I0OP Publishing | London Mathematical Society Nonlinearity

Nonlinearity 33 (2020) 7088-7113 https://doi.org/10.1088/136 1-6544/abaf60

On topological classification of
Morse—Smale diffeomorphisms
on the sphere S"(n > 3)

V Grines, E Gurevich*, O Pochinka and D Malyshev
National Research University Higher School of Economics, Russia

E-mail: egurevich@hse.ru

Received 27 December 2019, revised 30 July 2020
Accepted for publication 14 August 2020 @
Published 9 November 2020

CrossMark
Abstract
We consider the class G(S") of orientation preserving Morse—Smale diffeomor-
phisms of the sphere S" of dimension n > 3, assuming that invariant manifolds
of different saddle periodic points have no intersection. For any diffeomorphism
f € G(S"), we define a coloured graph I'; that describes a mutual arrange-
ment of invariant manifolds of saddle periodic points of the diffeomorphism
f. We enrich the graph I'y by an automorphism P, induced by dynamics of f
and define the isomorphism notion between two coloured graphs. The aim of
the paper is to show that two diffeomorphisms f, f’ € G(S") are topologically
conjugated if and only if the graphs Iy, I‘} are isomorphic. Moreover, we estab-
lish the existence of a linear-time algorithm to distinguish coloured graphs of
diffeomorphisms from the class G(S").
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1. Introduction and the statement of results

The problem of a topological classification of dynamical systems takes its origin in papers of
A Andronov, L Pontryagin, E Leontovich, A Mayer, and M Peixoto. In 1937, A Andronov
and L Pontryagin introduced the notion of a roughness of dynamical systems and showed that
necessary and sufficient conditions of the roughness of a flow on the two-dimensional sphere
are finiteness of the non-wandering orbits set, its hyperbolicity, and the absence of trajectories
joining two saddle equilibria or going from a saddle to the same saddle. In 1960, S Smale
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Figure 1. Morse—Smale diffeomorphisms on $* with wild closures of separatrices

introduced a similar class of dynamical systems on manifolds of an arbitrary dimension and
transform the condition of the absence of trajectories between two saddle equilibria into more
general conditions of transversality of the intersection of equilibria invariant manifolds and
periodic orbits. Later, such systems were called Morse—Smale systems.

The finiteness of the set of non-wandering orbits leads to an idea of reducing the problem of
topological classification of Morse—Smale systems to a combinatorial problem of a description
of the mutual arrangement of such orbits and their invariant manifolds in the ambient mani-
folds. First time, this approach was applied by E Leontovich and A Mayer for classification
of flows on the one-dimensional sphere with a finite set of singular orbits. It was developed in
papers of M Peixoto, A Oshemkov, V Sharko, Y Umanskii, S Pilyugin, where a similar problem
was solved for Morse—Smale flows on closed manifolds with dimension 2, 3, and higher. It was
also developed by V Grines and A Bezdenezhnych for Morse—Smale diffeomorphisms with a
finite number of heteroclinic orbits on surfaces'.

It turned out that this idea in general does not work in the case of diffeomorphisms on three-
dimensional manifolds. It is related to the fact that the closures of the invariant manifolds of
hyperbolic saddle points may be wild at one point?. Figure 1(a) illustrates the phase portrait of a
Morse—Smale cascade with the non-wandering set consisting of four fixed points «, o, w;,w>,
the closure of the stable manifold, and the closure of one of the unstable separatricies of the
saddle point o being the wild sphere and the wild arc, respectively. Figure 1(b) illustrates the
phase portrait of a Morse—Smale cascade, such that all closures of the separatricies of its saddle
points are locally flat, but the union of the one-dimensional separatrices of the points o, o3
together with the sink w (the union of the two-dimensional separatrices of o, o, together with
the source «) forms a wild frame of arcs (a wild bouquet of the 2-spheres).

First examples of wild spheres and arcs were constructed by J W Alexander (1924), E Artin
and R Fox (1948). D Pixtion (1977), C Bonatti and V Grines (2000) constructed Morse—Smale
cascades with the wild object being the closures of saddle invariant sets, see [1, 27]. This fact
called for a new language for construction of topological invariants. A complete topological
classification of Morse—Smale diffeomorphisms on three-dimensional manifolds was obtained
in a series of papers by C Bonatti, V Grines, F Laudenbach, O Pochinka, E Pecou, and V
Medvedev (see the reviews [3, 11] for references). A new invariant called the scheme of a

' A non-empty intersection of invariant manifolds of different saddle periodic points is called @ heteroclinic inter-
section, an isolated point of such intersection is called a heteroclinic point, and its orbit is called a heteroclinic
orbit.

2 A manifold N¥ € M" of dimension k without boundary is locally flat at a point x € N* if there exists a neighbourhood
U(x) C M" of x and a homeomorphism ¢ : U(x) — ", such that p(N* N U(x)) = R, where R* = {(xy,...,x,) €
R"| Xpy1 = Xp42 = - - - = x, = 0}. If the condition of local flatness fails at a point x € N*, then the manifold N* is
called wild and x is called a point of wildness.
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diffeomorphism includes topological structures of the orbit space of action of the diffeomor-
phism on some wandering set and embedding of projections of the invariant manifolds in this
orbit space.

Surprisingly, it turned out that for some classes of Morse—Smale cascades on manifolds with
dimensions greater than three, a complete invariant can be borrowed from the two-dimensional
case. Due to papers of J Cantrell and C Edwards [6—8] (see also [10], proposition 3A.6), arcs
and spheres of the codimension one in a manifold M" of dimensionn > 3 either are locally flat
at each point or the set of their points of wildness is more than countable. So, if we consider
the class of Morse—Smale diffeomorphisms on a manifold M" of dimension n > 3 under the
assumption that all saddle periodic points have invariant manifolds of dimension either one
or (n — 1) and do not contain heteroclinic intersections, then we can state that all closures of
such invariant manifolds are locally flat arcs and spheres. Moreover, we can say that the unions
of the closures of one-dimensional separatrices form tame (not wild) frames. These facts give
us a hope that a topological invariant for such diffeomorphisms must be more simple than for
three-dimensional case. Indeed, topological techniques developed in the papers of Cantrell and
Edwards allowed to V Grines, E Gurevich and V Medvedev to obtain a topological classifi-
cation of Morse—Smale diffeomorphisms on manifolds of dimension n > 4 in combinatorial
terms under the assumption that all unstable manifolds of saddle periodic points of such diffeo-
morphisms have the dimension one and the wandering set does not contain heteroclinic orbits
([12, 13]). The key fact, which shows the difference between the dimension three and greater
than three, is proposition 2.10. Roughly speaking, it states that for any two homotopic simple
closed curves in a compact manifold M" of dimension n > 4 there exists a homeomorphism of
M" that sends one of the curves to the other one. The trefoil knot is a simple example that this
fact is not true in the dimension three.

In this paper, we consider the class G(S") of preserving orientation Morse—Smale diffeo-
morphisms on the sphere S” (n > 4), such that the stable and unstable manifolds of different
saddle periodic points of any diffeomorphism from G(S") have no intersections. We provide a
combinatorial invariant called a coloured graph, which we describe below after an exposition
of some necessary facts. Let us remark that an attempt to generalize the results of [12, 13] leads
to new difficulties. In fact, we know everything about one-dimensional separatricies but cannot
see that codimension one separatrices also are trivially embedded, in particular, that they do
not form tame bouquets of spheres. In section 4.2, we show that there is a duality between
embedding of one-dimensional and codimension one separaticies that finally allows to obtain
a topological classification of diffeomorphisms of G(S") in combinatorial terms.

Let €y be the non-wandering set of a diffeomorphism f€ G(§") and

_"f ={pe€ Q| dim W, =i}, i€ {0,1,...,n}. We prove in proposition 2.1 that for
f € G(S") the sets Q} are empty, fori € {2,...,n—2}.

Letp e Q} It follows from [29, theorem 2.3] that the closure cl W;; of its invariant mani-
fold W;, contains, apart the W), itself, exactly one periodic point and this point is a source a.
Then, the set cl W), is homeomorphic to the sphere of dimension (n — 1) and W}, is smoothly
embedded at all points, except, possibly, the point cv. J Cantrell proved in [6] that the (n — 1)-
dimensional sphere §"~' C " cannot have one point of wildness (that contrasts with the case
n = 3). Hence, the sphere cl W}, is locally flat at every point, and, due to the generalized Schoen-
flies theorem (see [5, theorem 4] and [4, theorem 5]), cuts the ambient sphere S" into two
connected components, each closure of which is a ball.

Denote by Ly the union of all the spheres {cI W), p € Q}c} and the spheres {cl W/, q €
Q’}_l}, and put ky = |Q} U Qj-"\ (here |X| means the cardinality of a set X). Since each
(n — 1)-sphere from the set L, cuts the sphere S" into two connected components, the set
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Figure 2. The phase portrait of a diffeomorphism f € G(S") and its coloured graph Iy

S"\(U,;eﬂ} W, U quszj. 1 W) consists of ks + 1 connected components Dy, ... ., Dy, +1. Denote
by Dy the set of all these components.

Definition 1.1. The coloured graph of a diffeomorphism f € G(S") is a graph T' 7, defined as
follows:

(a) the set V(I'y) of vertices of the graph I s is isomorphic to the set Dy, the set E(I'y) of edges
of the graph I is isomorphic to the set L;

(b) the vertices v; and v; are incident to an edge e; ; if and only if the corresponding domains
D; and D; have a common boundary;

(c) an edge ¢;; has the colour s (respectively, u) if it corresponds to a manifold cl W}, C Ly
(clW, C Ly).

Figure 2 illustrates the phase portrait of a diffeomorphism f € G(S") with the non-
wandering set, consisting of eight points: the sources o, oz, the saddles oy, 02, 03, the sinks
w1, w2, ws, and the coloured graph I'y of the diffeomorphism f.

Denote by £ : V(I'y) — Dy an arbitrary isomorphism and define an automorphism P; :
V() = V(I by Pr =& flvr)-

Definition 1.2. The graphs I'; and 'y of diffeomorphisms f € G(S") and f’ € G(S") are
isomorphic if there exists an isomorphism ¢ : V(I'y) — V(I'f,), preserving colours of edges,
such that Py, = (Pf(’l.

Theorem 1.  Diffeomorphisms f € G(S") and f' € G(S") are topologically conjugated if and
only if their graphs I'y and Ty are isomorphic.

We show in proposition 2.4 that for any diffeomorphism f € G(S") the coloured graph I'y
is a tree, that will play the key role in the proof of theorem 1. In [14], it is shown that for
any tree I, arbitrary coloured in two colours and enriched with arbitrary colours preserving
automorphism P, there exists a diffeomorphism f € G(S"), whose graph I'sis isomorphic to "
by means of an isomorphism 6 : I' — Iy, such that 0P = P;0.
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The following result shows that the coloured graph is the most effective invariant for classi-
fication of diffeomorphisms from the class G(S"), because there exists an optimal linear-time
algorithm for recognizing such graphs up to isomorphism.

Theorem 2. Let I'y and T'y1 be the graphs of diffeomorphisms f,f" € G(S") with the same
number k of vertices. Then, there exists an algorithm for checking the existence of an isomor-
phism between I'rand T yr in O(k) time®, provided T'yand Iy are stored by the adjacency lists,
i.e. all neighbours are listed, for any vertex of the graphs.

The structure of the paper is the following. In section 2, we list all auxiliary results, necessary
for proof of theorem 1, next we provide a proof of theorem 1 in section 2.4. Proofs of the
auxiliary results, required special techniques, are given in sections 4.1 and 4.2. The proof of
theorem 2, presented in section 5, can be read independently from the other sections.

2. Auxiliary results

2.1. The structure of the non-wandering set of a diffeomorphism f € G(S")

In the paper [15], the following proposition was obtained. We outline its proof for the possibility
of an independent reading of the present paper.

Let us recall that the Morse index of a hyperbolic periodic point p is the number, equal to
the dimension of the manifold Wj.

Proposition 2.1. Letf € G(S"). Then, the set of its saddle periodic points consists only on
points with the Morse indices, equal to 1 and (n — 1).

Proof. Suppose that there exists apointo € €, such thatdim W% = j, 1 < j < n — 1. Since
WY, W2 does not intersect invariant manifolds of any saddle periodic point p different from o,
the closures cl WY and W} of the stable and unstable manifolds of ¢ are spheres of dimensions
j and n — j, correspondingly. The spheres S/ = W* and $"~/ = W¢ intersect transversely at
the single point o. Therefore, their intersection index equals either 1 or —1, depending on the
choice of orientation of §/, $"~/ and S". Since the homology groups H ;(S") and H,,_ (S") are
trivial, then there is a sphere YA homological to the sphere S/ and having the empty intersection
with the sphere S"~J. Hence, the intersection index of spheres S‘j, S$"=J is zero. As the intersec-
tion index is the homology invariant, the intersection index of the spheres S’ and $"~/ must be
also equal to zero (see, for example, [32], section 69). This contradiction proves the statement.
S

2.2. Linearizing neighbourhood and canonical manifolds connected, with hyperbolic
periodic points

Define a homeomorphism b, : R* - R", v € {+1,—1} by

1 1 1
by(x1,Xx2,...,%,) = (Vle, 320 S X0t szn) .

The origin O is the unique fixed point of b,, and it is a hyperbolic saddle point. The stable
manifold W}, coincides with the hyperplane x; = 0, and the unstable manifold W coincides
with the Ox,-axe.

3 That is, the computation complexity of the algorithm is a linear function in k.
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Put
U= {(x1,..., %) € RIS +---+x) <1}, Up={(x1,...,x,)] x; =0},

N = U\Uo, N* = U\Ox1, K& ™' = Up/p,. N} = N*/, N4 = N“/, ,

and denote by p; : N;, — N‘,‘,, Ny — Nﬁ the canonical projections.
Recall that an n-ball (n-disk) is a manifold B" homeomorphic to the unit ball

B" = {(xp,...,x) ERxZ + -+ x2< 1}, n>1.

An open n-ball (n-disk) is a manifold homeomorphic to the interior of B”, and a sphere S"~!

is a manifold homeomorphic to the boundary S"~! of the ball B". The sphere S is also called
the knot.

It is easy to show that the manifold K7,' is homeomorphic to §"~% x S'. We call the man-
ifold K™ j' the standard generalized (n — 1)-dimensional Klein Bottle and a manifold home-
omorphic to K",' the generalized Klein Bottle. A canonical projection pj e Uo — K"
induces on K’l‘ll a structure of non-oriented fibre bundle over S! with a fibre S"~2. Hence,

Kﬁ]l is a non-oriented manifold. Since Uy is the universal cover for Kﬁ_l, the fundamental
group (K"~ 1) is isomorphic to Z (see [24, corollary 19.4]).

We call the manifold N“_ | the canonical neighbourhood of the generalized Klein Bottle
K" L

The proposition below follows directly from the definition of N V-

Proposition 2.2.

(a) NY| consists of two connected components, each of which is diffeomorphic to the direct
product B"~! x S,

(b) I/\\Tﬁl is diffeomorphic to B"~' x S!.

(c) I’\\T:Ll is diffeomorphic to ]K'j:ll X [—1,1].

(d) N | is a tubular neighbourhood of a zero section of non-orientable one-dimensional
vector bundle over K"~!, the boundary ON_ of N_ is diffeomorphic to S"~? x S',

and if i*:ll(aﬁ_)%m(ﬁ_) is a homomorphism induced by an inclusion, then
ng_(i(m (ONL))) = 2Z.

On figure 3, the neighbourhoods N* and N* and the fundamental domains

TS s 1 2 2
N ={Gx,. o) ENYZ <xg 4o < 1}
N*={(x1,- .)€ N||xi| € [1,2]}

of action of the diffeomorphism 4 on them are shown. Put

n 1 2 2

C=<{(x1,...,xp €R |Z <xy+ -4 x, < 1)

The set N is the union of hyperplanes

Li={(x1,....x) e N* |33+ -+ =1, te[-1,1].
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Figure 3. The fundamental domains N* and N* of action of the diffeomorphism by on
the sets N* and N

Then, the fundamental domain IVEH is the union of pairs of annuli K, = £, NC,t € [—1,1]
and the space I’\\I‘H can be obtained from N* by gluing connected components of the bound-
ary of each annulus by means of the diffeomorphism b, ;. The set N“ consists of two
connected components, each of which is homeomorphic to B"~! x [0, 1]. The space I\\I’jr,
can be obtained from N* by gluing the disk By = {(xi,...,x,) € N¥|x; = 1} with the disk
By = {(x1,...,x,) € N“|x; = 2} and the disk B_; = {(x1,...,x,) € N*|x; = —1} with the
disk B_, = {(x1,...,x,) € N*|x; = —2} by means of b ;.

The fundamental domain of action of the diffeoglorphism b_; on the set N” is the set
N“, = {(x1,...,x,) € N"||x,| € [1,4]}. The space N*, can be obtained from N*, by glu-
ing the disk By = {(x1,...,x,) € N“|x; = 1} with the disk By = {(x1,...,x,) € N“|x; =4}
by means of b_;. The structure of vector bundle on the space Nﬂl is defined by the natural pro-
jection of the one-dimensional foliation of the set N* by straight lines parallel to the Ox -axis.
This bundle is non-orientable as a wind along a loop p,‘;”(l,,), where /, is the segment of Ox;
with the endpoints (0, ...,0, 1) and (O, ..., 1/2), induces a reversing orientation map.

Now came back to diffeomorphisms from the class G(S"). For a saddle point o € Q} U
Q?" , denote by m,, its period.

We say that a saddle point o of period m, has an orientation type v, = +1 (v, = —1) if
the restriction f" |y« preserves (reverses) an orientation of WY.

Due to [18, theorem 2.1.2] (see also [16, proposition 4.3]), the following proposition holds.

Proposition 2.3. For any diffeomorphism f € G(S"), there exists a set of pairwise dis-
joint f-invariant neighbourhoods {N,,o € Q} U Q}fl}, such that for any N, there exists a
homeomorphism x, : N, — U, such that

(a) l:fO' S Q}» then Xtrfmﬂ|N,7 - bu(,Xtr‘Na’
(b) ifo e Q;_l, then xof " |n, = b, Xo|n,-

We call the neighbourhood N, as a linearizing neighbourhood.
2.3. The scheme S; of a diffeomorphism f ¢ G(S")

In this subsection, we introduce the notion of a scheme of a diffeomorphism f € G(S"), which
is an effective tool for studying the dynamics. Moreover, due to [15, theorem 1], the scheme is a
complete invariant in the class G(S"), so the problem of topological classification is reduced to
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a proof of the fact that diffeomorphisms, having isomorphic coloured graphs, have equivalent
schemes too. This fact will be given in lemma 2.3. In section 3, we adduce an adaptation of
the proof of [15, theorem 1] for the class G(S") to provide the possibility of an independent
reading of this paper.

Represent the sphere S" as the union of pairwise disjoint sets

Ar = JWHuQhRy =( | WHuQp, vy =8"\(As URy).

nesz} o€y !

Similar to [20], one can prove that the sets Ay, Ry, V; are connected, the set Ay is an attractor,
the set Ry is a repeller, and Vs consists of the wandering orbits of f moving from Ry to Ay.
Denote by ‘A/f = V/f the orbit space of the action of fon Vy, by ps: Vy — ’Vf the natural
projection. In virtue of [30] (theorem 3.5.7 and proposition 3.6.7), p, is a covering map and
the space 1% r is a manifold.
The following lemma is proved in section 4.2.

Lemma 2.1. Lerf e G(S"). Then, \A/f is homeomorphic to the direct product "' x S.

Notice that for n = 3 lemma 2.1 is not true in general (see, for example, [19, section 5]).
Denote by

nr: 71'1(?/]') — 7

a homomorphism defined in the following way. Let ¢ C % + be a loop non-homotopic to zero
in ‘A/f and [¢] € 7r1(‘A/f) be a homotopy class of ¢. Choose an arbitrary point X € ¢, denote by
pj_-l(fc) the complete inverse image of X, and fix a point X € p;l(fc). As p; is the covering map,
then there is an unique path ¢(7) beginning at the point X (¢(0) = X) and covering the loop ¢,
such that p(¢(z)) = ¢. Then, there exists the element n € Z, such that ¢(1) = f"(X). Set

ne([ch) = n.
Since Vyis simply connected, it is the universal cover for % ¢ and the homomorphism 7, is an
isomorphism.
Set

L} = {Pf(W;\P)aP S Q]l‘}), Ll;r = {pf(W“;\q),q c Q;—l}.

n—1

For a periodic saddle point o € Q} (o € 2p7), set
lo = Wy\o (e = W\0).l s = ps(Us). Ny = pr(No N V),

SO ia is an element of the set i} U L;-.

Due to [24, theorem 5.5] (see also [2, proposition 1.2.3]) the composition
Xo = pfx(jl(p,‘,’/)_1 define a homeomorphism from Nj  to N,, such that X”(Kﬁ”_l) = Z”
and the following corollary of the proposition 2.3 holds. Denote by X, : ﬂl(Kﬁ;l) — M (Vf-)
the homomorphism induced by x,.

Corollary 2.1. 7 X, (m (KL ") = m,Z.
Definition 2.1. The collection
Sp=(Vy Ly Li my)
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is called the scheme of a diffeomorphism f € G(S").

Definition 2.2. The schemes S, and Sf/ of dlffeomorphlsms f and f are called eqmva—
lent if there exists a homeomorphism ¢ : Vf — Vj/ such that <,0(LY ) =LY, @(Lf) =
Ny = NP

f,, and

2.4. Interrelation between the scheme and the coloured graph

In this subsection, we recall some notions of graph theory, establish properties of the coloured
graphs of diffeomorphisms from the class G(S") and their interrelation with schemes that play
a key role in the proof of theorem 1.

Recall that a loop-less graph without multiple and oriented edges is said to be simple. A
tree is a simple, connected, cycle-free graph. A vertex, incident to exactly one edge, is said to
be a pendant vertex or a leaf.

Proposition 2.4. The coloured graph Iy of a diffeomorphism f € G(S") is a tree.

Proof. By definition, any edge e of the graph I'; corresponds to an (n — 1)-dimensional
sphere, which cuts the ambient sphere S" into two connected components. Then the edge e
cuts the graph I'; into two connected components, so the graph I'; does not contain cycles.
Now we are left to prove that the graph is connected. It is well-known that a connected graph
with k 4 1 vertices is a tree if and only if it has k edges. If the graph I'; is not connected, then it
consists of connected subgraphs 'y, ..., I, m > 2. Then adding (m — 1) edges transforms the
disjoint union of I'; to a connected graph without cycles (i.e., a tree) with k; + 1 vertices and
ks + m edges, contradicting to the mentioned property of a tree. So, the graph I' s is connected
and it does not contain cycles. Hence, it is a tree. O

Recall that we denoted by V(I'y) and E(I'y) the sets of vertices and edges of the graph Iy,
correspondingly. Denote by uv C E(I'y) an edge, connecting vertices v, u € V(I'y).
We associate with the graph I'y a sequence

Lro.Trase Dy

of trees, such that I'z,g = Iy, I' s, contains one or two vertices and, forany i € {1, ..., s}, atree
I'f; is obtained from I'y;_; by deletion of all its leaves. All the vertices of I'y,; are called the
central vertices of the tree I'y, and if I has an edge, then it is called the central edge of the
tree I'y. The tree I f is said to be central, if it has exactly one central vertex, and bicentral, oth-
erwise. The rank of a vertex x € V(I'y), denoted by rank(x), is the number max{i|lx € V(I's;)}.
It follows from the definition that if vw is a non-central edge, then |rank(v) — rank(w)| = 1,
and the central vertices of a bicentral tree have the same rank. On the figure 4 two types of
graphs: central and bicentral with marked ranks of vertices, and corresponding sequences of
trees are shown.

An automorphism P of a tree I' is a bijective self-map of V(I") that keeps the adjacency, i.e.

Yu,ve VD) [uv € ET) < P(u)P(v) € E(I)].

An automorphism P can be represented as the product of cyclic sub-permutations, and the
set V(I'y) can be decomposed into subsets, invariant under the sub-permutations, which are said
to be orbits. Clearly, every orbit of P consists of the same rank vertices of I'y and if the tree
is central (bicentral), then its central vertex (central edge) stay fixed under any automorphism.
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a central tree

Tra

a bicentral tree

Figure 4. Central and bicentral trees.

Orbits O and O, of Py will be called neighbour, if there are adjacent vertices x; € O; and
¥y, € O3, such that |rank(x;) — rank(y,)| = 1.

Proposition 2.5. Let v, and w, be vertices of the graph T'y, where rank(v,) — rank
(wy) =1, and Oy = (v1,v2,...,v,) and Oy = (Wi, wa,. .., w,) be orbits of vi,w,, corre-
spondingly, such that P{v;) = viy, PAw;) = wj4, taking the indices modulo p and gq,
correspondingly. Then the following properties are true:

(a) pdivides q;
(b) for any i € {1,2,..., p}, the set of neighbours of v;, belonging to O, coincides with

{wi, Witp, Wit2ps -« - wi+(§—1)~p};
(c) all the edges, simultaneously incident to a vertex O, and to a vertex of Oy, have the same
colour.

Proof. Assume that p does not divide ¢. Since vyw; € E(I'y) and Py is an automorphism of
'y, we have v;w; € E(I'y) forany i € {1,...,q}. Therefore P (vy)P(w,) = vgr1wy € E(T'p).
As p does not divide ¢, then ¢ + 1 modulo p is not equal to 1. Hence, the edges v;w; and
vg+1w; are distinct. Hence, the graph I'y must contain a cycle, as there are two distinct paths
from w to the central vertices of I'y. We have a contradiction. Hence, g = [ - p, where [ is a
natural number.

Since vyw; € E(I'y) and P; is an automorphism, we have v,w; € E(I'y) for any
ie{l,...,p}. From this fact and as ¢ = [ - p it follows that for any j € {1,...,q}vw; is
an edge if and only if j = i(mod p). Therefore the set of all neighbours of v;, belonging to O,
coincides with {w;, Wiy p, Witop, . .. s Witg—p}-

As Py(v))Ps(w;) = vaws, then the edges v w; and vow, have the same colour and it is also
true for all the edges, simultaneously incident to a vertex O; and to a vertex of O;. O

The automorphism P naturally induces a map of the set E(I'y), which we also will denote
by Py. Proposition 2.5 immediately leads to corollary 2.2.

Corollary 2.2. Let vw € E(Ty) be a non-central edge and rank(v) < rank(w). Then the
period of the edge vw equals to the period of the vertex v.

Two trees I' and I are said to be isomorphic, if there is a bijection & : V(I") — V(I), called
an isomorphism, such that Vu,v € V(D)[uv € ET) < £u)é(v) € ET].
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Figure 5. The phase portrait of a diffeomorphism f€ G(S"), its coloured graph I'f,
weighted graph I' s, and elements of the scheme S.

Obviously, under any isomorphism of I', any its vertex must be mapped into a same rank
vertex.

For any f € G(S"), we define a weighted graph ff in the following way: (1) glue vertices in
the graph I'y, belonging to the same orbit of the automorphism Py, and the corresponding edges;
(2) enrich each edge of the graph T r with a weight equal to the period of the corresponding
separatrix of the diffeomorphism f. It follows from proposition 2.5 that this gluing operation
keeps colours of edges. If the tree I'y is bicentral and the central vertices generate a period
2 orbit, then T’ + has the unique loop, corresponding to the central edge of I';. Otherwise, the
graph ff is a tree with the same central vertices as I'y. In both cases we will say that a vertex
vel + has the rank k if the rank of the corresponding vertex v € I'yequals k (figure 5).

The observation above immediately leads to the following proposition.

Proposition 2.6. Let fand [’ be two diffeomorphisms from G(S") with isomorphic associ-
ated coloured graphs 'y, I'y,. Then, the weighted graphs I'y and T’ are also isomorphic by
means of an isomorphism, preserving weights of edges.

Denote by ﬁf the set of connected components of the set \A/f\(l:ji- U I:}). Since deleting 0-
and one-dimensional set from a manifold with a dimension at most three does not change the
number of connected components, there is a natural one-to-one correspondence £, between the
sets E(I'y), V(I'p) and Ly N V¢, Dy NV, such that £, Py = f€,. This fact immediately provides
the following proposition.

Proposition 2.7. There is one-to-one correspondence & : E(ff) U V(ff) — (L}’ U ﬁ}) U
Dy, such that §E(Ty)) = L ULy, &V(T'y)) = Dy.
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Proposition 2.8. The ser Q} U Q;-fl contains at most one saddle point of the negative
orientation type. If such a point o exists, then its period equals 1, the manifold 1, is homeo-
morphic to the generalized Klein Bottle, and the (n — 1)-dimensional invariant manifold of o
corresponds to the loop of the graph T f-

Proof. Suppose that the set Q} contains a point o of the negative orientation type and the
period m,,. To consider the case, when a point of the negative orientation type belongs to Q?‘l
one can replace f with f~!. Due to proposition 2.3, there exists a neighbourhood N, and the
homeomorphism Y, : N, — U, such that f" |y, = X, 'b_X,|n,. Then, one-dimensional sep-
aratrices of o both have the period 2m,. The closure of the stable manifold of the point ¢ is a
locally flat (n — 1)-sphere cutting the ambient sphere S on two open n-balls By and B,, each of
which contains an one-dimensional separatrix of o. Hence, f”7(B;) = B, and f"(B,) = B;.
Therefore, if we delete from the graph I's the edge e, corresponding to the manifold W, we
get two graphs isomorphic by means of P;'f", so the edge e, is central. Since any tree has at
most one central edge, there are at most one saddle point of the negative orientation type. [

For ff, we construct a sequence ff,o = ff, ff,l, R ffvy by consequence deleting verities
of the smallest rank and the edges incident to them, similar to the sequence I' o, L'z1, ..., I'py.
These two sequences consist of the same number of elements, since T' s is obtained from I'f
by gluing vertices and edges of the same orbits of Py and this operation preserves ranks as we
have defined. o

For i € {0,...,s — 1}, set Ay; = &[T \I'f,41). If the graph I'; is bicentral, we define
the set Ar, depending on two possible cases: (1) the graph ff has the central edge e.; (2)
T Ly has a loop. In the first case, choose an arbitrary connected component r . of the graph
Ff\e* and set Ay = {(Ff « U e,) (see figure 6). In the second case, there exists a saddle pomt

0. € Qf 7 ! with the negative orientation type. In this case set As, = cl (Vf\ int N,,),
where N,, is the linearizing neighbourhood of the point o..

Proposition 2.9. The chain of inclusions Agg C int Ay C - - - Cint Agyy is true. If the

graph ff is either central or has a loop, then Ag,_ C int Ag,. Otherwise int Agg N Ay # 0,
ief{0,...,s— 1}

Proof. Leto, € Q} U Q”’l be a point of negative orientation type and an edge e,, € ET )
corresponds to the manifold ] o C Vf Then e,, is a loop and the graph r f\e,,x is connected.
Hence, due to an existence of an isomorphism § E(I‘ U V(F ) — (L‘ L”) ubD r» the set
Vf\l{,* , as well as the set Vf \NU* , is connected. More over, for any vertex v € V(Ff\e,,x) and
any edge e € V(Ff \e,,) the sets 5(1)) and §(e) belongs to Vf \NU* Then, for the case when I‘f
has a loop, the inclusion Ay; C int Az, holds forany i € {0,...,s — 1}.

Now, let 0 € Ql Q”fl be a point of positive orientation type and an edge ¢, € E(f,)
corresponds to the manlfold I, c 1% 7. Then the edge e, is incident exactly to two different
vertices v, 4, V,,— and cuts Ff into two connected components F+, r_, Vo4 C F+, Vg C T_.
Therefore the set Vf \l consists of two connected components D, = & (F+) D, =¢ (F ).

Suppose 0 < rank(v, ) < rank(v,4+). Then a connected component of the set
T f \F £ rank(v,y 1) containing the edge e, is exactly T_ and D,, _ is a connected component of
the set A s rank(v, -

Leto’ C Q } U Q}_l be a point such that the corresponding edge e, belongs to T'_. We deter-
mine for the point ¢’ all objects similar to ones for the point o. Then the connected component
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Figure 6. The scheme S/, the graph T r and the elements Ao, Ay,

of the set A rank(v,, ) containing e, belongs to D, _. Tt proves the inclusion A; C intAg;y,

foranyi € {0,...,s — 1}.In case rank(v, ) = rank(v, ) = s we fix a connected component
of the set '\ e, and then apply similar arguments to prove that there are connected components
of the set Ay, that belongs to the interior of A ;. O

The following lemma is proved in section 4.2.

Lemma 2.2. Lerf € G(S"). Then every connected component of the set Ag; is homeomor-
phic to B"! x St

Now, to prove that the existence of an isomorphism between the coloured graphs I's and
I'4/ leads to the equivalence between the schemes Sy and Sy,, we need one more auxiliary
proposition.

Let M" be a topological manifold, possibly, with a non-empty boundary OM", 3 C M" be
aknot, and g : B"~! x S! — M" be a topological embedding, such that g({O} x S') = 3. The
image Ny = g(B""! x S!) is called a tubular neighbourhood of the knot 3.

The following proposition is a slight modification of [16, proposition 5.1, 5.3]. We prove it
in section 4.1.

Proposition 2.10. Suppose that n > 4, P"~! is either the ball B"~" or the sphere S"!.
Let {B;}, {8/} C int P"! x S! be two families of pairwise disjoint knots, such that f3;, 3 are
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homotopic, i € {1,...,k} and {Ng},{Nz} C P"~! x S! are pairwise disjoint tubular neigh-
bourhoods of {3;},{f;}. Then, there exists a homeomorphism h:P"~' x 8" —P" ' x §!,
such that h(B;) = B, h(Ng,) = Ng,i € {1,...,k}, and if P" = B", then h|ypn1 5 = id.

Corollary 2.3. Under the assumptions in proposition 2.10, let h: 9B"' x S! — B!
x S! be a homeomorphism. Then, there exists a homeomorphism h :B”‘l x St = B! xS,
such that h(B;) = /,h(Ng,) = Ng,i € {1,...,k} and h|ypi1,51 = h.

Lemma 2.3. If the coloured graphs Ty and Ty of diffeomorphisms f.f' € G(S") are
isomorphic, then the schemes Sy and Sy, are equivalent.

Proof. Any isomorphism ( between the graphsI"and I' ;7 induces an isomorphism é T =
ff/ that preserves the weights and ranks of edges. Then, for any i € {0, ..., s}, the isomor-
phism é induces an one-to one correspondence (; between the connected components of the
sets Ay; and Ay,;. If the graph I‘f is bicentral, then there are two ways to choose the set A,
but, since the graphs T '+ and T 1 are isomorphic, it is possible to choose the sets Ay, and Ay
in such a way that for any pair of connected components Ps; C Ayg;, Prj C Ay, such that
Py; CintPy;, the inclusion (;(Ps;) C int{;(Pr;) holds, i € {0,...,s —1},j€ {1,...,s},
i<

The following two cases are possible: (1) there are no saddle points of the negative
orientation type; (2) there is a saddle point of the negative orientation type.

Let us consider the case (1). Without loss of generality, assume that the graph I'; is bicentral.
For the case, where the graph is central, the arguments are similar.

It follows from lemma 2.2 and proposition 2.10 that there exists a homeomorphism ); :
‘A/f — Vf/, such that ¢ (Ar) = As . If s = 0, then the proof is complete and ¢ = ).

Let s > 0. Denote the images of the sets Ay, ..., Ay, under the homeomorphism 1), by
the same symbols as their originals.

Due to corollary 2.3 from proposition 2.10, there exists a homeomorphism ), : % =
Vfr, such that Q/JS_I |‘7f/\int A,
Psy 1 € Ags 1. If s = 1, then the proof is complete and ¢ = 1), ;7). Otherwise, continue the
process and after a finite number of steps we get the desired homeomorphism .

In the case (2) denote by 0. € Qy, o), € Q, the points of the negative orientation type.
Due to corollary 2.1, there exists a homeomorphism 1/, : N{,* — N(,/* . Due to lemma 2.2, the

=id, },_(Pfs—1) = (;(Pfs—1), for any connected component

manifold cl(V ;\N,.) is homeomorphic to B"~' x S'. Then, using corollary 2.3 similar to the
case (1), it is possible to continue the homeomorphism 1, up to the desired homeomorphism
of Vf . O

3. Topological classification of diffeomorphisms from G(S")

It is clear that if diffeomorphisms f, f’ € G(S") are topologically conjugated, then their
coloured graphs are isomorphic. This section is devoted to prove the inverse fact.

Let f and f’ be diffeomorphisms from G(S") with isomorphic coloured graphs I'; and
F’f. According to lemma 2.3, the schemes S; and Sy, of diffeomorphisms are equivalent,
that is there exists a homeomorphism ¢ : \7f- -V 7, such that @(l::‘f) = I:;.,, @(I:_L;) = I:Lf‘.,, and
0y = 1N Ps

Now we start to prove that the diffeomorphisms f and f’ are topologically conju-
gated. The homeomorphism ¢ : Vf — Vf/ induces a homeomorphism ¢ : V — V,, such that
flv, = gp*'f’np\vf, and, for any saddle point o € Q} (o € Q;"), there is a point
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o e Q}, (o' € Q}Tl), such that (W)\o) = W \o' (¢(Wi\o) = W% \o'). The homeomor-
phism ¢ extends univocally to the set 2.

Let us extend the homeomorphism ¢ to the sets Ay and Ry. First, construct a conjugating
homeomorphisms H; and H,_; on the linearizing neighbourhoods {N, } of saddle points from
sets Q} and Q}_l that coincide with ¢ on the boundaries of the linearizing neighbourhoods.
Then, the desired homeomorphism H : §" — S" conjugating f and f’ will be defined by

P(x), xes U N

H(x) = seiua) !
Hs(x), x€N,oeQ),6e{l,n—1}.

To built the homeomorBhism H,, we choose one point in each index-1 saddle orbit and
denote the obtained set by 2 } Due to proposition 2.3, there exists a family of pairwise disjoint
neighbourhoods {N, }({N, }) of points from ﬁlf «© 1) and the homeomorphisms x, : N, — U
(Xo : Nov — U) conjugating the restriction of the diffeomorphism f™ (f'"*') on the set N,
(N,) with the diffeomorphism b, |y.

Set

U, = {(x1,...,x) ER"| X33+ +xH <7}, 7€(0,1]

Recall that we set Uy = {(x1,...,x,) € R"| x; = 0}. Let us define the homeomorphisms ¢ :
HJO — Hjo,lﬁ :U—-0U by

O = XX s W1, X0, ooy X)) = (X1, @ (X2 w2 X)),

Set N7 = x;!(U,). Choose 7 € (0, 1], such that the map 1 : N7 — N, defined by
P(x) = X' Ux,|v; would be a well-defined topological embedding and (NT\W¥) C
PN \WE).

Define a topological embedding 6, : N7 — N,, by 8 = ¢~ '4). Since 0|« = id, it follows
from [18, corollary 4.3.2] that there exist 0 < 7; < 7 and a homeomorphism © : N, — N,
coinciding with € on the set N]! and identical on ON,,.

Define homeomorphisms

mg—1 mg—1

oot Ng = Noyy By 000 - U Nyiy = U Npriggry
i=0 i=0

bY hor = 9O, how)0n = [ heof (x), for x € Nyi(g).-
Denote by H; : |, ., ! Ny = U, cq Nov the homeomorphism coinciding for any point o €
; !

Q} with the homeomorphism Ao ) 0(o1)-
To define the homeomorphism H,,_; : UUEQ';. 1N, — UU, eQ;, 1N/, use the similar construc-

tion for points from the set Q’f”l using formal replace s with u and b, with b;!.

4. Proofs of auxiliary results

4.1. On embedding of families of closed curves and their tubular neighbourhoods

In this section, we prove proposition 2.10 after all necessary definitions and auxiliary facts.
A topological space X is called m-connected, for m > 0, if it is non-empty, path-connected
and its first m homotopy groups 7;(X), i € {1,...,m} are trivial. Any non-empty space X
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can be interpreted as (-1)-connected, and any path-connected space X can be interpreted as
0-connected.

Let Q7 and M" be two compact topological manifolds with dimensions g and n, where g < n.

Topological embeddings e, e’ : Q7 — M" are homotopic if there is a continuous map
H: Q7 x [0,1] = M", called a homotopy, such that H|gsx 0} = €,H|gax{1} = €. They are
concordant if there is a topological embedding H : Q? x [0, 1] — M" x [0, 1] (a concor-
dance), such that H(Q?,0) = (e(Q?),0) and H(Q?, 1) = (¢/(Q9), 1). Topological embeddings
e, e : Q7 — M" are ambient isotopic with a subset N C M" fixed, if there is a family h; of
homeomorphisms 4, : M" — M", t € [0, 1] (an ambient isotopy), such that hg = id, hje = €/,
h|y = id, for any t € [0,1]. For £ > 0, an ambient isotopy is called an e-isotopy if
d(h(x),x) < g, forany x € M",t € [0, 1].

Let K be a finite simplicial complex in R", that is a finite set of simplices that satisfies the
following conditions:

(a) Every face of a simplex from K is also in K.
(b) The non-empty intersection of any two simplices A, A, € K isa face of both A and A,.

Considering K as a topological subspace of R (with the topology induced by an inclusion),
we get a topological space P, which is called a polyhedron generated by K. The complex K is
called the partition or the triangulation of the polyhedron P.

A complex K’ is called a subdivision of a complex K if every simplex of K’ belongs to a
simplex of K.

Let K and L be the two complexes and P, Q be the two polyhedra generated by K and L. A
map h : P — Q is called piecewise linear if there exists subdivision K’, L' of K, L, correspond-
ingly, such that 2 moves each simplex of the complex K’ into a simplex of the complex L’
(see, for example, [28]).

A polyhedron P is called a piecewise linear manifold of dimension n with boundary if it
is a topological manifold with boundary and for any point x € int P (y € OP) there is a neigh-
bourhood U, (U,) and a piecewise linear homeomorphism #, : U, — R" (h, : U, — R =
{(x1,...,xp) CR"| x; = 0}).

The following important statement follows from theorem 4 of [22].

Statement 4.1. Suppose that Q7 and M" are two compact piecewise linear manifolds
of dimension ¢ and n, respectively, Q7 is the manifold without boundary, M" possibly has
a non-empty boundary, e, ¢’ : Q¢ — int M" are piecewise linear homotopic piecewise linear
embeddings, and the following conditions hold:

(@) g<n—3;
(b) Q%is (2q — n + 1)-connected;
(¢) M"is (2q — n + 2)-connected.

Then, e, ¢’ are piecewise linear ambient isotopic with OM" fixed.

To reduce the problem of embedding of families of curves to statement 4.1, we will use the
following results.

Theorems 1 and 4 of R Miller’s paper [26], see also A. Chernavskii paper [9], ensure us
next statement.

Statement 4.2. Let Q% and M" be two compact piecewise linear manifolds of dimensions ¢
and n, correspondingly, g < n — 3, > 0, and e : N* — M" be a locally flat embedding. Then,

there is an ambient e-isotopy of M" connecting ¢ with a piecewise embedding.
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G Weller’s result [31, theorem 3] gives the following.

Statement 4.3. Let Q7 and M" be two topological manifolds of dimensions ¢ and n, cor-
respondingly. Further, we assume that Q7 is compact, e, ¢’ : Q¢ — int M" are two homotopic
embeddings, and the following conditions hold:

(@ g<n—3;
(b) Q%is (2q — n + 1)-connected;
(c) M"is (2q — n + 2)-connected.

Then e and €' are locally flat concordant, that is there is a locally flat embedding H : Q7 x
[0, 11— M" x [0, 1], such that H(Q?,0) = (e(Q), 0) and H(Q?, 1) = (¢'(Q7), ).

Proposition 4.1. Suppose that P"~! is either S"~' or B"~!, {3;}, {3/} C int P"~! x S! are
two families of pairwise disjoint knots, such that the knots 3;, 3: are homotopic, i € {1, ...,k},
n > 4. Then, there exists a homeomorphism H : P"~! x S — P"~! x S!, such that H((3;) = ,6?,
foranyi € {1,...,k}. Moreover, if P"~! = B""!, then H|ypn-1,51 = id.

Proof. Denote by A" the simplex of dimension 7 and by A" its boundary. Then, P"~! x S!
is homeomorphic either to A" x AA? or to A"~ x 9A? and, without loss of generality, we
will identify P"~! x S! with one of these piecewise linear objects.

It follows from statement 4.2 that there exist homeomorphisms g, g’ : P"~! x S! — P"~1 x
S!, such that forany i € {1,...,k} the sets g(3,) and g'(3}) are subpolyhedra. It is sufficient to
construct a homeomorphism H : P"~1 x S! — P"~! x S!, such that H(g(3,)) = g'(/3)), for any
ie{l,....k}, and H|yps 1,5 = id. Then, the homeomorphism g'~'Hg will be the desired
map. So, without loss of generality, assume that the knots /3; and /3; are sub-polyhedra, for
ie{l,... k}.

By assumption, the piecewise linear embeddings e;: OA? — P! x S!, ¢}: 9A% —
P! x S', such that ¢;(9A?) =, and €j(OA?) =, are homotopic. By statement
4.3, there is a locally flat embedding W:HA? x [0,1] — P"! x S x [0, 1], such that
T(OAZ,0) = (e(OA?),0), U(DA%, 1) = (¢/(9A?), 1). By statement 4.2, there is a homeo-
morphism @ : P*~! x S! x [0, 1] — P*" ! x S! x [0, 1], such that the composition ®¥ is
a piecewise linear embedding. Denote by pr:P"~! x S! x [0,1] — P*~! x S! x {0} the
projection given by pr(x, 1) = (x,0), x € P"~! x S!, t € [0, 1]. Then, the composition pr®¥
is the piecewise linear homotopy.

Now, we will construct the homeomorphism H by induction on i. By statement 4.1, there
exists a piecewise linear homeomorphism H; : P"~! x S! — P"~! x S! that maps 3, to 3.

Suppose that for some j < k there exists a homeomorphism H;:P"~! x S! — Pr~1 x
S!, such that H;(3,) = B}, for i € {1,...,j}, Hj|gpn 1,5 = id. We can construct a home-
omorphism H; : P"~! x S! — P! x S, such that H;;1(8;) = 8., fori € {1,...,j+ 1},
Hjpt|opr-1xgr = id.

Preserve the notation 3; for the images of the knots 3, i € {l,...,k} by means of
the homeomorphism H ;. Then, the knots 3; and 3; coincide, for i € {I,..., j}. Denote by
e,y OA* — P! x S! piecewise linear embeddings, such that e;1(9A*) = 3,,, and
&1 (OA%) = .

Now, we show that e;; 1 and ¢/, | are piecewise linear homotopic in P"~! x SNUL, 8.
It follows from statement 4.1 that there exists a family of piecewise linear homeo-
morphisms A/ P x ST Pl xS £ € [0, 1], such that héﬂ =id, h{+lej+1 =iy
nt! |opn-1 st = id, for any ¢ € [0, 1]. This family defines a piecewise linear homeomorphism
Hi S x [0,1] = P! x S x [0,1] by Hit(x, 1) = (b7 (x), 1). It follows from the gen-
eral position theorem (see, for example, theorem 5.3 of chapter 5 of [28]) that there exists a
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piecewise linear homeomorphism ® : P"~! x S! x [0, 1] — P"~! x S! x [0, 1] leaving the set
OP"! x S x [0,1TUP"! x S! x {0, 1} fixed and mapping the cylinder H/(S! x [0, 1])
to one that has no intersection with all the cylinders 3; x [0,1], i € {1, ..., j}. Then, it is
possible to choose regular tubular neighbourhoods Ngr» ... ,Nﬁ; of the knots },.. ., ,8; in

P! x S!, such that §(EH/TI(S' x [0, 1]) N Uf:] Ng} x [0,1] = 0. So, the map ®PH/T! S x
[0,1] — (P! x Sl\U'i’:1 int Nﬂ;) x [0, 1]is a piecewise concordance and the composition of
it with the projection pr: P"~!' x S x [0,1] — P"~! x S! gives the desired homotopy. Apply-
ing statement 4.1 once more, one can obtain the piecewise linear homeomorphisms HitL:
P! x S\, int Ny — Pt x SM\UL, int Ny, 1 €[0,1], such that Hitlep =,

Hit! ‘3(P”*'XS'\U{;| i ) = id, for any ¢ € [0, 1]. Now, the desired homeomorphism H/*+' :

P! x S' = P! x S! is defined by H/t!(x) = H/T'(x), for x € P! x S"\JL, int Ny,
. J
and H/"'(x) = x, forx € [J__, int Njy.
J
O

The following statement 4.4 is proved in [13, lemma 2.1].

Statement 4.4. Leth:B" ! x S! — int B"~! x S' be a topological embedding, such that
h({0} x Sy = {0} x S'. Then, the manifold B"~! x S!\ int2(B"~! x S') is homeomorphic
to the direct product "2 x S! x [0, 1].

The proof of the following statement one can find in [17, lemma 2].

Statement 4.5. Suppose that Y is a topological manifold with boundary, X is a connected
component of its boundary, Y; is a manifold homeomorphic to X x [0, 1], and Y NY; = X.
Then the manifold Y U Y is homeomorphicto Y. Moreover, if the manifold Y is homeomorphic
to the direct product X x [0, 1], then there exists a homeomorphism/z: X x [0,1] = YU Y|,
such that h(X x {$}) = X.

Proof of proposition 2.10. Suppose that P"~! is either the ball B"~! or the sphere S"~!,
{B:i}, {8} C int P"~! x S! are two families of knots, such that the knots 3;, 3; are homotopic
and {Nj, }, {Ny} C P"~' x S' are pairwise disjoint neighbourhoods of the knots {5;}, {5}
Let us prove that there exists a homeomorphism % :P""! x S! — P! x S!, such that
h(B;) = Bl, h(Ng,) = Nﬁ,(,i e{l,....k},and h|ypn 1,5 = id.

By proposition 4.1, there exists a homeomorphism & : P! x S! — P"~! x S!, such that
ho(ﬁi) = ﬁ:, /’lo‘a pn-lysl = id. Set Ni = ho(N{gl.). For r € (0,1), set

B! = {(x1,...,x, 1) € R"Y xf 4+ +x,2,7| <7}

It follows from [5] that there exist topological embeddings &;: B" ! x S' — int P*~! x
S', such that &({0} x S") = 3/, &(B"' x S') = N,, for some r € (0, 1), &[B! xS"HN
2B x SN =0, fori # j.i.j€ {1.....k}. Set U; = &:(B" ! x Sh).

Denote by e/ :B" ! xS!' =P~ xS!' a topological embedding, such that
(B! x S = Ny, and choose rg, 7y, such that 0 < ro < r; <1 and eﬁ(B’}rl x S C N;.
Set Ny, = ej(B, ' x S') and Nj; = €j(B, ' x S").

By statement 4.4, the set N, AN ; 1s homeomorphic to the direct product S*2 x St x [0, 1],
i€{l,...,k}. By statement 4.5, there exists a homeomorphism g; : S"2 x S! x [0, 1] —
Ui\ int Ny; and 11,1, C (0, 1), such that

gi(S"? x S' x {#}) = ON;,g(S"? xS x {n}) =N,
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Let £:[0,1] — [0,1] be a homeomorphism that is the identity on the ends of the interval
[0, 1] and such that &(t) = t,. Define a homeomorphism g;: S"~2 x S x [0, 1] — S"2 x
St x [0, 1] by gi(x, ) = (x, £(1)) and a homeomorphism 7; : P! x St — P! x S! by

o) — 4 8B O, X € Ui\ int No3
i(x) =
x, x € (P" 1 x ShU)).

The superposition 1 = A - - - hihg maps every knot 3; into the knot (3}, the neighbourhood
Ny, into the set N7; C Ny, and keeps the set 9P"~' x S' fixed. Since the set N\ int N{; is
homeomorphic to the direct product S"~2 x S' x [0, 1], it is possible to apply the described
construction once more and get the desired homeomorphism. The proof is complete.

Let M" be an n-dimensional manifold homeomorphic to S"~! x S'. A knot 3 C intM" is
called essential if the homomorphism i, : 7, () — m;(M") induced by the inclusioni : § — M"
is an isomorphism.

The next statement follows immediately from proposition 2.10.

Corollary 4.1. If 3 C M" is an essential knot and Ny is its tubular neighbourhood, then the
manifold M"\int N is homeomorphic to the direct product B'~! x S!.

One more corollary was stated in subsection 2.4, let us prove it. We will use the following
statement proved in [25, theorem 2].

Statement 4.6. Let ¢/ :S" 2 x S! = 8"2 x S! be an arbitrary homeomorphism. Then,
there exists a homeomorphism ¥ : B"~! x S! — B"~! x S!, suchthat Ulgu 2,51 = ¥|gu2yg1-

Proof of corollary 2.3. Let /:9B" ' xS! = 9B ' xS! be a homeomorphism.
Let us prove that there exists a homeomorphism /:B""' x S' — B"~! x S', such that
h(Bi) = {xi} x S, h(Ng) = Ny.i€ {1,...,k},and h|y g 1,51 = h. Due to statement 4.6, the
homeomorphism / can be extended to a homeomorphism &g : B! x S! — B! x S'. Due
to proposition 2.10, there exists a homeomorphism £y : B"~! x S! — B"~! x S!, such that
hi(ho(By) = Bj, hi(ho(Ng)) = Ny,i € {1,...,k}, and hi|ype1,g1 = id. Then, the composi-
tion hyhy is the desired homeomo'rphism h.

4.2. Characteristic space and embedding of separatrices of dimension (n — 1)

Here we prove lemmas 2.1 and 2.2. If all saddle points of a diffeomorphism f are fixed and
have the positive orientation type, then the two lemmas follow from [16, lemm 3.1]. Now, we
prove them for the general case. The main tool of the proof is a surgery along knots that, in
contrast with the case n = 3, does not change the topology of the manifold.

Let M" be a topological manifold with dimensionn > 4, possibly with non-empty boundary,
S C intM" beaknotand N3 C int M" be its tubular neighbourhood. Glue manifolds M"\int N 3
and B"~! x S' by means of an arbitrary reversing the natural orientation homeomorphism ¢ :
ONz — S"~2 x S! and denote the obtained manifold by Q". We say that Q" is obtained from
M" by a surgery along the knot [3.

Proposition 4.2. Q" is homeomorphic to M".

Proof. Set N' = M"\intNg, then Q" = N'U,B"~! x S!, and, for any subset X C N'U
B"! x S!, the projection 7 : X — Q" is defined.
Set 1) = @ '77 | (gi-2,51)- Due to statement 4.6, the homeomorphism 1 can be extended
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to a homeomorphism W :7(B"~! x S') — Ns. Let us define a map H:Q" — M" by
H(x) = 7 (x) = x, for x € 7(intN"), and by H(x) = ¥(x), for x € 7(B"! x S!). One can
easily check that H is the desired homeomorphism. O

Recall that we represent the sphere S as the union of three pairwise disjoint sets

Ar=(JWHuQ). Ry =( | WHuQp vy =5"\(A4; UR).
UESZ} oeqy !
We denoted by \A/f = V;/f the space under the action f on Vy, by ps : V; — ‘A/f the natural
projection, and we introduced the homomorphism 7y : 7r1(‘7f) — 7.

Suppose that the set Q} is non-empty, in the opposite case we consider f~'. Then, A rcanbe
represented as a graph embedded in ", whose vertices are sink periodic points and edges are
one-dimensional unstable manifolds of saddle periodic points. Since the closure of all stable
separatrix of dimension (n — 1) cuts the ambient sphere S” into the union of some pairwise
disjoint domains, so that each of them contains exactly one sink periodic point, we have |Q? | =
\QH + 1. It follows from [20] that the set Ay is connected. Then, A is a tree and it is possible
to define ranks of sink periodic points as ranks of the vertices of A .

Construct a series of attractors Ag,Aq,...,A,, where Ay = UW€Q<;w, A, = Ay, A; consists
of all vertices of A of ranks at most i and joining them edges of A . Denote by V; the union
of stable manifolds of all periodic points belonging to A;, set V.=V, /¢, and denote by p; :
V; — V; the natural projection. It follows from the definition that the number of connected
components equals the number of f—invariant components of A;.

Lemma 2.1 immediately follows from the next proposition.

Proposition 4.3. V, is the union of manifolds homeomorphic to S"~! x S!.

Proof. We will prove the proposition by induction on i. For a point w € Q?- of period my,,
set V§, = Urey ! £(Ws\w) and wa = V¢ /f. It follows from the hyperbolicity of the point w
and [24, theorem 5.5] (see also [4, propositions 1.2.3 and 1.2.4]) that \A/ng is homeomorphic to
S"1 x S!. So, V, is the union of manifolds homeomorphic to §"~! x S!.

Suppose the statement is proved for & = i and prove it for i + 1.

For a point o € Q} of period m,, denote by w_ and w the sink points belonging to cl W
and by [7 .7 . the unstable separatrices of o, such that[;  C Wj andf; , C W . Set

o,—

my—1 my—1 my—1

O, = flonts, - = | Faa i, = Fia.
i=0 i=0 i=0

Let N, be the linearizing neighbourhood of the point o and NS = N,\W5, N* = N,\W.
Denote by Nj _ and Ni," . connected components of the set N containing separatrices Iy, [, 1
correspondingly, set Ny = Ny /f, N5 = N3/ f, denote by pgu : Ny — Ny, pgs : Ny — N3 the

natural projections and define a homeomorphism ¢ : 8N§ — N;", by ¢ = pgs P
Suppose that W* C A;41\A; and w_ C A;. There are two possible cases: (1) rank(w_) <
rank(w ), then wy C A;41\A;; (2) rank(w_) = rank(wy), then wy C A;.
We first consider the case (1). It follows from proposition 2.2 that m, = m,, , moreover, the
period of the connected component V{ of V; having non-empty intersection with the set W/,
also equals m,,. Then, the set 1 ‘ém_ = Pi(l”o”,—) is an essential knot in \7;7 =V7/ r and, due to

corollary 4.1, the set \A/f’\ int Nﬁ_, is homeomorphic to B"~! x S'.
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Denote by p%wr :V@w+ —)\A/ow+ the natural projection. Then, the set lA’(‘?M_ =

p%w_ (l“oﬂ’+) is a knot in ‘A/%‘ . and Nﬁy L= P‘A’aw (Ny 1) is a tubular neighbourhood.
Set
T =V7u Vo,, U Wo, \Wo, = V7 U Voo, UNp, \int N§_

= (V7 \int Nb, )UNp, U (Vo \int Ng_ ).

Then
Vie = Via/f = (Vo, \int Ng U, N)U,, (V°\int Nj ),

where p_ = g0|d,;,u and p = (g0|d];,u )7l

Due to proposition 2.2, the mamfold N3 is homeomorphic to §"~ 2 x S! x [—1, 1]. Due to
statement 4.5, (VO,, \ int N" U N is homeomorphic to VQ, \int N _, so, it is homeo-

o>
morphic to B! x Sl Then, V, .| is obtained from V@ \1nt N 4 by surgery along knot ] ok
and, due to proposmon 4.2, is homeomorphic to S"~! x Sl To get V,+1 ,join V, .| to the union
Usankw)—it1 V% and then repeat a similar procedure for all saddles &, such that W% C A;\A;
and A; N cl WY = (). Atevery step, one gets the union of manifolds homeomorphicto S"~! x S'
and after a finite number of steps, one gets either to one sink of the maximal rank (so, the last
manifold is connected) or to case (2).

In the case (2) there are two possibilities: the point o has either the positive or the negative
orientation type. If o has the positive orientation type, then m, = m,, . = m,,_ = 1 and the
manifold \7i = \A/,._l is the union of two connected components homeomorphic to st x St
each of which contains one of the knots s 1 o Then surgery and arguments similar to ones
above prove that V, is homeomorphic to S"~! x S!.

If o has the negative orientation type, then m, = 1, the points w and w_ together form a
2-periodic orbit, and V; consists of two 2-periodic connected components D and f(D). Con-
sider the map g = f°, set ‘A/g = Vy/, and denote by p,: V; — Vg the natural projection. It
follows from the arguments above that the factor-space V/ 2 is homeomorphic to S x St
Set 7 = pofp; . Then, 72 = id, so 7 is involution and V; = V, /... It follows from [23] that
v + is homeomorphic to one of the following manifolds: the direct product S"~! x S!, the non-
oriented fibre bundle S"~! XS! over the circle with the fibre S"~!, the direct productS' x RP"~!
or to the connected sum RP" x RP".

The set V r is covered by V and, consequently, by S"~! x R, which is the universal cover
of V . Then, due to [24, corollary 19.4], the fundamental group m(V r) is isomorphic to the
group {f"} and, consequently, to the group Z. So, Vf cannot be homeomorphic to the direct
product S' x RP"~! or to RP" x RP". Since f is orientation preserving, the orbit space % r s
orientable, so it is homeomorphic to S"~! x S!. O

Proof of lemma 2.2. Let us prove that A;; = £(I';\T'/ 1) is the union of S"~! x S', for
any i € {0,...,s}.

If the graph ff has no loops, then, forany i € {0, ..., s}, a connected component of the set
T j\f f,i+1 1s the union of the following objects: the edge e, the vertex v incident to e,, and all
paths of the graph n  connecting the vertex v, with leaves and crossing the vertices in order
of decreasing of ranks. Denote this component by 77 and set A% ; = §A(T”). Let us prove that
A% ; is homeomorphic to §"~! x S!.
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Without loss of generality, suppose that the edge e, corresponds to the union of stable man-
ifolds of points belonging to the orbit O, of the point o € Q} Denote by m, the period of the
point o.

The set cl W, cuts the sphere $""'in m, + 1 connected components that belong to two
f-invariant sets D, _ and D, = S"\cl D_. Suppose that the domain, which is corresponding
to the vertex v,, belongs to D_. Then, A% ; = cl (ps(Do, _\(As URy))) and the set D, _ is the
union of the open balls Dy, Dy = f(Dy),...,Dy,—1 = f™~ (Do) bounded by cl Wo, -

On the other hand, the set D, _ is the union of stable manifolds of periodic points belong-
ing to the set Ay N D, _. Hence, due to proposition 4.3, the set Dy = pr(Do_\(Af URy))is
homeomorphic to S"~! x S!.

Denote by [/, and [, + the one-dimensional separatrices of the point o, such that [, C
D, _ and [, C D,.Let N, be a linearizing neighbourhood of the point o, NS = N, \ W%,
Ny = N AWy, Nig = Ny /7, N = Ny /.

It follows from propositions 2.2 and 2.3 that the set c1D,_ NN’ is homeomorphic to
the direct product S"2 % S' x [0, 1]. Then, the set cl lA)”,, is homeomorphic to the set
D, \ int N p

The set [,_ = l,—/f is an essential knot in D, _ and the set N%_ = (N* N Dy4)/; is
a tubular neighbourhood of it. Due to corollary 4.1, the set D\ int N‘,‘,Y 4+ 1s homeomor-
phic to B! x S'. Since D\ int N%, =D, _\int N, D, _\intN and clD,_ are also
homeomorphic to B"~! x S!.

Now, suppose that the graph T s hasa loop Then, the arguments above prove the lemma for
i€{0,...,s—1}andtheset As; =cl (Vf \ int NU*), where N,, is the linearizing neighbour-
hood of the point o, of the negative orientation type and N, 0. = Ny, /f.Letus prove that A
is homeomorphic to S"~! x S,

Without loss of generality, suppose that o, € Q; The set cl W cuts the sphere S" into
two connected components D and f(D) of period 2. Hence, the point o, cuts the set Ay into
two symmetrical parts of period 2. Denote by A and A_ the connected components of the set
A \W}_ lyingin the sets D and f(D), correspondingly, and by Iy C D and [* C f(D) unstable
separatrices of the point o,.. Set D, = D\(A4 URy) and D_ = f(D)\(A URp).

It follows from proposition 4.3 that the orbit spaces D, = D_. /12, D_=D_ /f? are home-
omorphic to S"~! x S!. Since the one-dimensional separatrices of the point o, are fixed with
respect to f2, their projections in D+, D_ are essential knots. Due to propositions 2.2 and 2.10,
the sets D\ int N* , D_\ int N are homeomorphic to B"~! x S'. Then, the set Dy \N¥
is homeomorphic to B"~! x R and it is possible to find a fundamental domain B, C D, \N"_
of the action of f? on D \N¥, homeomorphic to B! x [0, 1]. Since the sets D, U D_ and
N, are f-invariant and 2-periodic, the domain B is also the fundamental domain for the
action of f on (D4 UD_)\N}, and the quotient-space (D U D_)\N} )/ is homeomorphic
toB"™ ! x S

Since V,\int N3, = (DL UD_)\int N and cl(V,\N5)=V,\int N}, we have
cl (Vf\N;",*) = ((D+ UD_)\N")/¢,so, cl (‘A/f\Nf,x) is homeomorphic to B"~! x S!.

5. A linear-time algorithm for distinguishing edge-coloured trees, equipped
with automorphisms

In section 5, we prove the existence of a linear-time algorithm for distinguishing coloured
graphs of cascades from the class G(S") that proves theorem 2. At first, we will recall some
basic definitions and define some new notation.
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Let k& be a fixed natural number. Let 7 be a tree and c: E(T)— [k], where
[k] ={1,2,...,k}, be some mapping, called an edge k-colouring of T. Elements of the set
[k] are called colours. The pair (7, c) is said to be an edge-k-coloured tree. Let P be some
automorphism of (T, ¢), i.e. an automorphism of 7', such that, for any edge uv € E(T'), we have
c(uv) = c(P(u)P(v)). We will refer to the triple (7, ¢, P) as an equipped tree. Two equipped trees
(Ty,c1,Py)and (T>, ca, P>) will said to be isomorphic, if there is an isomorphism £ between 7'
and T, keeping edge colours, i.e. Vuv € E(T))[c(uv) = c(§(u)&(v))], and conjugating P; and
1)2,i.e. 5131 = 1325.

Meeting the equality |V(T1)| = |V(T>)| is a necessary condition for the existence of an
isomorphism of (7', ¢, P) and (T2, ¢, P»). Further, we will consider that both trees 7' and
T, have k vertices. We will also assume that P and P, are given by tables, in which, for any
vertex v € V(T;), a vertex P;(v),i € {1,2} is also given. In other words, for any i € {1,2},
the table for P; has 2 rows and k columns, where, for any j, the content of the jth column are
the jth vertex of 7'; and its image with respect to P;. We consider that ¢; and ¢; are also given
by similar tables, whose the first rows are filled by vertices of the corresponding trees and the
second rows are filled by the corresponding vertices’ colours. Finally, we suppose that 7'; and
T, are stored by the adjacency lists, i.e. all neighbours are listed, for any vertex of the trees. It
will be shown that the isomorphism problem for two k-vertex equipped trees can be solved in
O(k) time.

Let (T, ¢, P) be some equipped tree. Recall that in section 2.4 the notion of the rank of a
vertex was given in the following way. We associate with 7 a sequence T, Ty, .. ., T of trees,
such that 7o = T, T, contains one or two vertices and, for any i € [s], a tree 7 is obtained from
T, by deletion of all its leaves, i.e. degree one vertices. All the vertices of T'; are called the
central vertices of the tree T and if T's has an edge, then it is called the central edge of the tree
T. The tree T is called central, if it has exactly one central vertex, and bicentral, otherwise.
The rank of a vertex x € V(T'), denoted by rank(x), is the number max{i|x € V(T))}.

From the equipped tree (7', ¢, P), we will construct a weighted edge-k-coloured tree (T, c,w).
Vertices of 7" are all the orbits of P, two vertices of T are connected by an edge if and only
if they are neighbours in 7. As the weight of a vertex of the tree 7, we take the number of
elements in the corresponding orbit of P. As the colour of an edge 0’0" of T, we take the
colour of any edge of T, simultaneously incident to a vertex from O and to a vertex from O”.
The tree (T, ¢, w) can be uniquely constructed from (T, ¢, P), see the third part of proposition
2.5.

Knowing 7, it is possible to uniquely restore the set of central vertices of T. Hence, by
the second and the third parts of proposition 2.5, the equipped tree (7', ¢, P) can be uniquely
restored from (T, c,w).

Let us construct a simple graph G from (7, ¢, w) in the following way. The operation
of s-subdivision of some edge xy of a graph consists in deleting xy, then adding ver-

tices zj,22,...,2s and the edges xzi, 2122, 2223, - - - » Zs—1%s» Zsy- Lhe operation of joining an
s-cycle to a vertex v of some graph consists in adding vertices uy, ..., us;—; and the edges
VU, U, . . ., Us_2Us1, Us— U to the graph. For any vertex v, we join a cycle of length w(v) + 2,

where w(v) is the weight of v. For any edge e € E(T), we apply its c(e)-subdivision, where c(e)
is the colour of e. The resultant graph is G. In figure 7 weighted coloured tree and the corre-
sponding graph are depicted, where we apply 1-subdivision to green edges, 2-subdivision to
blue ones, 3-subdivision to red edges (figure 7).

The graph G can be uniquely obtained from (7', ¢, w). Conversely, from G the triple (7', ¢, w)
can also be restored in unique way. Indeed, vertices of G of degree more than two correspond
to vertices of 7, lengths of cycles are equal to weights of the corresponding vertices minus two.
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Figure 7. A coloured weighted tree and its corresponding graph.

Lengths of paths of G, whose end vertices are of degree at least three and all internal vertices
have degree two, define colours of edges of 7.

The graph G is planar, i.e. a simple graph, which can be drawn on the plane, such that its
vertices are points of the plane and edges are Jordan curves, not intersecting in internal points.
There is known an algorithm with the complexity O(n) for distinguishing n-vertex planar graph
[1]. Our linear-time algorithm to recognize isomorphism of the equipped trees (7, ¢, P) and
(T', ', P') is based on this fact.

Lemma 5.1. One can consider that each of the trees T and T' is bicentral, P maps every
central vertex of T into itself, and P' maps every central vertex of T into itself.

Proof. Since 7 and 7" are given by the adjacency lists, the sets of their central vertices can be
computed in O(n) time. Hence, one can consider that 7 and 7" are either simultaneously central
or simultaneously bicentral, otherwise they would not be isomorphic. Hence, the algorithm
outputs the negative answer for the isomorphism problem of (7, ¢, P) and (7', ¢/, P').

Assume that 7 and 7’ are simultaneously bicentral. Denote by v, and v, the central
vertices of T, and denote by u; and u, the central vertices of 7. One can consider that
c(v1v2) = ¢ (u1uy), otherwise the algorithm outputs the negative answer for the isomorphism
problem of (7, ¢, P) and (T, ¢’, P'). Similarly, we may assume that

P(vi) = vy, P(v2) = v2, P'(u1) = uy, P'(u2) = up or

P(vi) = v2, P(12) = v1, P'(u1) = uz, P'(uz) = uy.

In the first situation, we have a case from the statement. In the second one, we define mappings
P and P’ in the following way:

P(vi) = v1, P(2) = va, ¥ v € V(D\{vi,0:} [P(w) = P()],

Pu) =u, P(u) =up, Vuec V(I\{u,uz} [P'w) = P(w)).

The mappings P and P’ are isomorphisms of (7, c) and (7", ¢’), correspondingly. The trees
(T, ¢, P)and (T', ¢, P') are isomorphic if and only if (7, ¢, P) and (T, ¢’, P') are isomorphic.
Let us consider the case, when both T and 7’ have exactly one central vertex. Each of the
isomorphisms P and P’ maps the central vertex into itself. We construct coloured trees (T, &)
and (T,¢') and some their automorphisms P and P'. To construct P, we take two copies of
(T, c, P), whose central vertices are denoted by v and v,. Connect them by an edge, and colour
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it in the first colour. We obtain the tree (7, ¢, P). The tree (1", &, P) is defined by analogy. Both
these trees can be obtained in linear time on n. The equipped trees (T,¢, Py and (T', ¢, P') are
isomorphic if and only if (T, &, P) and (", &, P') are isomorphic. This finishes the proof of this
lemma. Od

Proof of Theorem 2. 'We suppose that trees I' s and I/ are bicentral and the automorphisms
Pand Py, map each of the central vertices into itself. Using the table representation of Py, the
set of all its orbits can be computed in linear on n time. To this end, we take an arbitrary vertex
v € V(I'y), compute Ps(v), P(Ps(v)), ..., until P (v) # v and, thereby, we find the orbit of
Py, containing v. From all the orbits of Py, the adjacency list of I'y, and the mapping cy, the
triple 0 2Crs Pf) can be computed in linear time. From this triple, the planar graph G can be
computed in O(|V(Gy)|) time. In any tree, the edges number is less by one then the number of
vertices. The following inequalities are true:

VGHI < IVEP|+ k- [ECHI+ D @@+ 1)
veV(Ly)

S|VIEPI+k- VI +n+ VTP < (k+3)-n.

The equipped trees (I'y, ¢r, Py) and (I'y/, ¢y, Py,) are isomorphic if and only if the graphs G
and Gy, are isomorphic. Since k is fixed, for recognizing isomorphism of Gy and Gy, it is
possible to use an algorithm from [21], having the complexity O(n). Therefore, theorem 2 is
true.
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