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Abstract. In this note we use the formalism of multi-KP hi-
erarchies in order to give some general formulas for infinitesimal
deformations of solutions of the Darboux-Egoroff system. As an
application, we explain how Shramchenko’s deformations of Frobe-
nius manifold structures on Hurwitz spaces fit into the general for-
malism of Givental-van de Leur twisted loop group action on the
space of semi-simple Frobenius manifolds.

1. Introduction

In [1], Dubrovin has associated a structure of Frobenius manifolds
to an arbitrary Hurwitz space of meromorphic functions on Riemann
surfaces of genus g with simple finite critical values and a prescribed
ramification indices over infinity. Shramchenko observed [11] that the
structure of Frobenius manifold associated to a Hurwitz space can be
included into a family of Frobenius manifold structures parametrized
by a symmetric g × g matrix. There is a beautiful description of this
deformation in terms of the values of holomorphic differentials at the
critical points and their B-periods matrix.

Meanwhile, Givental in [2, 3] and, independently, van de Leur in [8]
have constructed an action of the twisted loop group of GLn on the
space of semi-simple Frobenius manifolds. Moreover, Givental has
shown that this group acts transitively on the space semi-simple Frobe-
nius manifolds. This two constructions of the group action were iden-
tified in [4] via an identification of the formulas of Y.-P. Lee for the
infinitesimal Givental action [7] with the tangent van de Leur action
computed in [4] in terms of twisted wave functions of multi-component
KP hierarchies.

In this paper, we extend in some way the formulas for the tangent
van de Leur action computed in [4]. Namely, we express infinitesimal
Lie algebra action on the space of solutions of the Darboux-Egoroff
system in terms of the twisted wave functions of multi-component KP.

2010 Mathematics Subject Classification. 37K10 (53D45, 37K30).
Key words and phrases. Frobenius manifold, Hurwitz space, Darboux-Egoroff

equations, multi-KP hierarchy, deformations.
A. B is partially supported by the grants RFBR-07-01-00593, NSh-709.2008.1.

Both A. B. and S. S. are partly supported by the Vidi grant of NWO.
1



2 A. BURYAK AND S. SHADRIN

In principle, these formulas are of independent interest. In particu-
lar, they allow us to fit Shramchenko’s deformations into a general
Givental-van de Leur scheme. In particular, it is interesting to trace
a correspondence between geometric ingredients of Shramchenko’s de-
formation and particular wave functions of the multi-component KP
hierarchy that is associated to an arbitrary solution of the Darboux-
Egoroff system in van de Leur’s approach .

1.1. Organization of the paper. In section 2, we recall the con-
structions of Hurwitz Frobenius manifolds and their deromations. In
section 3, we recall the van de Leur approach to Frobenius manifols and
use it in order to derive explicit formulas for the Givental-van de Leur
infinitesimal deformations of solutions of the Darboux-Egoroff equa-
tions. In section 4 we discuss the simplest possible example of such
infinitesimal deformations that can be integrated explicitely and show
that it is exactly the way one could obtain Shramchenko’s deformations
of Hurwitz Frobenius manifolds.

1.2. Acknowledgements. The authors are grateful to J. van de Leur
and H. Posthuma for useful remarks and discussions and to an anony-
mous referee for a number of suggestions that helped us to improve the
exposition.

2. Frobenius structures associated to Hurwitz spaces

2.1. Darboux-Egoroff equations. In this paper we consider only
semi-simple Frobenius manifolds. There is a way to encode the struc-
ture of a semi-simple Frobenius manifold in canonical coordinates as
a solution of a system of PDEs that is called Darboux-Egoroff equa-
tions [1].

Let n ≥ 1. We consider functions γij = γji, i, j = 1, . . . , n, i 6= j, in
variables u1, . . . , un. The Darboux-Egoroff equations read:

∂γij
∂uk

= γikγkj, i 6= j 6= k 6= i(1)

n∑
k=1

∂γij
∂uk

= 0 i 6= j

Is it convenient to collect γij into a symmetric matrix with the diag-
onal terms that can be either equal to 0 or just arbitrary. We introduce
a special notation for that. Let M be a symmetric matrix. By n.d.M
we denote the same matrix with non-specified diagonal terms.

Remark 2.1. A Frobenius manifold in the sense of [1] must be equipped
with an Euler vector field. We omit this requirement, since it is not
well compatible with the deformation technique that we use this paper.
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2.2. Hurwitz spaces. We fix some integer numbers d1, . . . , dm > 0
and g ≥ 0. Let H be the space of the equivalence classes of the tuples
of data (Cg, {ai, bi}gi=1, f : Cg → CP1), where Cg is a Riemann surface
of genus g, {ai, bi}gi=1 is a choice of the canonical basis of cycles on Cg,
and f : Cg → CP1 is a meromorphic function of degree d :=

∑m
i=1 di

with exactly m poles of multiplicity d1, . . . , dm and n := 2g+d+m−2
simple critical points x1, . . . , xn ∈ Cg. In addition, we choose local
parameters z, . . . , zn at the points x1, . . . , xn ∈ Cg such that f = z2i in
a neighbourhood of xi. Two tuples of this data are equivalent if there
is a biholomorphic map between two source curves that preserves the
rest of the data.

The critical values of meromorphic functions ui := f(xi), i = 1, . . . , n,
are local coordinates on the space H.

We recall the Kokotov-Korotkin construction [5] of a solution of the
Darboux-Egoroff equations. Let W (P,Q) be the canonical meromor-
phic bidifferential on a Riemann surface Cg. That is, W (P,Q) is spec-
ified by the following properties: it is symmetric, it has a quadratic
pole on the diagonal P = Q with biresidue 1, and its a-periods with
respect to both variables vanish. Then the functions

(2) γij :=
1

2
W (xi, xj) :=

1

2

W (P,Q)

dzi(P )dzj(Q)

∣∣∣∣
P=xi,Q=xj

in variables u1, . . . , un satisfy the Darboux-Egoroff equations.

2.3. Shramchenko’s deformations. Let ωi, i = 1, . . . , g, be the ba-
sis of holomorphic differentials on Cg normalized by

∫
ai
ωj = δij. De-

note by ω the matrix of the values of ωi at critical points:

(3) ωij := ωi(xj) :=
ωi(P )

dzj(P )

∣∣∣∣
P=xj

Denote by B the matrix of b-periods of these differentials divided by
π
√
−1, Bij := 1

π
√
−1

∫
bi
ωj. Let M be an arbitrary g× g symmetric ma-

trix such that B +M is non-degenerate. Shramchenko’s deformations
of Hurwitz Frobenius manifolds [11] are given by the formula

(4) n.d.γ(M) := n.d.
(
γ − ωt(B +M)−1ω

)
.

Here n.d.γ is given by equation (2). Shramchenko proved that γij(M)
are solutions of the Darboux-Egoroff equations in the variables u1, . . . , un
in the domain det(B +M) 6= 0. Observe that n.d.γ(M) tends to n.d.γ
when (B +M)−1 tends to zero.
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The proof that n.d.γ(M) is a solution of the Darboux-Egoroff equa-
tions is based on Rauch variational formula and its corollaries:

∂W (P,Q)

∂uj
=

1

2
W (P, xj)W (Q, xj),(5)

∂ωi(P )

∂uj
=

1

2
ωi(xj)W (P, xj),(6)

∂Bkl

∂uj
= ωk(xj)ωl(xj),(7)

where evaluation of differentials at particular points is defined in (2)
and (3).

3. Van de Leur’s formalism for Frobenius manifolds

In this section we explain van de Leur’s construction of a Frobenius
structure associated to a point in the isotropic semi-infinite Grassman-
nian.

3.1. Basic definitions. Let V = 〈e1, . . . , en〉 be an n-dimensional vec-
tor space over C. Let z be a formal variable. We denote by V the
vector space Λ∞/2 (V ⊗ C[z−1, z]) spanned by the semi-infinite wegde
products

ω = (ei1z
d1) ∧ (ei2z

d2) ∧ (ei3z
d3) ∧ . . .

such that the tail of ω coinsides with the tail of vacuum vector

|0〉 := (e1z
0) ∧ · · · ∧ (enz

0) ∧ (e1z
1) ∧ · · · ∧ (enz

1) ∧ . . . .

By tail of ω we call another basis vector in V that is obtained from ω
by removing the first few factors in the wedge product.

Consider a matrix series A(z) ∈ End(V ) ⊗ C[[z−1, z]] such that
At(−z)A(z) = Id · z0 (it is better to imagine it as a finite product
of invertible matrix series in End(V ) ⊗ C[[z]] and End(V ) ⊗ C[[z−1]]
with the unit constant term satisfying the same symplectic condition).

Let αi be a local Lie algebra element whose action on V ⊗ C[z−1, z]
is defined by

αi(ejz
d) :=

{
ejz

d+1 if i = j,
0 otherwise,

and is expanded to V by the Leibnitz rule.
All basic objects that we are going to consider are some matrix ele-

ments of the operator

A := exp(
n∑
i=1

αiui)A(z),

where u1, . . . , un are formal variables.
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We denote by γij = γij(A), i, j = 1, . . . , n, i 6= j, the following matrix
elements of A:

γij := ±
〈
|0〉
∣∣A ∣∣(eiz−1) ∧ ∂(ejz0)|0〉〉
〈|0〉 |A ||0〉〉

.

(the vector (eiz
−1)∧∂(ejz0)|0〉 is obtained, up to a sign, from the vacuum

vector |0〉 by the replacement of (ejz
0) by (eiz

−1)).
We denote by (Ψd)ij = (Ψd)ij(A), i, j = 1, . . . , n, the following ma-

trix elements of A:

(Ψd)ij :=

〈
(ejz

−1) ∧ |0〉
∣∣A ∣∣(eiz−1−d) ∧ |0〉〉

〈|0〉 |A ||0〉〉
.

These matrices are can be arranged into a generating series Ψ(z) :=∑∞
d=0 z

dΨd that would be a wave function of multi-KP hierarchy multi-
plied by A(z) from the right. The property At(−z)A(z) = Id · z0 imply
that Ψt(−z)Ψ(z) = Id · z0.

Van de Leur has shown in [8] that a formal locally semi-simple Frobe-
nius structure can expressed in terms of the matrices γ and Ψd, d ≥ 0.
In particular, γij is a solution of the Darboux-Egoroff system; u1, . . . , un
are canonical coordinates; Ψt

0Ψ11 is a column of flat coordinates (here
1 is the column of units); and (1/2) · 1tΨt

0(−Ψ3Ψ
t
0 + Ψ2Ψ

t
1)Ψ01 is the

prepotential of a Frobenius manifold.

3.2. Infinitesimal deformations. From the previous section we see
that the right multiplication of a matrix A(z) by a matrix B(z) defines
the action on the functions γ(A), Ψd(A) of the groups of matrices
B(z) ∈ Hom(V, V ) ⊗ C[[z]], Bt(−z)B(z) = Id · z0, and B(z−1) ∈
Hom(V, V ) ⊗ C[[z−1]], Bt(−z−1)B(z−1) = Id · z0, both with the unit
constant term. This group action is crucially important, see, e.g., [4,
Introduction] for a list of particular applications and references.

We discuss the corresponding Lie algebra action. Let k ≥ 0 and
` > 0. Let matrices r and s be symmetric for odd ` and skewsymmetric
for even `. It is proven in [4] that

∂

∂ε

∣∣∣∣
ε=0

Ψk(A exp ε(rz−`)) =(8)

Ψ`+k(A)r −
∑̀
p=1

`−p∑
q=0

(−1)`−p−qΨq(A)rΨt
`−p−q(A)Ψp+k(A);

∂

∂ε

∣∣∣∣
ε=0

Ψk(A exp ε(sz`)) =

{
Ψk−`(A)s, ` ≤ k;

0, ` > k
(9)

This allows to compute the action of this Lie algebra on the prepotential
of Frobenius manifolds in flat coordinates, since both the prepotential
and the flat coordinates are expressed in terms of Ψd, d ≥ 0.
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In order to deal with Hurwitz Frobenius manifolds, we need some
formulas for the Lie algebra action on n.d.γ(A).

Theorem 3.1. Let ` ≥ 0. Let matrices r and s be symmetric for odd
` and skewsymmetric for even `. We have:

∂

∂ε

∣∣∣∣
ε=0

n.d.γ(A exp ε(rz−`)) = n.d.
∑

i+j=`−1

(−1)j−1Ψi(A)rΨt
j(A)(10)

∂

∂ε

∣∣∣∣
ε=0

n.d.γ(A exp ε(sz`)) = 0.(11)

Proof. This theorem is an easy consequence of formulas (8) and (9).
Indeed, there is a relation between Ψd, d ≥ 0 and n.d.γ that is proven
in [8]. For any d ≥ 0, k = 1, . . . , n, we have:

(12)
∂

∂uk
Ψd = EkkΨd−1 + [n.d.γ, Ekk]Ψd

Here and below we assume that Ψ−1 = 0 and we use γ with arbitrary
diagonal terms since they disappear in the commutator with Ekk. By
Ekk we denote the matrix unit, that is (Ekk)ij := δikδjk. This formula
gives an expression for all elements of n.d.γ in terms of Ψ0 and its
derivatives.

From (12) it follows that

∂

∂ε

∣∣∣∣
ε=0

∂

∂uk
Ψ0(A exp ε(rz−`)) = [

∂

∂ε

∣∣∣∣
ε=0

γ(A exp ε(rz−`)), Ekk]Ψ0(A)

+ [γ(A), Ekk]
∂

∂ε

∣∣∣∣
ε=0

Ψ0(A exp ε(rz−`)).

Hence, using (8), we obtain the following equation:

∂

∂uk

(
Ψ`r +

`−1∑
q=0

(−1)`−qΨqrΨ
t
`−qΨ0

)
=

[δγ, Ekk]Ψ0 + [γ,Ekk]

(
Ψ`r +

`−1∑
q=0

(−1)`−qΨqrΨ
t
`−qΨ0

)
,

where we denote ∂
∂ε

∣∣
ε=0

γ(A exp ε(rz−`)) by δγ. Using equation (12)

and Ψt(−z)Ψ(z) = Id · z0, we see that

[δγ, Ekk]Ψ0 = [Ekk,
`−1∑
i=0

(−1)iΨ`−1−irΨ
t
i]Ψ0.

Since Ψ0 is invertible, Ψ0Ψ
t
0 = Id, we obtain equation (10). Equa-

tion (11) can be proven in the same way, but in fact it is obvious from
the definition of γ. �
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Example 3.2. The simplest non-trivial deformation would be by an
element rz−1, where r is an arbitrary symmetric matrix. Denote by
δrγ and δrΨd the corresponding infinitesimal deformations. We have
the following system of equations:

n.d.δrγ = −n.d.Ψ0rΨ
t
0(13)

δrΨ0 = Ψ1r −Ψ0rΨ
t
0Ψ1

δrΨ1 = Ψ2r −Ψ0rΨ
t
0Ψ2

and so on.

4. Special deformations

Shramchenko’s deformations of Hurwitz Frobenius manifolds dis-
cussed in section 2.3 fits into a special case of example 3.2 that can
be integrated explicitely.

4.1. The input. Consider a symmetric n × n matrix n.d.γ whose el-
ements are functions in u1, . . . , un. Let n.d.γ be a solution of the
Darboux-Egoroff equations (1). There are two matrix-valued functions
with clear geometric meanings associated to the Frobenius structures
corresponding to n.d.γ.

First, there is a solution of the commutativity equations [9], which
is a symmetric n×n matrix C = C(u1, . . . , un) such that dC ∧dC = 0.
In terms of multi-KP tau-functions, C = Ψt

0Ψ1.
Second, one can consider Ψ0 itself. In geometric terms Ψ0 is defined

by the equation dC = Ψt
0 · diag(du1, . . . , dun) · Ψ0. That is, it is the

matrix that relates the canonical and the flat coordinates for the un-
derlying Frobenius structures, see [1, 8]. An alternative way to define
Ψ0 is the following. Consider the system of equations (it is equivalent
to equation (12) with d = 0):

∂ (Ψ0)ij
∂uk

= γik (Ψ0)kj , i 6= k,(14)

n∑
k=1

∂ (Ψ0)ij
∂uk

= 0.(15)

Compatibility of this system of equations follows from the Darboux-
Egoroff equations for n.d.γ. This system of equations implies that
∂(Ψt

0Ψ0)/∂uk = 0, k = 1, . . . , n, and Ψ0 that we need is a particular
solution of this system of equations such that Ψt

0Ψ0 = id.

4.2. Special deformations. We consider a distribution of vector sub-
spaces in the tangent bundle of the space of the solutions of the Darboux-
Egoroff equations. It is given by the Givental-van de Leur tangent
vectors of the type (13) described in example 3.2. It is easy to see
that, roughly speaking, a deformation of a particular solution of the
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Darboux-Egoroff equations is given by an ordinary differential equa-
tions of the infinite order.

However, there is a special class of infinitesimal deformations that
can be reduced to a finite order ODEs. We fix a positive integer g ≤
n/2. Let D be a g×n constant matrix of rank g such that DDt = 0. Let
us consider the distribution in the tangent bundle of the moduli space of
the solutions of the Darboux-Egoroff equations given by the Givental-
van de Leur tangent vectors of the type (13) described in example 3.2
with the matrix r that can be represented as r = DtMD, where M is
an arbitrary symmetric g × g matrix. In that case equation (13) can
be reduced to an ODE of finite order.

Proposition 4.1. Equation (13) for the matrix r = DtMD implies
the following system of ODEs for n.d.γ, ω := DΨt

0, and B := DCDt:

n.d.δMγ = −n.d.ωtMω;(16)

δMω = −BMω;

δMB = −BMB.

Proof. Direct computation. �

In order to use this proposition for a particular n.d.γ without going
back to the full multi-KP framework, we need an independent defini-
tions of ω and B in terms of γ and D. We define ω as a g × n-matrix-
valued solutions of the equation

(17) dω = ω · [diag(du1, . . . , dun), n.d.γ]

with the constant term ω|u=0 = DΨt
0|u=0. We define B to be a g × g-

matrix-valued solution of the equation

(18) dB = ω · diag(du1, . . . , dun) · ωt

with the constant term B|u=0 = DCDt|u=0.
Equations (16) can be integrated explicitely in the case when M is a

constant matrix independent of n.d.γ, ω, and B. Indeed, let us define
n.d.γ(ε), ω(ε), and B(ε) by the following formulas:

n.d.γ(ε) := n.d.γ − n.d.ωtεM(1 + εBM)−1ω;(19)

ω(ε) = (1 + εBM)−1ω;

B(ε) = (1 + εBM)−1B.

(these formulas are defined in the domain where (1 + εBM) is invert-
ible).

Proposition 4.2. The matrices n.d.γ(ε), ω(ε), and B(ε) satisfy equa-
tions (17) and (18) for any ε ≥ 0. They integrate the constant vector
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field determined by the matrix M , that is,

n.d.
∂γ(ε)

∂ε
= −n.d.ω(ε)tMω(ε); n.d.γ(ε)|ε=0 = n.d.γ;

∂ω(ε)

∂ε
= −B(ε)Mω(ε); ω(ε)|ε=0 = ω;

∂B(ε)

∂ε
= −B(ε)MB(ε); B(ε)|ε=0 = B;

Proof. Direct computation. �

4.3. Shramchenko’s formulas. In this context, Shramchenko’s for-
mulas are a version of formulas (19) for ε = 1, with some appro-
priate changes. Let us use n.d.γ, ω and B defined in section 2.3.
Equations (5)-(7) imply Darboux-Egoroff equations for n.d.γ and equa-
tions (17)-(18). Therefore, we have a system suitable for deformation
given by (16) (the initial conditions for ω and B depend on the choice
of a particular point of a formal expansion). Indeed, let us substitute
ε = 1 in equation (19). We have:

n.d.γ(ε)|ε=1 = n.d.γ(ε)|ε=0 − n.d.ωt(M−1 +B)−1ω.

If we change the notations in order to replace M−1 with M , we obtain
exactly formula (4).

Remark 4.3. One could obtain the same solution of the Darboux-
Egoroff equations from a special deformation of the following triple:
n.d.γ̃ := γ − ωtBω, ω̃ := B−1ω, and B̃ := B−1. In that case some
formulas would look a bit simpler.

Remark 4.4. Deformations of “real doubles” [10] of Hurwitz Frobenius
manifolds fit into exactly the same scheme as we discuss in section 4.2.

Moreover, in our argument there is still some freedom for the choice
of the matrix D. For example, one can look for the deformations core-
sponding to a matrix D represented as D := UD0, where U is an
arbitrary g × g matrix and D0 is some fixed g × n matrix that sat-
isfies D0D

t
0 = 0. It would give us a family of special deformations

parametrized by two matrices, and the deformations of Hurwitz Frobe-
nius manifolds considered in [6, Remark 4] fit into this scheme after a
change of parametrization.
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