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Abstract. Presburger Arithmetic is the true theory of natural num-
bers with addition. We study interpretations of Presburger Arithmetic
in itself. The main result of this paper is that all self-interpretations are
definably isomorphic to the trivial one. Here we consider interpretations
that might be multi-dimensional. We note that this resolves a conjec-
ture by A. Visser. In order to prove the result we show that all linear
orderings that are interpretable in (N,+) are scattered orders with the
finite Hausdorff rank and that the ranks are bounded in the terms of the
dimensions of the respective interpretations.

1 Introduction

Presburger Arithmetic PrA is the true theory of natural numbers with addition.
Unlike Peano Arithmetic PA, it is complete, decidable and admits quantifier
elimination in an extension of its language[11].

The method of interpretations is a standard tool in model theory and in the
study of decidability of first-order theories [17,8]. An interpretation of a theory
T in a theory U is essentially a uniform first-order definition of models of T
in models of U (see details in Section 2). In the paper we study certain ques-
tions about interpretability for Presburger Arithmetic that were well-studied in
the case of stronger theories like Peano Arithmetic PA. Although from techni-
cal point of view the study of interpretability for Presburger Arithmetic uses
completely different methods than the study of interpretability for PA (see, for
example, [19]), we show that from interpretation-theoretic point of view, PrA
has certain similarities to strong theories that prove all the instances of math-
ematical induction in their own language, i.e. PA, Zermelo-Fraenkel set theory
ZF, etc.

A reflexive arithmetical theory ([19, p. 13]) is a theory that can prove the
consistency of all its finitely axiomatizable subtheories. Peano Arithmetic PA
and Zermelo-Fraenkel set theory ZF are among well-known reflexive theories.
In fact, all sequential theories (very general class of theories similar to PA,
see [6, III.1(b)]) that prove all instances of induction scheme in their language



are reflexive. For sequential theories reflexivity implies that the theory cannot
be interpreted in any of its finite subtheories. A. Visser have conjectured that
this purely interpretational-theoretic property holds for PrA as well. Note that
PrA satisfies full-induction scheme in its own language but cannot formalize the
statements about consistency of formal theories.

We note that Presburger Arithmetic, unlike sequential theories, cannot en-
code tuples of natural numbers by single natural numbers. And thus, for interpre-
tations in Presburger Arithmetic it is important whether individual objects are
interpreted by individual objects (one-dimensional interpretations) or by tuples
of objects of some fixed length m (m-dimensional interpretations).

J. Zoethout [21] considered the case of one-dimensional interpretations and
proved that if any one-dimensional interpretation of PrA in (N,+) gives a model
that is definably isomorphic to (N,+), then Visser’s conjecture holds for one-
dimensional interpretations, i.e. there are no one-dimensional interpretations of
PrA in its finite subtheories. Moreover, he proved that any interpretation of PrA
in (N,+) is isomorphic to (N,+), however he hadn’t proved that the isomorphism
is definable. We improve the latter result and show that the isomorphism is
definable.

Theorem 1.1. The following holds for any model A of PrA that is one-dimen-
sionally interpreted in the model (N,+):

(a) A is isomorphic to (N,+),
(b) the isomorphism is definable in (N,+).

Then, by a more sophisticated technique, we establish Visser’s conjecture for
multi-dimensional interpretations.

Theorem 1.2. The following holds for any model A of PrA that is interpreted
in (N,+):

(a) A is isomorphic to (N,+),
(b) the isomorphism is definable in (N,+).

In the present paper we obtain both Theorem 1.1 (a) and Theorem 1.2 (a) as
a corollary of a single fact about linear orderings interpretable in (N,+). Recall
that any non-standard model of Presburger arithmetic has the order type of the
form N + Z ·A, where A is a dense linear ordering. In particular, it means that
the order types of non-standard models of PrA are scattered (a linear ordering
is called scattered if it doesn’t contain a dense subordering). We show that any
linear ordering that is interpretable in (N,+) is scattered.

In fact, we establish even sharper result and estimate the ranks of the inter-
preted orderings. The standard notion of rank of a scattered linear ordering is
the Cantor-Bendixson rank that goes back to Hausdorff [7]. However, in our case
a more precise estimation is obtained using slightly different notion of VD∗-rank
from [10].

Theorem 1.3. Suppose a linear ordering (L,≺) is m-dimensionally interpretable
in (N,+). Then (L,≺) is scattered and has VD∗-rank of at most m.



In order to prove Theorem 1.1 (b), we show that the (unique) isomorphism
of the interpreted model A and (N,+) is in fact definable in (N,+). This isomor-
phism is trivially definable using counting quantifiers, while the theorem that
in Presburger Arithmetic first-order formulas with counting quantifiers have
the same expressive power as first-order formulas is due to H. Apelt [1] and
N. Schweikardt [13].

The proof of Theorem 1.2 relies on a theory of cardinality functions p 7→ |Ap|
for definable families of finite sets 〈Ap ⊆ Nm | p ∈ P ⊆ Nn〉.

We note that the present work essentially is an expanded version of the paper
[20]. Results of Theorem 1.1(a,b), Theorem 1.2(a), Theorem 1.3, Theorem 5.1,
and Corollary 5.1 were already present in [20]. Theorem 1.2(b) is new.

The work is organized in the following way. Section 2 introduces Presburger
Arithmetic and interpretations. In Section 3, we define notion of dimension for
Presburger-definable sets and prove Theorem 1.3. In Section 4 we prove Theorem
1.1. In Section 5 we prove Theorem 1.2.

2 Preliminaries

2.1 Presburger Arithmetic

In this section we give some general results about Presburger Arithmetic and
definable sets in (N,+).

Definition 2.1. Presburger Arithmetic (PrA) is the elementary theory of the
model (N,+) of natural numbers with addition.

It is easy to define in the model (N,+) the constants 0, 1, relation ≤ and
modulo comparison relations ≡n, for all n ≥ 1. In the language extended by this
constants and predicates, Presburger arithmetic admits quantifier elimination
[11]. Furthermore, PrA is decidable.

PrA has non-standard models. Unlike PA, however, where it is impossible to
produce an explicit non-standard model by defining some recursive addition and
multiplication (Tennenbaum’s Theorem [18]), examples of non-standard models
of PrA can be given easily (see [14]). By a usual argument one could show that
any non-standard model of PrA has the order type N+Z ·L, where L is a dense
linear ordering without endpoints. In particular, any countable model of PrA
either has the order type N or N + Z ·Q.

Definition 2.2. For vectors c, p1, . . . , pn ∈ Zm we call the set {c+
∑
kipi | ki ∈

N} ⊆ Zm a lattice (or a linear set) generated by {pi} from c. If {pi} are linearly
independent, we call this set a fundamental lattice.

According to [5], definable subsets of Nm are exactly the unions of a finite
number of (possibly intersecting, possibly non-fundamental) lattices (also called
semilinear sets in literature). Ito in [9] has shown that any set in Nm which is
a union of a finite number of (possibly intersecting, possibly non-fundamental)
lattices (semilinear sets) can be expressed as a union of a finite number of disjoint
fundamental lattices. Hence,



Theorem 2.1. All subsets of Nk definable in (N,+) are exactly the subsets of
Nk that are disjoint unions of finitely many fundamental lattices.

Definition 2.3. For a fundamental lattice J generated by v1, . . . , vn from c we
call a function f : J → N piecewise linear if it is of the form f(c+ x1v1 + . . .+
xnvn) = a0 + a1x1 + . . .+ anxn, where a0, . . . , an are natural.

For an (N,+)-definable set A we call a function f : A→ N piecewise linear if
there is a decomposition of A into disjoint fundamental lattices J1, . . . , Jn such
that the restriction of f on each Ji is linear1.

Theorem 2.2. Functions f : Nn → N definable in (N,+) are exactly piecewise
linear functions.

Proof. The definability of all piecewise linear functions in Presburger Arithmetic
is obvious. A function f : Nn → N is definable if and only if its graph

G = {(a1, . . . , an, f(a1, . . . , an)) | (a1, . . . , an) ∈ Nn}

is definable. According to Theorem 2.1, G is a finite union of fundamental lattices
J1 t . . . t Jk. For 1 ≤ i ≤ k we denote by J ′i the projections of Ji along the last
coordinate, J ′i = {(a1, . . . , an) | ∃an+1((a0, a1, . . . , an, an+1) ∈ Ji)}. Clearly, all
J ′i are fundamental lattices. Furthermore, the restriction of the function f on
each of J ′i is linear.

2.2 Interpretations

We define multi-dimensional first-order non-parametric interpretations, following
[17].

Definition 2.4. An m-dimensional interpretation ι of some first-order language
K in a model A consists of first-order formulas of language of A:

1. Dι(y) defining the set Dι ⊆ Am (domain of interpreted model);
2. Pι(x1, . . . , xn), for predicate symbols P (x1, . . . , xn) of K including equality;
3. fι(x1, . . . , xn, y), for functional symbols f(x1, . . . , xn) of K.

Here all vectors of variables x are of length m, and fι’s should define graphs
of some functions (modulo interpretation of equality).

Naturally, ι and A give a model B of the language K on the domain Dι/∼ι,
where equivalence relation ∼ι is given by =ι (x1, x2). We will call B the internal
model. If B |= T, then ι is an interpretation of the theory T in A. If for a first-
order theory U an interpetaion ι is an iterpretation of T, for any A |= U, then
ι is an interpretation of T in U.

Interpretations are very natural concept, appearing in mathematics when,
for example, Euclidean geometry is interpreted in the theory of real numbers
R (two-dimensionally, by defining points as pairs of real numbers) in analytic

1 In our work, we use the word ‘piecewise’ only in the sense defined here.



geometry, or the field C of complex numbers is two-dimensionally interpreted
in R by defining a + bi ↔ (a, b) and declaring addition and multiplication. We
note that in (N,+) itself, the field (Z,+) can be interpreted. This is achieved by
mapping the negative numbers to odd, positive to even and 0 to 0 and defining
the addition case-by-case (through non-negative subtraction, which is definable).

We will be interested in interpretations of theories in the standard model of
Presburger Arithmetic, that is, (N,+).

Definition 2.5. It is said that an m-dimensional interpretation ι in a model A
has absolute equality if the symbol =∈ K is interpreted as the coincidence of two
m-tuples.

Definition 2.6. It is said that an interpretation ι, κ in a model A are definably
isomorphic, if there is a first-order formula F (x, y). of the language of A defining
an isomorphism between the respective internal models.

The following theorem is a version of [21, Lemma 3.2.2] extended to multi-
dimensional interpretations. It shows that it is enough to consider only interpre-
tations with absolute equality.

Theorem 2.3. Suppose ι is an interpretation of some theory U in (N,+). Then
there is an interpretation with absolute equality κ of U in (N,+) which is defin-
ably isomorphic to ι.

Proof. Indeed there is a definable in (N,+) well-ordering ≺ of Nm:

(a0, . . . , am−1) ≺ (b0, . . . , bm−1)
def⇐⇒ ∃i < m(∀j < i (aj = bj) ∧ ai < bi).

Now we could define κ by taking the definition of + from ι, taking the trivial
interpretation of equality, and taking the domain of interpretation to be the part
of the domain of ι that consists of the ≺-least elements of equivalence classes with
respect to ι-interpretation of equality. It is easy to see that this κ is definably
isomorphic to ι.

3 Ranks of Interpreted Orders

3.1 Presburger Dimension

Further we will talk only about the definability in the model (N,+). By a defin-
able set we always mean a set A ⊆ Nn definable in (N,+). And by a definable
function f : A → B we mean a function between definable sets A,B that itself
is definable in (N,+).

Definition 3.1. The dimension dim(A) of an infinite definable set A ⊆ Nm is
such k ≥ 1 that there is a definable bijection between A and Nk.

The following theorem shows that the definition indeed gives the unique
dimension for each definable set.



Theorem 3.1. Suppose A ⊆ Nn is an infinite definable set. Then there is a
unique m ∈ N such that there is a Presburger definable bijection between A and
Nm, 1 ≤ m ≤ k.

Proof. First let us show that there is some m with the property. According
to Theorem 2.1, all sets definable in (N,+) are disjoint unions of fundamental
lattices J1, . . . , Jn of the dimensions k1, . . . , kn, respectively (the dimension of a
fundamental lattice is the number of generating vectors). It is easy to see that
for each Ji there is a linear bijection with Nki , which is obviously definable. Let
us put m to be the maximum of ki’s.

Now we just need to notice that for each sequence r1, . . . , rm ∈ N and
u = max(r1, . . . , rm), if u ≥ 1, then we could split Nu into disjoint union of defin-
able sets B1, . . . , Bm, for which we have definable bijections with Nr1 , . . . ,Nrm ,
respectively. We prove the latter by induction on m.

Let us show that there is no other m with this property. Assume the contrary.
Then, for some m1 > m2, there is a definable bijection f : Nm1 → Nm2 . Let us
consider a sequence of expanding cubes

Im1
s

def
= {(x1, . . . , xk) | 0 ≤ x1, . . . , xn ≤ s}.

We define function g : N → N to be the function which maps a natural number
x to the least y such that f(Im1

x ) ⊆ I l2y . Clearly, g is a definable function. Then
there should be some linear function h : N → N such that g(x) ≤ h(x), for all
x ∈ N. But since for each x ∈ N and y < xm1/m2 the cube Im1

x contains more
points than the cube Im2

y , from the definition of g we see that g(x) ≥ xm1/m2 .
This contradicts the linearity of the function h.

As far as we know, this definition of dimension for Presburger definable sets
was first introduced in [4] and restated in [20]. It can be seen that the dimen-
sion of a set A ⊆ Nn is equal to the maximal m such that there exists an
m-dimensional fundamental lattice which is a subset of A.

Definition 3.2. For a set A ⊆ Nn+m and a ∈ Nn we define the section

A � a = {b ∈ Nm | a _ b},

where a _ b is the concatenation of the tuples a and b.

Definition 3.3. For a definable set P ⊆ Nn a family of sets 〈Ap ⊆ Nm | p ∈ P 〉
is called definable if there is a definable set A ⊆ P × Nm such that Ap = A � p,
for any p ∈ P .

Lemma 3.1. Suppose 〈Ap ⊆ Nn | p ∈ P 〉 is a definable family of sets, and
the set P ′ ⊂ P (possibly undefinable) is such that for p ∈ P ′ the sets Ap are
n-dimensional and pairwise disjoint. Then P ′ is finite.

Proof. Let us consider the set A = {p _ a | p ∈ P and a ∈ Ap}. By Theorem
2.1, the set A is a disjoint union of finitely many fundamental lattices Ji ⊆ Nk+n.



It is easy to see that if some set Ap is n-dimensional, then for some i the section
Ji � p = {a | p _ a ∈ Ji} is an n-dimensional set. Thus it is enough to show
that for each Ji there are only finitely many p ∈ P ′ for which the section Ji � p
is an n-dimensional set.

Let us now assume for a contradiction that for some Ji there are infinitely
many p ∈ P ′ for which Ji � p are n-dimensional sets. Let us consider some
p ∈ P ′ such that the section Ji � p is an n-dimensional set. Then there exists an
n-dimensional fundamental lattice K ⊆ Ji � p. Suppose the generating vectors
of K are v1, . . . , vn ∈ Nn and initial vector of K is u ∈ Nn. It is easy to see that
each vector vj is a non-negative linear combination of generating vectors of Ji,
since otherwise for large enough h ∈ N we would have c+ hvj 6∈ Ji. Now notice
that for any p ∈ P and a ∈ Ji � p the n-dimensional lattice with generating
vectors v1, . . . , vn and initial vector a is a subset of Ji � p.

Thus infinitely many of the setsAp, for p ∈ P ′, contain some shifts of the same
n-dimensional fundamental lattice K. It is easy to see that the latter contradicts
the assumption that all the sets Ap, for p ∈ P ′, are disjoint.

3.2 Ranks of Linear Orderings

Definition 3.4. A linear ordering (L,≺) is called scattered ([12, pp. 32–33]) if
it does not have an infinite dense subordering.

Definition 3.5. Let (L,≺) be a linear ordering. We define a family of equiva-
lence relations 'α, for ordinals α ∈ Ord by transfinite recursion:

– '0 is just equality;
– 'λ=

⋃
β<λ

'α, for limit ordinals λ;

– a 'α+1 b
def⇐⇒ |{c ∈ L | (a ≺ c ≺ b) or (b ≺ c ≺ a)}/'α| < ℵ0.

Now we define VD∗-rank2 rk(L,≺) ∈ Ord∪{∞} of the ordering (L,≺). The
VD∗-rank rk(L,≺) is the least α such that L/'α is finite. If, furthermore, for
all α ∈ Ord the factor-set L/'α is infinite, we put rk(L,≺) =∞.

By definition we put α <∞, for all α ∈ Ord.

The definition given above corresponds to the procedure of condensation that
glues the points at finite distance from each other. The VD∗-rank is now the
minimal number of iterated condensations required to reach some finite ordering.

Remark 3.1. Linear orderings (L,≺) such that rk(L,≺) < ∞ are exactly the
scattered linear orderings.

The orderings with the VD∗-rank equal to 0 are exactly finite orderings, and
the orderings with VD∗-rank ≤ 1 are exactly the order sums of finitely many
copies of N, −N and 1 (one-element linear ordering).

2 VD stand for very discrete; see [12, p. 84-89].



Remark 3.2. Each scattered linear ordering of VD∗-rank 1 is 1-dimensionally
interpretable in (N,+). There are scattered linear orderings of VD∗-rank 2 that
are not interpretable in (N,+).

Proof. The interpretability of linear orderings with rank 0 and rank 1 follows
from the description above.

Since there are uncountably many non-isomorphic scattered linear orderings
of VD∗-rank 2 and only countably many linear orderings interpretable in (N,+),
there is some scattered linear ordering of VD∗-rank 2 that is not interpretable
in (N,+).

Now we prove the rank condition.

Theorem 1.3. Suppose a linear ordering (L,≺) is m-dimensionally interpretable
in (N,+). Then (L,≺) is scattered and has VD∗-rank of at most m.

Proof. We prove the theorem by induction on m ≥ 1.
Assume for a contradiction that there is an m-dimensionally interpretable

ordering (L,≺) with rk(L,≺) > m. By the definition of VD∗-rank, there are
infinitely many distinct 'm-equivalence classes in L. Hence, either there is an
infinite ascending a0 ≺ a1 ≺ . . . or descending a0 � a1 � . . . chain of elements
of L such that ai 6'm ai+1, for each i. Let Li be the intervals (ai, ai+1) in the
order ≺, if we had an ascending chain, or the intervals (ai+1, ai) in the order ≺,
if we had a descending chain. Since ai 6'm ai+1, the set Li/'m−1 is infinite and
rk(Li,≺) > m− 1.

Clearly, all the intervals Li are definable. Let us show that dim(Li) ≥ m, for
each i. If m = 1 then it follows from the fact that Li is infinite. If m > 1 then
we assume for a contradiction that dim(Li) < m. Also notice that in this case
(Li,≺) would be (m−1)-dimensionally interpretable in (N,+), which contradicts
the induction hypothesis and the fact that rk(Li,≺) > m − 1. Since Li ⊆ Nm,
we conclude that dim(Li) = m, for all i.

Now consider the definable family of sets {(a, b) | a, b ∈ L2}. We see that all
Li are in this family. Thus we have infinitely many disjoint sets of the dimension
m in the family and hence there is a contradiction with Lemma 3.1.

4 Visser’s conjecture in one-dimensional case

Let us now consider the extension of the first-order predicate language with an
additional quantifier ∃=yx, called a counting quantifier (notion introduced in
[2]). It is used as follows: if f(x, z) is an L-formula with the free variables x, z,
then F = ∃=yz G(x, z) is also a formula with the free variables x, y.

We extend the standard assignment of truth values to first-order formulas in
the model (N,+) to formulas with counting quantifiers. For a formula F (x, y) of
the form ∃=yzG(x, z), a vector of natural numbers a, and a natural number n we
say that F (a, n) is true if and only if there are exactly n distinct natural numbers
b such that G(a, b) is true. H. Apelt [1] and N. Schweikardt [13] have established
that such an extension does not extend the expressive power of PrA :



Theorem 4.1. ([13, Corollary 5.10]) Every formula F (x) in the language of
Presburger arithmetic with counting quantifiers is equivalent in (N,+) to a quan-
tifier-free formula.

Theorem 1.1. The following holds for any model A of PrA that is one-dimen-
sionally interpreted in the model (N,+):

(a) A is isomorphic to (N,+),
(b) the isomorphism is definable in (N,+).

Proof. From Theorem 2.3 it follows that it is enough to consider the case when
the interpretation that gives us A has absolute equality.

Let us denote the relation given by the PrA definition of < within A by <A.
Clearly, <A is definable in (N,+). Hence, by Theorem 1.3, the order type of A is
scattered. But since any non-standard model of PrA is not scattered, the model
A is isomorphic to (N,+).

It is easy to see that the isomorphism f from A to (N,+) is the function
f : x 7→ |{y ∈ N | y <A x}|. Now we use a counting quantifier to express the
function:

f(a) = b ⇐⇒ (N,+) |= ∃=bz (z <A a).

Now apply Theorem 4.1 and see that f is definable in (N,+).

This implies Visser’s Conjecture for one-dimensional interpretations.

Theorem 4.3. Theory PrA is not one-dimensionally interpretable in any of
its finitely axiomatizable subtheories.

Proof. Assume ι is an one-dimensional interpretation of PrA in some finitely
axiomatizable subtheory T of PrA. In the standard model (N,+) the interpre-
tation ι will give us a model A for which there is a definable isomorphism f with
(N,+). Now let us consider theory T′ that consists of T and the statement that
the definition of f gives an isomorphism between (internal) natural numbers and
the structure given by ι. Clearly T′ is finitely axiomatizable and true in (N,+),
and hence is subtheory of PrA. But now note that T′ proves that if something
was true in the internal structure given by ι, it is true. And since T′ proved any
axiom of PrA in the internal structure given by ι, the theory T′ proves every
axiom of PrA. Thus T′ coincides with PrA. But it is known that PrA is not
finitely axiomatizable, contradiction.

5 Visser’s Conjecture in multi-dimensional case

Our goal is to prove Theorem 1.2. In order to prove that all multi-dimensional
interpretations of PrA in (N,+) are isomorphic to (N,+), we use the same
argument as in one-dimensional case: an interpretation of a non-standard model



would entail an interpretation of a non-scattered order, which is impossible by
Theorem 1.3.

However, in order to show that the isomorphism is definable, we first need
to develop theory of cardinality functions for definable families of finite sets.

Definition 5.1. Let J ⊆ Zn be a fundamental lattice generated by vectors
p1, . . . , pm from c. We say that f : J → N is polynomial if there is a polynomial
with rational coefficients Pf (x1, . . . , xm) such that f(c + p1x1 + . . . + pmxm) =
Pf (x1, . . . , xm), for all x1, . . . , xm ∈ N.

We note that if f is a polynomial function on J , then the polynomial Pf is
uniquely determined.

Definition 5.2. Let A ⊆ Zn be a definable set. We call a function f : A → N
piecewise polynomial if there is a decomposition of A into finitely many funda-
mental lattices J1, . . . , Jk such that the restriction of f on each Ji is a polynomial.
The degree of f is the maximum of the degrees of the restrictions.

We note that our definition of the degree is independent of the choice of the
decomposition J1, . . . , Jk. Indeed, for a piecewise polynomial function f : A→ N
consider the function hf : N → N that maps x ∈ N to max{f(a1, . . . , an)) |
(a1, . . . , an) ∈ A and a1, . . . , an ≤ x}. Observe that if f has degree m (according
to a particular decomposition) then hf has the asymptotic growth rate of m-th
degree polynomial. Thus the degree is independent of the choice of decomposi-
tion.

By the same argument as above we get the following

Lemma 5.1. Suppose piecewise polynomial functions f, g : A→ N are such that
g(x) ≤ f(x), then the degree of g is less than or equal than the degree of f .

The following theorem is a slight modification of the theorem by G.R. Blak-
ley [3].

Theorem 5.1. Let M be a m × n matrix of integer numbers, the function
ϕM : Zm → N ∪ {ℵ0} is defined as follows:

ϕM (u)
def
= |{λ ∈ Nn |Mλ = u}|.

Then, if the values of ϕM are always finite, the function ϕM is a piecewise
polynomial function of degree ≤ n− rk(M).

Proof. Since ϕM (u) is always finite, there could be no non-zero λ ∈ Nn such
that Mλ = 0. Hence there are no non-zero λ ∈ (Q+)n such that Mλ = 0.
Furthermore, since M was a matrix with integer coefficients, there are no non-
zero λ ∈ (R+)n such that Mλ = 0. Thus there exists a rational ε > 0 such
that for any λ ∈ R+ with |λ|∞ = 1 we have |Mλ|∞ ≥ ε; here |(a1, . . . , ak)|∞ =
max(a1, . . . , ak).

The value ϕM (u) is the number of points with natural coordinates in the
hyperplanes Hu = {λ ∈ R |Mλ = u}. From what we proved above those natural



coordinates should be bounded by |u|∞/ε. It is easy to see that intersection of a
k-dimensional plane with the cube [0, N ]n always contains at most ((N + 1)n)k

integer points. Given that the planes Hu are n− rk(M)-dimensional, we see that
ϕM (u) ≤ ((d|u|∞/εe+ 1)n)n−rk(M). The function u 7→ ((d|u|∞/εe+ 1)n)n−rk(M)

on Nn clearly is piecewise polynomial of degree n− rk(M). Thus, by Lemma 5.1,
the function ϕM is piecewise polynomial of degree ≤ n− rk(M).

Corollary 5.1. For any definable family of finite sets 〈Ap ⊆ Nn | p ∈ P 〉, the
function p 7→ |Ap| is piecewise polynomial of degree ≤ n.

Proof. Let A =
⋃
p∈P
{p _ a | a ∈ Ap} ⊆ Nm+n. We have a decomposition of

A into a disjoint union of fundamental lattices J1, . . . , Jn. A sum of piecewise
polynomial functions of degree ≤ n is piecewise polynomial of degree ≤ n. Hence,
it is enough to show that for all Ji the function fi : p 7→ |Ji � p| is a piecewise
polynomial function on on P .

Suppose Ji is generated by vectors v1, . . . , vk from c. Let v′1, . . . , v
′
k, c
′ be

the vectors consisting of first m coordinates of v1, . . . , vk, c, respectively. Let
M be the m × k-dimensional matrix corresponding to the function that maps
(x1, . . . , xk) to v′1x1 + . . . v′kxk. It is clear that rk(M) ≥ k − n. Now we see that
|Ji � p| = ϕM (p− c′) and thus fi is piecewise polynomial of degree ≤ n.

Lemma 5.2. Each monotone piecewise polynomial function f : N→ N of degree
n + 1 is of the form Cxn+1 + g(x), where C > 0 is rational and g : N → N, is
piecewise polynomial of degree n.

Proof. Since f is piecewise linear, there is a splitting of N into infinite arithmeti-
cal progressions and one-element sets A1, . . . , An such that on each of them f is
given by a polynomial P1, . . . , Pn. From monotonicity of f , it is easy to see that
for all infinite Ai the corresponding Pi should have the same highest degree term
Cxn+1. This determines g. On infinite Ai, we see that g(x) = Pi(x) − Cxn+1

(which is n-th degree polynomial). Thus, g is piecewise polynomial of degree n.

Theorem 1.2. The following holds for any model A of PrA that is interpreted
in (N,+):

(a) A is isomorphic to (N,+),
(b) the isomorphism is definable in (N,+).

Proof. As in the proof of Theorem 1.1 we may assume that the interpretation
of A has absolute equality. And we show that A ' (N,+) by the same method.
So further we just prove that the isomorphism is definable.

For i ∈ N, let Si ⊆ A be the maximal initial fragment of A such that all
elements in it are tuples (a1, . . . , an) with a1, . . . , an ≤ i. Clearly, 〈Si | i ∈ N〉 is
a definable family of finite sets. Let h : N → N be the function x 7→ |Sx|. From
Corollary 5.1, it follows that the function h is piecewise polynomial.

Clearly, the degree of h is non-zero. First assume that h has the degree 1. In
this case, since h is monotone, from Lemma 5.2 it follows that h(x + 1) − h(x)



is piecewise polynomial of degree 0 and hence bounded by some constant C.
This allows us to create a first-order definition of the required isomorphism
f : A → (N,+) as follows. We explicitly define values of f for a ∈ S0. For all
other a ∈ A, we first find l such that a ∈ Sl+1 \ Sl. Next, we explicitly consider
cases for number s < C of elements in Sl+1 \ Sl that are <A-smaller than a.
Finally, we define f(a) to be h(l) + s.

Now assume that h has the degree k ≥ 2. Our goal will be to show that
this is in fact impossible. Let us use A-addition to define the following function
g : N → N: given x ∈ N we find the <A-least element a ∈ A \ Sx. Next, we
calculate b = a +A a. We define g(x) as the least y such that b ∈ A \ Sy. From
the definition it is clear that g is a definable function.

However, there is an alternative definition of g in terms of h. Let h′ : N→ N
be the “inverse” for h: we put h′(x) to be the greatest y such that h(y) ≤ x.
Notice that g(x) = h′(2h(x)). By Lemma 5.2, since h is monotone, in fact, it is of

the form h(x) = Cxk(1+o(1)), where C is rational. Hence, h′(x) =
k
√
x
C (1+o(1)).

Thus, g(x) = x k
√

2(1 + o(1)). From the definition it is clear that g is monotone.
Thus, since k

√
2 is irrational, by Lemma 5.2 the function g cannot be piecewise

linear: contradiction with definability of g.

In the same manner as Theorem 4.3 (but using Theorem 1.2 instead of Theorem
1.1) we prove

Theorem 5.3. Theory PrA is not interpretable in any of its finitely axiomati-
zable subtheories.
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6. Hájek, P., Pudlák, P.: Metamathematics of first-order arithmetic. Springer-Verlag
(1993)
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