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Final Dynamics of Systems of Nonlinear

Parabolic Equations on the Circle

A. V. Romanov

Abstract. We consider the class of dissipative reaction-diffusion-convection systems on

the circle and obtain conditions under which the final (at large times) phase dynamics

of a system can be described by an ODE with Lipschitz vector field in RN . Precisely in

this class, the first example of a parabolic problem of mathematical physics without the

indicated property was recently constructed.
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1. Introduction

The problem of describing the final (at large times) dynamics of dissipative semilinear

parabolic equations (SPE)

∂tu = G(u) (∗)

(see [5]) with a Hilbert phase space X by ordinary differential equations (ODE) in R
N has

been attracting researcher’s attraction for a long time. In fact, it is required to separate

finitely many “determining” degrees of freedom of an infinite-dimensional dynamical

system. In this case, the key geometric object is the so-called (global) attractor [1,13,16],

i.e., the connected compact invariant set A ⊂ X that uniformly attracts bounded subsets

X as t→ +∞.

The required ODE can sometimes be implemented as an inertial form [13,16,19] ob-

tained by restricting the initial equation to an inertial manifold, i.e, a finite-dimensional

invariant C1-surface M ⊂ X containing the attractor and exponentially attracting (with

asymptotic phase) all trajectories of (∗) as t → +∞. The theory of inertial manifolds

originally encountered systematic difficulties, and several alternative concepts of finite-

dimensional reduction of SPE have therefore been developed starting from [3,12,14,15].
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Following [14], we will say that the dynamics of (∗) on the attractor (final dynamics)

is finite-dimensional if there exists an ODE in R
N with Lipschitz vector field, resolving

flow {Θt}t∈R, and invariant compact set K ⊂ RN such that the phase semiflows {Φt}t≥0

of equation (∗) on A and {Θt}t≥0 are Lipschitz conjugate on K. The existence of the

inertial manifold implies that the dynamics is finite-dimensional on the attractor and,

in general, looks like a more attractive property. Indeed, in the first case, the inertial

form provides an exponential asymptotics of any solution of the equation at large times,

and in the second case, we have an ODE reproducing the original dynamics only on

the attractor itself. Nevertheless, the fact that the dynamics is finite-dimensional on A

means that the structure of limit regimes of SPE with infinitely many degrees of freedom

is no more complicated than the structure of similar regimes of an ODE with Lipschitz

vector field in RN .

In this paper, we consider the problem of whether the final dynamics is finite-

dimensional for 1D systems of reaction-diffusion-convection equations

∂tu = D∂xxu− u+ f(x, u)∂xu+ g(x, u), (1.1)

where u = (u1, . . . , um) and f and g are sufficiently smooth matrix and vector func-

tions.We assume that x ∈ J , where J is a circle of length 1. The matrix of diffusion

coefficients D is assumed to be diagonal, D = diag{dj}, dj > 0. As the phase space we

choose an appropriate space X ⊂ C1(J,Rm) in the Hilbert semiscale {Xα}α≥0 generated

by a linear positive definite operator u → u − Duxx in X = L2(J,Rm). We postulate

that evolution equation (1.1) is dissipative in X and there exists the attractor A ⊂ X

consisting of functions u = u(x), u ∈ C1(J,Rm). The algebraic structure of the “convec-

tion matrix” f = f(x, u), f = {fij}, i, j ∈ 1, m, on the convex hull coA ⊂ X plays an

important role. We will highlight the case of the scalar diffusion matrix D = dE, where

d = const and E is the identity matrix.

For scalar equations of the form (1.1), the fact that the dynamics is finite-dimensional

on the attractor was established in [15]. In the vector case, the final dynamics of systems

(1.1) with scalar diffusion matrix D and spatially homogeneous nonlinearity f(u)∂xu+

g(u) was studied in [8], and the second restriction seems to be technical. The existence

of an inertial manifold was proved in [8] for the scalar equation (m = 1), and for m > 1,
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it was proved under the assumption that the function matrix f(u) is diagonal with a

unique nonzero element in a convex neighborhood of the attractor. The results obtained

in [8] are based on a non-local change of the phase variable u which “decreases” the

dependence of the nonlinear part (1.1) on ∂xu and allows using the well-known “spectral

gap condition“.

Generalizing and developing the approach in [15], we study whether the dynamics is

finite-dimensional on the attractor, but we do not consider the problem of existence of

an inertial manifold for systems of periodic equations (1.1). At the same time, we here

consider the case of nonscalar diffusion matrix D. We prove that the limit dynamics is

finite-dimensional for wide classes of systems (1.1). Now, omitting the details related to

the choice of phase space and dissipativity conditions, we formulate the main results of

the paper as follows.

The phase dynamics on the attractor of system (1.1) is finite-dimensional if any of

the following three conditions is satisfied.

(A) The convection matrix f = diag on coA (Theorem 4.3).

(B) The diffusion matrix D is scalar. For all (x, u) ∈ J×coA, the numerical matrices

f(x, u(x)) have m distinct real eigenvalues and commute with each other (Theorem 4.5).

(C) The diffusion matrix D is scalar. For all (x, u) ∈ J × coA, the matrices f(x, u)

are symmetric and commute with each other (Theorem 4.6).

In the case (A), we have Df = fD on coA. The assumptions that the matrices

are commutative can conditionally be formulated as the consistency of convection with

diffusion and the self-consistency of convection on the convex hull of the attractor.

Usually, the attractor A of system (1.1) can be localized in a ball B ⊂ X centered at

zero. Since the embedding X → C(J,Rm) is continuous, it is actually sufficient to verify

the conditions on f = f(x, u) in assertions (A), (B), and (C) for x ∈ J , u ∈ Rm : |u| < r

with an appropriate r > 0.

In the class of one-dimensional systems (1.1), was constructed [8, Theorem 1.2] the

first example of semilinear parabolic equation of mathematical physics (actually, a system

of eight equations with scalar diffusion) that does not demonstrate any finite-dimensional

dynamics on the attractor. This class seems to be a good testing ground for under-
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standing where the finite-dimensional final dynamics of semilinear parabolic equations

terminates and the infinite-dimensional final dynamics begins.

The results of the paper can be generalized to systems on the circle of the form

∂tu = D∂xxu+ f(x, u, ∂xu) (1.2)

with a smooth vector function f = (f1, . . . , fm). Such systems with various boundary

conditions can be reduced (see [7, 8]) to the form (1.1) by the termwise differentiation

and an appropriate change of the variable. The fact that the final dynamics is finite-

dimensional for scalar equations (1.2) was already proved in [15].

We here do not consider the Dirichlet and Neumann boundary conditions for systems

of the form (1.1) on (0, 1), this can be studied in a subsequent paper. The existence of an

inertial manifold is proved in a similar situation in [7] for systems of general form (1.2)

with f = f(u, ux) and a scalar diffusion matrix.

The paper is organized as follows. Section 2 contains necessary information about

abstract SPE and the conditions for their final dynamics to be finite-dimensional. In

Section 3, it is shown how these conditions can be applied to parabolic systems (1.1).

The main results are obtained in Section 4. In the short Section 5, we present several

examples of system (1.1) which admit a finite-dimensional final dynamics. Finally, in

Section 6, we discuss alternative approaches to the problem of finite-dimensional reduc-

tion of systems (1.1).

2. General information

First, we consider the abstract dissipative SPE

∂tu = −Au+ F (u) (2.1)

in a real separable Hilbert spaceX with scalar product (·, ·) and the norm ‖·‖. We assume

that the the unbounded positive definite linear operator A with domain of definition

D(A) ⊂ X has a compact resolvent. We assume that Xα = D(Aα) with α ≥ 0. Then

‖u‖α = ‖Aαu‖, X0 = X , and X1 = D(A). For arbitrary Banach spaces Y1 and Y2, we let

BCν(Y1, Y2), ν ∈ N0, denote the class of C
ν-smooth mappings Y1 → Y2 that are bounded

on balls. We assume that a nonlinear function F belongs to BC2(Xα, X) for some
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α ∈ [0, 1) and equation (2.1) is dissiparive, i.e., generates a resolving semiflow {Φt}t≥0

in the phase space Xα and there exists a retracting ball Ba = {u ∈ Xα : ‖u‖α < a} such

that ΦtBr ⊂ Ba for any ball Br : ‖u‖α < r for t > t∗(r). In this case, the semiflow {Φt}

inherits [5] the C2-smoothness, and there exists the compact attractor A ⊂ Ba consisting

of all bounded complete trajectories {u(t)}t∈R ⊂ Xα and uniformly attracting balls Xα

as t → +∞. In fact, A ⊂ X1 due to the smoothing action of the parabolic equation [5,

Section 3.5].

The embeddingsXσ ⊂ Xα with α < σ < 1 are dense and compact, and ‖u‖α ≤ c‖u‖σ ,

c = c(α, σ), for u ∈ Xσ. Moreover, the proof of Theorem 3.3.6 in [5] can be used to

derive the estimate ‖Φ1u‖σ ≤ L(r)‖u‖α on the balls Br ⊂ Xα. This implies that F ∈

BCν(Xσ, X) if F ∈ BCν(Xα, X) and the Xα-dissipativity implies the Xσ-dissipativity.

Thus, in all constructions related to SPE (2.1), one can replace the nonlinearity index α

with any value σ ∈ (α, 1). The linear operator A : Xϑ+1 → Xϑ is positive definite in

Xϑ with ϑ > 0. If F ∈ BC2(Xϑ+α, Xϑ), then one can consider (2.1) in the pair of

spaces (Xϑ, Xϑ+α) instead of (X,Xα). In this case, the phase dynamics preserves all its

properties listed above.

We say that the phase dynamics of (2.1) is asymptotically finite-dimensional if there

exists an inertial manifold, i.e., a smooth finite-dimensional invariant surface M ⊂ Xα

containing the attractor and exponentially attracting (with asymptotic phase) all solu-

tions u(t) at large times. Such a manifold is usually [13,16,19] a Lipschitz graph over

the highest modes of the operator A. The restriction of SPE (2.1) to M is an ODE in

RN , N = dimM which completely describes the final dynamics of the original evolution

system.

A less rigorous approach to the problem of finite-dimensional limit dynamic of SPE

was proposed in [14,15]. So the dynamics of (2.1) on the attractor is finite-dimensional

if, for some ODE ∂tx = h(x) in RN with h ∈ Lip(RN ,RN) and resolving flow {Θt}t∈R,

there exists an invariant compact set K ⊂ RN such that the dynamical systems {Φt} on

A and {Θt} on K are Lipschitz conjugate for t ≥ 0. The properties of the dynamics to

be asymptotically finite-dimensional and to be finite-dimensional on the attractor have

not yet been separated; there is a hypothesis [19] that they are equivalent.
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Here are two criteria for the dynamics to be finite-dimensional on the attractor [14]

under the assumption that F ∈ BC2(Xα, X).

(Fl) The phase semiflow on A can be extended to the Lipschitz flow:

‖Φt(u)− Φt(v)‖α ≤M ‖u− v‖α e
κ|t|, t ∈ R,

where M > 0 and κ ≥ 0 depend only on A.

(GrF) The attractor is a Lipschitz graph over the lowest Fourier modes:

‖Pu− Pv‖α ≥ M ‖u− v‖α , M =M(A),

for some finite-dimensional spectral projection P ∈ L(Xα) of the operator A and all

u, v ∈ A.

Property (GrF) was established for scalar equation (1.1) in [9] independently of the

results obtained in [14,15]. We shall further use other sufficient conditions for the dy-

namics to be finite-dimensional on the attractor, which were obtained in [15]1. Assume

that G(u) = F (u)−Au is the vector field of (2.1), N = A×A ⊂ Xα×Xα is a compact

set, and Y is a Banach space.

Definition 2.1 ([15]). A continuous field Π : N → Y is said to be regular if, for

any u, v ∈ A, the function Π(Φtu,Φtv) : [0,+∞) → Y belongs to the class C1 and its

derivative ∂tΠ(u, v) at zero is bounded uniformly with respect to (u, v) ∈ N .

The smoothness of the semiflow {Φt} and the invariancy of the compact set A ⊂ Xα

imply the regularity of the identical embedding N → Xα×Xα and hence the regularity

of any field Π : N → Y that can be continued to a C1-mapping into the (Xα × Xα)-

neighborhood of the set N . In this situation, ∂tΠ(u, v) = DΠ(u, v)(G(u), G(v)), where

D is the Frechet differentiation. The regular fields Π : N → Y form a linear structure

which is also multiplicative if Y is a Banach algebra. In the last case, if the elements of

Π(u, v) ∈ Y are invertible, then the field Π−1 is also regular, and ∂tΠ
−1 = −Π−1(∂tΠ)Π

−1

for (u, v) ∈ N . We start from the decomposition

G(u)−G(v) = (T0(u, v)− T (u, v))(u− v), (u, v) ∈ N , (2.2)

1By misunderstanding, an important assumption that X is real was not mentioned in [15].
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of the vector field G(u) on A, where T0 ∈ L(Xα) and T ∈ L(X1, X) are unbounded

linear sectorial operators in X similar to normal ones. We write

Γa = {z ∈ C : Re z = a}, Γ(a, ξ) = {z ∈ C : a− ξ ≤ Re z ≤ a+ ξ}

for a > ξ > 0 and assume that, for some c > 0, θ ∈ [0, 1], the total spectrum

ΣT =
⋃

u,v∈A

spec T (u, v)

is localized in the domain

Ω(c, θ) = {x+ iy ∈ C : |y| < cxθ}, x > 0 . (2.3)

Let β = α/2 for 0 ≤ θ ≤ α/2, and let β = (α + θ)/3 for α/2 < θ ≤ 1. Assume that the

set C\ΣT contains strips Γ(ak, ξk) with ak, ξk → ∞ as k → +∞.

Theorem 2.2 (see [15, Theorem 2.8]). Assume that

T (u, v) = S−1(u, v)H(u, v)S(u, v) (2.4)

on N , where the unbounded linear sectorial operators H(u, v) are normal in X, the fields

S, S−1 : N → L(X) and T0 : N → L(Xα, X) are regular, and the field T0 : N → L(Xα)

is bounded. In this case, if

aβk = o(ξk) (k → +∞), (2.5)

then the dynamics of equation (2.1) is finite-dimensional on the attractor.

3. Parabolic systems

Now we consider the system of equations (1.1) on J = R |modZ with u = (u1, ..., um).

We assume that the matrix function f = f(x, u) and the vector function g = g(x, u)

belong to the smoothness class C∞ on J×Rm and write system (1.1) in the abstract form

(2.1) with X = L2(J,Rm), positive definite operator Au = u−Duxx, and nonlinearity F :

u→ f(x, u)∂xu+ g(x, u). Assume that {Xα}α≥0 is the Hilbert semiscale generated by A

and Hs = Hs(J) are generalized Sobolev L2-spaces (spaces of Bessel potentials [5,17])

of scalar functions on J with arbitrary s ≥ 0. If s > 1/2, then Hs ⊂ C(J) and

Hs is a Banach algebra [17, Section 2.8.3]. The differentiation operator ∂x belongs to
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L(Hs+1,Hs). As the phase space we choose Xα = H2α(J,Rm) with arbitrary α ∈ (3/4, 1)

which is fixed below.

We shall generalize the conclusions of [15, pp. 991–992] about the smoothness of

the nonlinear function F and the phase dynamics of (1.1) to the case m > 1. We let

the symbol →֒ denote linear continuous embeddings of function spaces and shall use

necessary results obtained in [5,17]. For an arbitrary C∞-function z : J × Rm → R, the

mapping ψ : u→ z(x, u) is a function of class BCν from Cs(J) in Cs(J) for all ν, s ∈ N.

Since H2α →֒ C1(J), we have ψ ∈ BCν(H2α, C1(J)). Embedding theorems imply that

ψ ∈ BCν(Hs(J,Rm),Hs(J)). As we see, F ∈ BC2(X1, X1/2) and F ∈ BC1(X3/2, X1).

Moreover, Xα →֒ C1(J,Rm) →֒ C(J,Rm) →֒ X , and hence F ∈ BC3(Xα, X). We also

note that X3/2 →֒ C2(J,Rm) and X2 →֒ C3(J,Rm).

In the case of finite functions f = f(u), g = g(u), the dissipativity of system (1.1)

with phase space X1/2, and hence also with Xα, 3/4 < α < 1, was proved in [8, Theo-

rem 3.1]. This result can easily be transferred to the case of functions f(x, u) and g(x, u)

that are finite in u and can also be generalized in other directions. Anyway, we fur-

ther assume that system (1.1) is dissipative in Xα and there exists the global attractor

A ⊂ Xα. Using the above-listed properties of nonlinearity F and following the reasoning

in [15, p. 992], we formulate the following remark.

Remark 3.1 (see [15, Remark 5.2]). The following assertions hold: (a) the attractor

A is bounded in X2; (b) if Y is a Banach space, then each vector field Π : N → Y

continuous in the (Xα × Xα)-metric can be continued to C1-mapping X1 × X1 → Y

regularly in the sense of Definition 2.1.

Our goal is to apply Theorem 2.2 to system (1.1) and to prove that the final dynamics

is finite-dimensional. Let

G(u) = −Au + F (u) = D∂xxu− u+ f(x, u)∂xu+ g(x, u) (3.1)

be the vector field of system (1.1), and let N = A × A ⊂ Xα × Xα. The main idea,

as in [15], is related to the change of variable in the linear differential expression with

respect to x ∈ J for the difference G(u)−G(v) for a fixed (u, v) ∈ N , which allows one

to eliminate the dependence on ∂xh, h(x) = u(x) − v(x). Along with the convection
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matrix f = {fij} we consider the m×m function matrices

gu = {
∂gi
∂uj

}, fu∂xu = {
m
∑

l=1

∂fil
∂uj

∂xul}, i, j ∈ 1, m.

We put

B0(x; u, v) = −E +

∫

1

0

(fu(x, w(x))wx(x) + gu(x, w(x))dτ, (3.2.1)

where E is the unit m×m matrix, and

B(x; u, v) =

∫

1

0

f(x, w(x))dτ (3.2.2)

for u, v ∈ Xα, w(x) = τu(x) + (1 − τ)v(x), x ∈ J . The elements of the matrices B0

and B are continuous functions, and for u, v ∈ A, function of class C2 on J . If necessary,

it is convenient to treat expressions (3.2) as Bochner integrals ranging in some function

spaces. Using the C1-smoothness of the mappings (u, v) → fu(x, w)wx + gu(x, w) and

(u, v) → f(x, w), Xα × Xα → C(J,Mm) for a fixed τ ∈ [0, 1] and differentiating the

expression under the integral sign in (3.2) with respect to the parameter (u, v), we

conclude that the mappings (u, v) → B0(· ; u, v) and (u, v) → B(· ; u, v) are of class

C1(Xα × Xα, C(J,Mm)). By the integral mean-value theorem for nonlinear operators,

we have

G(u)−G(v) = −Ah+ (

∫

1

0

DF (τu+ (1− τ)v)dτ)h

= Dhxx +B0(x; u, v)h+B(x; u, v)hx
.
= Rh,

where h = u−v, u, v ∈ A, and τu+(1−τ)v ∈ coA. Here D is the Frechet differentiation.

Proceeding as in [6], we apply the transformation h = Uη to the differential expression

Rh, where the m×m matrix function U(x) = U(x; u, v), x ∈ [0, 1], is a solution of the

linear Cauchy problem

Ux = −
1

2
D−1B(x)U, U(0) = E. (3.3)

Similar problems are considered in [2, Ch. 3, 5]. We often write B0, B, and U omitting

the dependence on u and v and sometimes on x. Taking into account the fact that

Uxx = −
1

2
D−1(Bx(x)U +B(x)Ux) = −

1

2
D−1Bx(x)U +

1

4
D−1B(x)D−1B(x)U,
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we have

Rh = RUη = D(Uηxx + 2Uxηx + Uxxη) +B0(x)Uη +B(x)(Uxη + Uηx)

= DUηxx − B(x)Uηx −
1

2
Bx(x)Uη +

1

4
B(x)D−1B(x)Uη +B0(x)Uη + B(x)Uηx

+B(x)(−
1

2
D−1B(x)Uη) = DUηxx + (B0(x)−

1

2
Bx(x)−

1

4
B(x)D−1B(x))Uη.

Now we write a decomposition of the form (2.2) for the vector field (3.1) of evolution

equation (1.1) on the attractor A with linear components

T0(u, v)h = ωh+ (B0(x)−
1

2
Bx(x)−

1

4
B(x)D−1B(x))h, (3.4.1)

T (u, v)h = ωh−DU∂xxU
−1h, (3.4.2)

where the numerical parameter ω > 0 will be chosen later.

Everywhere below, I
.
= Id in a Banach space. By Mm we denote the algebra of

numerical m×m matrices with Euclidean norm, and by Y (J,Mm) we denote the linear

spaces of such matrices with elements from some Banach space Y of scalar functions

on J or [0, 1] . We slightly generalize the fact that linear problem (3.3) can be solved

explicitly under the condition that the operators D−1B(x) are commutative in x ∈ J .

Lemma 3.2. Let D−1B(x) = CW (x)C−1 with constant nondegenerate matrix C and

matrix function W ∈ C(J,Mm), and let W (x1)W (x2) = W (x2)W (x1) for x1, x2 ∈ J .

Then U(x) = CU(x)C−1 with

U(x) = exp(−
1

2

x
∫

0

W (ξ)dξ ) (3.5)

is a solution of the Cauchy problem (3.3) on [0, 1] .

Proof. Under the conditions of the lemma, we have U(x)W (x) = W (x)U(x), and

hence Ux = −1

2
W (x)U . Further, U(0) = U(0) = E and

Ux = CUxC
−1 = C(−

1

2
WU)C−1

= C(−
1

2
C−1D−1BC · C−1UC)C−1 = −

1

2
D−1BU. �
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Now we prove regularity in the sense of Definition 2.1 of some vector fields on the

compact set N ⊂ Xα × Xα. If Y →֒ Y1 for the function spaces Y and Y1, then the

regularity of the field Π : N → Y implies the regularity of Π : N → Y1.

Lemma 3.3. The field of operators T0 on N is bounded ranging in L(Xα) and

regularly ranging in L(Xα, X).

Proof. Let ‖ · ‖α,α and ‖ · ‖α,0 be norms of operators in L(Xα) and L(Xα, X). We

assume that T0h = Q(x; u, v)h in (3.4.1) with h ∈ coA ⊂ Xα. By Remark 3.1.(a), the

convex hull of the attractor is bounded in the norm of X2 which is equivalent to the norm

H4(J,Rm), and hence the matrix functions B, B0, and BD
−1B are uniformly bounded

with respect to (u, v) ∈ N in H3(J,Mm). Thus, the matrix functions Bx and Q are

bounded on N in the norm H2(J,Mm) and T0 is the operator of multiplication of vector

functions in Xα = H2α(J,Rm) by the matrix Q ∈ H2α(J,Mm) with 2α ∈ (3/2, 2). Since

H2α(J) is a Banach algebra, we see that T0(u, v) ∈ L(Xα) and ‖T0(u, v)‖α,α ≤ const

on N .

Since H2α(J) →֒ C(J) →֒ L2(J), we have H2α(J,Mm) →֒ C(J,Mm) →֒ L2(J,Mm)

and ‖T0‖α,0 ≤ c‖Q‖0,0, where ‖Q‖0,0 is the norm of Q as an operator in L(X) and

c = c(A). Therefore, the field of operators T0 : N → L(Xα, X) is regular if the field

of matrix functions Q : N → L2(J,Mm) is regular. The function u → f(x, u), Xα →

C(J,Mm), is of class C1. Since the mappings (u, v) → B0(· ; u, v) and (u, v) → B(· ; u, v)

are of class C1(Xα ×Xα, C(J,Mm)), it follows that their restrictions to N are regular.

The regularity of the field BD−1B : N → C(J,Mm) follows from the regularity of

the fields B and D−1 = const with the multiplicative structure of C(J,Mm) taken into

account. Moreover, the fields of matrix functions B, B0, BD
−1B on N are regular with

values in L2(J,Mm).

Now we prove the regularity of the field Π
.
= Bx : N → L2(J,Mm). Let Πτ (u, v) =

(f(x, w))x with w = τu(x)+(1−τ)v(x) for a fixed τ ∈ [0, 1] and arbitrary u = u(x), v =

v(x) ∈ X1. Then Π(u, v) = (B(x; u(x), v(x)))x is the result of integration of Πτ (u, v)

over τ . The mapping u→ f(x, u) belongs at least to the class BC1(X1, X1/2), and hence

Πτ ∈ C1(X1 × X1, L2(J,Mm)). Differentiating the integral expression for Π(u, v) with

respect to the parameter (u, v) ∈ X1 × X1, we obtain Π ∈ C1(X1 × X1, L2(J,Mm)).
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It remains to verify that the fields Π : N → L2(J,Mm) are continuous and to use

Remark 3.1.(b). By [15, Lemma 1.1], the function u→ Au, A → X , with Au = u−Duxx

is continuous in the Xα-metric; the same holds for the mappings u → uxx and u → ux

of the set coA ⊂ Xα into X for u ∈ coA ⊂ X1. In the relation (f(x, u))x = fx + fuux,

the operators u→ fx(x, u), u→ fu(x, u)ux continuously act from Xα to C(J,Mm), and

hence Πτ , Π ∈ C(N , L2(J,Mm)). The proof of the lemma is complete. �

Everywhere below, I
.
= Id in a Banach space. The matrix functions B(x) and U(x) in

the Cauchy problem (3.3) can be treated as bounded linear operators inX . The following

assertion is related to the smooth dependence of solutions of differential equations on a

parameter.

Lemma 3.4. The field of operators U : N → L(X) is regular.

Proof. We consider (3.3) for arbitrary u, v ∈ Xα as the non-autonomous evolution

problem

∂xU = −
1

2
D−1B(x; (u, v))U, U(0) = I

in the Banach algebra L(X) with identically zero sectorial linear part and the parameter

(u, v) ∈ Xα ×Xα. The function

(x, U, (u, v)) → −
1

2
D−1B(x; (u, v))U

ranging in L(X) is Lipschitz in x, linear in U ∈ L(X) and of class C1 with respect

to the parameter (u, v). Under these conditions, by [5, Theorem 3.4.4], the mapping

(u, v) → U(x; (u, v)), Xα × Xα → L(X) is continuously differentiable, and hence the

operator field U : N → L(X) is regular. �

Now we formulate an important condition on the diffusion matrix D and the convec-

tion matrix f of system (1.1).

Assumption 3.5. Df(x, u) = f(x, u)D for x ∈ J, u ∈ coA.

For the scalar diffusion matrix D = dE, this assumption is satisfied automatically. In

the case of m distinct diffusion coefficients dj , Assumption 3.5 holds under the condition

that the matrix f is diagonal on coA, and in the case of s distinct diffusion coefficients,

1 < s < m, it holds under the condition that the matrix f on coA inherits the block

structure (with respect to the same dj) of the matrix D = diag{dj}.
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Lemma 3.6. If Assumption 3.5 holds, then

T (u, v) = U(u, v)(ωI −D∂xx)U
−1(u, v)

for u, v ∈ A.

Proof. Assumption 3.5 implies (for any x ∈ J and u, v ∈ A) that DB(x) = B(x)D

for the matrices B(x) = B(x; u, v) in (3.2.2). Thus, the matrices B(x) and D−1B(x)

inherit the block structure (with respect to the same dj) of the diffusion matrix D =

diag {d1, . . . , dm}. Therefore, the same also holds for the solutions U(x) of problem

(3.3), and hence DU(x) = U(x)D, x ∈ [0, 1], and the assertion of the lemma follows

from (3.4.2). �

4. Main results

The conditions for the dynamics to be finite-dimensional on the attractor will depend

on the structure of the diffusion matrix D and the nonlinear function f in (1.1). By

Theorem 2.2, we need to prove that the operators T (u, v) in (3.4.2) are “uniformly and

regularly” similar, like (2.4), to the normal operators in X and to establish the required

sparseness (2.5) of the total spectrum ΣT .

We note that B(0) = B(1), Bx(0) = Bx(1) for the matrix function B(x) = B(x; u, v)

in (3.2.2) defined on J×N . The matrix function V (x) = U−1(x), x ∈ [0, 1], is a solution

(see [2, Sect. 3.1.3]) of the Cauchy problem adjoint to (3.3):

Vx =
1

2
V D−1B(x), V (0) = E, (4.1)

and we have

η = V h, ηx = Vxh+ V hx, Vx =
1

2
V D−1B,

Vx(0) =
1

2
V (0)D−1B(0), Vx(1) =

1

2
V (1)D−1B(1),

η(0) = h(0), η(1) = V (1)h(1),

ηx(0) =
1

2
D−1B(0)h(0) + hx(0), ηx(1) =

1

2
V (1)D−1B(1)h(1) + V (1)hx(1).

So the periodic boundary conditions h(1) = h(0), hx(1) = hx(0) become

η(1) = V (1)η(0), ηx(1) = V (1)ηx(0), (4.2)
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where V (1) 6= E in general. Further, we use the notation U1 = U1(u, v), V1 = V1(u, v)

with (u, v) ∈ N for the monodromy operators U(1), V (1) ∈ L(Rm) = M
m.

The following assertion plays the key role.

Lemma 4.1. If system (1.1) is dissipative in Xα with α ∈ (3/4, 1), then the phase

dynamics on the attractor is finite-dimensional in each of the following two cases.

(i) The diffusion matrix D is scalar and, for all u, v ∈ A, the monodromy operators

V1(u, v) are similar to positive definite ones with a fixed similarity matrix C = C(A).

(ii) Assumption 3.5 holds and, for all u, v ∈ A, the monodromy operators V1(u, v) are

similar to diagonal positive definite ones with a fixed similarity matrix C = C(A).

Proof. By the conditions of the lemma, we have V1 = C−1VC for positive definite

operators V = V(u, v) in Rm. For fixed u, v ∈ A, we let ϕj ∈ Rm and µj > 0 denote

orthonormal eigenvectors and eigenvalues of the operator V with j ∈ 1, m. We assume

that H0 = H0(u, v) = ωI − D∂xx, D = diag{dj}, with boundary conditions (4.2) on

(0, 1) for some ω > 0. We also assume that

χk,j(x) = e2πkix · ϕj, x ∈ J, k ∈ Z, j ∈ 1, m.

Since Vϕj = µjϕj, we have V1C
−1ϕj = µjC

−1ϕj and, for the functions ψk,j(x) = µx
j ·

C−1χk,j, ψk,j(0) = C−1ϕj, ψk,j(1) = V1C
−1ϕj ,

(ψk,j)x(0) = (lnµj + 2πki)C−1ϕj , (ψk,j)x(1) = (lnµj + 2πki)V1C
−1ϕj .

As we see, ψk,j are eigenfunctions of the operator H0 with eigenvalues

λk,j = ω − dj(lnµj + 2πki)2 = ω + dj(2πk − i lnµj)
2, (4.3)

where dj ≡ d > 0 in case (i). The operators V1(u, v) continuously depend on (u, v) ∈ N ,

and hence this also holds for their spectrum. By the compactness of N ⊂ Xα ×Xα, we

have 0 < c1 ≤ µj ≤ c2, j ∈ 1, m, for some c1(A), c2(A). Thus, the values | lnµj| are

uniformly bounded in j ∈ 1, m and u, v ∈ A. We put

S0(x) = CV −x
1 = V−xC

for x ∈ J and H = S0H0S
−1

0 . Then S0ψk,j = χk,j and

Hχk,j = S0H0ψk,j = λk,j S0ψk,j = λk,j χk,j.
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Since the system of functions {χk,j} is complete and orthonormal in X = L2(J,Rm),

it follows that the operators H = H(u, v) are normal in X for u, v ∈ A. Let S =

S0U
−1(x) = S0V (x). We use Lemma 3.6 to write decomposition (2.4) of the vector field

(3.1) on the attractor A with

T (u, v) = UH0U
−1 = US−1

0 HS0U
−1 = S−1(u, v)H(u, v)S(u, v)

and operators T0(u, v) of the form (3.4.1). We see that S−1 = U(x)S−1

0 .

By Lemma 3.4, the operator field U on N ranging in the Banach algebra L(X) is

regular, and hence, the field of inverse operators V : N → L(X) is regular. Since

V1 = V (1) and V = CV1C
−1, it follows that the operator field V : N → Mm is regular

and ‖∂tV(u, v)‖ ≤ c3 for the derivative ∂tV at zero for all (u, v) ∈ N (see Definition 2.1).

Here ‖ · ‖ is the Euclidean norm of matrices. Let b = 2max(c2, c3) and δ = 1− c1/b, then

δ ∈ (0, 1). Since the spectrum σ(b−1V − E) ⊂ (−δ, 0) and ‖b−1V − E‖ < δ, it follows

that the matrix representation

lnV = ln(bE) + ln(E + b−1V − E) = ln(bE) +
∞
∑

n=1

(−1)n−1

n
(b−1V −E)n (4.4)

converges uniformly on N . By [11, Sect. 5.8, Exercise 3], we have

∂t(b
−1V −E)n =

n
∑

i=1

(b−1V −E)i−1∂t(b
−1V)(b−1V −E)n−i,

and therefore, ‖∂t(b−1V − E)n‖ < nδn−1. If we differentiate (4.4) with respect to t, we

obtain a uniformly converging series with the estimate

‖∂t lnV(u, v)‖ <
∞
∑

n=1

δn−1 =
1

1− δ
, (u, v) ∈ N .

So the operator field lnV : N → Mm is regular. We have V−x = exp(−x lnV) and the

standard decomposition of the matrix exponent guarantees that the field V−x : N →

L(X) is regular, which implies the regularity of fields of the operators S0, S, S
−1 : N →

L(X).

Finally, by Lemma 3.3, the field of operators T0 in (3.4.1) is regular on N with values

in L(Xα, X) and bounded with values in L(Xα).

Let ΣH = ΣT be the total spectrum of the field of operators H(u, v) on N . Using

(4.3), we choose a parameter ω > 0 that ensures the inclusion ΣH ⊂ Ω(c, θ) of the form
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(2.3) with θ = 1/2 and an appropriate c > 0. As we can see, operators H(u, v) are

sectorial. Since 3/4 < α < 1, we have β = (α + θ)/3 < 1/2. Moreover, from (4.3) we

derive that the set C\ΣH contains vertical strips Γ(ak, ξk) with

ak ∼ 4π2k2, ξk ∼ 4π2k

and hence aβk = o(ξk) as k → ∞. Thus, all conditions of Theorem 2.2 are satisfied and

the dynamics of system (1.1) is finite-dimensional on the attractor. �

Remark 4.2. For all u, v ∈ A, the monodromy operators U1 = U1(u, v) and V1 =

V1(u, v) = U−1

1 are positive definite if any of the following two conditions is satisfied:

(a) the matricesD−1B(x1) andD
−1B(x2) are symmetric and commutative for x1, x2 ∈

J ;

(b) (D−1B(x))t = D−1B(1− x) for all x ∈ J , where (·)t is the operation of transpo-

sition.

Under conditions (a), Lemma 3.2 holds with C = E and the matrix

U1 = exp(−
1

2

1
∫

0

D−1B(x)dx )

is positive definite. The sufficiency of condition (b) was proved in [18, Proposition 2.3].

Theorem 4.3. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1)

and the convection matrix f is diagonal on coA. Then the phase dynamics is finite-

dimensional on the attractor.

Proof. Under the conditions of the theorem, the matrices B(·; u, v) from (3.2.2), and

hence (see the proof of Lemma 3.6), also the matrices U(·; u, v), V (·; u, v), are diagonal

on A×A. According to Remark 4.2.(a) matrices U(·; u, v), V (·; u, v) are positive definite.

The monodromy operators V1(u, v) are also positive definite and are diagonal, so we can

refer to Lemma 4.2.(ii) with C = E.

Lemma 4.4. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and

D = dE. Then the phase dynamics is finite-dimensional on the attractor if, for (x, u) ∈

J × coA,

D−1f(x, u(x)) = CH(x, u(x))C−1, (4.5)
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where the symmetric matrix functions H(x; u) commute with each other for any (x, u) ∈

J × coA and C is a constant nondegenerate matrix.

Proof. From (3.2.2) we derive that D−1B(x) = CW (x)C−1, where

W (x) = W (x; u, v) =

∫

1

0

H(x;w(x))dτ

for u, v ∈ A, w(x) = τu(x)+(1−τ)v(x), x ∈ J . By Lemma 3.2, the monodromy operator

V1(u, v) = U−1

1 (u, v), u, v ∈ A, satisfies the relation V1 = C(U(1))−1C−1 with operator

U given in formula (3.5). In this case, Ux = −
1

2
W (x)U and the matrices W (x; u, v) are

symmetric and commutative on J for all u, v ∈ A. By Remark 4.2.(a), the operator U(1)

is positive definite and the assertion of the theorem follows from Lemma 4.1.(i). �

We shall give two more arguments ensuring that the final dynamics is finite-dimensional.

Theorem 4.5. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and

D = dE. Then the phase dynamics is finite-dimensional on the attractor if the following

two conditions are satisfied :

(i) the numerical matrices f(x, u(x)) have m distinct real eigenvalues for each (x, u) ∈

J × coA;

(ii) the matrices f(x, u) commute with each other for any (x, u) ∈ J × coA.

Proof. Condition (ii) and assumptionD = dE imply that the matricesD−1f(x, u(x))

commute with each other on J × coA. It is known [11, Theorem 8.6.1] that two simple

(similar to diagonal) commutative m ×m matrices have a common set of m of linearly

independent eigenvectors. By condition (i), all eigenvalues of each numerical matrix

f(x, u(x)) with (x, u) ∈ J × coA are real and distinct, and hence there exists a unique

(up to permutations and multiplications by −1) common (for all these matrices) nor-

malized basis E = (e1, . . . , em) of their eigenvectors in Rm. By C we denote the constant

matrix of transition from the canonical basis in Rm to the basis E , and by H(x) we

denote diagonal (symmetric) matrices of linear operators D−1f(x, u(x)) ∈ L(Rm) in this

basis. We see that relation (4.5) is satisfied and it remains to apply Lemma 4.4. �

Theorem 4.6. Assume that system (1.1) is dissipative in Xα with α ∈ (3/4, 1) and

D = dE. Then the phase dynamics is finite-dimensional on the attractor if the matrices

f(x, u) are symmetric and commute with each other for any (x, u) ∈ J × coA.
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Proof. The conditions of the theorem guarantee that the numerical matrices

D−1f(x, u(x)) commute with each other on J × coA. As in the proof of Lemma 4.4,

from formula (3.2.2) for B(x), we derive that the matrices D−1B(x1) and D
−1B(x2) are

symmetric and commutative for arbitrary x1, x2 ∈ J . By Remark 4.2.(a), the monodromy

operators V1(u, v) are positive definite for any u, v ∈ A and the assertion of the theorem

follows from Lemma 4.1.(i) with C = E.

In contrast to Theorem 4.5, we here admit the multiplicity of eigenvalues of the

numerical matrices f(x, u(x)), but we assume that these matrices are symmetric.

5. Some examples

We consider several examples illustrating the above-described theory in terms of

properties of the convection matrix f . Here we restrict ourselves to the case of scalar

diffusion and assume that system (1.1) is dissipative in the phase space Xα with α ∈

(3/4, 1). We assume that all the conditions assumed below on f = f(x, u) are valid for

x ∈ J and u = u(x), u ∈ coA.

Proposition 5.1. Assume that D = dE and f(x, u) = f1(x, u)Q with a scalar C∞-

function f1 and numerical m × m matrix Q. Then, the dynamics on the attractor of

system (1.1) is finite-dimensional if any of the following two conditions is satisfied :

(i) the matrix Q has m distinct real eigenvalues and f1(x, u(x)) 6= 0 for x ∈ J and

u ∈ coA;

(ii) the matrix Q is symmetric.

Proof. The numerical matrices f = f1(x, u(x))Q are commutative. In the case of (i),

each of these matrices has distinct real eigenvalues λjf1(x, u(x)), where λ1, . . . , λm are

eigenvalues of Q, and Theorem 4.5 can be applied. In the case of (ii), the fact that the

dynamics is finite-dimensional on the attractor is a direct consequence of Theorem 4.6.

�

Remark 5.2. Condition (i) in Proposition 5.1 is satisfied on Q for upper-triangular

and lower-triangular matrices with distinct elements on the diagonal. For m = 2 and

Q = {qjl}, this condition precisely means that (q11 − q22)
2 + 4q12q21 > 0.

Example 5.3. The dynamics on the attractor of system (1.1) is finite-dimensional
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in the case of m = 2, D = dE and f(x, u) = {fjl(x, u)} with f11 = f22 and f12 = f21.

This is a consequence of Theorem 4.6 and the commutativity of numerical matrices of

the form





a b

b a



.

Example 5.4. Assume that D = dE, the matrix f = Pn(Q), where Pn is a poly-

nomial of degree n ≥ 0 with coefficients ai = ai(x, u), 0 ≤ i ≤ n, ai ∈ C∞(J × Rm,R),

and the numerical matrix Q is symmetric. Then the dynamics of the attractor of system

(1.1) is finite-dimensional. This is also a consequence of Theorem 4.6.

Proposition 5.5. Assume that D = dE and f = Q(x), where Q is a C∞ function

matrix. Then the dynamics of system (1.1) is finite-dimensional on the attractor if

Q t(x) = Q(1− x) for x ∈ J .

Proof. Since f = Q(x), the matrixB(x) in (3.2.2) satisfies the condition (D−1B(x))t =

D−1B(1 − x) for all x ∈ J and u, v ∈ A. By Remark 4.2.(b), the monodromy opera-

tors V1(u, v) are positive definite for all u, v ∈ A, and we can apply Lemma 4.1.(i) with

C = E. �

6. Other possible approaches

The above presentation is based on Theorem 2.2, which means the verification of

regularity (in the sense of Definition 2.1) of operator vector fields on the attractor.

Alternatively, one can obtain a finite-dimensional reduction of one-dimensional parabolic

systems by using the technique [19, Sect. 2.3, 2.4, 3.3] closely related to the results

obtained in [4] about the dichotomies of non-autonomous parabolic equations. Here we

will discuss the X1/2-dissipative systems of general form (1.2). In our short description

(on the sketch level), we omit technical details and refer to the criteria for the final

dynamics to be finite-dimensional, i.e., criteria (Fl) and (GrF) in Section 2. The results

of [16, Sect. 3.6] about inverse uniqueness of solutions of SPE (2.1) allow one to conclude

that the phase semiflow on the attractor A expands to the continuous flow {Φt}t∈R. If

u1, u2 ∈ A and h(t) = Φtu1 − Φtu2 for t ∈ R, then

ht = Dhxx +B0(t, x)h +B(t, x)hx, (6.1)
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B0(t, x) =

∫

1

0

fu(x, w, wx)dτ, B(t, x) =

∫

1

0

fux
(x, w, wx)dτ,

w = τΦtu1 + (1 − τ)Φtu2, with matrix functions B0 and B sufficiently smooth in

(t, x) ∈ R × J and bounded in (u1, u2). We assume that the invertible change v(t, x) =

S(t, x)h(t, x) with operators S, S−1 ∈ L(X) depending on u1, u2 allows one to reduce (6.1)

to the equation

vt = −Hv +R(t)v,

where H = H(u1, u2) ∈ L(X1, X) are normal (or uniformly with respect to (u1, u2)

similar to normal) sectorial operators and R = R(· ; u1, u2) : R → L(X) is a continuous

operator function. Assume that the norms of the operators S, S−1, and R are uniformly

bounded in the parameter (u1, u2). In this case, if the spectrum ΣH combined over

u1, u2 ∈ A is “sufficiently rare”, then using the technique give in [19], one can verify that

the phase flow is Lipschitzian on the attractor and then apply criterion (Fl). In contrast

to the preceding presentation, we here have to deal with second-order linear differential

expression in t ∈ R and not in x ∈ J . The assertions of Section 4 can be obtained in

this way after the change v(t, x) = V −x(t, 1)V (t, x)h(t, x), where V (·, x) is a solution of

the Cauchy problem (4.1).

Another possible approach to the problem of finite-dimension of the final dynamics

is related to the verification of criterion (GrF). In [10], a scalar parabolic equation of the

form (1.2) is considered in a rectangle with Dirichlet boundary condition. The authors

present conditions under which the attractor is a Lipschitz graph over finitely many

first modes of the Laplace operator. And they use the cone condition well-known in

the literature [13,16,19]. In this connection, it seems to be very perspective to study

the problem of finite-dimensional reduction of systems of equations (1.2) on the two-

dimensional torus T2.
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