
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2020, Vol. 14, No. 3, pp. 480–489. c© Pleiades Publishing, Ltd., 2020.
Russian Text c© The Authors, 2020, published in Diskretnyi Analiz i Issledovanie Operatsii, 2020, Vol. 27, No. 3, pp. 71–87.

Efficient Solvability of the Weighted Vertex Coloring
Problem for Some Hereditary Class of Graphs

with 5-Vertex Prohibitions

D. V. Gribanov1, 2*, D. S. Malyshev1, 2**, and D. B. Mokeev2, 1***

1National Research University “Higher School of Economics,”
ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia

2Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
Received July 25, 2019; in final form, January 6, 2020; accepted February 19, 2020

Abstract—We consider the problem of minimizing the number of colors in the colorings of the
vertices of a given graph so that, to each vertex there is assigned some set of colors whose number is
equal to the given weight of the vertex; and adjacent vertices receive disjoint sets. For all hereditary
classes defined by a pair of forbidden induced connected subgraphs on 5 vertices but four cases, the
computational complexity of the weighted vertex coloring problem with unit weights is known. We
prove the polynomial solvability on the sum of the vertex weights for this problem and the intersection
of two of the four open cases. We hope that our result will be helpful in resolving the computational
complexity of the weighted vertex coloring problem in the above-mentioned forbidden subgraphs.
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INTRODUCTION

We consider simple graphs, i.e. undirected unlabeled graphs without loops and multiple edges.

The Weighted Vertex Coloring Problem (further, briefly, WVC) for a graph G = (V,E) and function
w : V → N consists in finding the minimal number k (denoted by χw(G)) such that there exists
a mapping c : V → 2{1,2,...,k} for which |c(v)| = w(v) for every v ∈ V and c(u) ∩ c(v) = ∅ for every
uv ∈ E. The unweighted version (i.e., with unit vertex weights) of WVC is called the Vertex Coloring
Problem (henceforth, VC). In other words, VC consists in finding the minimum number of sets
of pairwise nonadjacent vertices (called independent) into which the vertex set of the given graph can
be partitioned. A clique in a graph is a subset of pairwise adjacent vertices. VC and WVC on graphs are
classical NP-complete problems [1].

A graph class is a set of graphs closed under isomorphism. A graph class is called hereditary if
it is closed under vertex removal. It is well known that every hereditary graph class X can be defined
by the set of its forbidden induced subgraphs Y , and this is written as follows: X = Free(Y). The graphs
of the class X are also called Y-free.

The VC problem is polynomially solvable for the class Free({H}) if H is an induced subgraph of the
graph P4 or P3 + K1; otherwise, it is NP-complete in the given class (see [2]). However, if two induced
subgraphs are forbidden then it is already impossible to obtain a complete complexity classification.
For example, for all but three hereditary classes defined by prohibitions with at most 4 vertices each,
the complexity status of VC is known (see [3]). For the remaining three cases, this status is unknown
but for them it is possible to construct a polynomial approximation algorithm (see [4]). Some recent
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Fig. 1.

results on the complexity of VC in the hereditary classes defined by small size prohibitions are presented
in [5–14].

In [9–14], the algorithmic complexity of VC was considered for a pair of connected forbidden induced
fragments, each on 5 vertices. At present, the complexity of VC is an open question for the following four
pairs of such a kind:

• {K1,3, butterfly},

• {P5,H}, where H ∈ {K2,3, crown,W4}.

Unfortunately, it has been hard to clarify the status of VC for each of these four cases. Therefore,
it occurred to consider the intersections of the corresponding hereditary classes and construct polyno-
mial algorithms for them. Maybe this will help to develop polynomial algorithms for solving VC in the
initial classes. In the present article, we prove that the WVC problem is solvable in polynomial time
on the sum of the weights for the class of {P5,K2,3,W4}-free graphs. Consequently, VC is solvable
in polynomial time for the graphs of class Free({P5,K2,3,W4}).

1. NOTATIONS

Denote the neighborhood of the vertex x by N(x). Denote a simple path, a simple cycle, and an empty
graph on n vertices by Pn, Cn, and On respectively. Designate as Kp,q the complete bipartite graph with
p vertices in one part and q vertices in the other part. Denote by W4 the graph obtained from a 4-cycle
by adding one vertex and four edges each of which is incident to the added vertex and to its own vertex
of the 4-cycle.

The graphs butterfly and crown are depicted in Fig. 1.
Let G be a graph and let V ′ ⊆ V (G). Then G[V ′] is the subgraph in G induced by the set of vertices V ′

and G \ V ′ is the result of removing all elements of V ′ from G (together with all edges incident to them).
Denote the complement of G by G.

Let A and B be nonempty disjoint subsets of the vertex set of some graph G = (V,E). The notation
A ∗ B means that there is no edge vu ∈ E for which v ∈ A and u ∈ B, while A • B means that vu ∈ E
for all v ∈ A and u ∈ B.

2. ATOMIC GRAPHS, PERFECT GRAPHS, AND THEIR MEANING

Let G = (V,E) be a graph. A subset M ⊆ V is called a module in G if each vertex in V \ M is
either adjacent to all vertices in M or is adjacent to none of them. Obviously, the empty set, each vertex
of a graph, and the vertex set are modules. A module M is called nontrivial in G if 1 < |M | < |V (G)|.

Let (G,w) be the input data in WVC and let M be a nontrivial module of G. Form a pair (G′, w′)
from the triple (G,M,w). Given G, remove all vertices of M , then add a vertex x and the edges joining x
to all vertices of the subgraph G \ M to which the vertices of M were previously adjacent, and obtain
the graph G′. Assign w′(v) = w(v) for each v ∈ V (G′) \ {x} and w′(x) = χw(G[M ]) for x. Obviously,

|V (G′)| < |V (G)|, χw′(G′) = χw(G)
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(see, for example, [14]). It turns out that, for an arbitrary graph with n vertices and m edges, all inclusion
maximal nontrivial modules are pairwise disjoint and they all can be computed in time O(n + m)
(see [15]).

A clique Q in G is called separating if the number of connected components of G \ Q is greater than
the number of connected components in G. Let A � B be an arbitrary partition of the vertex set of G \ Q
into some parts A �= ∅ and B �= ∅; moreover, the vertex set of each connected component of the graph
is entirely embedded either in A or in B. Then, for every input data (G,w) of Problem WVC, we have

χw(G) = max(χw(G[A ∪ Q]), χw(G[B ∪ Q]))

(see, for example, [16]). The procedure of separating V (G \Q) into two parts is representable in the form
of a binary tree, which is defined nonuniquely. Some tree of this kind for a graph with n vertices and
m edges can be found in time O(n · m) [16].

A connected graph without separating trees and nontrivial modules is called atomic. Obviously, we
have

Lemma 1. The WVC problem in each hereditary class is polynomially reducible to the same
problem for the atomic graphs of the class.

A graph is called the Berge graph if it belongs to the class

Free({C2i+1 | i > 1} ∪ {C2i+1 | i > 1}).
A graph is called perfect if its chromatic and clique numbers are equal, and this holds for each of
its induced subgraphs. It was proved in [17] that a graph is perfect if and only if it is a Berge graph.
The following is known (see [18]):

Lemma 2. The WVC problem is polynomially solvable for perfect graphs.

It is not hard to see that C5 = C5 and every {P5,K2,3,W4, C5, C7}-free graph is perfect. Indeed,
the prohibition of an induced subgraph P5 also forbids each cycle Ck, where k ≥ 6. The graph W 4 has
three connected components two of which are isomorphic to P2 and one is isomorphic to P1; therefore,
the prohibition of an induced subgraph W 4 also forbids each subgraph Ck, where k ≥ 8.

In the following two sections, we will prove some results on the structure of atomic {P5,K2,3,W4}-
free graphs containing either an induced subgraph C7 or an induced subgraph C5.

3. ATOMIC {P5,K2,3,W4}-FREE GRAPHS CONTAINING
THE COMPLEMENT OF AN INDUCED 7-CYCLE

Let H be an atomic {P5,K2,3,W4}-free graph containing an induced subgraph C7. Since it is
more convenient to work with the complement of H , consider the graph G � H containing an induced
subgraph C7.

Lemma 3. The graph G = (V,E) is isomorphic to a 7-cycle or contains an induced 5-cycle.

Proof. Suppose that G is {C5}-free. Since G is also {W 4}-free, each vertex in G is adjacent to two
vertices in a cycle C7 � (v1, v2, v3, v4, v5, v6, v7). Henceforth, the indices of the vertices of the given cycle
are understood modulo 7. Let u �∈ V (C7) and let {vi, vi+1 . . . , vi+k} be the largest set of neighbors of u
on the 7-cycle consisting of consecutive vertices of the cycle. Suppose that 1 < k < 7. Thus, uvi−1 �∈ E
and uvi+k+1 �∈ E; otherwise, we get a contradiction to the choice of the set. We have uvi−2 �∈ E and
uvi+k+2 �∈ E; otherwise, vi−2, vi−1, vi, vi+1, and u or vi+k+2, vi+k+1, vi+k, vi+k−1, and u induce P 5.
Therefore, k �= 6. We have uvi−3 �∈ E and uvi+k+3 �∈ E; otherwise, vi−3, vi−2, vi−1, vi and u or vi+k+3,
vi+k+2, vi+k+1, vi+k, and u induce C5; thus, k �= 5. Hence,

k ∈ {2, 3, 4}, N(u) ∩ V (C7) = {vi, vi+1 . . . , vi+k};

therefore, G is not {K2,3}-free. Hence, either k = 7 or u cannot be adjacent to two consecutive vertices
of a 7-cycle. Since G is {C5}-free, in the last case, N(u) ∩ V (C7) = {vi, vi+2} for some i.
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Recall that the graph H contains no nontrivial modules. Consequently, neither does G. Since G is
{P 5}-free, every vertex adjacent to all vertices of the 7-cycle must be adjacent to each vertex having
exactly two neighbors on the 7-cycle. Suppose that

u �∈ V (C7), N(u) ∩ V (C7) = {vi, vi+2},
and the set {u, vi+1} is not a module. Then there exists a vertex

u′ �∈ V (C7), N(u′) ∩ V (C7) = {vj , vj+2}

for which uu′ ∈ E and vi+1u
′ �∈ E or uu′ �∈ E and vi+1u

′ ∈ E. The second case is possible only for
j = i ± 1. Then u, vi, u′, vi+3, and vi+5 or u, vi−1, u′, vi+2, and vi+4 induce a subgraph W 4. Consider
the first case. Then j �∈ {i − 1, i + 1} and j �∈ {i − 2, i + 2} since otherwise u, u′, vi+2, vi+3, and vi+4

or u, u′, vi−2, vi−1, and vi induce a subgraph P 5. Nevertheless, j �∈ {i − 3, i + 3}; otherwise, vi−3, u′,
u, vi+2, and vi+3 or vi−1, vi, u, u′, and vi+5 induce a subgraph C5. We have j �= i since otherwise u, u′,
vi+1, vi+3, and vi+4 induce a subgraph W 4; a contradiction. Hence, there is no vertex belonging to the 7-
cycle and having exactly two neighbors on it. Thus, V (C7) is a module itself. Hence, G is isomorphic
to a 7-cycle.

Lemma 3 is proved.

4. ATOMIC {P5,K2,3,W4}-FREE GPAPHS CONTAINING AN INDUCED 5-CYCLE

Let G = (V,E) be atomic {P5,K2,3,W4}-free and contain an induced cycle C5 = (v1, v2, v3, v4, v5).
Everywhere below, the indices of the vertices of the cycle are understood modulo 5. Introduce the follow-
ing notations for G:

• Xi � {x �∈ V (C5) | N(x) ∩ V (C5) = {vi, vi+2}},

• Yi � {y �∈ V (C5) | N(y) ∩ V (C5) = {vi, vi+1, vi+2}},

• Zi � {z �∈ V (C5) | N(z) ∩ V (C5) = {vi, vi+1, vi+2, vi+3}},

• Ti � {t �∈ V (C5) | N(t) ∩ V (C5) = {vi, vi+2, vi+3}},

• W is the set of vertices adjacent to all vertices in the 5-cycle (v1, v2, v3, v4, v5),

• S � V \
〈

V (C5) ∪
5⋃

i=1
(Xi ∪ Yi ∪ Zi ∪ Ti) ∪ W

〉
.

Below we formulate and prove several assertions about the structure of the sets Xi, Yi, Zi, Ti, and W ,
as well as the edges between them.

Lemma 4. Every vertex not belonging to a 5-cycle and adjacent to one or several of its vertices
belongs to the set

5⋃
i=1

(
Xi ∪ Yi ∪ Zi ∪ Ti

)
∪ W.

Proof. If a vertex does not belong to V (C5) ∪ S then it cannot be adjacent to exactly one or to exactly
two adjacent vertices of the 5-cycle since G is {P5}-free. Therefore, this vertex belongs to the desired
set. The proof of Lemma 4 is over.

Lemma 5. Xi, Yi, Zi, Ti, and W are cliques for all i.
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Proof. Every two vertices in Xi must be adjacent; otherwise, together with the vertices vi, vi+1,
and vi+2 they induce a subgraph K2,3. Every two vertices of Yi must be adjacent; otherwise, together
with the vertices vi, vi+1, and vi+2 they induce a subgraph W4. The same holds for the sets Zi and W .
Every two vertices in Ti must be adjacent; otherwise, together with the vertices vi+4, vi, and vi+3 they
induce a subgraph K2,3. Lemma 5 is proved.

In the following lemma, we consider the sets X1–X5:

Lemma 6. If Xi is not empty then

Xi ∗ (Yi ∪ Yi+2 ∪ Yi+3 ∪ Zi ∪ Zi+4 ∪ Ti+3 ∪ Ti+4 ∪ W ),

Xi • (Xi+1 ∪ Xi+4 ∪ Yi+1 ∪ Yi+4 ∪ Zi+2 ∪ Ti ∪ Ti+2),

Zi+1 = Zi+3 = Ti+1 = ∅.

Proof. Let x be an arbitrary element in Xi.
If xy ∈ E and y ∈ Yi then y, x, vi, vi+1, and vi+2 induce a subgraph W4. Therefore, Xi ∗ Yi. If xy ∈ E

and y ∈ Yi+2 then vi+3, y, x, vi, and vi+1 induce a subgraph P5. Hence, Xi ∗ Yi+2. By analogy, Xi ∗ Yi+3.
Indeed, if xy ∈ E for some vertex y ∈ Yi+3 then vi+4, y, x, vi+2, and vi+1 induce a subgraph P5. If xz ∈ E
and z ∈ Zi then z, x, vi, vi+1, vi+2 induce a subgraph W4; and so Xi ∗Zi. By analogy, Xi ∗Zi+4. Indeed,
if xz ∈ E for some vertex z ∈ Zi+4 then z, vi, vi+1, vi+2, and x induce W4. If xt ∈ E and t ∈ Ti+3

then x, vi+1, vi+3, t, and vi+2 induce a subgraph K2,3. Therefore, Xi ∗ Ti+3. By analogy, Xi ∗ Ti+4.
Indeed, if xt ∈ E for some vertex t ∈ Ti+4 then vi, vi+1, vi+4, x, and t induce a subgraph K2,3. If xw ∈ E
and w ∈ W then w, x, vi, vi+1, and vi+2 induce a subgraph W4. Hence, Xi ∗ W .

If xx′ �∈ E and x′ ∈ Xi+1 then x, vi, vi+4, vi+3, and x′ induce a subgraph P5. Therefore, Xi • Xi+1.
By analogy, Xi • Xi+4. Indeed, if xx′ �∈ E and x′ ∈ Xi+4 then x′, vi+4, vi, x, and vi+2 induce a sub-
graph P5. If xy �∈ E and y ∈ Yi+1 then x, vi, vi+4, vi+3, and y induce a subgraph P5. Hence, Xi • Yi+1.
By analogy, Xi • Yi+4. Indeed, if xy �∈ E and y ∈ Yi+4 then x, vi+2, vi+1, y, and vi+4 induce a sub-
graph P5. If xz �∈ E and z ∈ Zi+2 then x, vi+1, z, vi, and vi+2 induce a subgraph K2,3. Therefore,
Xi • Zi+2. If xt �∈ E and t ∈ Ti then x, vi+1, t, vi, and vi+2 induce a subgraph K2,3. Hence, Xi • Ti.
By analogy, Xi • Ti+2. Indeed, if xt �∈ E and t ∈ Ti+2 then x, vi+1, t, vi, and vi+2 induce a subgraph K2,3.

If z ∈ Zi+1 and xz �∈ E then x, vi, vi+1, z, and vi+3 induce P5. If z ∈ Zi+1 and xz ∈ E then x, vi+1,
vi+4, vi, and z induce K2,3. Therefore, Zi+1 = ∅. By analogy, Zi+3 = ∅. Indeed, if z ∈ Zi+3 and xz �∈ E
then x, vi+2, vi+1, z, and vi+4 induce P5; and if z ∈ Zi+3 and xz ∈ E then x, vi+1, vi+3, z, and vi+2

induce P5. If t ∈ Ti+1 and xt ∈ E then t, vi, vi+2, x, and vi+1 induce K2,3. If t ∈ Ti+1 and xt �∈ E then
x, vi, vi+1, t, and vi+3 induce P5. Thus, Ti+1 = ∅.

The proof of Lemma 6 is complete.

We now consider the sets Y1–Y5:

Lemma 7. If Yi is nonempty then

Yi ∗ (Zi+2 ∪ Ti ∪ Ti+2),

Yi •
(
Yi+1 ∪ Yi+4 ∪ Zi ∪ Zi+4 ∪ Ti+1 ∪ Ti+3 ∪ Ti+4 ∪ W

)
.

Proof. Let y ∈ Yi. If yz ∈ E and z ∈ Zi+2 then y, vi, vi+1, vi+2, and z induce a subgraph W4. Hence,
Yi ∗ Zi+2. If yt ∈ E and t ∈ Ti, then y, vi, vi+1, vi+2, and t induce a subgraph W4. Therefore, Yi ∗ Ti.
By analogy, Yi ∗ Ti+2.

If yy′ �∈ E and y′ ∈ Yi+1 then y, vi, vi+4, vi+3, and y′ induce a subgraph P5. Hence, Yi • Yi+1.
By analogy, Yi • Yi+4. If yz �∈ E and z ∈ Zi then vi+1, vi, y, vi+2, and z induce a subgraph W4. Therefore,
Yi • Zi. By analogy, Yi • Zi+4. If yt �∈ E and t ∈ Ti+1 then vi+2, y, vi, vi+4, and t induce a subgraph P5.
Hence, Yi • Ti+1. If yt �∈ E and t ∈ Ti+3 then y, vi+1, t, vi+3, and vi+4 induce a subgraph P5; and so,
Yi • Ti+3. By analogy, Yi • Ti+4. If yw �∈ E and w ∈ W then vi+1, vi, y, vi+2, and w induce a subgraph
W4. Therefore, Yi • W .

Lemma 7 is proved.
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We consider the sets Z1–Z5:

Lemma 8. If Zi is nonempty then
Zi ∗ (Zi+2 ∪ Zi+3 ∪ Ti+4), Zi • (Zi+1 ∪ Zi+4 ∪ W ),

Ti = Ti+1 = Ti+2 = Ti+3 = ∅.

Proof. Consider z ∈ Zi. If zz′ ∈ E and z′ ∈ Zi+2 then z, vi, vi+1, vi+2, and z′ induce a subgraph W4.
Hence, Zi ∗ Zi+2. By analogy, Zi ∗ Zi+3. If zt ∈ E and t ∈ Ti+4 then vi, t, vi+3, vi+4, and z induce
a subgraph K2,3. Therefore, Zi ∗ Ti+4.

If zz′ �∈ E and z′ ∈ Zi+1 then vi+2, vi+1, z, vi+3, and z′ induce a subgraph W4. Hence, Zi • Zi+1.
By analogy, Zi • Zi+4.

If zw �∈ E and w ∈ W then vi+1, vi, z, vi+2, and w induce a subgraph W4; and so, Zi • W .
If zt ∈ E and t ∈ Ti then z, vi, vi+1, vi+2, and t induce a subgraph W4. If zt �∈ E and t ∈ Ti then z, t,

vi+4, vi, and vi+3 induce a subgraph K2,3. Hence, Ti = ∅. By analogy, Ti+3 = ∅.
If zt ∈ E and t ∈ Ti+1 then z, vi+1, vi+2, vi+3, and t induce a subgraph W4. If zt �∈ E and t ∈ Ti+1

then vi+2, z, vi, vi+4, and t induce a subgraph P5. Therefore, Ti+1 = ∅. By analogy, Ti+2 = ∅.
Lemma 8 is proved.

In the following lemma, we consider the sets T1–T5:
Lemma 9. If Ti is nonempty then

Ti ∗ W, Ti • (Ti+2 ∪ Ti+3), Ti+1 = Ti+4 = ∅.

Proof. Let t ∈ Ti. If tw ∈ E and w ∈ W then w, vi, vi+1, vi+2, and t induce a subgraph W4. Therefore,
Ti ∗ W . If tt′ �∈ E and t′ ∈ Ti+2 then t, t′, vi+1, vi, and vi+2 induce a subgraph K2,3; and so, Ti • Ti+2.
By analogy, Ti • Ti+3.

If tt′ �∈ E and t′ ∈ Ti+1 then vi+4, t′, vi+1, vi+2, and t induce a subgraph P5. If tt′ ∈ E and t′ ∈ Ti+1

then vi, t′, vi+2, t, and vi+1 induce a subgraph K2,3. Hence, Ti+1 = ∅. By analogy, Ti+4 = ∅.
Lemma 9 is proved.

Lemma 10. If |Xi| ≥ 2 then Xi ∗ Xj or Xi • Xj for all j ∈ {i + 2, i + 3}.

Proof. Suppose on the contrary that there exist vertices x1, x2 ∈ Xi and x′ ∈ Xj for which x1x
′ ∈ E

and x2x
′ �∈ E. By Lemma 5, we have x1x2 ∈ E. Symmetry considerations enable us to consider only

the case j = i + 2. Then x2, x1, x′, vi+4, and vi+3 induce a subgraph P5. Hence, Xi ∗Xi+2 or Xi •Xi+2.
Lemma 10 is proved.

In the next two lemmas, we formulate and prove some sufficient conditions for the emptiness of all Xi

and Ti for i = 1, . . . , 5:
Lemma 11. If some element of Yi �= ∅ is not adjacent to some element of Zi+1 ∪Zi+3 �= ∅ then

5⋃
i=1

Xi =
5⋃

i=1

Ti = ∅.

Proof. Let y ∈ Yi and z ∈ Zi+1; assume in addition that yz �∈ E. The case when z ∈ Zi+3 is considered
by analogy from symmetry considerations. Since Zi+1 �= ∅, we conclude that Xi = Xi+3 = ∅ by
Lemma 6. Since Zi+1 �= ∅, we have Ti+1 = Ti+2 = Ti+3 = Ti+4 = ∅ by Lemma 8.

Suppose that x ∈ Xi+1. Then xy ∈ E and xz �∈ E by Lemma 6. Thus, x, y, vi, vi+4, and z induce
a subgraph P5; and hence, Xi+1 = ∅.

Let x ∈ Xi+2. Then xy �∈ E and xz �∈ E by Lemma 6. Thus, y, vi+1, z, vi+4, and x induce a subgraph
P5; and so, Xi+2 = ∅.

Suppose that x ∈ Xi+4. Then xy ∈ E and xz ∈ E by Lemma 6. Thus, vi+3, z, x, y, and vi induce
a subgraph P5 and, therefore, Xi+4 = ∅.

Let t ∈ Ti. Then tz �∈ E and ty �∈ E by Lemmas 7 and 8. Thus, y, vi, t, vi+3, and z induce a subgraph
P5; and so, Ti = ∅.

Lemma 11 is proved.
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Lemma 12. If an element of Yi is adjacent to an element of Yi+2 ∪ Yi+3 then

5⋃
i=1

Xi =
5⋃

i=1

Ti = ∅.

Proof. Let y ∈ Yi and y′ ∈ Yi+2 (the case of y′ ∈ Yi+3 can be considered similarly). Assume in addition
that yy′ ∈ E.

If x ∈ Xi+1 then xy ∈ E and xy′ ∈ E by Lemma 6. Then y, x, y′, vi+2, and vi+1 induce a sub-
graph W4; and so, Xi+1 = ∅.

If x ∈ Xi then xy �∈ E and xy′ �∈ E by Lemma 6. Then x, vi, y, y′, and vi+3 induce a subgraph P5;
and hence, Xi = ∅. By analogy, Xi+2 = ∅.

If x ∈ Xi+3 then xy �∈ E and xy′ ∈ E by Lemma 6. Then x, y, vi+4, y′, and vi induce a subgraph K2,3

and, therefore, Xi+3 = ∅. By analogy, Xi+4 = ∅.
If t ∈ Ti+2 then ty �∈ E and ty′ �∈ E by Lemma 7. Then t, vi, y, y′, and vi+3 induce a subgraph P5;

and so, Ti+2 = ∅.
If t ∈ Ti+1 then ty ∈ E and ty′ ∈ E by Lemma 7. Then y′, t, vi+3, vi+2, and y induce a subgraph W4;

and hence, Ti+1 = ∅. By analogy, Ti+3 = ∅.
If t ∈ Ti then ty �∈ E and ty′ ∈ E by Lemma 7. Then y, vi+4, t, y′, and vi induce a subgraph K2,3;

therefore, Ti = ∅. By analogy, Ti+4 = ∅.
Lemma 12 is proved.

Using the above, we will prove that if S �= ∅ then G contains few vertices:

Lemma 13. If S �= ∅ then |V | ≤ 13.

Proof. Suppose the contrary.
Denote by V ′ the set of vertices that do not belong to S and are adjacent to the vertices of S. Since

G ∈ Free({P5}), we infer

V ′ ⊆
5⋃

i=1

(Zi ∪ Ti) ∪ W.

The graph G is atomic; therefore, if V ′ �= ∅ then V ′ must not be a clique since otherwise it would be
separating.

Suppose that there exist two different nonadjacent vertices u ∈ V ′ and v ∈ V ′ that are adjacent
to vertices a ∈ S and b ∈ S respectively. If u and v have no common neighbor in S and ab �∈ E then
the vertices a, b, u, v and some vertices of a 5-cycle induce Pk, where k ≥ 5. If u and v have no common
neighbor in S and ab ∈ E then u, v ∈ W ; otherwise, G contains an induced subgraph P5. Then u and v
are adjacent by Lemma 5; therefore, we may assume that a = b.

Consider the possible cases:
If u ∈ W then v ∈ Ti by Lemmas 5 and 8. Then a, vi, vi+2, u, and v induce a subgraph K2,3. If u ∈ Ti

then, by Lemmas 5, 8, and 9, we have v ∈ W ∪Zi+1. The case v ∈ W was examined earlier, and the case
v ∈ Zi+1 will be considered below. If u ∈ Zi then v ∈ Zi+2 ∪ Zi+3 ∪ Ti+4 by Lemmas 5 and 8.

The cases v ∈ Zi+2 and v ∈ Zi+3 are symmetric; therefore, we will consider only the first of them.
Then vi, vi+3, a, v, and u induce a subgraph K2,3.

The cases u ∈ Zi, v ∈ Ti+4 and u ∈ Ti, v ∈ Zi+1 are equivalent. Suppose that u ∈ Ti and v ∈ Zi+1.
Since Ti �= ∅; therefore, by Lemma 9, we have Ti+1 = Ti+4 = ∅. Since Zi+1 �= ∅, we have Ti+2 =
Ti+3 = ∅ by Lemma 8. Furthermore, Lemma 8 implies that

Zi = Zi+2 = Zi+3 = Zi+4 = ∅

since otherwise Ti = ∅.
The set Xi must be empty since otherwise, by Lemma 6, we would have Zi+1 = ∅. By analogy, Xi+3

must be empty since, otherwise, Zi+1 = ∅ by Lemma 6. 7
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Check that

Xi+1 = Xi+2 = Xi+4 = W = ∅.

If x ∈ Xi+1 then xv �∈ E and xu �∈ E by Lemma 6. Then a, u, vi, vi+1, and x induce a subgraph P5; and
so, Xi+1 = ∅. By analogy, Xi+2 = ∅. If x ∈ Xi+4 then xu ∈ E and xv ∈ E by Lemma 6. Then vi+2, a,
x, v, and u induce a subgraph K2,3. Hence, Xi+4 = ∅. If w ∈ W then vw ∈ E and uw �∈ E by Lemmas 8
and 9. But aw �∈ E; otherwise, vi, vi+2, a, w, and u induce a subgraph K2,3. Then vi+4, w, vi+2, u, and a
induce a subgraph P5; therefore, W = ∅.

Recall that Zi+1 ∗ Ti by Lemma 8. If u′ ∈ Ti and u′ �= u then uu′ ∈ E by Lemma 5. Then u′a ∈ E;
otherwise, u′, u, a, v, and vi+1 induce a subgraph P5. If v′ ∈ Zi+1 and v′ �= v then vv′ ∈ E by Lemma 5.
Then v′a ∈ E; otherwise; v′, v, a, u, and vi induce a subgraph P5. Thus, if some element S is adjacent
to a vertex in Ti or to a vertex in Zi+1 then it is adjacent to all elements in Zi+1 ∪ Ti simultaneously.
Consequently, S is a module in G.

By Lemma 11, no vertex in Zi+1 is adjacent to a vertex in the set Yi ∪ Yi+3. By Lemma 12, no vertex
in Yj is adjacent to a vertex in Yj−2 ∪ Yj+2 for any j. Thus, by Lemmas 5 and 7, each of the sets Y1–Y5 is
a module in G. The same is true for Zi+1 and Ti. Hence, each of the sets S, Y1–Y5, Zi+1, and Ti contains
at most one element; therefore, |V | ≤ 13.

The proof of Lemma 13 is complete.

In the following lemma, we prove an important consequence of the emptiness of S and all Xi and Ti

for i = 1, . . . , 5:

Lemma 14. If
5⋃

i=1

Xi =
5⋃

i=1

Ti = S = ∅

then G is the {O3}-free graph.

Proof. Suppose on the contrary that G contains pairwise nonadjacent vertices x, y, and z. Lemmas 4,
5, 7, and 8 together with the hypotheses of Lemma 14 imply that

W ∩ {x, y, z} = V (C5) ∩ {x, y, z} = ∅.

Indeed,

V =
5⋃

i=1

(Yi ∪ Zi) ∪ W ∪ V (C5)

by Lemma 4; and for every i, by Lemma 5, the sets Yi and Zi as well as W are cliques. By Lemmas 7
and 8, W • Yi and W • Zi for each i. Thus, W ∩ {x, y, z} = ∅. Let x = vi. Then

{y, z} ⊆ {vi+2, vi+3} ∪ Zi+1 ∪ Yi+1 ∪ Yi+2,

whence {y, z} ∩ {vi+2, vi+3} = ∅. By Lemma 7, Zi+1 • (Yi+1 ∪ Yi+2) and Yi+1 •Yi+2. Therefore, y and z
must be adjacent.

If each of the vertices x, y, and z has exactly three neighbors on a 5-cycle then, by Lemma 5, one
of them belongs to Yi and the other, to Yi+1. Therefore, by Lemma 7, they must be adjacent.

If x and y have exactly three neighbors on a 5-cycle and z has exactly four neighbors on it then,
by Lemmas 5 and 7, we may assume that x ∈ Yi and y ∈ Yi+2. This and Lemma 7 imply that z ∈ Zi+3.
Then the vertices x, vi+1, z, vi+3, and y induce a subgraph P5.

If x has exactly three neighbors on a 5-cycle, while y and z have exactly four neighbors on it; then,
by Lemmas 5 and 8, we may assume that y ∈ Zi and z ∈ Zi+2. This and Lemma 7 implies that x ∈ Yi+4.
Then the vertices y, vi+1, x, vi+4, and z induce a subgraph P5.

If each of the three vertices x, y, and z has exactly four neighbors on a 5-cycle then, by Lemma 5, we
may assume that one of them belongs to Zi and the other, to Zi+1; therefore, by Lemma 8, they must be
adjacent.

The proof of Lemma 14 is complete.
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5. SOME RESULTS ON THE COMPLEXITY OF WVC

The following two lemmas were proved in [14]:

Lemma 15. The WVC problem for an {O3}-free graph G = (V,E) and a function w : V → N is
solvable in time

O

(( ∑
v∈V

w(v)
)3

)
.

Lemma 16. For every fixed C, the WVC problem is solvable in polynomial time on the sum
of the vertex weights in the class of graphs with at most C vertices.

6. THE MAIN RESULT

The main result of the present article is as follows:
Theorem. The WVC problem is solvable in polynomial time on the sum of the vertex weights

in the class of {P5,K2,3,W4}-free graphs.

Proof. Let G ∈ Free({P5,K2,3,W4}).
By Lemmas 1 and 2 and the remark after Lemma 2, we may assume that G is atomic and contains

either an induced subgraph C5 or an induced subgraph C7. By Lemmas 3 and 16, we may assume that G
contains an induced subgraph C5. By Lemmas 13 and 16, we may assume that S = ∅. Lemma 6 implies
that, for each i, every vertex in V \ (Xi+2 ∪ Xi+3) is either adjacent to all vertices in Xi simultaneously
or adjacent to none of them. By Lemma 10, the same holds for Xi+2 and Xi+3. Therefore, Xi is a module
in G.

By Lemmas 12, 14, and 15, we may assume that if Yi �= ∅ then Yi ∗ (Yi+2 ∪Yi+3). By Lemmas 11, 14,
and 15, we may assume that if Yi �= ∅ and Zi+1 ∪Zi+3 �= ∅ then Yi • (Zi+1 ∪Zi+3). This and Lemma 7
imply that Yi is a module for all i (recall that Xi is a module for each i).

Since Xi and Yi are modules for each i; therefore, by Lemma 8, Zi is also a module for each i.
Since the sets Xi, Yi, and Zi are modules for each i; therefore, by Lemma 9, Ti is a module for each i.

Hence, W is also a module in G.
Therefore, for each i, the sets Yi, Zi, Ti, and W and also each of the sets X1–X5 contain at most one

vertex. Hence, |V | ≤ 26. This and Lemma 16 complete the proof of the theorem.
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