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Abstract
Using a simple and rather general model of the system with imperfect nesting of the Fermi surface, we show that the spin
density wave (SDW) and normal metal (or, at low temperature, a superconductor) can coexist within a certain pressure
range due to the electronic phase separation. The model predicts the SDW state at low pressure, then, the nucleation of
paramagnetic (PM) droplets or islands within the SDW host at higher pressure. When the pressure continues to increase, the
droplets transform to rods (or pillars) and, finally, to slabs. With the further growth of pressure, a uniform metallic phase
arises. The theory agrees well with the experiment and, even in its simplest version, can capture the essential physics of the
systems under study.

Keywords Electronic phase separation · Imperfect nesting · Spin density wave

1 Introduction

The coexistence of antiferromagnetic (AFM) and metal-
lic (often superconducting at low temperatures) phases is
one of the most intriguing problem in strongly correlated
materials. The interplay of these orders is observed in a
number of important systems, e.g., in the superconduct-
ing cuprates, pnictides, heavy fermion superconductors,
and organic metals. There is no consensus concerning the
mechanisms giving rise to such coexistence; it is not clear
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whether we are dealing with a uniform state or inhomoge-
neous one. If inhomogeneous, is this inhomogeneity due to
the phase separation, soliton domain walls, or to something
else? However, the experiments [1–4] with an archetypi-
cal Bechgaard salt (TMTSF)2PF6 under high pressure shed
light on the problem, at any rate for these specific systems.
In Ref. [1], we find clear indications to the coexistence of
the spin density wave (SDW) and paramagnetic (PM) metal-
lic phases manifesting itself in the form of phase separation
with macroscopic domains of the high-pressure PM metal-
lic phase embedded into the insulating SDW host, which are
aligned along certain crystallographic axes.

Let us mention here that these pressure effects have
certain similarity with the situation in transition metal
oxides, where the strain in the lattice is tuned by internal
pressure [5, 6] or by the electron–lattice interaction [7].
This tuning gives rise to a quite rich picture of the
phase separation in cuprates [8]. Quite unusual types of
the phase separation occurring owing to the interplay of
spin, charge, and elastic (related to the internal pressure)
degrees of freedom are also actively discussed in the case
of nickelates [9–11]. Note in addition that the pressure
effect on the phase separation should be especially clearly
pronounced in the vicinity of the Lifshitz transition, where
the Fermi surface topology undergoes certain changes [12–
14].

In this paper, we incorporate the effect of pressure
in a classical Rice model [15, 16] for the systems with
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imperfect nesting in the framework of the simplest possible
scheme. Similar models are used to describe the electronic
properties of superconducting iron pnictides and iron
chalcogenides [17–21], AA-stacked graphene bilayers [22],
and other systems [23]. In our earlier papers [24, 25], we
have shown that this model predicts a phase separation
within certain ranges of doping, temperature, and magnetic
field. Here, we demonstrate that the application of pressure
also gives rise to the phase separation, that is, to the
transformation of the uniform SDW state to a mixture of
SDW and PM metallic regions. The cause of such effect
is the same as in the case of doping or magnetic field: the
pressure shifts the system from the position of a perfect
nesting. Note that the nesting of the Fermi surface is a
common feature of the Bechgaard salts [1].

The phase separation violates the charge neutrality of the
system. We take into account the electrostatic energy of the
inhomogeneous state and the energy of interfaces between
SDW and PM metal following the approach proposed in
Refs. [26] and [27]. As a result, we are able to trace
the evolution of the system with the increase in pressure
from the uniform SDW state to the phase-separated state
(PS) with PM metallic islands (or droplets) in the SDW
matrix, which become transformed into pillars (or rods),
then, into slabs, and, finally, into the uniform PM metallic
state. Naturally, the PM metal may be superconducting
at low temperatures. It is of importance that even such a
simple and rather general approach allows us to describe the
experimental results reported in Ref. [1].

The paper is organized as follows. For the readers’
convenience, in Section 2, we present a detailed description
of the model for the system with imperfect nesting and show
how the effect of pressure could be incorporated into this
model. In Section 3, we calculate the phase diagram of the
system in the pressure–temperature plane. In Section 4, we
take into account the long-range Coulomb interaction and
the interface energy between different phases to reproduce
the evolution of the geometry of the inhomogeneous phase
with pressure. In Section 5, we briefly analyze the obtained
results and compare them with the experiment in Ref. [1].

2Model

We apply the model proposed by Rice [15] to describe the
AFM state in chromium. The band structure corresponding
to the model includes one spherical electron pocket, one
spherical hole pocket, and additional band or bands, which
do not participate in the magnetic ordering (reservoir). To
describe the SDW, we can ignore all interactions except
the repulsion between electrons in the pockets involved to

the ordering. The system is a three-dimensional one and its
Hamiltonian has the form:

Ĥ =
∑

kσα

εα(k)nα
kσ + V

V
∑

kk′q
σσ ′

a
†
k+qσ akσ b

†
k′−qσ ′bk′σ ′ , (1)

where α is equal to either a (electron pocket), b (hole
pocket), or c (nonmagnetic bands), a

†
kσ (b†

kσ ) is the creation
operator of the electron (hole) with momentum k and spin
projection σ , nα is the electron or hole number operator,
V is the Coulomb interaction, and V is the volume. The
nonmagnetic noninteracting band c has the density of
states Nr at the Fermi energy. We assume a quadratic
dispersion law for both pockets and use the Wigner–Seitz
approximation. In the electron pocket, the wave vector k
is located within a sphere of finite radius centered at zero
momentum. In the hole pocket, such sphere is centered
at Q0. The energies εα(k) of these states lie between the
minimum values (εa,b

min) and maximum values (εa,b
max). The

energy spectra for the electron and hole pockets, measured
relative to the Fermi energy μ, can be expressed as (� = 1):

εa(k) = k2

2ma

+ εa
min − μ, (2)

εb(k + Q0) = − k2

2mb

+ εb
max − μ .

The perfect nesting means that the Fermi surfaces of the
a and b pockets coincide at some μ = μ0 and both Fermi
spheres have the same Fermi momentum kFa = kFb = kF .
From (2), we get:

μ0 = maε
a
min+mbε

b
max

ma+mb

, k2
F = 2mamb

ma+mb

(
εb

max−εa
min

)
. (3)

For example, in the case of perfect electron–hole symmetry,
when ma = mb = m and εb

max = −εa
min = εF , we obtain

μ0 = 0. Below, we assume that μ0 = 0, or, in other words,
we will measure the chemical potential from its value at the
perfect nesting. In what follows, we are interested in the
case when the system is not far from the perfect nesting, that
is |μ| � εF . Then, expanding the spectra (2) near the Fermi
momentum kF , we obtain:

εa ≈ vF δk − μ, εb ≈ −vF δk − μ , (4)

where vF = kF /m and δk = |k| − kF .
In Hamiltonian (1), we assume a weak-coupling regime,

that is, V NF � 1, where NF = k3
F /2π2εF . We treat

Hamiltonian (1) using a BCS-like mean-field approximation
since it is an asymptotically exact approach in the limit
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V NF → 0. Following Refs. [15, 24, 25], we introduce a
commensurate AFM order parameter:

� = V

V
∑

k

〈a†
kσ bk+Q0−σ

〉 (5)

and diagonalize Hamiltonian (1). Following the procedure
described in detail in Refs. [15] and [24], we derive an
expression for the grand thermodynamic potential per unit
volume:

� = 4NF

⎧
⎨

⎩
�2

2

(
ln

�

�0
− 1

2

)
(6)

+ T

∞∫

0

dξ ln [fF(−μ − η)fF(μ − η)]

⎫
⎬

⎭.

Here, T is the temperature, fF(ε) = 1/[1+exp (ε/T )] is the
Fermi function, η = √

�2 + ξ2, and �0 = �(T =0, μ=0)

is the BCS-like AFM gap, in which the considered weak-
coupling limit is equal to �0 = εF exp (−1/NF V ) �
εF .

We neglect here a possible existence of the AFM
orders with slowly rotating magnetization axis or so-
called incommensurate SDW phases [15, 24, 25]. However,
taking into account incommensurate SDW complicates the
formulas drastically but does not change significantly the
main results. Moreover, the difference in the free energies
between the incommensurate SDW and PM phases is small
and the incommensurate SDW phase is very sensitive to
disorder [24]. In many cases, it could not be really observed.

The equilibrium value of the gap is determined by
minimizing �. Thus, we derive from (6):

ln
�0

�
=

∞∫

0

dξ
fF(η − μ) + fF(η + μ)

η
. (7)

The number of electrons per unit cell n is the sum of their
numbers nm in magnetic and non-magnetic nr bands. We
define the shift of the electron number from the position of
the perfect nesting as:

x = n(μ) − n0 = nm(μ) − nm(0) + nr(μ) − nr(0), (8)

where the value n0 = n(μ = 0) corresponds to the perfect
nesting. Since in any realistic case T , μ � εF , we can
represent nr as nr(μ) = nr(0) + Nrμ. Following the
procedure described in Refs. [15] and [24], we can derive
the equation for x in the form:

x

x0
= rμ

�0
+ 1

�0

∞∫

0

dξ [fF(η − μ) − fF(η + μ)] , (9)

where x0 = 4�0NFVe, Ve is the unit cell volume, and
r = Nr/2NF . Equations (7) and (9) form a closed system of
equations to determine the functions �(x, T ) and μ(x, T ).

The applied pressure P affects all parameters of the
material: V , ma,b, εα

min, εα
max, etc. It is evident that the main

effect on the electron structure of the studied system with
nesting occurs due to the shift of the Fermi level closer or
farther from the ideal nesting position. It can be shown that
this shift occurs mainly due to the change in the energy
positions of the bands relative to each other. Without the loss
of generality, we can assume that the pressure shifts only
the position of the reservoir band, while magnetic bands
remain untouched. The possible shifts of the magnetic bands
in energy can be absorbed in the renormalization of the
chemical potential. The change of other model parameters
with P is less important, and can be neglected in the first
approximation, if the pressure is not extremely high. There
is some analogy with the electron–electron correlations.
A weak electron–hole interaction is of importance since
it opens a gap at the Fermi level, while weak electron–
electron and hole–hole correlations give rise only to small
corrections to this result, and they can be neglected.

The pressure shifts the position of the bottom of reservoir
band by δε. A corresponding shift of the chemical potential
under pressure is μ(P ) − μ(0), while the total number
of electrons per unit cell n (and, consequently, x) does
not change. The variation in the number of non-magnetic
electrons (per unit cell) is:

δnr = 2NrVe[μ(P ) − μ(0) − δε] , (10)

while the variation in the number of magnetic electrons is:

δnm = 4NmVe

∞∫

0

dξ {f [η − μ(P )] − f [η + μ(P )]}

− 4NmVe

∞∫

0

dξ {f [η−μ(0)] − f [η+μ(0)]} . (11)

Let the system be perfectly nested if P = Pn, that is,
μ(Pn) = 0 and x = 0. For parameter δε, we assume its
linear dependence on the pressure:

δε(P ) = ∂εc
min

∂P
(P − Pn) . (12)

Substituting (10) – (12) into (9) with the replacement μ +
δμ → μ and taking into account the condition x(P ) =
const = 0, one obtains:

rp = rμ

�0
+ 1

�0

∞∫

0

dξ [fF(η − μ) − fF(η + μ)] , (13)

where we introduce the dimensionless variable:

p = ∂εc
min

∂P

P − Pn

�0
. (14)

For fixed x = 0, (7) and (13) form a closed system of
equations determining the functions �(p, T ) and μ(p, T ).
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For x 	= 0, we simply have to replace rp → rp + x/x0

in the left-hand side of (13), taking into account that under
doping, pressure P = Pn corresponds to a perfect nesting.

Comparing (13) with (9), we see that in our model, the
pressure acts effectively as a doping. The only difference is
that the levels of this “effective doping” is proportional to
r , that is, to the density of states of the reservoir electrons.
When the reservoir is absent, the pressure changes nothing.
This is an artifact of our approximation, where we (i) neglect
the dependence of other model parameters on pressure, and
(ii) (which is more important) neglect a possible change
of the shapes of the Fermi surfaces of the magnetic bands.
Indeed, when we fix the Fermi surfaces of the bands a and
b to be spheres, the only possible way to destroy the ideal
nesting is to change the relative radii (that is, the difference
of the Fermi momenta kFa − kFb) of these spheres under
pressure, which is prohibited due to the charge conservation
law. When the reservoir is present, the imbalance in the
magnetic electrons appears due to the unequal kFa and
kFb can be compensated by the reservoir electrons. The
possible effects related to the shape of the Fermi surface are
discussed in Section 5.

We choose here the simplest possible linear pressure
dependence of δε(P ) to avoid any unnecessary specula-
tions. Note also that such a choice is reasonable since
δμ(P ) � εF in any case. The sign of the derivative
∂εc

min/∂P depends on the specific properties of the system.
However, the change in the sign of this parameter means
only the change in the sign of the “effective doping” and
does not affect the electronic properties of the system. For
definiteness, below we assume that ∂εc

min/∂P > 0.
We solve the system of (7) and (13) numerically to find

the functions �(p, T ) and μ(p, T ). Using these results, we
calculate the grand potential � and the free energy F =
� + μn, and construct the phase diagram of the model in
the p–T plane. Below, we also use the dimensionless free
energy defined as f = F/(�0x0).

The dependence of the gap � on the pressure is similar
to the dependence of the gap versus doping derived in
Refs. [15] and [24]. The gap decreases with P − Pn and
vanishes to zero at some value of the applied pressure.

The calculated phase diagrams of the model in the (P, T )

plane are shown in Fig. 1 for different values of the relative
number of non-magnetic electrons. In these diagrams, we
observe a significant temperature reentrance of the ordered
phase at high pressure, which is an analog to that observed
in the phase diagrams in the temperature-doping plane,
where the reentrance disappears if we take into account the
existence of the incommensurate SDW [15, 24]. However,
here we postulate the ground state of the system to be
homogeneous, which, in general, is not true, as it is shown,
e.g., in Refs. [24] and [25], and is also demonstrated in the
next section.

Fig. 1 (Color online) Phase diagram of the model in the (P, T ) plane
for different values of r: r � 1 – red line, r = 1 – blue line, and
r = 2 – magenta line. A possibility of the existence of inhomogeneous
phases is ignored. In the horizontal axis, we use effective doping (16),
which is a linear function of P

3 Phase Separation: General Consideration

To consider the phase separation (PS), we have to study
the doped system. As was mentioned above, for the finite
doping x (13) becomes:

xeff(P )

x0
= rμ

�0
+ 1

�0

∞∫

0

dξ [fF(η − μ) − fF(η + μ)] , (15)

where we introduce the effective doping:

xeff(P ) = x + rx0p . (16)

We calculate the chemical potential μ as a function of
xeff. A typical result of such calculations in the case of T <

T ∗ is shown in Fig. 2. We see that the μ(xeff) behaves non-
monotonically indicating an instability of the homogeneous
state toward the phase separation. The separated phases
are the SDW phase with effective doping x

(1)
eff and the PM

phase with effective doping x
(2)
eff . The parameters x

(1,2)
eff are

found using the Maxwell construction as shown in Fig. 2:
the horizontal line crosses the curve μ(xeff) in such a way
that shaded areas S1 and S2 are equal to each other [31].
The values of x

(1,2)
eff depend on the model parameters and

temperature, but do not depend on pressure. At the same
time, the electron density in the phase-separated phases,
x1,2, depend on pressure. From (16), we obtain x1,2 =
x

(1,2)
eff − rx0p. If the volume fraction of the PM phase is c,

then, from the charge conservation law, we have:

(1 − c)x1 + cx2 = x . (17)

Thus, within the x1 < x < x2 doping range, the system’s
ground state is a mixture of SDW phase with the electron
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Fig. 2 (Color online) Dimensionless chemical potential ν = μ/�0
versus effective doping characterizing the shift of the electron density
from the position of the perfect nesting. Here, we have t = T/�0 =
0.1 and r = 1. Ascending (red) and descending (blue) lines with
circles correspond to the SDW phase, (black) line with up triangles
– to the PM phase, and (green) dot-and-dash line shows the Maxwell
construction with the areas S1 = S2

density x1 = x
(1)
eff − rx0p and PM phase with the electron

density x2 = x
(2)
eff − rx0p. This window shifts toward

the smaller densities when the pressure increases. Let us
consider the value of doping x < x

(1)
eff (say, x = 0).

At P = Pn (p = 0), the ground state of the system is
homogeneous SDW phase. Increasing p above the value
p1 = (x

(1)
eff − x)/(rx0) makes the system inhomogeneous.

The fraction of the PM phase, c, gradually increases up to
unity at p = p2 = (x

(2)
eff −x)/(rx0). For p > p2, the system

is a homogeneous paramagnet.
As an illustration, the phase diagram of the model in

the (P, T ) plane is shown in Fig. 3 for r � 1 (a) and
for r = 2 (b). The region of the possible inhomogeneous
phase occupies a significant part of the phase diagram. The
temperature reentrance in the phase diagram (see Fig. 1)
disappears.

4 Phase Separation: the Structure
of Inhomogeneous State

Determining the region of PS in Fig. 3, we neglected
the contributions of the long-range Coulomb interaction
arising due to the violation of the charge neutrality in the
inhomogeneous phase, as well as the energy of the interface
between SDW and PM phases. These terms not only affect
the range of existence for the PS, but also determine the
geometry of inhomogeneities [26, 27]. They depend on the
volume fraction of the PM phase, c, the difference x1 − x2,

a

b

Fig. 3 (Color online) Phase diagram of the model in the (xeff, T ) plane
in the cases r � 1 (a) and r = 2 (b). Solid (red) line with up triangles
shows the boundary of the uniform stable SDW phase. The shaded area
corresponds to the region with tendency to the phase separation (PS)

and on the characteristic size Rs and on the shape of the
inhomogeneities. In general, we have to add such terms to
the free energy, and if they are large, the phase separation
is unfavorable [26, 27]. Moreover, when the electrostatic
energy is comparable to the free energy gain due to the
phase separation, both the “magnetic” and “nonmagnetic”
charge carriers become redistributed and screen the local
charge. However, further on, we will assume that the
electrostatic and interface energies are small compared with
the characteristic electron energy and we will use the values
x1,2 calculated in the previous section. The criterion of
applicability of such approach will be presented below.

In our analysis, we follow Refs. [26] and [27]. In
these papers, the three different geometries of inclusions
were considered: droplets or islands (three-dimensional
geometry, D = 3), rods or pillars (D = 2), and layers
or slabs (D = 1). The minimization of sum ECS of the

2409J Supercond Nov Magn (2020) 33:2405–2413

Author's personal copy



electrostatic and interface energies with respect to the size
of inhomogeneities Rs gives [26, 27]

ECS = 3

[
e2

4ε
(x1 − x2)

2 σ 2c2D2uD(c)

]1/3

, (18)

where ε is the average permittivity characterizing a
polarization of the material due to the deviation from
charge neutrality, σ is the interface tension, and uD(c) is a
dimensionless function depending on the geometry of the
inclusions. As a result, we have:

u3(c) = 4πc

5

(
2 − 3c1/3 + c

)
, droplets,

u2(c) = πc (− ln c + c − 1) , rods,

u1(c) = 4π

3
(1 − c)2 , layers. (19)

Here, it is assumed that c ≤ 1/2; otherwise, we must replace
c in the above expressions by 1 − c. In the framework of
the same approximation, we can write the expression for the
optimum Rs in the form [26, 27]:

Rs =
[

σε

2e2x2
0

· cD

(x1 − x2)
2 uD(c)

]1/3

, (20)

where Rs is the droplet radius if D = 3, rod radius if D = 2,
and slab half-width if D = 1.

For the inhomogeneous state, the dimensionless free
energy f = G/(�0x0) takes the form:

fPS = (1 − c)fF(x1) + cfF(x2) + λϕ(c, x1, x2), (21)

where f (x1) and f (x2) are the dimensionless free energies
in the SDW and PM states with corresponding doping
values, and:

ϕ=
[
cD(x1−x2)

√
uD(c)

]2/3
, λ= 3

�0x0

(
ex0σ

4
√

ε

)2/3

. (22)

Note that, in general, it is difficult to estimate the value of
λ, since we do not know the values of σ and the effective ε.
To perform such calculations, it is necessary to consider a
particular system.

It is evident that our approach is valid only in the
case of λ � 1. Under the latter condition, we can
apply the results obtained in the previous section. In this
case, the electrostatic and interface energies do not affect
significantly the range of existence for the phase separation
but only determine the geometry of the inhomogeneous
state. Namely [26, 27], the inclusions of the PM phase in
the SDW host have the form of droplets (D = 3) if the
PM phase content c � 0.215, rods or pillars (D = 2)
if 0.215 � c � 0.355, and slabs (D = 1) if 0.355 �
c � 0.645. At higher content of the PM phase, we have
SDW rods in the PM host if 0.645 � c � 0.785 and
SDW droplets if c � 0.785. However, if the content of the
PM metallic phase is high, a percolative transition occurs
in the sample from the low-conducting SDW-like behavior

to higher-conducting metal-like one. Then, in many cases,
it is difficult to find out using the transport measurements,
whether the PM metallic state is homogeneous or not.

As an illustration, the phase diagram of the system is
shown in Fig. 4 in the case of λ � 1 and x = 0. The
volume fraction of the PM phase, c, monotonically increases
with pressure. As a result, the sequence of the geometries
of inclusions changing with the growth of pressure will
be the following: uniform SDW phase at low pressure is
changed by PS with PM islands in the SDW host (area 1
in Fig. 4), then, by PM pillars (region 2), PM slabs (region
3), and, finally, there arise inclusions of the SDW phase in
the PM host (regions 4 and 5). The latter inhomogeneous
states could be seen as a uniform PM metallic state. The
calculation procedure is the following. The content of the
PM phase c can be expressed as (for x = 0):

c = rx0p − x
(1)
eff

x
(2)
eff − x

(1)
eff

, (23)

where the values of the effective dopings x
(1,2)
eff are

calculated for a given temperature according to the Maxwell
rule as described in the previous section.

5 Discussion

According to our speculations, the main effect of the
pressure is due to the shift of the system from the nesting
position. We assume that both electron and hole pockets

Fig. 4 (Color online) (P, T ) phase diagram in the case λ � 1, x = 0,
and r = 2. Solid (red) lines show the boundary of the uniform stable
phases. Blue dashed lines show the boundaries of the inhomogeneous
phases with different shapes of the inhomogeneities: PM droplets in
the SDW host exist in region 1; PM pillars in the SDW host exist in
region 2; alternating PM and SDW slabs exist in region 3; SDW pillars
in the PM host exist in region 4; and SDW droplets in the PM host
exist in region 5

2410 J Supercond Nov Magn (2020) 33:2405–2413

Author's personal copy



have the shape of spheres. In this case, as it follows from
(2) and (9), a shift of the electron system from the nesting
position is characterized by the single parameter, namely,
the dimensionless chemical potential:

ν = μ

�0
≈ |kFa − kFb|εF

kF �0
. (24)

When ν � 1, the nesting is nearly perfect and � ≈ �0.
With the increase of ν, the nesting becomes imperfect and
the order parameter � considerably decreases if ν ≈ 1.
When ν > 2 ÷ 3, � = 0, the SDW ordering and,
consequently, the phase separation disappear. Since the ratio
εF /�0  1, the Fermi momenta of the electron and hole
bands should be matched very closely to achieve a good
nesting. The pressure destroys this matching giving rise to
narrowing the range of SDW ordering and to the phase
separation.

In our consideration, we assume that the pressure
changes the values of kFa and kFb, but does not change the
spherical geometry of the Fermi surface pockets. Naturally,
it is a simplification. In particular, in superconducting iron
pnictides, the electron and hole pockets have different
shapes: the electron pockets are elliptical, while the
hole ones are circular. The Bechgaard salts are highly
anisotropic. We may expect that the Fermi surface of such
salt is also anisotropic, and its nested parts are probably not
spherical. In general, the pressure affects not only the value
of the chemical potential, but also the geometry of the nested
pockets. Thus, we need to include into consideration some
additional geometrical factors, which governs the nesting.
Note here that such an approach was applied for the analysis
of the effect of doping in iron pnictides [21]. In this case, the
de-nesting under pressure can occur even in the absence of
the nonmagnetic reservoir. At the same time, if the electron
and hole pockets are nested only partially, one can suggest
that the SDW order parameter arises only in the nested parts
of the Fermi surfaces, while other parts remain ungapped
and play the role of the reservoir. Thus, one can expect
that the model considered in this paper could be relevant, at
least, qualitatively, even in the case of nonspherical Fermi
surfaces. The detailed analysis of the effects of the Fermi
surface geometry is a subject for future studies.

In fact, the de-nesting of any nature gives rise to the
decrease of the SDW order and to the phase separation.
With the increase of the pressure, the uniform SDW order
transforms to the PS at some value of P = P0. First, the
inhomogeneous phase is a mixture of PM metallic droplets
in the insulating SDW matrix. The volume concentration
of the metallic phase increases with pressure and when
P = P1, the droplets merge to pillars and at P = P2 > P1

– to slabs, as it is shown in Fig. 4. With the further increase
in pressure, P > Pc, the pillars and, then, droplets of
the SDW phase exist in metallic matrix. However, the last

two inhomogeneous structures are frequently not revealed
in the transport experiments since it is difficult to detect
a small portion of insulating inclusions in the continuous
metallic phase. We also may expect that the metallic phase
is superconducting at low temperatures.

In Fig. 5a, we present the experimental results on the
phase separation in the Bechgaard salt under pressure taken
from Ref. [1]. In Fig. 5b, for comparison, we present a
part of the phase diagram shown in Fig. 4 redrawn in the
proper coordinates. We omit the inhomogeneous phases at
high pressure assuming that at P > Pc, the sample is a
metal from the experimental point of view. Qualitatively, the
pictures illustrating the experimental and theoretical results
are quite similar.

Fig. 5 (Color online) (a) Experimental observation of the PS in the
Bechgaard salt [1] (Fig. 1 from Ref. [1]). The uniform SDW phase
is observed if pressure P < P0. The inhomogeneous mixture of the
SDW and PM metallic phases exists if P0 < P < Pc. The PS state
includes metallic droplets in the SDW host if P0 < P < P1, the
metallic pillars in the SDW matrix if P1 < P < P2, and the metallic
slabs in the SDW host if P2 < P < Pc. When P > Pc the sample
is in the metallic state. The metal is superconducting if T < Tc, the
dependence Tc(P ) is shown by (blue) solid line with circles. (b) A part
of the phase diagram shown in Fig. 4 redrawn in different coordinates,
the notation corresponds to panel (a)
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In conclusion, we have analyzed the effect of pressure
on the electronic properties and the phase separation in
the weakly correlated electron system with the imperfect
nesting of the Fermi surface. The interaction of electrons
in the nested pockets of the Fermi surface gives rise
to the SDW ordering. The pressure shifts the electronic
pockets from the nesting position resulting in a weakening
of the SDW order and in the phase separation. The
inhomogeneous phase is a mixture of the SDW insulator
and PM metal. The geometry of the inhomogeneous phase
depends on the volume content of the PM metal and,
consequently, on the pressure. The obtained results allow
us to understand the physical mechanisms underlying the
experimental observation of the PS in Bechgaard salts [1].
They can also be a good addition to the usual analysis of the
electronic phase separation [28–30].
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