
Chapter 1
Preliminaries

This introductory chapter includes material needed in what follows yet not belong-
ing to complex analysis proper. To find out how well you are acquainted with the
necessary background, you can look at the exercises at the end of the chapter.

If I = G + 8H is a complex number (G, H ∈ R, 82 = −1), then G and H are called the
real and imaginary parts of I, respectively. Notation: G = Re I, H = Im I.

A complex number I is represented by the point in the plane with coordinates
(Re I, Im I); correspondingly, we will identify the set of all complex numbers (de-
noted by C) with the coordinate plane; the plane whose points are regarded as
complex numbers is called the complex plane.

If I is a complex number, then its absolute value (ormodulus) is the distance from I

(more exactly, from the corresponding point in the complex plane; in what follows,
we will no longer make such distinctions) to 0 (i.e., the origin): |I | =

√
G2 + H2 where

G = Re I, H = Im I. The triangle inequality implies that |I + F | ≤ |I | + |F |. The
distance between complex numbers I and F is equal to |I − F |.

The$G and$H axes in the complex plane are called the real and imaginary axes,
respectively. Given I ∈ C, I ≠ 0, the argument of I is the angle between the vector
from 0 to I and the positive real axis (so, for instance, c/4 is the argument of 1 + 8).
The argument of a complex number I is denoted by arg I.

The argument of a complex number is defined up to an integer multiple of 2c: for
example, the assertions arg(1 + 8) = c/4 and arg(1 + 8) = −7c/4 are equally true. If
|I | = A ≠ 0 and arg I = i, then

I = A (cos i + 8 sin i). (1.1)

Expression (1.1) is called the polar form of the complex number I. To find the
product of two complex numbers, we multiply their absolute values and add their
arguments.

If I = G + 8H with G, H ∈ R, then the number G − 8H is called the complex conjugate
of I and denoted by Ī. The point Ī is the reflection of I in the real axis, and IĪ = |I |2.

Limits of functions of a complex variable and limits of sequences of complex
numbers are defined in the same way as in the real case. For example, lim

I→0
5 (I) = 1
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2 1 Preliminaries

means that for every Y > 0 there exists X > 0 such that 0 < |I − 0 | < X implies
| 5 (I) − 1 | < Y. The theorems on the limit of a sum, difference, product, and quotient
of two functions are still valid in the complex case, as well as Cauchy’s convergence
criterion (“a sequence converges if and only if it is Cauchy”).

The notation lim
I→0

5 (I) = ∞means that lim
I→0
| 5 (I) | = +∞ (and similarly for limits

of sequences); lim
|I |→∞

5 (I) = 1 means that “for every Y > 0 there exists " > 0 such

that |I | > " implies | 5 (I) − 1 | < Y.”
Derivatives and integrals of functions of a complex variable are a delicate matter

(the entire book is devoted to it), but complex-valued functions of a real variable
hold no surprises. Namely, if 5 is a function with complex values defined on an
interval of a (real) axis, and if 5 (G) = D(G) + 8E(G) (where D and E are real-valued),
then the derivative of 5 is

5 ′(0) = lim
ℎ→0

5 (0 + ℎ) − 5 (0)
ℎ

= D′(0) + 8E′(0);

these derivatives enjoy all the elementary properties of derivatives of real-valued
functions (the derivative of a sum, product, and difference, the derivative of a com-
posite function if the “inner” function is real-valued), with the same proofs. The
integral of such a function 5 is defined by the formula

1∫
0

5 (G) 3G =
1∫

0

D(G) 3G + 8
1∫

0

E(G) 3G;

it can also be defined in terms of Riemann sums (or, for that matter, as a Lebesgue
integral). As in the case of real-valued functions, it satisfies the inequality�����

1∫
0

5 (G) 3G
����� ≤

1∫
0

| 5 (G) | 3G; (1.2)

to prove this, it suffices to apply the inequality “the absolute value of a sum is not
greater than the sum of the absolute values” to the Riemann sums and take the limit.

1.1 Absolute and Uniform Convergence

Let - be an arbitrary set (you lose nothing by assuming that - is a subset of the
complex plane) and { 5=}=∈N be a countable family of bounded functions on - with
values in C.

Definition 1.1 We say that a series
∞∑
==1

5= converges absolutely and uniformly on -

if the series
∞∑
==1

sup
G∈-
| 5= (G) | converges.
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Proposition 1.2 (Weierstrass M-test) Let
∞∑
==1

5= be a series of bounded functions

on - . If there exists a positive integer # such that sup
G∈-
| 5= (G) | ≤ 0= for all = ≥ # ,

and if the series
∞∑
==1

0= converges, then the series
∞∑
==1

5= converges absolutely and

uniformly.

See [6, Chap. XVI, Sec. 2].

Proposition 1.3 If a series of bounded functions
∑
5= converges on - absolutely and

uniformly, then it converges on - uniformly. Moreover, the series obtained from
∑
5=

by any rearrangement of its terms also converges on - absolutely and uniformly,
and to the same function.

For the case of series with constant terms, see [5, Chap. V, Sec. 5, Proposition 4];
the modifications necessary for the case of functional series are left to the reader.

Let { 5<,=}<,=∈N be a family of bounded functions defined on - and indexed by
two positive integers. Then the formal sum

∑
<,=∈N

5<,= is called a double series. We

say that a double series converges absolutely and uniformly if it converges absolutely
and uniformly for some (and hence, by Proposition 1.3, any) ordering of its terms.

Proposition 1.4 Let { 5<,=}<,=∈N be a family of bounded functions on - . Then the
following two conditions are equivalent.

(1) The double series
∑
<,=

5<,= converges absolutely and uniformly.

(2) For every < ∈ N the series
∞∑
==1

5<,= converges absolutely and uniformly, and,

denoting the sum of this series by 5<, the series
∞∑
<=1

5< also converges absolutely
and uniformly.

Moreover, if the equivalent conditions (1) and (2) are satisfied, then the sum of
the series

∑
<,=∈N

5<,= coincides with the sum of the series
∞∑
<=1

5<.

The reader may either prove these statements as an exercise, or find the proofs in
the literature, or, finally, appropriately modify the proofs of the corresponding facts
for series with constant terms (they are easier to find in textbooks).

1.2 Open, Closed, Compact, Connected Sets

In this section, we deal with subsets of the Euclidean spaceR= for arbitrary =, but our
applications mainly involve the case = = 2 (the complex plane C identified with R2)
and = = 1 (the real line). If E is a point in R=, by |E | we denote its Euclidean norm
(the square root of the sum of the squares of its coordinates). The distance between
points E1, E2 ∈ R= is equal to |E1 − E2 |. If = = 2 and we identify R2 with C in the
usual way, then |E | is the absolute value of the complex number E.



4 1 Preliminaries

Recall that the Y-neighborhood of a point 0 ∈ R= is the set

{I ∈ R= : |I − 0 | < Y}

(here Y is a positive real number).

Definition 1.5 A subset * ⊂ R= is said to be open if for every point 0 ∈ * there is
an Y-neighborhood of 0, for some Y, that is contained in*.

Definition 1.6 A subset � ⊂ R= is said to be closed if its complement R= \ � is
open.

Proposition 1.7 (1) The union of an arbitrary family of open sets is open. The
intersection of an arbitrary finite family of open sets is open.

(2) The intersection of an arbitrary family of closed sets is closed. The union of
an arbitrary finite family of closed sets is closed.

Proposition 1.8 A subset � ⊂ R= is closed if and only if it satisfies the following
property: if {0: } is a sequence of points of � and lim

:→∞
0: = 0, then 0 ∈ �.

(The limit of a sequence in R= is defined in the same way as in C, that is, 0: → 0

if lim
:→∞
|0: − 0 | = 0.)

Definition 1.9 The closure of a subset - ⊂ R= is the intersection of all closed sets
containing - .

Proposition 1.10 The closure of a subset - ⊂ R= coincides with the set of all limits
of convergent sequences {0: } with 0: ∈ - .

The closure of a set - is denoted by ¯̄- .

Definition 1.11 The interior of a subset - ⊂ R= is the set of all points 0 ∈ - such
that some Y-neighborhood of 0 is contained - . The interior of a set - is denoted
by Int(-).

The interior of a set - coincides with the union of all open sets contained in - ,
and also with the complement to the closure of the set R= \ - .

Definition 1.12 A subset  ⊂ R= is said to be compact if it is closed and bounded.

Proposition 1.13 The following three conditions are equivalent:
(1) a subset  ⊂ R= is compact;
(2) for every sequence 0< ∈  there exists a subsequence {0<:

} such that the
limit lim

:→∞
0<:

exists and lies in  ;
(3) for every family of open sets {*U}U∈� satisfying the property  ⊂ ⋃

U*U
there exists a finite collection U1, . . . , U; ∈ � such that

 ⊂ *U1 ∪ . . . ∪*U; .
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A family of sets {*U} satisfying condition (3) of the proposition is called an open
cover of the set  , and condition (3) itself can be briefly stated as “every open cover
has a finite subcover.”

For all of the above, see [5, Chap. 7, Sec. 1].

Proposition 1.14 If  ⊂ R= is a compact set, then every continuous function
5 :  → R attains its maximum and minimum on  .

See [5, Chap. 7, Sec. 1].
Finally, we need the notion of connectedness. To save space, we define it only for

open sets (it will not be encountered in other situations).

Definition 1.15 An open subset * ⊂ R= is said to be disconnected if it can be
represented as the union of two disjoint nonempty open sets.

An open subset* ⊂ R= is said to be connected if it is not disconnected.

Proposition 1.16 Anopen subset inR is connected if and only if it is an interval (0; 1)
where 0 and 1 are real numbers, +∞, or −∞.

Connected open subsets in R= with = > 1 have no such simple characterization,
but we will state and prove one important connectedness criterion.

Proposition 1.17 An open subset * ⊂ R= is connected if and only if for any two
points 0, 1 ∈ * there exists a continuous map W : [0; 1] → * such that

W(0) = 0, W(1) = 1.

In other words, an open set in the plane is connected if and only if any two its
points can be joined by a curve.

Proof Assume that any two points of an open set* ⊂ R= can be joined by a curve;
we will prove that * is connected. Assume to the contrary that * = *1 ∪*2 where
*1 and *2 are open, nonempty, and disjoint. Pick points 0 ∈ *1, 1 ∈ *2, and let
W : [0; 1] → * be a curve joining 0 and 1 (with W(0) = 0, W(1) = 1). Define
a function 5 : [0; 1] → R as follows: 5 (C) = 1 if W(C) ∈ *1, and 5 (C) = 2 if
W(C) ∈ *2. We claim that 5 is continuous. Indeed, if, say, W(C) ∈ *1, then for some
[ > 0 there is an [-neighborhood + 3 W(C) lying in *1 (see Definition 1.5); hence,
since W is continuous, there exists X > 0 such that |C ′− C | < X implies W(C ′) ∈ + ⊂ *1.
Therefore, 5 (C ′) = 5 (C) = 1; in particular, for every Y > 0 we have

|C ′ − C | < X⇒ W(C ′) = W(C) = 1⇒ | 5 (C ′) − 5 (C) | = 0 < Y,

which proves that 5 is continuous. Since a function defined on an interval that takes
only two values 1 and 2 cannot be continuous, we arrive at a contradiction.

Conversely, let * be connected; we will show that any two points of * can be
joined by a curve. Pick an arbitrary point 0 ∈ *; it suffices to show that it can be
joined by a curve to every point 1 ∈ *. To this end, set
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*1 = {I ∈ * : 0 and I can be joined by a curve},
*2 = * \*1.

We claim that*1 and*2 are open. Indeed, if I ∈ *1, i.e., 0 can be joined by a curve
to I, then 0 can be joined by a curve to every point from an Y-neighborhood of I
contained in * (Fig. 1.1), so this neighborhood is contained in *1; we have shown
that*1 is open. If, on the other hand, I ∈ *2, i.e., I cannot be joined by a curve to 0,
then every point from an Y-neighborhood + 3 I contained in * cannot be joined by
a curve to 0: otherwise, the curve joining 0 to a point I′ ∈ + could be extended by
the line segment between I′ and I. Therefore,+ ⊂ *2 and*2 is also open. It remains
to observe that *1 3 0 (the point 0 can be joined to itself by a “curve,” namely, the
constant map), so*1 is nonempty; since* is connected, we obtain*2 = ∅,* = *1,
and the point 0 can be joined by a curve to every point from*, as required. �

0

I

F Y

Fig. 1.1 For the proof of Proposition 1.17

Note also that in complex analysis, connected open subsets in C are often called
domains.

1.3 Power Series

Consider a power series

20 + 21 (I − 0) + 22 (I − 0)2 + . . . + 2= (I − 0)= + . . . (1.3)

(all coefficients 2 9 and the number 0 are complex numbers, the variable I is also
assumed to be complex).

Proposition 1.18 (1) There exists ' ∈ [0;+∞] such that the series (1.3) converges
absolutely for |I− 0 | < ' and diverges (its terms do not tend to zero) for |I− 0 | > '.

(2) We have
' = 1/lim =

√
|2= |. (1.4)
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In (1.4) it ismeant that 1/(+∞) = 0, 1/0 = +∞. This formula is called theCauchy–
Hadamard theorem, and the “number” ' is called the radius of convergence of the
series (1.3). (The word “number” is in quotation marks because ' can be infinite).

For the Cauchy–Hadamard theorem, see [5, Chap. V, Sec. 5].
If ' is the radius of convergence of a series (1.3), then the set

{I ∈ C : |I − 0 | < '}

is called the disk of convergence of this series (if ' = +∞, then the disk of convergence
coincides with the entire plane).

Proposition 1.19 A series (1.3) converges absolutely and uniformly on every com-
pact subset of its disk of convergence.

Note that in many interesting cases, a power series does not converge uniformly
on the whole disk of convergence. Actually, uniform convergence on every compact
subset of a given open set * (but not necessarily on the whole set *) is a typical
situation in complex analysis.

Proof Let the radius of convergence be equal to ' > 0, and let  be a compact
subset of the disk of convergence. The continuous function I ↦→ |I − 0 | attains its
maximum on  ; denote this maximum by A . We have A < ' and

 ⊂ ¯̄�A = {I : |I − 0 | ≤ A}.

Pick a real number A ′ such that A < A ′ < ' and a number I0 such that |I0 − 0 | = A ′.
By Proposition 1.18, the series (1.3) converges absolutely for I = I0, i.e., the series∑ |2= |A ′= converges; in particular, all terms of this series are bounded, i.e., there is
a constant � > 0 such that

|2= |A ′= ≤ � ⇔ |2= | ≤
�

A ′=
for all =.

If now I ∈ ¯̄�A , i.e., |I − 0 | ≤ A, then

|2= (I − 0)= | ≤ |2= |A= = |2= |A ′=
( A
A ′

)=
≤ �

( A
A ′

)=
.

Therefore, on the set ¯̄�A the terms of the series (1.3) are uniformly bounded by the
terms of the convergent geometric series � · ∑(A/A ′)<, so on ¯̄�A our power series
converges uniformly by the Weierstrass M-test (Proposition 1.2). �

Corollary 1.20 The sum of a power series is a continuous function of I on its disk
of convergence.

Proof Indeed, in terms of the previous proof, it suffices to check that the function
is continuous on every set ¯̄�A for 0 < A < ', and this is obvious by the uniform
convergence. �
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1.4 The Exponential Function

Proposition-Definition 1.21 The series

1 + I

1!
+ I

2

2!
+ . . . + I

=

=!
+ . . . (1.5)

converges absolutely for every I ∈ C. Its sum is denoted by 4I or exp(I), and the
function I ↦→ 4I is called the exponential function, or exponential.

The absolute convergence of the series (1.5) for every I is well known (it follows,
for example, from d’Alembert’s ratio test). Since the series has infinite radius of
convergence, the exponential is continuous on the entire complex plane C. If I ∈ R,
then, of course, the exponential of I is equal to 4I in the usual sense.

Note that at the moment we do not define the function I ↦→ 0I for any 0 different
from 4.

Setting I = 8i with i ∈ R in (1.5), we obtain the well-known Euler’s formula

48i = cos i + 8 sin i; (1.6)

therefore, 48i has absolute value 1 and argument i, while a complex number with
absolute value A and argument i can be written as A48i .

Substituting −i for i in (1.6) and then summing and subtracting the resulting
equations, we arrive at the well-known formulas for sines and cosines:

cos i =
48i + 4−8i

2
, sin i =

48i − 4−8i
28

. (1.7)

Here is the main property of the exponential.

Proposition 1.22 For any I, F ∈ C we have 4I+F = 4I4F .

Sketch of the proof It is well known (see [5, Chap. V, Sec. 5, Proposition 5]) that if
00 + 01 + . . . + 0= + . . . and 10 + 11 + . . . + 1= + . . . are absolutely convergent series
with sums � and �, respectively, then the series

0010 + (0011 + 0110) + . . . + (001= + 011=−1 + . . . + 0=10) + . . .

is also absolutely convergent and its sum is equal to ��. Applying this to the
series (1.5) for 4I and 4F , we see that the proposition will follow from the equation

1 · F
=

=!
+ I

1!
· F=−1

(= − 1)! +
I2

2!
· F=−2

(= − 2)! + . . . +
I=

=!
· 1 = (I + F)

=

=!
,

which is nothing else than the binomial theorem for (I + F)=. �

Euler’s formula implies that 42c8 = 1; then it follows from Proposition 1.22 that
4I+2c8 = 4I for all I. In other words, the exponential is a periodic function with
period 2c8.
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1.5 Necessary Background From Multivariable Analysis

Let * ⊂ R= be an open set. A map � : * → R< is said to be differentiable, or, for
clarity, real differentiable, at a point 0 ∈ * if there exists a linear map ! : R= → R<
such that

� (0 + ℎ) − � (0) = ! (ℎ) + i(ℎ) where lim
ℎ→0

|i(ℎ) |
|ℎ| = 0.

See [5, Chap. VIII, Sec. 2].
The map ! is called the derivative (or sometimes, for clarity, real derivative) of

the map � at the point 0 (in [5, 6], the term “differential” is used).
If � is given by the formula

(G1, . . . , G=) ↦→ ( 51 (G1, . . . , G=), . . . , 5< (G1, . . . , G=))

and if all the partial derivatives m 59
mG8

exist and are continuous on the whole set * (in
this case, � is said to be of class�1), then � is real differentiable at every point 0 ∈ *
and its derivative, as a linear map from R= to R<, is represented by the matrix

(
m 59

mG8

)
,

called the Jacobian matrix of �; if < = = (i.e., the Jacobian matrix is square), then
its determinant is called the Jacobian of � (at the given point).

In most of the book, the above-mentioned results will be applied in the case where
< = = = 2, R< = R= = C, and the Euclidean norm is nothing else than the absolute
value of a complex number.

We will also need some information on the area (or measure) of open sets in
the plane. Since the reader is not assumed to be familiar with Lebesgue measure
and integral, we adopt the following approach. Recall that the support of a function
i : R= → R is the closure of the set of all points where it does not vanish. If
i : R= → R is a continuous function with compact support, then by

∫
R=
i 3G we

mean the integral of i over a parallelepiped containing its support (see [6, Chap. XI,
Sec. 1, Definition 7]).

Definition 1.23 Let * ⊂ R= be an open set. A partition of unity with compact
supports on * is a countable family of continuous functions {i8 : R= → [0;+∞)}
satisfying the following properties:

(1) the support of every function i8 is compact and lies in*;
(2) every point G ∈ * has an Y-neighborhood+ 3 G,+ ⊂ * such that the supports

of all but finitely many functions i8 are disjoint with + ;
(3) for every point G ∈ * we have

∑
8

i8 (G) = 1 (this sum is finite by condition (2)).

Cf. [6, Chap. XV, Sec. 2, Definition 18].

Definition 1.24 Let * ⊂ R= be an open set and ℎ : * → [0;+∞) be a continuous
function. The integral of ℎ over* is the number
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∫
R=

ℎ · i8 3G1 . . . 3G= (1.8)

where {i8} is a partition of unity with compact supports on * (if the series in the
left-hand side of (1.8) diverges, then the integral is defined to be +∞).

One can (easily) check that the integral does not depend on the choice of a partition
of unity.

Definition 1.25 Let * ⊂ R= be an open set. The measure of * is the integral
`(*) =

∫
*

1 3G1 . . . 3G= (a nonnegative number or +∞).

If* is a bounded set, then its measure is finite.
Let * and + be open subsets in R=; a diffeomorphism between * and + is

a bĳective map � : * → + of class �1 whose inverse is also of class �1.

Proposition 1.26 Let *,+ ⊂ R= be open sets and � : * → + be a diffeomorphism
of class �1. Then

`(+) =
∫
*

|� (�) (G1, . . . , G=) | 3G1 . . . 3G=

where |� (�) (G1, . . . , G=) | is the determinant of the Jacobian matrix of � at the point
G1, . . . , G=.

This proposition can be deduced from the change of variable formula [6, Chap. XI,
Sec. 5, Theorem 1].

1.6 Linear Fractional Transformations

Definition 1.27 Let 0, 1, 2, 3 be complex numbers such that the matrix
(
0 1

2 3

)
is

nondegenerate. Then the map from C to C given by the formula

I ↦→ 0I + 1
2I + 3 (1.9)

is called a linear fractional map, or linear fractional transformation.

The nondegeneracy condition guarantees that the numerator is not proportional
to the denominator, i.e., the map is not constant.

Definition 1.27 is stated with a (deliberate) carelessness: if 2 ≠ 0, then for
I = −3/2 the denominator vanishes and the map (1.9) is not defined, so, strictly
speaking, it cannot be called a map from C to C. To avoid repeating this caveat, it is
convenient to proceed as follows. Consider the set ¯̄C = C∪{∞} where∞ is a symbol
(called, sure enough, “infinity”) to be dealt with according to the following rules.
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First, we set 0 ± ∞ = ∞ and 0/∞ = 0 for every complex number 0, and also
0 · ∞ = ∞ and 0/0 = ∞ for every nonzero complex number 0 (the expressions 0 · ∞,
∞±∞, and 0/0 are still not defined).

Second, if 5 (I) = (0I + 1)/(2I + 3) is a linear fractional map, we set

5 (∞) = lim
|I |→∞

5 (I) = 0
2
.

With these conventions, every linear fractional transformation becomes a one-to-one
map from ¯̄C onto itself.

The set ¯̄C is called the extended complex plane, or Riemann sphere.
Sets of the form {I ∈ C : |I | > '} will be regarded as “punctured neighborhoods

of infinity” on the Riemann sphere; and the same sets with the point ∞ added,
as neighborhoods of infinity (without puncture). For the reader familiar with the
corresponding definitions, I should mention that this definition of neighborhoods of
infinity endows ¯̄C with the structure of a topological space homeomorphic to the
two-dimensional sphere (see Chap. 13).

The main property of linear fractional transformations is that they take lines and
circles to lines and circles. More exactly, for every line ℓ ⊂ C the set ℓ ∪ {∞} ⊂ ¯̄C
will be called a “line on the Riemann sphere” (it is the closure of the set ℓ ⊂ C with
respect to the above-mentioned topology on ¯̄C). By a circle on the Riemann sphere
we will mean a usual circle in C (a circle is a bounded set, it “does not go to infinity,”
so there is no need to add∞). Now we introduce the following term.

Definition 1.28 A generalized circle is a subset in ¯̄C that is either a line on the
Riemann sphere or a circle.

Proposition 1.29 Every linear fractional transformation takes generalized circles to
generalized circles.

Proof Every linear fractional transformation I ↦→ (0I + 1)/(2I + 3) is easily seen
to be a composition of transformations of the form I ↦→ �I (� ≠ 0), I ↦→ I + �, and
I ↦→ 1/I (to prove this, it suffices to divide the polynomial 0I + 1 by 2I + 3 with
remainder). Transformations of the first two types (dilations and translations) take
lines to lines and circles to circles, so it remains to consider only the case of 1/I.

Lemma 1.30 The equation of any generalized circle has the form

?IĪ + �I + ¯̄�Ī + @ = 0 where � ∈ C, ?, @ ∈ R. (1.10)

Proof Let ℓ ⊂ C be a line given by an equation ?G + @H + A = 0 (?, @, A ∈ R).
Substituting G = (I + Ī)/2, H = (I − Ī)/28, we see that the equation of ℓ has the form

? − 8@
2

I + ? + 8@
2

Ī + A = 0,

or, denoting (? − 8@)/2 = �,

�I + ¯̄�Ī + A = 0 where � ∈ C, A ∈ R.
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In a similar way, the equation of any circle in the plane has the form

?(G2 + H2) + @G + AH + B = 0 where ?, @, A, B ∈ R.

Substituting G = (I + Ī)/2, H = (I − Ī)/28, we obtain the equation

?IĪ + �I + ¯̄�Ī + B (� ∈ C, B ∈ R),

which is again an equation of the form (1.10). �

Returning to the action of the transformation I ↦→ 1/I on generalized circles,
observe that if F = 1/I, then I = 1/F; substituting 1/F for I in (1.10) yields an
equation for F which also has the form (1.10), and we are done. �

Proposition 1.31 Let {01, 02, 03} and {11, 12, 13} be two triples of distinct points
on the Riemann sphere. Then there is a unique linear fractional transformation that
sends each 08 to the corresponding 18 .

Sketch of the proof We verify this for the case where 11 = 0, 12 = 1, 13 = ∞, and
all 0 9 are finite (leaving the rest as an exercise for the reader).

If a linear fractional transformation I ↦→ (?I + @)/(AI + B) sends 01 to 0 and
03 to ∞, then ?I + @ must vanish for I = 01 and AI + B must vanish for I = 03.
Therefore, the map can be rewritten as

5 (I) = 2 I − 01
I − 03

, 2 ≠ 0;

the condition 5 (02) = 1 fixes the coefficient 2. �

An important property of linear fractional maps is that they are conformal: linear
fractional transformations preserve angles between curves. Later in this section, we
will need this property for angles between (generalized) circles, which can be proved
by quite elementary methods; however, we postpone the proof until Chap. 2, where
this property will be deduced from amore general fact, and also the general definition
of a conformal map will be given.

We also need the notion of symmetry (reflection) with respect to a circle.

Definition 1.32 Let � ⊂ ¯̄C be a generalized circle. Points ?1, ?2 ∈ ¯̄C are said to be
symmetric with respect to � if they do not lie on � but every generalized circle that
passes through ?1 and ?2 is orthogonal to �.

If ? is a point on �, then it is symmetric to itself.

If � is a line, then symmetry with respect to � in the sense of Definition 1.32 is
equivalent to symmetry in the ordinary sense (see Fig. 1.2).

Proposition 1.33 For every generalized circle � and every point ? ∈ ¯̄C there is
a unique point symmetric to ? with respect to �.
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�

?1

?2

Fig. 1.2 Symmetry with respect to a line from the point of view of Definition 1.32

Proof If ? and ?′ are symmetric points with respect to � and � : ¯̄C→ ¯̄C is a linear
fractional transformation, then (in view of Definition 1.32 and the preservation of
angles) �(?) and �(?′) are symmetric points with respect to �(�), and vice versa.
Applying a linear fractional transformation that takes� to a line reduces the question
to the unique existence of a point symmetric to a given point with respect to a line.�

Exercises

1.1. Write the number −1 + 8
√

3 in polar form.
1.2. Simplify the expression (−

√
3 − 8)2017.

1.3. Let Z1, . . . , Z= be all roots of the equation I= = 1 where = is a positive integer.
Find the sum

Z :1 + Z
:
2 + . . . + Z

:
=

for every : ∈ Z.
1.4. (a) Find (draw) the images of the lines Re I = 1/2, Re I = 1, and Re I = 3/2

under the map I ↦→ I2; what are these curves called?
(b) The same question for the lines Re I = −1/2, Re I = −1, and Re I = −3/2
(before you start calculating, consider whether this is worth doing).
(c) The same question for the lines Im I = 1/2, Im I = 1, and Im I = 3/2 (and
the same warning).

1.5. Give an “epsilon-delta” proof that the relation lim
=→∞

I= = 0 is equivalent to
lim
=→∞

Re I= = Re 0 and lim
=→∞

Im I= = Im 0.
1.6. For each of the following subsets in C, determine whether it is open, or closed,

or neither.
(a) {I : Re(I) > 2, Im(I) ≤ 1}.
(b) {I = G + 8H : sin G + cos H > 2017}.
(c) {I : Im(I) ≥ 1, Re(I) ≥ −1}.
(d) The set of I ∈ C such that either Im I ≠ 0, or Im I = 0 and Re I is rational.
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1.7. Let *,+ be open subsets in C and 5 : * → + be a map. Show that 5 is
continuous in the “epsilon-delta” sense if and only if for every open subset
+1 ⊂ + the set 5 −1 (+1) is also open.

1.8. Let*,+ be open subsets inC and 5 : * → + be a continuous bĳective map for
which the inverse map 5 −1 : + → * is also continuous (such maps are called
homeomorphisms). Let 1 ∈ + , and let i be a function defined on a punctured
neighborhood of 1. Show that

lim
F→1

i(F) = lim
I→ 5 −1 (1)

i( 5 (I)).

1.9. Show that every open set * ⊂ C can be represented as a union of pairwise
disjoint connected open subsets. (Hint. Call two points equivalent if they can
be joined by a path.)
These open subsets are called the connected components of*.

1.10. Let [0; 1] ⊂ R be a closed interval contained in a (possibly infinite) union of
open intervals � 9 ⊂ R. Show that there exist 0 = 00 < 01 < 02 < . . . < 0= = 1
such that every closed interval [0: ; 0:+1] is contained in at least one of � 9 .

1.11. Let* ⊂ C be an open set and  ⊂ * be a compact subset of*. Show that

inf
I∈ 
F ∈C\*

|I − F | > 0.

1.12. Find the radius of convergence of the series
∞∑
==1

=!G=!.
1.13. The series

1 + G + G
2

2!
+ . . . + G

=

=!
+ . . .

converges for every G ∈ R. Is this convergence uniform on R?
1.14. Let 4I+) = 4I for all I ∈ C. Show that ) = 2c8= for some integer =.
1.15. Find the images of the vertical and horizontal lines under the map I ↦→ 4I .
1.16. Let 5 : I ↦→ 01I+11

21I+31
and 6 : I ↦→ 02I+12

22I+32
be linear fractional transformations.

Show that their composition 6 ◦ 5 is a linear fractional transformation of the
form I ↦→ 03+13

23I+33
where (

03 13
23 33

)
=

(
02 12
22 32

) (
01 11
21 31

)
.

1.17. Fill in the gaps in the proof of Proposition 1.31.
1.18. Show that every sequence of points on the Riemann sphere contains a subse-

quence converging to a complex number or to∞.
1.19. Let � be the circle of radius ' centered at the origin. Show that the point

symmetric to a point I with respect to � is '2/Ī.
1.20. Show that the composition of two reflections with respect to generalized circles

is a linear fractional transformation.
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