
Existence of a singular projective variety with
an arbitrary set of characteristic numbers

A. Y. Buryak ∗

It is known that Chern characteristic numbers of compact complex man-
ifolds cannot have arbitrary values. They satisfy certain divisability condi-
tions. For example (see, e.g., [5])

2 | 〈c1(X), [X]〉 , for dimX = 1,

12 |
〈
c21(X) + c2(X), [X]

〉
, for dimX = 2,

24 | 〈c1(X)c2(X), [X]〉 , for dimX = 3.

W. Ebeling and S. M. Gusein-Zade ([1]) offer a definition of character-
istic numbers of singular compact complex analytic varieties. For an n-
dimensional singular analytic variety X, let ν : X̂ → X be its Nash trans-
form and let T̂X be the tautological bundle over X̂ (see, e.g, [1]). If X is
embedded into a smooth complex analytic manifold M , then over the non-
singular part Xreg of X there is a section of Grn(TM) given by the tangent

space to X. The Nash transform X̂ is the closure in Grn(TM) of the image

of this section. The bundle T̂X is the restriction to X̂ of the tautologi-
cal bundle over Grn(TM). Let the variety X be compact. For a partition
I = i1, . . . , ir, i1 + . . . + ir = n of n the corresponding characteristic number
cI [X] of the variety X is defined by

cI [X] :=
〈
ci1(T̂X)ci2(T̂X) · · · cir(T̂X),

[
X̂
]〉
,

where
[
X̂
]

is the fundamental class of the variety X̂. Let c[X] be the vector

(cI [X]) ∈ Zp(n), where p(n) is the number of partitions of n.

Theorem. For any vector v ∈ Zp(n) there exists a projective variety X of
dimension n such that c[X] = v.
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Let V be an algebraic variety. R. MacPherson ([6]) defined the local
Euler obstruction Eup(V ) of the variety V at a point p. He proved that it is
a constructible function on the variety V . Denote this function by Eu(X).
The notion of the integral with respect to the Euler characteristic was defined
in [9]. The proof of the Theorem will use the following fact.

Lemma 1. Let X be a compact algebraic variety of dimension n; then cn[X]
is equal to the following integral with respect to the Euler characteristic

cn[X] =

∫
X

Eu(X)dχ.

Proof . For any constructible function α on the variety X R. MacPherson
([6]) defined an element c∗(α) ∈ H∗(X). From his construction it follows
that

cn[X] =

∫
X

c∗(Eu(X)),

where the integral means the degree of the class c∗(Eu(X)). L. Ernström
([4]) proved that for any constructible function α on a variety X∫

X

αdχ =

∫
X

c∗(α).

Lemma 1 follows from these two formulas. �

Proof of Theorem 1. We need some combinations of characteristic numbers
(see, e.g., [7]). Define two monomials in t1, . . . , tk to be equivalent if some
permutation of t1, . . . , tk transforms one into the other. Define

∑
ti11 · · · tirr

to be the sum of all monomials in t1, · · · , tk equivalent to ti11 · · · tirr . For
any partition I = i1, . . . , ir of n, define a polynomial sI in n variables as
follows. For k ≥ n elementary symmetric functions σ1, . . . , σn of t1, . . . , tk
are algebraically independent. Let sI be the unique polynomial satisfying

sI(σ1, . . . , σn) =
∑

ti11 · · · tirr .

This polynomial does not depend on k. Let F be a complex vector bundle
over a topological space Y . For a partition I of n the cohomology class
sI(c1(F ), . . . , ck(F )) ∈ H2n(Y ) will be denoted by sI(F ). For a compact
analytic variety X of dimension n and a partition I of n let the number
sI [X] be defined by

sI [X] :=
〈
sI(T̂X),

[
X̂
]〉
.
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Let s[X] be the vector (sI [X]) ∈ Zp(n). We have the following relationship
between the vectors c[X] and s[X] (see, e.g., [7]). There exists a p(n) ×
p(n) matrix A with integer coefficients and det(A) = ±1 such that, for any
compact analytic variety X of dimension n, one has c[X] = As[X]. Hence it
is sufficient to prove that for any vector v ∈ Zp(n) there exists a projective
variety X such that s[X] = v.

For two complex bundles F, F ′ the characteristic class sI(F ⊕F ′) is equal
to

sI(F ⊕ F ′) =
∑
JK=I

sJ(F )sK(F ′), (1)

where the sum is over all partitions J and K with union JK equal to I ([7]).

Let X1, X2 be two compact analytic varieties and ν1 : X̂1 → X1, ν2 : X̂2 →
X2 be their Nash transforms. It is clear that the map (ν1, ν2) : X̂1 × X̂2 →
X1 × X2 is the Nash transform of X1 × X2. Let p1,2 : X̂1 × X̂2 → X̂1,2 be

projections; then T̂ (X1 × X2) = p∗1T̂X1 ⊕ p∗2T̂X2. Let n1 and n2 be the
dimensions of X1 and X2. Let I be a partition of n1 +n2. From (1) it follows
that

sI [X1 ×X2] =
∑
JK=I
|J |=n1

|K|=n2

sJ [X1]sK [X2]. (2)

Lemma 2. For any i ≥ 1 there exist projective varieties Ki
+ and Ki

− of
dimension i such that si[K

i
±] = ±1.

We shall prove Lemma 2 later. Before that we shall deduce the statement
of the Theorem from Lemma 2. Let J = j1, . . . , jq be a partition of n. Let

KJ
+ = Kj1

+ ×K
j2
+ × · · · ×K

jq
+ ,

KJ
− = Kj1

− ×K
j2
+ × · · · ×K

jq
+ .

From (2) it follows that

sI [K
J
±] =

∑
I1···Iq=I
|Il|=jl

sI1 [K
j1
± ]sI2 [K

j2
+ ] · · · sIq [K

jq
+ ].

A refinement of a partition J means any partition which can be written as a
union J1 · · · Jq where each Jl is a partition of jl. Consider the lexicographical
order on partitions of n. It is obvious that if I is a refinement of J then I ≤ J .
We see that the characteristic number sI [K

J
±] is zero unless the partition I
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is a refinement of J , hence sI [K
J
±] = 0, if I > J . We have sI [K

I
±] = ±1.

Now it is clear that the vectors s[KJ
±] generate the whole lattice Zp(n) as a

semigroup. This finishes the proof of the theorem. �

Proof of Lemma 2. It is known that, for any smooth compact algebraic
variety W of dimension n, there exists a smooth compact algebraic variety
V of dimension n such that for any partition I of the number n we have
cI [V ] = −cI [W ] (see e.g. [8]). Denote the variety V by −W . We have (see
e.g. [7])

sn[CPn] = n+ 1. (3)

We see that existence of a variety Kn
− immediately follows from existence of a

variety Kn
+ because sn[(−CPn) +nKn

+] = −1. We also see that it is sufficient

to construct a projective variety K̃n
+ such that sn[K̃n

+] ≡ 1 mod n+ 1.

Let n = 1. Let K̃1
+ be the closure in CP2 of the semicubical parabola

{x2 − y3 = 0} ⊂ C2. From Lemma 1 and properties of the local Euler

obstruction ([6]) it follows that s1[K̃
1
+] = c1[K̃

1
+] = 3 ≡ 1 mod 2.

Let us construct varieties K̃n
+ for any n ≥ 2. For a smooth subvariety

X ⊂ CPN−1 of dimension n − 1, let CX ⊂ CPN be the cone over X. Let
h ∈ H2(CPN−1) be the hyperplane class.

Lemma 3. Suppose the element h|X ∈ H2(X) is divisible by d; then

sn[CX] ≡ nsn−1[X] mod d.

Proof . Let Fi1,...,is be the variety consisting of flags (V i1 , . . . , V is−1) with
V i1 ⊂ · · · ⊂ V is−1 ⊂ Cis and dimV ik = ik. Denote by Dik the tautological
bundle over Fi1,...,is . Let p be a point of CPN and let V ⊂ TpCPN be a d-
dimensional subspace. Denote by g(V ) the unique d-dimensional projective
subspace of CPN such that p ∈ g(V ) and Tp(g(V )) = V . Let G ⊂ CPN be
a d-dimensional projective subspace. By k(G) denote the associated (d+ 1)-
dimensional vector subspace of CN+1. Let Y ⊂ CPN be an n-dimensional
subvariety. Consider the map

σ : Yreg → F1,n+1,N+1, Yreg 3 p 7→ (k(p), k(g(TpYreg))) ∈ F1,n+1,N+1.

By definition the closure σ(Yreg) is the Nash transform of Y . The bundle T̂ Y
is isomorphic to Hom(D1, (Dn+1/D1))|Ŷ .

Let X̂ ⊂ F1,n,N and ĈX ⊂ F1,n+1,N+1 be the Nash transforms of X and
CX respectively. Consider the diagram

F1,2,n+1,N+1
π2−−−→ F1,n+1,N+1yπ1

F1,n,N
i−−−→ F2,n+1,N+1
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where π1, π2 are the natural projections and the map i is defined by

i : (V 1, V n) 7→ (V 1 ⊕ k(O), V n ⊕ k(O)),

where O ∈ CPN is the vertex of the cone CX. Obviously the map i is
injective. Let Y = π−11 (i(X̂)).

Lemma 4. The image of Y under the map π2 is ĈX. The map π2 : Y → ĈX
is birational.

Proof . Denote by pq the line, which goes through two different points
p, q ∈ CPN . From the definition of the variety Y it follows that

Y = {(L, k(q)⊕ k(O), k(g(TqX))⊕ k(O)) ∈ F1,2,n+1,N+1|
q ∈ X,L ⊂ k(q)⊕ k(O)} =

= {(k(p), k(q)⊕ k(O), k(g(TqX))⊕ k(O)) ∈ F1,2,n+1,N+1|
q ∈ X, p ∈ CX, p ∈ qO}. (4)

Note that, if p 6= O, then q is uniquely determined by p. Denote by Y ′ the
subset of triples from (4) such that p 6= O.

It is clear that for any point p ∈ CX\{O} we have

k(g(TpCX)) = k(g(TpO∩XX))⊕ k(O).

We see that for any element (V 1, V n+1) ∈ ĈX ⊂ F1,n+1,N+1 there exist points
p ∈ CX and q ∈ X such that p ∈ qO and

V 1 = k(p), V n+1 = k(g(TqX))⊕ k(O). (5)

Note that a point q is not uniquely determined by the element (V 1, V n+1).
The map π2 just forgets the second element of the triple from (4) and

it is clear that we obtain the pair (V 1, V n+1) from (5). This completes the
proof of the first part of the lemma.

Let ĈX
′

= {(V 1, V n+1) ∈ ĈX
∣∣∣V 1 6= k(O)}. Note that if (V 1, V n+1) ∈

ĈX
′
then a point q from (5) is uniquely determined and q = pO∩X. Now it

is clear that the map π2 sends Y ′ isomorphically onto ĈX
′
. This concludes

the proof of the second part of the lemma. �

By D̃i we denote the tautological bundles over F2,n+1,N+1,F1,2,n+1,N+1,F1,n+1,N+1.
By Di we denote the tautological bundles over F1,n,N . We have

sn[CX] =
〈
sn(T̂ (CX)),

[
ĈX

]〉
=
〈
sn(D̃∗1 ⊗ (D̃n+1/D̃1)),

[
ĈX

]〉
lemma 4

=

=
〈
sn(D̃∗1 ⊗ (D̃n+1/D̃1)), [Y ]

〉
.
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The map π1 : F1,2,n+1,N+1 → F2,n+1,N+1 is the projectivization of the bundle

D̃2 over F2,n+1,N+1. We have that i∗D̃2
∼= D1⊕C and i∗D̃n+1

∼= Dn⊕C. We
see that the variety Y is the total space P(D1 ⊕ C) of the projectivization

of the bundle D1 ⊕ C over X̂. By τ we denote the tautological bundle over

P(D1 ⊕ C). It is clear that τ = D̃1

∣∣∣
Y

. Therefore we have〈
sn(D̃∗1 ⊗ (D̃n+1/D̃1)), [Y ]

〉
= 〈sn(τ ∗ ⊗ ((Dn ⊕ C)/τ)), [P(D1 ⊕ C)]〉 .

Moreover

sn(τ ∗ ⊗ ((Dn ⊕ C)/τ)) = sn(τ ∗ ⊗ ((Dn/D1)⊕D1 ⊕ C)) =

= sn(τ ∗ ⊗ (Dn/D1)) + sn(τ ∗ ⊗D1) + sn(τ ∗) =

= sn(τ ∗ ⊗D1 ⊗ (D∗1 ⊗ (Dn/D1))) + sn(τ ∗ ⊗D1) + sn(τ ∗) =

= sn(τ ∗ ⊗D1 ⊗ T̂X) + sn(τ ∗ ⊗D1) + sn(τ ∗).

Let c1(τ
∗) = u ∈ H2(P(D1 ⊕ C)). We have u2 = uh. Therefore from

the assumption of the lemma it follows that for any k ≥ 2 the element
uk ∈ H2k(P(D1 ⊕ C)) is divisible by d. Hence we have

〈sn(τ ∗ ⊗D1), [P(D1 ⊕ C)]〉 = 〈(u− h)n, [P(D1 ⊕ C)]〉 ≡ 0 mod d,

〈sn(τ ∗), [P(D1 ⊕ C)]〉 = 〈un, [P(D1 ⊕ C)]〉 ≡ 0 mod d.

Let x1, . . . , xn−1 be Chern roots of the bundle T̂X. Then x1+u−h, . . . , xn−1+
u− h are Chern roots of the bundle τ ∗ ⊗D1 ⊗ T̂X. Hence〈

sn(τ ∗ ⊗D1 ⊗ T̂X), [P(D1 ⊕ C)]
〉

=

=

〈
n−1∑
i=1

(xi + u− h)n, [P(D1 ⊕ C)]

〉
≡

〈
n−1∑
i=1

(xi + u)n, [P(D1 ⊕ C)]

〉
≡

≡

〈
n−1∑
i=1

xni + nu
n−1∑
i=1

xn−1i , [P(D1 ⊕ C)]

〉
mod d.

The class
∑n−1

i=1 x
n
i ∈ H2n(X̂) is equal to zero because dimRX̂ = 2n − 2.

Therefore〈
n−1∑
i=1

xni + nu

n−1∑
i=1

xn−1i , [P(D1 ⊕ C)]

〉
=
〈
nusn−1(T̂X), [P(D1 ⊕ C)]

〉
=

= n
〈

(π1∗u)sn−1(T̂X),
[
X̂
]〉

= n
〈
sn−1(T̂X),

[
X̂
]〉

= nsn−1[X].
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This completes the proof of Lemma 3. �

Let X = CPn−1 ↪→ CP( 2n
n−1)−1 be the image of the Veronese embedding

of degree n + 1. Let K̃n
+ = CX. From (3) and lemma 3 it follows that

sn[K̃n
+] ≡ n2 ≡ 1 mod n+ 1. This concludes the proof of Lemma 2. �

Remark. It seems to be interesting to construct a cobordism theory of sin-
gular varieties associated to this notion of characteristic numbers.
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