies that g is the identity transformation of N . We assume that the group G of 
diffeomorphisms of a manifold N acts on N quasi-analytically.

Definition 4. A foliation (M, F ) determined by an N -cocycle {Ui, fi, {kij}}i,j∈J is called a (G, N)-foliation 
if for any Ui ∩ Uj �= ∅, i, j ∈ J , there exists an element g ∈ G such that kij = g|fj(Ui∩Uj).

Definition 5. A manifold B is called a (G, N)-manifold if its foliation by points is a (G, N)-foliation.

Thus, the concept of (G, N)-foliation generalizes the concept of (G, N)-manifold introduced by 
Thurston [16].

2.2. Foliations with transverse linear connection

Let (N (1), ∇(1)) and (N (2), ∇(2)) be manifolds with linear connections ∇(1) and ∇(2) respectively. 
A smooth map f : N (1) → N (2) is said to be a morphism from (N (1), ∇(1)) to (N (2), ∇(2)) if

f∗(∇(1)
X Y ) = ∇(2)

f∗X
f∗Y

for all vector fields X, Y ∈ X(N (1)), where f∗ is the differential of f .

Definition 6. Let a foliation (M, F ) be given by an N -cocycle {Ui, fi, {kij}} .
i,j∈J
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If the manifold N admits a linear connection ∇ such that every local diffeomorphism kij is an isomorphism 
of the linear connections induced by ∇ on open subsets fi(Ui ∩Uj) and fj(Ui ∩Uj), then (M, F ) is referred 
to as a foliation with transverse linear connection defined by the (N, ∇)-cocycle {Ui, fi, {kij}}i,j∈J . It is 
also said that (M, F ) is modelled on (N, ∇).

Emphasize that the vanishing of the torsion tensor of a linear connection ∇ on N is not assumed. If 
(N, ∇) is torsion free and it has the vanishing curvature, then (M, F ) is referred to as a transversely affine
foliation.

Remark 4. Every transversely affine foliation of codimension q is a (Aff(Aq), Aq)-foliation where Aff(Aq)
is the affine group of the affine space Aq. A transversely similar foliation of codimension q is (Sim(Eq), Eq)-
foliation where Sim(Eq) is the similarity group of the Euclidean space Eq.

2.3. Transversely similar pseudo-Riemannian and Riemannian foliations

Let (Ni, gi), i = 1, 2, be pseudo-Riemannian manifolds. Recall that a diffeomorphism f : N1 → N2 is said 
to be similar, if f∗g2 = cg1 for some constant c > 0. In the case when (N1, g1) = (N2, g2) such diffeomorphism 
is called a similar transformation or a similarity of the pseudo-Riemannian manifold (N1, g1).

Definition 7. Let a foliation (M, F ) be given by an N -cocycle {Ui, fi, {kij}}i,j∈J . If the manifold N admits 
a pseudo-Riemannian (or Riemannian) metric gN such that every local diffeomorphism kij is a similar 
diffeomorphism of the metrics induced by gN on open subsets fi(Ui ∩ Uj) and fj(Ui ∩ Uj), then we refer 
to (M, F ) as a transversely similar pseudo-Riemannian (or a transversely similar Riemannian) foliation. If 
the curvature of the Levi-Civita connection ∇N of a Riemannian metric gN is zero, then (M, F ) is called 
transversely similar foliation.

If every local diffeomorphism kij is an isometry of the metrics induced by gN on open subsets fi(Ui∩Uj)
and fj(Ui ∩Uj), then we refer to (M, F ) as a pseudo-Riemannian (or Riemannian) foliation. It is said also 
that (M, F ) is modelled on a pseudo-Riemannian (respectively, Riemannian) transverse geometry (N, gN).

Emphasize that transversely similar pseudo-Riemannian and transversely similar Riemannian foliations 
as well as pseudo-Riemannian and Riemannian foliations belong to the class of foliations with transverse 
linear connection.

2.4. The associated connection in the frame bundle

Let H = GL(q, R) be the general linear group and let G = H�Rq be the semidirect product of H and the 
Abelian group Rq, where Rq is the normal subgroup of G. We will consider G as the affine group Aff(Aq)
of all affine transformations of the q-dimensional affine space Aq. Denote by g and h the Lie algebras of the 
Lie groups G and H, respectively. Let N be a smooth (not necessary connected) manifold. Consider the 
frame bundle T (N, H) over N with the projection p : T → N . Denote by p the Lie algebra of the Lie group 
Rq.

It is well known that setting the linear connection ∇ on N is equivalent to setting an H-connection in 
T , i.e. the H-invariant q-dimensional distribution Q on T . We call Q the associated H-connection with ∇. 
Since Q is an H-connection in T , we have the h-valued 1-form α and the canonical p-valued 1-form θ of 
the connection Q on T [12]. Then the equality β(X) := α(X) + θ(X) ∈ g = h � p, X ∈ X(T ), defines the 
g-valued 1-form on T satisfying the following conditions:

(c1) the map βw : TwT → g is an isomorphism of the vector spaces for every w ∈ T ;
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(c2) R∗
hβ = AdG(h−1)β for all h ∈ H, where AdG : G → GL(g) is the adjoint representation of the Lie 

group G on its Lie algebra g;
(c3) β(A∗) = A for any A ∈ h, where A∗ is the fundamental vector field defined by the element A.

The pair (N, ∇) is called a manifold of a linear connection ∇. We emphasize that the setting of a linear 
connection ∇ on N is equivalent to the setting the Cartan geometry ξ = (T (N, H), β) of type (G, H) [5].

2.5. The foliated bundle over (M, F )

We will use the following well known construction of the lifted foliation (R, F) for a foliation (M, F ) with 
transverse linear connection. Let (M, F ) be a given foliation with transverse linear connection modelled on 
a q-dimensional manifold of a linear connection (N, ∇). One may construct a principle H-bundle R(M, H)
(called a foliated bundle) with the projection π : R → M , an H-invariant transversely parallelizable foliation 
(R, F) such that π is a morphism of (R, F) into (M, F ) in the category of foliations Fol; moreover, there 
exists a g-valued 1-form ω on R having the following properties:

(i) ω(A∗) = A for any A ∈ h, where A∗ is the fundamental vector field corresponding to A;
(ii) R∗

aω = AdG(a−1)ω ∀a ∈ H;
(iii) for any u ∈ R, the map ωu : TuR → g is surjective with the kernel kerω = TF , where TF is the 

tangent distribution to the foliation (R, F);
(iv) the Lie derivative LXω is zero for any vector field X tangent to the leaves of (R, F);
(v) there exists the H-connection Q on R transversely projectable with respect to (R, F) in sense of [13], 

i.e. its h-valued 1-form pr ◦ ω satisfies the following conditions iX(pr ◦ ω) = 0 and iXd(pr ◦ ω) = 0 for 
all X ∈ XF (R), where pr : g = h � p → h is the canonical projection.

The foliation (R, F) is called the lifted foliation. The restriction πL : L → L of π to a leaf L of (R, F) is 
a holonomy covering map onto the corresponding leaf L of (M, F ).

If R is disconnected, then we consider a connected component of R.

3. Existence of a global attractor

3.1. Ehresmann connection for foliations

The notion of an Ehresmann connection for a foliation was introduced by Blumenthal and Hebda [3]. 
Just like in [18] we use the terminology suggested earlier by Hermann. Let (M, F ) be a smooth foliation of 
codimension q ≥ 1 and M be a q-dimensional distribution transverse to (M, F ), i.e. TxM = Mx ⊕ TxF for 
any point x ∈ M . All maps considered here are assumed to be piecewise smooth. The curves in the leaves 
of the foliation are called vertical; the distribution M and its integral curves are called horizontal.

A map H : I1 × I2 → M , where I1 = I2 = [0, 1], is called a vertical-horizontal homotopy if for each fixed 
t ∈ I2, the curve H|I1×{t} is horizontal, and for each fixed s ∈ I1, the curve H|{s}×I2 is vertical, see Fig. 1. 
The pair of curves (H|I1×{0}, H|{0}×I2) is called the base of H.

A pair of curves (σ, h) with a common starting point σ(0) = h(0), where σ : I1 → M is a horizontal curve, 
and h : I2 → M is a vertical curve, is called admissible. If for each admissible pair of curves (σ, h) there 
exists a vertical-horizontal homotopy with the base (σ, h), then the distribution M is called an Ehresmann 
connection for the foliation (M, F ). Note that there exists at most one vertical-horizontal homotopy with a 
given base. Let H be a vertical-horizontal homotopy with the base (σ, h). We say that σ̃ = H|I1×{1} is the 
result of the translation of the horizontal curve σ along the vertical curve h with respect to the Ehresmann 
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Fig. 1. A vertical-horizontal homotopy H.

connection M. Similarly the curve h̃ = H|{1}×I2 is called the translation of the curve h along σ with respect 
to M.

Let q : M → B be a submersion of manifolds with connected fibres. Let M be a distribution on M
complementary to the vertical distribution tangent to the fibres of q. Then M is said to be an Ehresmann 
connection for the submersion q if for any curve h : [0, 1] → B and every x ∈ q−1(h(0)), there exists an 
integral curve h̃ → M of M with the origin h̃(0) = x such that q ◦ h̃ = h. The curve h̃ is called the 
M-lift of h. It is known [3, Prop. 1.3] that a distribution M is an Ehresmann connection for the submersion 
q : M → B with connected fibres, if and only if M is an Ehresmann connection for the foliation (M, F )
where F = {q−1(b) | b ∈ B}.

3.2. A Riemannian metric and a connection adapted to the lifted foliation

Let (M, F ) be a foliation of codimension q with transverse linear connection. Let R(M, H) be its foliated 
bundle with the lifted foliation (R, F) and the projection π : R → M having properties indicated in 
Section 2.5. Consider a smooth q-dimensional distribution M transverse to (M, F ). Let M̃ := π∗M, i.e. 
M̃u := {X ∈ TuR | π∗uX ∈ Mx,x = π(u)} for all u ∈ R. Denote by P the smooth q-dimensional distribution 
on R which is equal to the intersection Q and M̃, i.e. Pu = {X ∈ M̃u | ω(X) ∈ p} for all u ∈ R. The 
H-invariance of the distributions Q and M̃ implies the H-invariance of the distribution P.

Definition 8. A smooth vector field X ∈ X
M̃

(R), for which ω(X) = c = const ∈ g is said to be a g-field. If 
moreover c ∈ p, then X is said to be a p-field.

A piecewise smooth curve in R is called a g-curve (respectively a p-curve), if each its smooth piece is an 
integral curve of some vector g-field (respectively a p-field).

Remark, that locally each smooth g-curve σ can be represented as σ(t) = ϕX
t (v), t ∈ (−ε, ε), where 

ε > 0, ϕX
t is the 1-parameter group of local diffeomorphisms of the manifold R generated by the g-field X

for which σ(t) is an integral curve, and v = σ(0) = ϕX
0 (v).

Lemma 1. Let H = GL(q, R) and O(q) be the orthogonal subgroup of H. Denote by gR a Riemannian metric 
on the space of the foliated bundle R. Let d0 be the Euclidean metric on the vector space of g invariant with 
respect to the action of the compact group AdG(O(q)). Let Z = ZF ⊕ Z

M̃
be the decomposition of a vector 

field Z ∈ X(R) corresponding to the decomposition of the tangent vector space to R in the direct sum of the 
vector subspaces TuR = TuF ⊕ M̃u, u ∈ R.

Then the equality

d(X,Y ) := gR(XF , YF ) + d0(ω(X), ω(Y )) ∀X,Y ∈ X(R),
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defines a Riemannian metric d on R transversally projectable with respect to the foliation (R, F) satisfying 
the following properties:

1) the length l(σ) of any smooth g-curve σ, σ(t) = ϕX
t (v), where t ∈ [0, t1], v = σ(0), is equal to ‖ ω(X) ‖d0

·t1, where ‖ ω(X) ‖2
d0

= d0(ω(X), ω(X));
2) l(ϕX

t (v)) = l(ϕX
t (v′)), where X is a g-field, t ∈ [0, t1], for all v, v′ ∈ R, if ϕX

t (v) and ϕX
t (v′) are defined 

at t ∈ [0, t1];
3) for any element a = (D · A)−1, where A ∈ O(q), D = diag(d1, ..., dq) with 0 < |di| < 1 for 1 ≤ i ≤ q, 

and λ = max{|d1|, ...|dq|} and for any p-curve σ the curve σ̃ := Ra ◦σ is a p-curve, with l(σ̃) ≤ λ · l(σ).

Proof. Since g-valued 1-form ω is projectable with respect to (R, F), the Riemannian metric d is also 
projectable with respect to this foliation. As σ(t) = ϕX

t (v), where t ∈ [0, t1], is an integral curve of some 
g-field X such that d(X, X) =‖ ω(X) ‖2

d0
and d(σ)/dt = Xσ(t), the length l(σ) is calculated by the formula 

specified in 1).
The relation 2) follows from 1).
Let us verify 3). By the condition a = (D ·A)−1, where A ∈ O(q), D = diag(d1, ..., dq) with 0 < |di| < 1

for 1 ≤ i ≤ q and λ = max{|d1|, ...|dq|}.
Case I: σ(t) = ϕX

t (v), t ∈ [0, t1], is a smooth p-curve with the origin σ(0) = v. Consider σ̃ := Ra ◦ σ. As 
σ̃(t) = ϕY

t (v · a), where Y = Ra∗(X), the AdG(H)-invariance of p implies that Y is a p-field. Hence σ̃ is a 
p-curve.

According to 1), its length is calculated by the formula l(σ̃) =‖ ω(X) ‖d0 ·t1. The H-equivariance 
of the form ω implies the equality ω(Y ) = ω(Ra∗(X)) = AdG(a−1)ω(X) = a−1ω(X). Therefore, 
l(σ̃) = ‖ AdG(a−1)ω(X) ‖d0 · t1. Since a−1 = D · A and A ∈ O(q), using Ad(O(q))-invariance of d0, we 
get the following relations: ‖ AdG(a−1)ω(X) ‖d0= ‖ AdG(D ·A)ω(X) ‖d0 = ‖ AdG(D) ◦AdG(A)ω(X) ‖d0≤
λ· ‖ AdG(A)ω(X ‖d0= λ· ‖ ω(X) ‖d0 , hence l(σ̃) ≤ λ · l(σ).

Case II: σ is a piecewise smooth p-curve. Then it is divided into finite number of smooth pieces σ|Ii, i =
1, ..., m, for each of which, as it was proved above, there is the inequality l(σ̃|Ii) ≤ λ · l(σ|Ii), hence l(σ̃) ≤
λ · l(σ). �

The following easily proved lemma takes place.

Lemma 2. Let Ei, i = 1, dim(g) be a basis of the Lie algebra g. Let Xi be a g-field such that ω(Xi) = Ei. 
We shall denote by ∇̃ the Levi-Civita connection of the Riemannian manifold (R, d). Then the equality

∇0
Y Z := Y (Zi)Xi + ∇̃Y ZF , (*)

where Z = ZF ⊕ Z
M̃

, Z
M̃

= ZiXi ∈ X
M̃

(R), ZF ∈ XTF (R), Y ∈ X(R), defines a linear connection ∇0

in R (generally speaking with torsion) with respect to which all g-fields are parallel. Besides the parallel 
transfer keeps the scalar product of g-fields inducted by d, and integrated curves of g-fields are geodetic lines 
of the connection ∇0.

Recall that a smooth vector field X on R is complete, if X generates a global 1-parameter group of 
diffeomorphisms of R.

Definition 9. A foliation (M, F ) of codimension q with transverse linear connection is called complete, if there 
exists a q-dimensional smooth distribution M on M transverse to TF such that every g-field X ∈ X

M̃
(R), 

where M̃ := π∗M, is complete.
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Thus, by the definition, the completeness of a foliation (M, F ) with transverse linear connection is 
equivalent to the completeness of (M, F ) considered as a Cartan foliation [18].

Remark 5. It is not difficult to show that a foliation (M, F ) of codimension q with transverse linear connec-
tion is complete, if and only if there exists a q-dimensional smooth distribution M on M transverse to TF
such that every p-field X ∈ XP(R) is complete.

3.3. Lemma

We use the notations from the previous section.
The following lemma will be used in the proof of the existence of a global attractor.

Lemma 3. Let (M, F ) be a foliation with transverse linear connection admitting an Ehresmann connection 
M. Let L and L′ be two arbitrary leaves of (M, F ). Then the sets π−1(L) and π−1(L′) of R may be connected 
by some piecewise smooth p-curve.

Proof. Let f : M → M/F be the quotient map onto the leaf space. We denote by [L] the leaf L of (M, F )
considered as a point of M/F . We say that [L] is equivalent to [L′] if there exists a piecewise smooth p-curve 
σ : [0, 1] → R connecting π−1(L) with π−1(L′), i.e., σ(0) ∈ π−1(L) and σ(1) ∈ π−1(L′).

Let us show that this relation is indeed an equivalence relation on M/F . The reflexivity and symmetry 
are obvious. Let us check the transitivity of the introduced relation. Let [L0] ∼ [L1] and [L1] ∼ [L2], and a 
p-curve σ connects π−1(L0) with π−1(L1), a p-curve σ1 connects π−1(L1) with π−1(L2). Let v0 = σ(0) ∈
π−1(L0), v1 = σ(1) ∈ π−1(L1), v2 = σ1(0) ∈ π−1(L1), v3 = σ1(1) ∈ π−1(L2) and xi = π(vi), i = 0, ..., 3, 
and x1, x2 ∈ L1. Hence, there exists a path h : [0, 1] → L1 connecting x2 = h(0) with x1 = h(1).

Use the following notation: γ1 = π◦σ1. Emphasize that γ1 is M-horizontal curves. As M is an Ehresmann 
connection for (M, F ), there exists γ2, the result of the translation of γ1 along h with respect to M, 
and γ2 is M-horizontal curve with the end points γ2(0) = x1 ∈ L1 and γ2(1) = x4 ∈ L2. Note that 
the defined in Section 2.5 H-invariant distribution Q is a connection in the principal H-bundle with the 
projection π : R → M . Therefore there exists the Q-lift σ2 of γ2 to the point v1. Since π ◦ σ2 = γ2, then 
v4 := σ2(1) ∈ π−1(x4) ⊂ π−1(L2). Thus, the product of paths σ · σ2 is a p-curve connecting π−1(L0) with 
π−1(L2). This means that [L0] ∼ [L2], i.e. the relation ∼ is transitive, hence the introduced relation is an 
equivalence relation.

We now show that each equivalence class is an open subset of M/F . Consider a point [L] ∈ M/F , where 
L = L(x0), x0 ∈ M . Let A([L]) be the equivalence class containing [L]. Using the exponential map of the 
linear connection ∇0 on R introduced in Lemma 2, we see that for every point u0 ∈ π−1(x0) there exists a 
normal neighbourhood V in R such that U = π(V) is a neighbourhood adapted to (M, F ) and projections 
of p-geodesics with the origin in u0 to U intersect every leaf of the induced foliation (U, FU). This means 
that the open subset U in M satisfies the following inclusion f(U) ⊂ A([L]). Therefore, A([L]) is an open 
subset in M/F .

Since the complement of A([L]) is formed by the union of the remaining equivalence classes each of which 
is open, then A([L]) is a closed subset of M/F . Due to the connectivity of the topological space of M , the 
leaf space M/F is also connected. Hence a non-empty open-closed subset A([L]) coincides with M/F . �
3.4. Proof of Theorem 2

Let (M, F ) be a foliation with transverse linear connection admitting an Ehresmann connection M and 
q = codim(M, F ). Let f : U → V be a submersion from N -cocycle defining (M, F ). Assume that for x ∈ U

and z = f(x) ∈ V the linear holonomy group DΓ(L, x) ∼= Hz∗ of a leaf L = L(x) contains an element φ∗z
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defined by a matrix of the form A · D, where K = < A > is a relatively compact subgroup of the linear 
group H = GL(q, R) and D = diag(d1, ..., dq) with 0 < |di| < 1 for 1 ≤ i ≤ q in the orthonormal basis of 
the Euclidean tangent vector space (TzN, g0), and g0 is invariant with respect to the compact group K. Put 
λ = max{|d1|, ..., |dq|}, then λ ∈ (0, 1).

Let π : R → M be the projection of the foliated H-bundle, H = GL(q, R), over (M, F ). Recall that 
H(u) = {a ∈ H | Ra(L) = L}, where u ∈ π−1(x) ⊂ R and L = L(u) is a leaf of the lifted foliation (R, F). 
By Theorem 1, there exists an isomorphism h of the subgroups DΓ(L, x) and H(u) of the linear group H, 
and h is a homeomorphism of DΓ(L, x) and H(u) with respect to the induced topologies. Therefore the 
group H(u) contains an element â = (D ·A)−1, where D and A are indicated above.

Let K0 be the maximal compact subgroup of H = GL(q, R) containing K. As K0 is conjugate to the 
maximal compact subgroup O(q) in H, there exists C ∈ H such that K0 = C · O(q) · C−1. According to 
Remark 1, at point v = uC, we get that H(v) = C−1 · H(u) · C. Therefore, H(v) contains the element 
b := C−1 · (D ·A) · C = D · C−1 ·A · C = D · Ã where Ã ∈ O(q).

We use the notations of the previous lemmas. Let L′ be any other leaf of this foliation. By Lemma 3, there 
exists a p-curve σ connecting π−1(L) and π−1(L′). Let v = σ(0) ∈ π−1(x), x ∈ L, v0 := σ(1) ∈ π−1(x0), 
x0 ∈ L′. Due to the continuity of π, for any however small ε > 0 there is the ball Bε of a radius ε with the 
centre at v of the Riemannian manifold (R, d) such that π(Bε) ⊂ U .

Consider the curve σ̃ := Ra(σ) where a := bk, b is as above. Then w := va = σ̃(0) and w0 := v0a = σ̃(1). 
As λ ∈ (0, 1), for any however small ε > 0 there is a natural number k for which λk · l(σ) < ε. According to 
the statement 3) of Lemma 1, the length of the curve σ̃ := Ra ◦ σ, where a = bk ∈ H(L, v) ⊂ H, satisfies 
the relation l(σ̃) = λk · l(σ) < ε. Since a ∈ H(v), we can connect the points w := Ra(v) and v by a smooth 
path h in the leaf L = L(v), h(0) = w, h(1) = v. By the assumption, M is an Ehresmann connection for the 
foliation (M, F ). Therefore the induced distribution M̃ = π∗M is an Ehresmann connection for the lifted 
foliation (R, F). Hence there exists the translation of the p-curve σ̃ along the leaf path h with respect to 
the Ehresmann connection M̃. Let σ̂ be the result of the translation. We observe that σ̂ is a p-curve and 
σ̂(0) = v. Recall that according to Lemma 1, d is transversely projectable Riemannian metric with respect to 
(R, F). Therefore (R, F) is a Riemannian foliation, and l(σ̂) = l(σ̃) < ε in (R, d), hence σ̂(1) = v1 ∈ Bε(v). 
As points π(v1) and π(v0) belong to the same leaf π(L(v0)) = L′ = π(L(v1)), so π(v1) ∈ L′ ∩ π(Bε). Hence 
the closure L′ of the leaf L′ satisfies the inclusion L′ ⊃ L. By property of closure it implies L′ ⊃ L = M. 
Thus, we proved that

M ⊂ L′ ∀L′ ∈ F. (1)

Let Lα ⊂ M, then Lα ⊂ M. According to (1), it is necessary M ⊂ Lα. Therefore, Lα = M for all 
Lα ⊂ M. This means that M is a minimal set. According to (1), M is a global attractor.

If L is a proper leaf, then the minimal set M is trivial, and M = L. Since L is a global attractor, it is 
necessary that L is a unique closed leaf of (M, F ). This completes the proof of Theorem 2. �
3.5. Proof of Corollary 1

Let (M, F ) be a transversely similar pseudo-Riemannian foliation of codimension q on an n-dimensional 
manifold M , and (M, F ) admits an Ehresmann connection. Assume that (M, F ) is modelled on a pseudo-
Riemannian manifold (N, gN ) of signature (k, s), where q = k + s. Denote by L = L(x) the leaf having an 
element ϕ∗x in the linear holonomy group DΓ(L, x) of the form λ · A, where λ ∈ (0, 1) and A belongs to 
a compact subgroup of the pseudo-orthogonal group O(k, s). Note that every local similarity kij belonging 
to the holonomy pseudogroup of (M, F ) is an isomorphism of the Levi-Civita connection (N, ∇) of the 
pseudo-Riemannian manifold (N, gN ). Therefore (M, F ) satisfies the assumptions of Theorem 2 and the 
statements of Corollary 1 follow from Theorem 2. �



N.I. Zhukova / Differential Geometry and its Applications 74 (2021) 101699 13
4. The structure of transversely similar Riemannian foliations

4.1. A criterion of being Riemannian for a transversely similar Riemannian foliation

Let N be a q-dimensional not necessary connected manifold and g be a Riemannian metric on N . A similar 
Riemannian structure on N is the class [|g|] of Riemannian metrics similar to g.

Denote by R+ the multiplicative group of positive numbers and G = (R+ ·O(q)) �Rq the Lie group of all 
similarities of the q-dimensional Euclidean space Eq. Put H = R+ ·O(q). Denote by g and h the Lie algebras 
of the Lie groups G and H respectively. A similar Riemannian structure [|g|] on N defines the Levi-Civita 
connection ∇ which is same for every metric h ∈ [|g|]. Emphasize that the setting a similar Riemannian 
structure [|g|] on N is equivalent to the setting an H-invariant connection Q in the H-bundle P (N, H). Let 
p : P → N be the projection. Denote by ξ = (P (N, H), β) the associated Cartan geometry on N , where β
is the associated g-valued 1-form on P (details see in Section 2.4).

Consider a transversely similar Riemannian foliation (M, F ). Then there are the following objects: an 
H-bundle R(M, H) over (M, F ) with the projection π : R → M , a g-valued 1-form ω on R and the lifted 
foliation (R, F). Note that the Lie group H acts freely on the right on R, and the action is smooth.

Proposition 1. A transversely similar Riemannian foliation is Riemannian if and only if all its holonomy 
groups are relatively compact.

Proof. Let Eq be the q-dimensional unit matrix, Eq ∈ O(q). For short we denote by R+ the Lie subgroup 
R+ · {Eq} of H. Since H acts freely on R, a free action of its normal subgroup R+ is also defined on 
R, and the quotient space R/R+ is a smooth manifold R̂. Moreover, a free action of the quotient group 
O(q) = H/R+ on R̂ is defined, and M = R̂/O(q). The projections to the orbit spaces α : R → R̂ and 
π̂ : R̂ → M satisfy the equation π = π̂◦α. Since the lifted foliation (R, F) is H-invariant, it is R+-invariant, 
hence there exists a foliation (R̂, F̂ ) such that α : R → R̂ is a morphism in the category of foliations Fol.

By the assumption, all linear holonomy groups of (M, F ) are relatively compact. According to Theorem 1, 
this is equivalent to relative compactness of every subgroup H(u), u ∈ R, where H(u) = {a ∈ H | Ra(L) =
L} and L = L(u) is a leaf of (R, F).

Since the Lie group R+ does not admit nontrivial relatively compact subgroups, it is necessary that 
L(u) ∩ α−1(α(u)) = {u} for every u ∈ R. Therefore, H(u) ∩ R+ = {1}. This implies that α|L : L → L̂

is a diffeomorphism of L onto the appropriate leaf L̂ of the foliation (R̂, F̂ ). According to [20, Prop. 4], 
there exists a section σ : R̂ → R such that the image σ(L̂) of a leaf L̂ ∈ F̂ is a leaf of (R, F). This means 
that σ : R̂ → R is an isomorphism of foliations (R̂, F̂ ) and (R̃, F̃ ), where R̃ = σ(R̂) and F̃ = F|R̃. This 
implies the triviality of the R+-bundle R(R̂, R+). Hence, without loss of generality, we can identify R with 
the product of manifolds R̂ × R+ and assume that R̃ = σ(R̂) = R̂ × {1}. Thus, R̂(M, O(q)) is a foliated 
reduction of the H-bundle R(M, H) to the closed subgroup O(q).

Note that h = R1 ⊕ so(q), where h, R1 and so(q) are the Lie algebras of the Lie groups H, R+ and 
O(q), respectively. Let pr : R1 ⊕ so(q) → so(q) be the canonical projection. As TvR = R1 ⊕ TvR̃, v ∈ R̃, 
ω(X) ∈ {o} ⊕ so(q) for any X ∈ TvR̃. The equality ω̃(X) = pr ◦ ω(X), X ∈ TvR̃ defines a so(q)-valued 
1-form ω̃ on R̃.

It is easy to show that H-equivariance of ω implies the so(q)-equivariance of ω̃, and the transversal 
projectability of ω with respect to (R, F) implies the transversal projectability of ω̃ with respect to (R̃, F̃).

Thus, (M, F ) is a Riemannian foliation and R̃(M, O(q)) is its foliated bundle.
The converse may be proved in an obvious way. �

Corollary 4. If a transversely similar Riemannian foliation (M, F ) is not Riemannian, then there exists a 
leaf L with essential holonomy group.
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4.2. Proof of Theorem 3

(i). Let (M, F ) be a non-Riemannian transversely similar Riemannian foliation of codimension q, q ≥ 1. 
According to Corollary 4, there is a leaf L = L(x), x ∈ M , with an essential holonomy group. This is 
equivalent to the existence of an element of the form λ · A in the linear holonomy group DΓ(L, x), where 
λ ∈ (0, 1) and A ∈ O(q). Besides by the assumption, (M, F ) admits an Ehresmann connection. Hence, 
according to Theorem 2, the foliation (M, F ) has a global attractor M. Thus the statement (i) is proved.

(ii), (iv). Assume that (M, F ) is modelled on a similar Riemannian geometry (N, [|g|]), where (N, g) is 
a not necessary connected Riemannian manifold. There exists a unique class of conformal metrics [g] on 
N containing [|g|]. Therefore (M, F ) may be considered as a conformal foliation modelled on a conformal 
geometry (N, [g]).

Let q ≥ 4 and W be the Weyl tensor of type (1, 3) of the conformal curvature for the Riemannian 
manifold (N, g). Considering W as a multilinear map W : XN × XN × XN → XN , we define the norm 
‖ W ‖ (x), x ∈ N by the following way. Let ‖ X ‖ (x) :=

√
gx(X,X) for any vector field X ∈ X(N). We 

put ‖ W ‖ (x) := sup
‖Xi‖(x)≤1

‖ W (X1, X2, X3) ‖ (x) ∀x ∈ N , i = 1, 2, 3.

Recall that the holonomy pseudogroup H = H(M, F ) of (M, F ) consists of local conformal diffeomor-
phisms of the Riemannian manifold (N, g). It is well known that the Weyl tensor W is a conformal invariant. 
Let M be a q-dimensional distribution on M transversal to (M, F ), i.e. TxM = Mx ⊕ TxF for every 
x ∈ M . Therefore, on the distribution M the transversely projectable Weyl tensor W̃ is induced. Thus 
f̃(x) :=‖ W̃ ‖ (x), x ∈ M , is the base function with respect to (M, F ), i.e. a function which is constant 
on leaves of this foliation. The existence of a global attractor and the continuity of this function imply 
‖ W̃ ‖= const, i.e. the constancy of the function f(z) :=‖ W ‖ (z), z ∈ N . Let c =‖ W ‖.

For every v ∈ N there exists a submersion fi : Ui → Vi from (N, [|g|])-cocycle defining (M, F ) such 
that v ∈ fi(Ui) = Vi. The equality f̂(v) := f(z) where z ∈ f−1

i (v) defines a smooth function f̂ on N , and 
f̂(v) ≡ c. Assume, that c �= 0. As all transformations from the holonomy pseudogroup H of (M, F ) are local 
conformal diffeomorphisms, it is not difficult to check up that each transformation from H preserves the 
Riemannian metric cg on N , i.e. H is a pseudogroup of local isometries of the Riemannian manifold (N, cg). 
Hence (M, F ) is a Riemannian foliation. This contradicts the assumption of Theorem 3.

Therefore it is necessary that W ≡ 0.
If q = 3, then W ≡ 0 and the replacing W by the Schouten tensor V of type (1, 2) [17, Th. P.5.1], 

similarly to the previous case we show the invariance of the Riemannian metric ‖ V ‖ 2
3 ·g with respect to 

the holonomy pseudogroup H of (M, F ) and get the contradiction. Hence, V ≡ 0.
The Weyl–Schouten theorem [17, Th. P.5.1] contains the following criteria for a q-dimensional Riemannian 

manifold (N, g), q ≥ 3, to be locally conformally flat, i.e. to be locally conformally equivalent to the Euclidean 
space Eq (or the standard sphere Sq). For q ≥ 4, a q-dimensional Riemannian manifold (N, g) is locally 
conformally flat if and only if, the Weyl conformal curvature tensor W is equal to zero. A 3-dimensional 
Riemannian manifold (N, g) is locally conformally flat if and only if, the Schouten tensor V is equal to zero.

By the Lichtenstein theorem [17, Th. P.4.6], any 2-dimensional Riemannian manifold is locally conformally 
flat. Every 1-dimensional Riemannian manifold is also conformally flat.

Thus for q ≥ 1 the transverse Riemannian manifold (N, g) is locally conformally flat, hence every open 
subset U ⊂ N may be considered as a subset of Sq.

According to the Liouville theorem, for any connected open subsets U , V of Sq and for each similar 
transformation γ : U → V there exists a unique element f ∈ Conf(Sq) such that γ = f |U . Therefore, 
(M, F ) is a (Conf(Sq), Sq)-foliation.

By the assumption, there exists an Ehresmann connection for (M, F ), then we may apply [20, Th. 2]. 
According to this theorem, there exists a regular covering map κ : M̃ → M and a simply connected 
(Conf(Sq), Sq)-manifold B such that the induced foliation F̃ := κ∗F is formed by fibres of a submersion 
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r : M̃ → M . Moreover, there exists a Riemannian metric gB on B and a group homomorphism χ :
π1(M, x) → Conf(B, gB) such that the global holonomy group Ψ := χ(π1(M, x)) is isomorphic to the 
group of covering transformations of the map κ : M̃ → M .

Without loss of generality we can assume that the holonomy pseudogroup of (M, F ) is generated by the 
group Ψ. Since (M, F ) is a transversally similar foliation, Ψ is a group of similarities of (B, gB). Therefore 
Ψ is both an essential similarity group and an essential conformal transformation group of the Riemannian 
manifold (B, gB). Therefore, by Ferrand results [8] (see also [1]), for q ≥ 3 the Riemannian manifold (B, gB)
has to be conformal either to the standard sphere Sq or to the Euclidean space Eq. The same statement 
holds for q = 2 [1].

Assume that (B, gB) is conformal to Sq, hence B is compact. In this case, according to theorem of 
Hopf and Rinow, (B, gB) is complete. Thus the global holonomy group Ψ has an essential similarity ψ of a 
complete Riemannian manifold B with the fixed point b = r(κ−1)(x). According to [12, Lem. 2, Chap VI]
this is only possible when (B, gB) is the Euclidean space Eq. The contradiction with the assumption shows 
that B = Eq and Ψ ⊂ Sim(Eq). It is easy to see that the completeness of B = Eq implies the completeness 
of both transversely similar foliations (M̃, F̃ ) and (M, F ).

Therefore (M, F ) is a complete (Sim(Eq), Eq)-foliation and the statements (ii) and (iv) are proved.
(v). Since the holonomy pseudogroup H = H(M, F ) is generated by the group Ψ, then H is analytical. 

Therefore the statements proved above imply that the holonomy group Γ(L, x) of the leaf L is isomorphic 
to the isotropy subgroup Ψz of Ψ at point z ∈ pr(κ−1(L)). Hence (v) holds true.

(iii). Since Eq is contractible, the locally trivial bundle r : M̃ → Eq is trivial, hence M̃ ∼= L0 × Eq and 
r = pr : L0 × Eq → Eq is the canonical projection.

It is easy to see that the restriction κ|L0×{b}, b ∈ Eq is a regular covering map onto the corresponding 
leaf L of (M, F ), and the deck transformation group is isomorphic to the isotropy subgroup Ψb of Ψ at the 
point b. According to the statement (v) proved above, the group Ψb is isomorphic to the holonomy group 
of L. This completes the proof of (iii).

For q ≥ 1, statements (vi) and (vii) are proved similarly to the corresponding statements in [20, Th. 
5]. �
5. Proof of Theorem 5

Denote by < A, a >, where A ∈ GL(q, R), a ∈ Rq, q ≥ 1, an element of the affine group Aff(Aq). This 
element acts on the q-dimensional affine space Aq by the rule < A, a > x = Ax + a ∀x ∈ Aq. Therefore the 
group operation in Aff(Aq) is defined by the following equality:

< A, a >< B, b >=< AB,Ab + a > ∀ < A, a >,< B, b >∈ Aff(Aq).

Since Sim(Eq) is a subgroup of Aff(Aq), it has the same group operation.
Let (M, F ) be a non-Riemannian transversely similar foliation of codimension one. Assume that (M, F )

admits an Ehresmann connection M. Since M is a 1-dimensional distribution, it is integrable, i.e. there 
exists an 1-dimensional foliation (M, F t) for which TF t = M. Consider the universal covering map κ̂ :
M̂ → M with two induced foliations (M̂, F̂ ), F̂ := κ̂∗F and (M̂, F̂ t), F̂ t = κ̂∗F t. Note that the distribution 
M̂ := κ∗M is equal to T F̂ t. Since (M, F ) admits an Ehresmann connection, then there exists a manifold L̂0
diffeomorphic to the common universal covering space for all leaves of (M, F ). According to Kashiwabara’s 
theorem [11, Th. 2], we may identify M̂ with the product L̂0 × R1, and F̂ = {L̂0 × {y} | y ∈ R1}, F̂ t =
{{z} ×R1 | z ∈ L̂0}. Therefore, every two leaves of different foliations (M, F ) and (M, F t) have a nonempty 
intersection.

For a fixed point x̂ ∈ κ̂−1(x), the fundamental group π1(M, x) acts on the product L̂0 × R1 as the 
deck transformation group G. Since G conserves both induced trivial foliations of L̂0 × R1, the projection 
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L̂0 ×R1 → R1 induces a group Ψ on R1, and Ψ is a subgroup of the Lie group Sim(E1) = (R+ ·O(1)) �R1. 
Emphasize that Ψ is the global holonomy group of (M, F ). By Theorem 3, a group homomorphism χ :
π1(M, x0) ∼= G → Sim(E1) is defined. Let Ĝ = Ker(χ) be the kernel of χ, then Ĝ acts freely and proper 
discontinuously on M̂ , and the orbit space M̃ = M̂/Ĝ is a manifold on which the quotient group Ψ̃ := G/Ĝ

acts freely and proper discontinuously, and the orbit space M̃/Ψ̃ is diffeomorphic to M . The quotient map 
κ : M̃ → M is a regular covering map with the deck transformation group Ψ̃ isomorphic to Ψ satisfying the 
equality κ̂ = κ ◦ κ̃, where κ̃ : M̂ → M̂/Ψ̃ = M̃ is the quotient map. Note that κ : M̃ → M and Ψ satisfy 
Theorem 3.

Let < E1, 0 > be the unit element in Ψ. Every similarity of Eq ∀q ≥ 1, different from an isometry, has a 
unique fixed point. Therefore, since Ψ is essential, there exists an essential stationary subgroup Ψa at some 
point a ∈ E1. Hence, there exists a homothety ψ = < λE1, a > ∈ Ψ where λ �= 1 and λ > 0. If λ < 0, 
then we replace ψ with ψ2. Consider a coordinate system on E1 with the origin at a. Then a = 0 and 
ψ =< λE1, 0 >∈ Ψ.

Case I: there exists ψ′ ∈ Ψ with a fixed point different from 0. Then there exists ψ′′ = < μE1, d > ∈ Ψ, 
where μ > 1 and d �= 0. In this case by [18, Lem. 2], the orbit Ψ.b ∀b ∈ E1 is dense in E1. This means that 
every leaf of (M, F ) is dense in M , i.e. M is a minimal set.

Case II: there exists a unique essential stationary subgroup Ψb0 , b0 ∈ E1, of Ψ. Without loss generality 
we put b0 = 0, hence there exists ψ =< λE1, 0 >∈ Ψ0, λ ∈ (0, 1). Let κ : L0 × E1 → M be the regular 
covering map satisfying Theorem 3. Therefore L := κ(L0 × {0}) is the unique closed leaf of (M, F ). It is 
not difficult to check that for every x ∈ L, the leaf Lt(x) of (M, F t) containing x intersects L only at x, i.e. 
L ∩Lt(x) = {x} ∀x ∈ L. Moreover, the map p : M → L such that p(y) := Lt(y) ∩L ∀y ∈ M , is defined, and 
it forms a locally trivial bundle over L with the standard fibre R1. This implies that M and L are homotopy 
equivalent. Hence, in particular, the fundamental groups π1(L, x0) and π1(M, x0) are isomorphic. Moreover, 
(M, F ) is the suspension foliation defined by a group homomorphism ρ : π1(L, x0) → Sim(E1). Identifying 
π1(L, x0) and π1(M, x0) by the mentioned above isomorphism we get ρ = χ, where χ satisfies Theorem 3. 
Therefore, ρ(π1(L, x0)) = Ψ, where Ψ is the global holonomy group of (M, F ).

Since p : M → L is a locally trivial bundle with the non-compact fibre R1, then M must be non-compact 
in Case II.

As L is a closed leaf, M0 := M \ L is an open dense saturated subset in M . Let F0 := F |M0 be the 
induced foliation. Since all holonomy groups of (M0, F0) are inessential, (M0, F0) is a Riemannian foliation. 
The restriction M|M0 of an Ehresmann connection M for (M, F ) is an Ehresmann connection for (M0, F0).

Note that there exists a homeomorphism h : M/F → E1/Ψ of the leaf space M/F of (M, F ) onto 
the orbit space E1/Ψ satisfying the equality h ◦ r ◦ κ = τ ◦ pr, where pr : M̃ ∼= L0 × E1 → E1 is the 
projection, r : M → M/F and τ : E1 → E1/Ψ are the respective quotient maps. Then the restriction 
h|M0/F0 : M0/F0 → (E1 \ {0})/Ψ is also a homeomorphism. If Ψ contains a translation ψ′ =< E1, d >, 
where d �= 0, then the composition ψ′◦ψ =< λE1, d > belongs to the stationary subgroup Ψb at b = d/(1 −λ). 
As d �= 0, it is necessary b �= 0, i.e. Ψb is essential at b �= 0. That contradicts with the assumption of Case II. 
Thus Ψ = Ψ0.

Consider a leaf Lα ⊂ M0. Let b ∈ pr ◦ κ−1(Lα) ∈ E1, then b �= 0. By Theorem 3, Γ(Lα, x) is isomorphic 
to the stationary subgroup Ψb. Since Ψ = Ψ0, every leaf Lα ⊂ M0 is without holonomy.

(a) Assume that (M, F ) is a proper foliation. In this case the global holonomy group Ψ is a discrete 
subgroup of Sim(E1). As Ψ0 ⊂ R+ ·O(1) where O(1) = {< ±E1, 0 >}, according to the statements proved 
above, Ψ is either isomorphic to the group of integers Z, when Ψ preserves the orientation of E1, or to the 
group Z2 × Z otherwise. In the both cases the closure Lα of every leaf Lα ⊂ M0 is equal to Lα ∪ L.

(1) Let (M, F ) be proper transversely non-orientable, then M0/F0 is homeomorphic to (E1 \ {0})/Ψ
which is homeomorphic to S1. Therefore M0/F0 is also homeomorphic to S1. Since (M0, F0) is without 
holonomy, we have the chain of diffeomorphisms M0 = (M̃ \L0 ×{0})/Ψ̃ ∼= L0 × ((E1 \ {0})/Ψ) ∼= L0 ×S1. 
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Thus, the manifold M0 is diffeomorphic to the product of manifolds L0 × S1 and (M0, F0) is isomorphic to 
the trivial foliation (L0 × S1, Ftr) where Ftr = {L0 × {t} | t ∈ S1}, in the category of foliations Fol.

(2) Let (M, F ) be proper transversely orientable, then M0 has two connected components M (i)
0 , (i = 1, 2), 

and the leaf space of each induced foliation (M (i)
0 , F (i)

0 ) is homeomorphic to R1. Therefore, as above, each 
induced foliation (M (i)

0 , F (i)
0 ) is isomorphic in the category Fol to the trivial foliation (L0 × S1, Ftr) where 

Ftr = {L0 × {t} | t ∈ S1}.
(b) Assume that (M, F ) is an improper foliation. In this case the closure Ψ of Ψ in Sim(E1) is isomorphic 

to R+ ·Z2 when (M, F ) is transversely non-orientable or isomorphic to R+ otherwise. Since the closure Lα

of a leaf Lα corresponds to the closure Ψ.z of the orbit of z ∈ pr(κ−1(Lα)) with respect to Ψ, we get the 
following.

(3) Let (M, F ) be improper transversely non-orientable, then M0 is connected, and every leaf Lα ⊂ M0
is dense in M .

(4) Let (M, F ) be improper transversely orientable, then M0 has two connected components M (i)
0 , i = 1, 2, 

and closure Lα of every leaf Lα ⊂ M
(i)
0 is equal to M (i)

0 ∪ L.
This completes the proof of Theorem 5. �

6. Existence of global attractors of transversely similar foliations on compact manifolds

6.1. The existence of an attractor which is a minimal set

We give here a complete proof of the Theorem 6, some of whose arguments were used by us in [19], 
since there was a restriction on the codimension q ≥ 3 and the proofs were found in a more general class of 
conformal foliations.

Proposition 2. Let (M, F ) be a transversely similar Riemannian foliation, and it is not Riemannian. Let q
be the codimension of (M, F ), 0 < q ≤ n = dim(M). Then:

1) there exists a leaf with essential holonomy group;
2) if L is a leaf with essential holonomy group Γ(L, x), then the closure M = L in M is an attractor and 

a minimal set, and the restriction (Attr(M), F |Attr(M)) is (Sim(Eq), Eq)-foliation.

Proof. The statement 1) follows from Corollary 4.
2) Assume that a leaf L = L(x) has an essential holonomy group Γ(L, x). As above, Γ(L, x) is the 

germ holonomy group of a leaf L = L(x) consisting of germs of certain holonomic diffeomorphisms ψ of a 
transverse q-dimensional disk Dq

x at the point x [4]. Let Mx = TxD
q
x and DΓ(L, x) be the linear holonomy 

group consisting of the differentials ψ∗x : Mx → Mx.
There exists a submersion f : U → V from an (N, gN )-cocycle {Ui, fi, {kij}}i,j∈J defining the foliation 

(M, F ) such that x ∈ U . Let v = f(x) ∈ V . Denote by H the holonomy pseudogroup generated by the local 
similarities kij , i, j ∈ J of the transversal Riemannian manifold (N, gN). Let Hv = {φ ∈ H | φ(v) = v}. 
Denote by [φ]v the germ at v of φ ∈ Hv. Let Ĥv = {[φ]v | φ ∈ Hv} be the group of germs at v of local 
transformations from Hv. There exists a group homomorphism ν : Γ(L, x) → Ĥv, ν([ϕ]x) = [φ]v, where 
f ◦ ϕ = φ ◦ f in some neighbourhood of the point x belonging to Dq

x. Note that Hv∗ = {φ∗v | φ ∈ Hv} is a 
subgroup of GL(TvN). The differential f∗x : Mx → TvN of f at x induces a group isomorphism

μ : DΓ(L, x) → Hv∗, μ(ϕ∗x) = φ∗v,

where ν([ϕ]x) = [φ]v. For simplicity we identify Γ(L, x) with Ĥv and DΓ(L, x) with Hv∗ using the group 
isomorphisms of ν and μ respectively. Since the holonomy group Γ(L, x) is essential, the linear holonomy 
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group DΓ(L, x) ∼= Hv∗ of a leaf L = L(x) contains an element φ∗v defined by a matrix of the form λ · A, 
where A ∈ O(q) is an element of the orthogonal subgroup O(q) in the linear group GL(q, R) and λ ∈ (0, 1).

Let Wr be a normal neighbourhood of the origin of radius r > 0 in the Euclidean tangent vector space 
(TvN, gNv . Denote by ∇N the Levi-Civita of the Riemannian manifold (N, gN ). The exponential map

Expv : Wr → W : X �→ γX(1)

defined by the connection ∇N is a diffeomorphism onto an open neighbourhood W of v in N .
We assume that φ : D(φ) → R(φ) = φ(D(φ)), and D(φ) ⊂ W , otherwise we will achieve this by reducing 

the neighbourhood D(φ). Let W0 := (Expv)−1D(φ). Since φ∗v(Wr) ⊂ Wλr for λ ∈ (0, 1), then φk
∗v(Wr) → 0

as k → +∞. Therefore, there is k0 ∈ N such that for all k > k0, the inclusion

φk(D(φ)) ⊂ D(φ) ⊂ W (2)

is performed. By the property of the exponential map of the manifold of linear connection (N, ∇N), the 
local similarity φk ∈ Hv satisfies the following equality

φk ◦ Expv = Expv ◦φk
∗v, X ∈ W0, k > k0. (3)

The relations (2) and (3) imply

φk(D(φ)) → v as k → +∞. (4)

Therefore, similar to the proof of Theorem 3, we get that the Riemannian manifold (D(φ), gN ) is conformally 
flat for every q ≥ 1. Hence, we can assume that D(φ) is an open subset of the sphere Sq and φ is a restriction 
of a transformation h ∈ Conf(Sq). So h|W is a continuation of φ on W . Thus, without loss generality, we 
can assume that the similarity φ is defined on the entire normal neighbourhood of W and satisfies the 
following equality

φ ◦ Expv = Expv ◦φ∗v, X ∈ W0. (5)

Introduce the notation U0 = f−1(W ) ⊂ U and

U =
⋃

Lα∈F,Lα∩U0 	=∅

Lα.

Consider any leaf Lα ⊂ U . Let xα ∈ Lα ∩ U0. Then y = f(xα) ∈ W . Since the map Expv |Wr
: Wr → W

is a diffeomorphism, for the point y ∈ W there exists a vector Y = Exp−1
v (y) ∈ Wr. From (2) it follows 

that φk(y) → v as k → +∞. We emphasize that the set f−1({φk(y) | k ∈ N}) is contained in Lα ∩ U0. 
Consequently, L ⊂ Lα. Thus it holds

M = L ⊂ Lα ∀Lα ⊂ U . (6)

In order to show that M is an attractor with the basin U , it is sufficient to check that U is a neighbourhood
of M. Let Lβ be an arbitrary leaf of the foliation contained in M, i.e., Lβ ⊂ L = M. There is a submersion 
fi : Ui → Vi from (N, gN )-cocycle defining the foliation (M, F ) such that z ∈ Ui ∩ Lβ . Let w := fi(z) ∈ Vi. 
It is well known that there exists a normal convex neighbourhood Ww of a point w in (N, gN ) belonging 
to some normal neighbourhood of any of its points. Without loss generality we assume that Vi ⊂ Ww. 
Since Lβ ⊂ L, then L ∩ Ui �= ∅ and there exists a point ŵ ∈ fi(L ∩ Ui). Hence, there exists a normal 
neighbourhood Wŵ such that Ww ⊂ Wŵ. Analogously to the previous one, we get that the closure of 
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each leaf that intersects Ui contains the leaf L. Therefore L ⊂ Lβ . This implies that Lβ ∩ U0 �= ∅, hence 
Lβ ⊂ U and M ⊂ U . According to the definition, U is a open saturated subset, then U = Attr(M), and the 
restriction (Attr(M), F |Attr(M)) is (Sim(Eq), Eq)-foliation.

Thus we have two inclusions Lβ ⊂ L and L ⊂ Lβ . This implies the equality Lβ = L, i.e., Lβ = M for 
every Lβ ⊂ M. This means that M is a minimal set of the foliation (M, F ).

Assume now that L is a proper leaf. Since any nontrivial minimal set contains only improper leaves, it is 
necessary that L is a closed leaf.

Thus Proposition 2 is proved. �
6.2. Transversely similar foliations on compact manifolds

Theorem 7. Let (M, F ) be a transversely similar Riemannian foliation on a compact manifold M , and 
(M, F ) is not Riemannian. Let q be the codimension of (M, F ), 0 < q ≤ n = dim(M). Then (M, F ) is a 
(Sim(Eq), Eq)-foliation. It has a finite number of attractors, and every leaf belongs to the basin of at least 
one of them. Moreover, each attractor is a minimal set and equal to the closure of a leaf with essential 
holonomy group.

Proof. According to Corollary 4, there exists a leaf with an essential holonomy group. Therefore, the union 
K :=

⋃
β∈B Mβ of closures Mβ in M of all leaves with essential holonomy groups is not empty. By 

Proposition 2, every Mβ is an attractor and a minimal set of (M, F ). Let Uβ := Attr(Mβ). Then the union

U :=
⋃
β∈B

Uβ

is an open saturated neighbourhood of K, and by Proposition 2, (U, FU) is a (Sim(Eq), Eq)-foliation.
Show that the set K is closed in M . Otherwise, there is y ∈ K\K and a sequence {yn} ⊂ K converging to 

y as n → +∞. For simplicity, we denote by Mn the minimal set containing yn and Ln := Ln(yn). According 
to Proposition 2, Ln = Mn for each leaf Ln ⊂ Mn, and there exists a leaf with essential holonomy group 
in Mn. Therefore, without loss generality, we assume that the holonomy group of Ln is essential. Let 
Lδ = Lδ(y). There exists a submersion fi : Ui → Vi from (N, gN )-cocycle defining the foliation (M, F ) such 
that y ∈ Ui. Let v := fi(y) ∈ Vi. It is well known that at v there is a normal convex neighbourhood Wv in 
(N, g) belonging to some normal convex neighbourhood of every of its points. Without loss generality, we 
assume that Vi ⊂ Wv. There exists a natural number n0 such that yn ∈ Ui and vn := fi(yn) ∈ Vi for all 
n ≥ n0. The continuity of fi implies the convergence of the sequence vn to v. It follows from the proof of 
Proposition 2 that the closure of each leaf Lα that intersects Ui, contains the closure Ln = Mn for the leaf 
Ln with an essential holonomy group. Therefore Ln ⊂ Ln0 and Ln0 ⊂ Ln for all n ≥ n0. This implies that 
Mn = Mn0 for all n ≥ n0. Therefore, Lδ ⊂ Mn0 ⊂ K, hence K is closed and compact in M .

Emphasize that according to Proposition 1, the induced foliation (M ′, FM ′) on the open subset M ′ :=
M \ K is Riemannian. Using this fact, show that U = M . Since M is connected, it sufficient to verify 
that U is closed in M . Assume on the contrary, then ∂U �= ∅. As ∂U is a nonempty saturated compact 
subset of M , according to [4], there exists a minimal set M ⊂ ∂U. Since ∂U ⊂ M ′, every leaf L belonging 
to M has inessential holonomy group. Therefore we may apply [19, Lem. 8] according to which, each 
open neighbourhood W of M contains an open saturated neighbourhood V of M consisting of leaves with 
inessential holonomy groups. The disjoint compact subsets K and M have open disjoint neighbourhoods
UK and UM. Let UK ⊂ U, otherwise replace UK by U ∩UK . According to [19, Lem. 8], there exists an open 
saturated neighbourhood V of M such that V ⊂ UM. Note that V∩UK = ∅. The inclusion M ⊂ ∂U implies 
existence of a point x ∈ U ∩ V. Let Lγ := Lγ(x). As V is a saturated subset of the foliated manifold M , it 
is necessary that Lγ ⊂ V. Since x ∈ U, then there is an attractor Mj ⊂ K for which Lγ ⊂ Uj = Attr(Mj)
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and Lγ ∩ UK �= ∅, hence UK ∩ V �= ∅. The contradiction implies that ∂U = ∅. Due to the connectivity of 
the topological space M , it is necessary that M = U. Thus, (M, F ) is a (Sim(Eq), Eq)-foliation.

The family ξ := {Uβ | β ∈ B} is an open covering of the compact manifold M , and it has not sub-
coverings. Compactness of M implies that B is finite, hence there exists a finite number k, k ≥ 1, of 
attractors {Mm | m = 1, ..., k}, and Mm is also a minimal set of (M, F ). Moreover, every leaf belongs to 
the basin of at least one of them. �
6.3. The proof of Theorem 6

The concept of the set of ends of a manifold [10]. Let K(L) be the set of subsets K of L, satisfying the 
following conditions:

1) a subset of K is a connected compact submanifold with a boundary ∂K and has a codimension of 0 in 
L;

2) the complement L\K does not have relatively compact connectivity components;
3) for any two distinct components A0 and A1 of the boundary ∂K there is no a path h in L such that 

h(0) ∈ A0, h(1) ∈ A1 and h(]0, 1[) ∩K = ∅.

Let P(L) be the set of closures Pi of all complements L\K, K ∈ K(L). An escaping sequence is a 
decreasing sequence {Pn}n∈N of elements Pn ∈ P(L), P1 ⊃ . . . ⊃ Pn ⊃ Pn+1 ⊃ . . ., such that 

⋂
n Pn = ∅. 

Two escaping sequences {Pn} and {P ′
m} are called equivalent if for each n, there exists m such that P ′

m ⊂ Pn. 
The equivalent class e = [{Pn}] is said to be an end of L. The set of all ends of L is denoted by E(L).

The proof of Theorem 6. Let (M, F ) be a transversely similar Riemannian foliation, and it is not Rieman-
nian. According to Theorem 7, there exists a finite number of attractors {Mm | m = 1, ..., k}, where k ∈ N. 
Let Um := Attr(Mm).

Assume that boundary ∂U1 is not empty. Since ∂U1 is a compact saturated subset in M , there exists 
a minimal set M ⊂ ∂U1. Theorem 7 implies that M = Mj for some j ∈ {2, ..., k}. As Mj ⊂ ∂U1, it is 
necessary that Uj ∩ U1 �= ∅. Since Mj ∩M1 = ∅, then

V := (Uj \Mj) ∩ (U1 \M1) �= ∅.

According to [7], for a Hausdorff paracompact manifold M , the union of all leaves without holonomy of 
a foliation (M, F ) is a dense Gδ subset in M . Therefore, there exists a leaf Lα without holonomy belonging 
to the open saturated subset V, hence Mj ∪M1 ⊂ Lα. Since Mj and M1 are disjoint compact subsets in 
M , it implies that the leaf Lα has at least two ends. This contradicts the condition of the proved theorem. 
Thus, ∂U1 = ∅. Due to the connectivity of the topological space M , this implies U1 = M , i.e. M1 is a 
global attractor. �
7. Examples

Example 1. Consider the submanifold M̂ = Rn \ {0n}, n ≥ 3, of Rn, where 0n is zero in Rn. Let (M̂, F̂ ) be 
the simple foliation defined by the submersion

r : M̂ → R1, (x1, ..., xn) �→ x1.

Consider the homothety γ = 〈λEn, 0〉 with the coefficient λ > 1, where En is the identity matrix of the order 
n. We obtain the affine Hopf n-manifold M = M̂/Γ, where Γ =< γ > is a group of similarity transformations 
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Fig. 2. n = 3.

of M̂ . Note that M ∼= Sn−1 × S1 is compact. Since γ(r−1(x1)) = r−1(λx1) for every x1 ∈ R1, the group 
Γ preserves the foliation (M̂, F̂ ) formed by connected components of fibres of r : M̂ → R1. Therefore, on 
the manifold M = M̂/Γ, the foliation (M, F ) is induced such that its leaves are images of the leaves of the 
foliation (M̂, F̂ ) under the universal covering κ : M̂ → M = M̂/Γ. Consequently the foliation (M, F ) is 
covered by the simple foliation (M̂, F̂ ), and the both these foliations are transversally affine. More precisely, 
(M, F ) is a transversely similar foliation. Note that the leaf L0 = κ(r−1(0)) is a unique compact leaf. If 
n = 3, it is diffeomorphic to the 2-dimensional torus T 2 = S1 × S1, all the other leaves of (M, F ) are 
diffeomorphic to the plane R2, see Fig. 2. For n > 3, the leaf L0 is diffeomorphic to Sn−2 × S1, and all the 
other leaves are diffeomorphic to Rn−1. Emphasize that (M, F ) is a proper foliation, and the closed leaf L0

is its global attractor. Note that every leaf without holonomy has only one end.
Suppose that the foliation (M, F ) has an Ehresmann connection. Then by Theorem 3, it is covered by 

a locally trivial bundle p : M̂ → R1, whose fibres are all diffeomorphic to each other. The fibre p−1(0) is 
diffeomorphic to Rn−1 \ {0n} and any other fibre is diffeomorphic to Rn−1. The contradiction shows that 
(M, F ) does not admit an Ehresmann connection. Therefore, the existence of an Ehresmann connection is 
not a necessary condition for the existence of a global attractor for transversely affine foliation.

Emphasize that (M, F ) satisfies Theorem 6.

Example 2. Consider a plane without zero M̂ = R2 \ {02}. Let (M̂, F̂ ) be the simple foliation defined by 
the submersion

r : M̂ → R1, (x1, x2) �→ x1.

Consider the homothety γ = 〈λE2, 0〉 with the coefficient λ > 1 of M̂ . We obtain the affine Hopf 2-manifold 
M = M̂/Γ, where Γ =< γ > is a group of similarity transformations of M̂ . Note that M ∼= S1 × S1

is diffeomorphic to the torus T 2. Since the group Γ preserves the foliation (M̂, F̂ ) formed by connected 
components of fibres of r : M̂ → R1, then on the manifold M = M̂/Γ, the foliation (M, F ) is induced, and 
its leaves are images of the leaves of the foliation (M̂, F̂ ) under the regular covering κ : M̂ → M = M̂/Γ. 
Consequently the foliation (M, F ) is covered by the regular foliation (M̂, F̂ ), and the both these foliations 
are transversely affine. More precisely, (M, F ) is a transversely similar foliation. As κ(r−1(0)) has two 
components, it is the union of two compact leaves L1 and L2 diffeomorphic to the circle S1. Emphasize that 
(M, F ) is a proper transversely similar foliation having two closed leaves L1 and L2 which are attractors. 
Every other leaf Lα

∼= R1 is without holonomy and has two ends, see Fig. 3.
Note that we may consider the union L1 ∪L2 as a global attractor of (M, F ), but it is not a minimal set.
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Fig. 3. n = 2.

Example 3. Let us construct an example using a suspension of a group homomorphism. The construction 
of suspension foliations was represented by Haefliger (see, for example, [18]).

Let Eq be the q-dimensional Euclidean space and let Ek, 2 ≤ k < q be its k-dimensional subspace. Let 
ei, i = 1, k, be a basis of vector space Rk corresponding to Ek. Consider a subgroup Ψk of the similarity 
group Sim(Eq) generated by transformations ψj , j = 1, k + 1, where ψj(z) := z + ej for j = 1, k and 
ψk+1(z) := λ · z for some number λ ∈ (0, 1) and all z ∈ Eq. Note that Ψk is essential group of homotheties, 
and, according to [18, Prop. 16], M := Ek is a minimal set and a global attractor of Ψk.

Denote by Bk+1 the smooth two-dimensional sphere with k+1 handles. The fundamental group of Bk+1
is equal to

Gk := π1(Bk+1, b) =< ai, bi | i = 1, k + 1; a1b1a
−1
1 b−1

1 ...ak+1bk+1a
−1
k+1b

−1
k+1 > .

Define the group homomorphism ρk : Gk → Sim(Eq) by setting it on generators: ρk(ai) := ψi, i =
1, k + 1, ρk(bi) := IdEq where IdEq is the identical map of Eq.

Let hk : R2 → Bk+1 be the universal covering map. For a fixed point b̂ ∈ h−1
k (b), the right action 

of the group Gk on R2 as a group of deck transformations of hk is defined. Denote it by (y, g) �→ y.g, 
(y, g) ∈ R2 ×Gk. Then the map

Φk : Gk ×R2 × Eq, Φ(g, y, z) := (y.g, ρk(g−1)) ∀(g, y, z) ∈ Gk ×R2 × Eq,

defines a free proper discontinuous action of Gk on R2 × Eq. Therefore, the quotient manifold Mk :=
R2 ×Gk

Eq and the suspension foliation (Mk, Fk) := Sus(Eq, Bk+1, ρk) are defined. The foliation (Mk, Fk)
is covered by the trivial bundle r : R2 × Eq → Eq and has the global holonomy group Ψk. By properties 
of a suspension foliation, the (q + 2)-dimensional manifold Mk is the space of a locally trivial bundle 
pk : Mk → Bk+1 with a standard fibre Eq over the base Bk+1. Therefore Mk is not compact.

Thus, we get a transversely similar foliation (Mk, Fk) of codimension q, q ≥ 2, with a regular minimal set 
Mk := fk(r−1(Ek)), and Mk is a global attractor and a minimal set of (Mk, Fk). According to [18, Th. 9], 
Mk and Mk are homotopy equivalent.

Let M (k)
0 := Mk \ Mk and Lα be an arbitrary leaf in M (k)

0 . Emphasize that the induced foliation 
(M (k)

0 , F
M

(k)
0

) is an improper Riemannian foliation without holonomy, admitting an Ehresmann connection. 

According to Theorem 3, the closure Lα is equal to Lα ∪ Mk, where Lα is the closure of Lα in M (k)
0 . 

Pick zα ∈ r(f−1
k (Lα)) ⊂ Eq. Applying [18, Lem. 5] it is easy to show that Lα = fk(R2 × Ψ.zα) where 

Ψ is the closure of Ψ in the Lie group Sim(Eq), hence Ψ = (< ψk+1 > ·{Eq}) � Ek. Therefore, Lα is a 
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smooth (k+2)-dimensional embedding submanifold in Mk. Thus, Lα is the union of two (k+2)-dimensional 
embedding submanifolds Lα and Mk in Mk.

Foliations (Mk, Fk), k ∈ N, satisfy Theorems 2 and 3.
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